

1 **Functional Expression and Characterization of the Recombinant *N*-acetyl-**
2 **glucosamine/*N*-acetyl-galactosamine-Specific Marine Algal Lectin BPL3**

3

4 Hyun-ju Hwang¹, Jin-Woo Han¹, Gwang Hoon Kim²§, Jong Won Han¹*

5

6 ¹ National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea

7 ² Department of Biology, Kongju National University, Kongju 32588, Korea

8

9

10 §Corresponding author 1:

11 Gwang Hoon Kim

12 E-mail: ghkim@kongju.ac.kr

13 Tel: +82 418508504

14

15 *Corresponding author 2:

16 Jong Won Han

17 E-mail: jwhan@mabik.re.kr

18 Tel: +82 419500760

19 Fax: +82 419500765

20

21

22 **Abstract**

23

24 Lectins, characterized by their carbohydrate-binding ability, have an extensive practical application.
25 However, their industrial use is limited by low yields, and few active recombinant lectins have been
26 reported. In this study, the algal lectin BPL-3 (*Bryopsis plumosa* lectin 3) was successfully produced
27 using a bacterial expression system, BL21(DE3), with an artificial repeated structure (dimeric
28 construct). Recombinant dimeric BPL3 (rD2BPL3) was confirmed by LC-MS/MS spectrometry.
29 Expression efficiency was greater for the construct with the repeat structure (rD2BPL3) than the
30 monomeric form (rD1BPL3). Optimal conditions for expression were 1 mM IPTG at 20 °C.
31 Recombinant lectin was purified under denaturing conditions and refolded by the flash dilution
32 method. Recombinant BPL3 was solubilized in 1× PBS containing 2 M urea. rD2BPL3 showed strong
33 hemagglutination activity using human erythrocytes, similar to that of native BPL3. rD2BPL3 had a
34 similar sugar specificity to that of the native protein, i.e., to *N*-acetyl-glucosamine (GlcNAc) and *N*-
35 acetyl-galactosamine (GalNAc). Glycan array results showed that recombinant BPL3 and native
36 BPL3 exhibited different binding properties. Both showed weak binding activity to α-Man-Sp. Native
37 BPL3 showed strong binding specificity to the alpha conformation of amino sugars, and rD2BPL3
38 had binding activity to the beta conformation. The process developed in this study was suitable for the
39 quality-controlled production of high amounts of soluble recombinant lectins.

40

41 Keywords: *Bryopsis plumosa*; BPL3; lectin; hemagglutinin; recombinant; tandem repeat; GlcNAc;
42 GalNAc

43

44 **1. Introduction**

45

46 Lectins are well-known carbohydrate-binding proteins able to agglutinate cells by glycol-
47 conjugation; they have many medical and scientific applications [1]. For example, lectins are a
48 potential diagnostic molecule for carbohydrate profiling on cell surfaces [2] and can be used for the
49 identification of glycoproteins [3]. Fluorescently labelled lectins have been used for the visualization
50 of polysaccharides in biofilms of *Pseudomonas aeruginosa* [4]. Lectin affinity chromatography has
51 been become a common method for the isolation of glycoproteins from cell extracts [5]. Recently, the
52 application of silver nanoparticles with C-type lectin as a recognition ligand has been suggested for
53 bacterial detection [6]. Lectin histochemistry has also be used for the diagnosis of *Sida carpinifolia*
54 (Malvaceae) poisoning in sheep [7].

55 The utility of GalNAc-specific lectins has been reported by several research groups. Gal/GalNAc-
56 specific lectin is a vaccine candidate for amoebiasis and a focus of immunogenicity studies [8].
57 *Wisteria floribunda* agglutinin (WFA), a GalNAc-specific lectin, shows promise for cancer biomarker
58 detection, with disaccharide LacdiNAc (β -D-GalNAc-[1 \rightarrow 4]-D-GlcNAc) recognition properties [9].

59 To date, approximately 800 algal species have been screened and approximately 60% of these taxa
60 show lectin activity [10]. However, only a few algal lectins (about 50 lectins from marine algae) have
61 been isolated and characterized owing to interfering substances, such as polyphenols, in algae.
62 Insufficient algal biomass is another barrier to the application and commercialization of algal lectin
63 [10]. To overcome these limitations, recombinant techniques are a potentially useful tool for the
64 production and biochemical characterization of active algal lectins.

65 BPL3 is a previously isolated GlcNAc/GalNAc-specific lectin [11]. This protein and other *B.*
66 *plumosa*-derived lectins (Bryohealin and BPL4) have important functions in the wound healing
67 process of *B. plumosa* during protoplast regeneration from mechanically damaged cells [11,12]. BPL3
68 is similar to H-type lectin, which is produced by invertebrates, and not by plants [11]. Based on
69 comparative sequence analyses and the conservation of active sites between BPL3 and the H lectin
70 group, BPL3 was suggested as a research tool in various fields within biochemical and medical

71 sciences [11]. These sequence analyses also suggest that BPL3 is an example of parallel evolution
72 across species boundaries. Despite its overall importance, its biochemical properties, including active
73 sites, are still unclear owing to inability to produce high quantities of pure protein. The production of
74 recombinant lectin has not been reported.

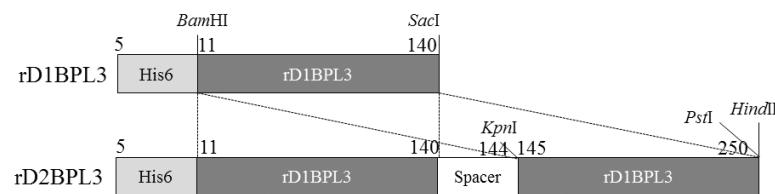
75 Most plants and algae have a heterogeneous mixture of lectin isoforms with diverse biological
76 activities; therefore, a lectin isolated from natural sources is typically not preferred for medical
77 applications [13, 14]. In addition, the inability to obtain large amounts of lectins from natural sources
78 is a major hurdle for medical uses. The production of lectins by recombinant techniques was a major
79 break-through, but production of the active form is difficult using bacterial expression systems [15].
80 Many plant lectins have a dimeric or multimeric structure with homologous subunits exhibiting
81 covalent or non-covalent interactions, and this is demanding in bacterial expression systems. It
82 requires the precise optimization of hydrogen or salt concentrations, which may be un-controllable
83 and difficult to reproduce.

84 Tandem repeat domain structures have been reported in native lectin from *Silurus asotus* eggs [16],
85 mannose-binding lectin from *Boodlea coacta* [17], and lectin from *Aglaothamnion callophyllidicola*
86 [18]. For example, rhodobindin, a lectin produced from the red alga *A. callophyllidicola* involved in
87 the cell–cell recognition process during sexual reproduction [18], consists of an internal tandem repeat
88 structure with at least eight domains. The tandem repeat structure contributes to the production of the
89 active protein and influences recombinant expression [13].

90 Based on these previous results for rhodobindin, we predicted that the construction of internal
91 tandem repeat domains may be useful for the production of active lectin. In this study, active
92 recombinant BPL3 was produced with artificial internal tandem repeat domains and its biochemical
93 properties were characterized. The potential applications of this recombinant lectin for biochemical
94 and medical research are discussed.

95

96 **2. Results**

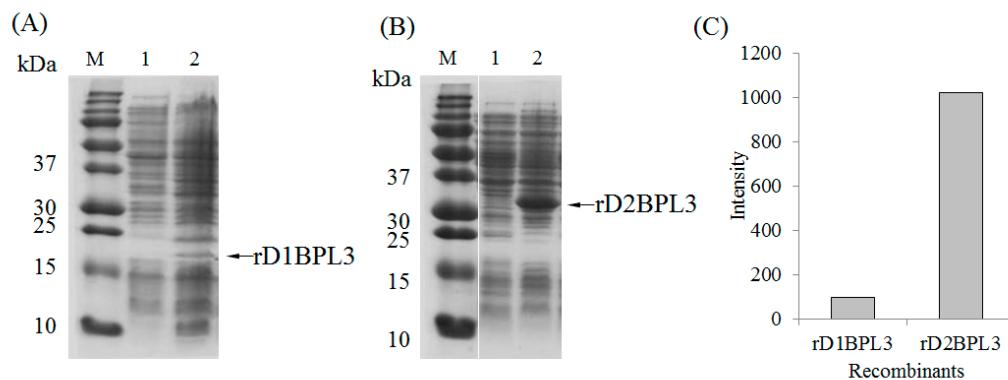

97

98 *Cloning of rBPL3*

99 *BPL3* cDNA was codon-optimized to avoid codon mismatches between marine green alga and
 100 bacterial tRNA (Fig. 1). The expression efficiency of un-optimized cDNA was inadequate in normal
 101 conditions (37 °C, overnight incubation; data not shown), but codon-optimized *BPL3* cDNA was
 102 expressed (Fig. 2). To determine the effect of a repeated sequence array of homologous domains on
 103 hemagglutination activity and expression efficiency, monomeric (rD1BPL3) and dimeric (rD2BPL3)
 104 sequences were constructed. The expression efficiency of rD2BPL3, i.e., the dimeric form, was about
 105 10-fold greater than that of the monomeric form of rBPL3, rD1BPL3 (Fig. 2).

106

(A)


(B)

<i>BPL3</i>	1	ACTGACGTGGGAGCGTTCAAGTCAGAGGGTTGGGAGACAGGTACCTCTGCCCGTGAAACCTGGACCACTGCACAGACCTCCGCCAGG	90
<i>Codon opt BPL3</i>	1	ACCGATGTGGGAGCGTTGGAGTCGGCGGCCCTGGCGATCGCAGCAGCTGCCCGTGAAACCGTGAGCACACCGCGCACAGCGCCCGC	90
		T D V G S V Q V R G L G D R S S C P V K P W T T A Q T S A R	
<i>BPL3</i>	91	GAGAAAGTTGGTTCGGTCAAATTGAGCATCCCATACTCTCCACTCCAAAGGTGGCTTGCTCTCTCGGTATGGATATGGACACCAAG	180
<i>Codon opt BPL3</i>	91	GAAAAAAGTGGTGAGCGTGAAATTGATATTCCGTATAGCAGCACCCGAAAGTGGCGCTGAGCCCTAGGGCATGGATATGGATACCAA	180
		E K V V S V K F D I P Y S S T F K V A L S L S G M D M D T K	
<i>BPL3</i>	181	TACAACACCGAGATCAACACCTCTGTGGAGAACCTCACCAACGAGGGATTGACTTGAAAGTCGGAGTGTTGCAATACCTACGCCAAC	270
<i>Codon opt BPL3</i>	181	TATAACACCCGATTAAACACCCAGCGTGGAAAACCTGACCAACGAAAGGCTTGATCTGAAAGTGGCGTGTGGTCAACACCTATGGTAT	270
		Y N T R I N T S V E N L T N E G F D L L K V G V W C N T Y A Y	
<i>BPL3</i>	271	ATGCTCGACGTGACCTACGTTGGTCCCGCCCATACGCTGCCGGGA	318
<i>Codon opt BPL3</i>	271	ATGCTGGATGTGACCTATGTGGTGGTGCCTGGCGCGTATGCCGGGGC	318
		M L D V T Y V V V P A P Y A A G	

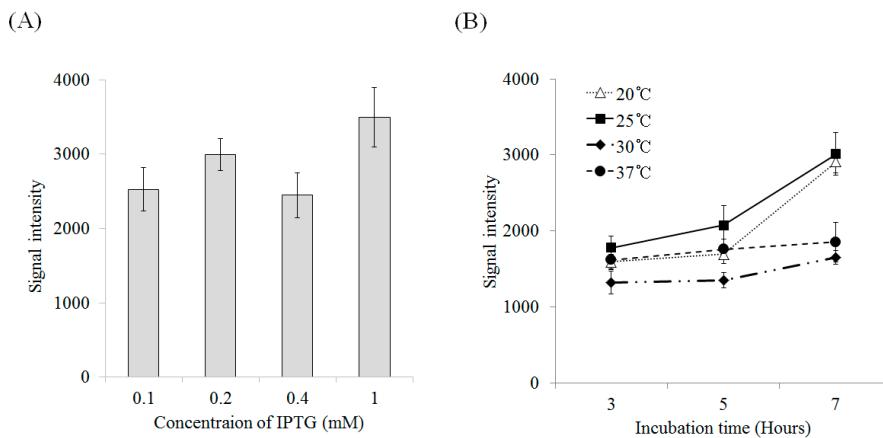
107

108 Figure 1. Construction of rD1BPL3 and rD2BPL3. (A) Monomeric and dimeric forms of rBPL3; (B)
 109 Codon-optimized BPL3.

110

111

112 Figure 2. Expression efficiency of rD1BPL3 and rD2BPL3 according to repeated sequences. (A)
 113 rD1BPL3 expressed in BL21(DE3), (B) rD2BPL3 expressed in BL21(DE3). M, Molecular weight
 114 marker; Lane 1, un-induced lysate; Lane 2, IPTG-induced lysates. Arrows indicate target proteins. (C)
 115 Comparison of target protein intensity depending on the repeat sequence array.

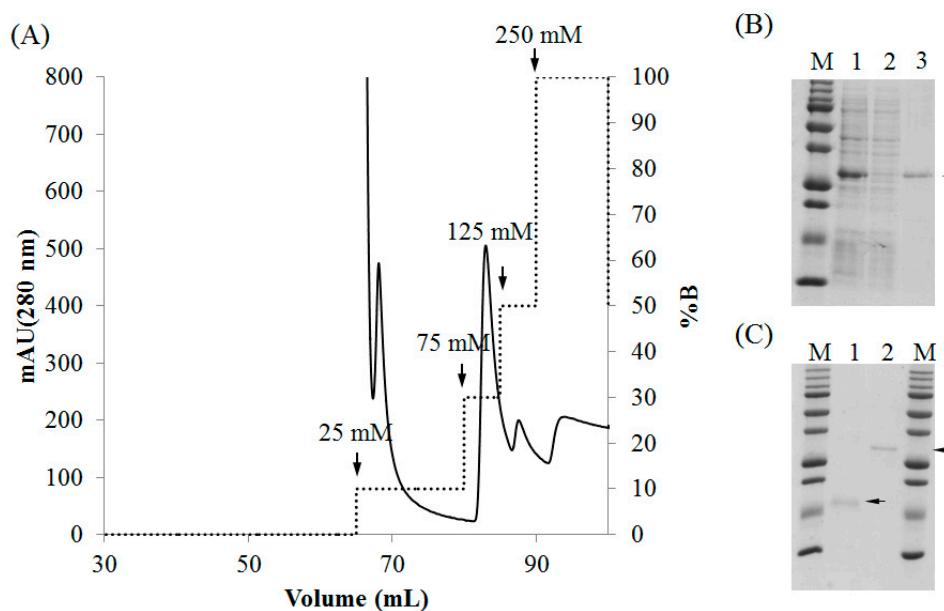

116

117 *Selection of an expression host and optimization of conditions*

118 BL21(DE3) was chosen as an expression host for rD2BPL3; other bacterial hosts showed similar
 119 expression patterns to that of BL21(DE3) at 37 °C (Supplementary Fig. S1).

120 The expression efficiency of recombinant lectin was not highly affected by IPTG (isopropyl- β -D-
 121 thiogalactopyranoside) at various concentrations at 37 °C. The protein expression level with 1 mM
 122 IPTG was about 1.5-fold higher than those for the other conditions, but all expression levels were
 123 within the margin of error (Fig. 3a). Temperature was an essential factor for protein induction. The
 124 expression of rD2BPL3 was highest at 25 °C and lowest at 30 °C after 7 hours of induction. Increased
 125 induction durations influenced the production of rD2BPL3 at 20 °C and 25 °C, but not at normal
 126 temperatures (i.e., 30 °C and 37 °C) (Fig. 3b). All expression hosts produced inclusion bodies in the
 127 insoluble form in the tested conditions (Supplementary Fig. S1).

128

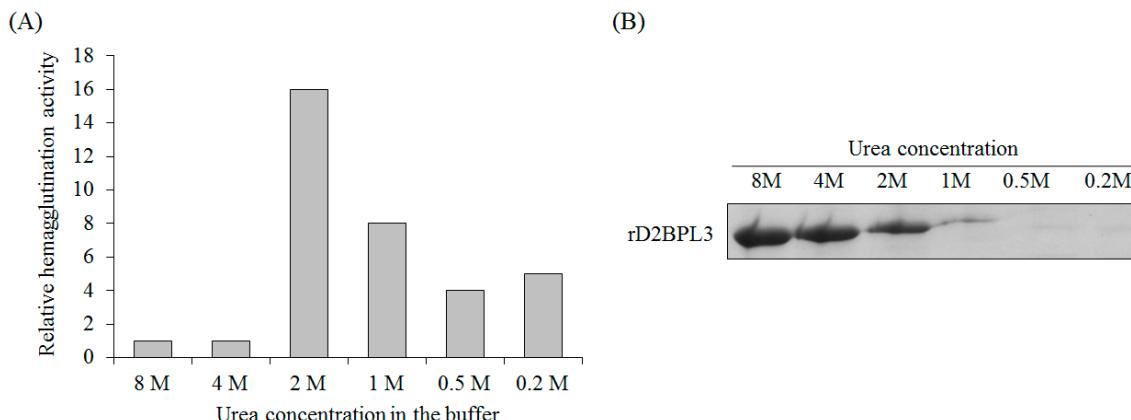

129

130 Figure 3. Expression efficiency of recombinant lectin in various conditions. (A) Induction efficiency
 131 for various concentrations of IPTG (at 37 °C, $OD_{600} = 0.4\text{--}0.6$, overnight); (B) The effects of
 132 temperature (20–37 °C) and incubation time (3–7 hours) on the induction of recombinant protein
 133 ($OD_{600} = 0.4\text{--}0.6$, 0.4 mM IPTG).

134

135 *Purification of recombinant lectins*

136 Both rD1BPL3 and rD2BPL3 were solubilized in denaturing conditions (8 M urea in PBS), but not
 137 in PBS alone (lacking urea). Ni-NTA agarose was used for the purification of recombinant lectins.
 138 Most recombinant lectins were bound to the affinity matrix. Recombinant lectin was eluted by a
 139 stepwise gradient of 75 mM, 125 mM, and 250 mM imidazole (Fig. 4a). A single band was observed
 140 from the eluted fraction for each recombinant (Fig. 4b and c). The amino acid sequence of the
 141 recombinant protein was confirmed by LC-MS/MS spectrometry (Supplementary Fig. S2).


142

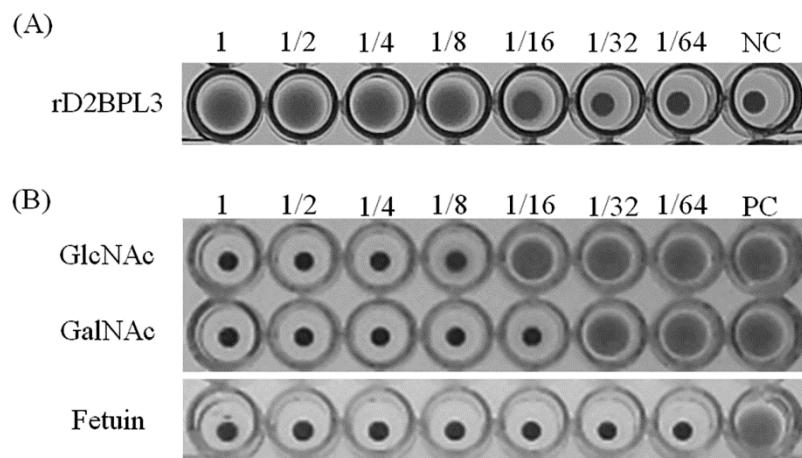
143 Figure 4. Purification of recombinant lectins by Ni-NTA agarose chromatography. (A)
144 Chromatogram showing protein elution from the column; (B and C) SDS-PAGE; (B) Purification of
145 rD2BPL3, M, molecular weight marker; lane 1, crude extract; lane 2, flow-through fraction; Lane 3,
146 purified rD2BPL3; (C) Purified recombinant lectins; M, Molecular weight marker; lane 1, rD1BPL3;
147 lane 2, rD2BPL3.

148

149 The flash dilution method was effective for rD2BPL3 refolding. The dialysis method accelerated
150 the production of inclusion bodies for less than 4 M urea (data not shown). Purified proteins were
151 diluted in 0.2 to 4 M urea in PBS buffer. The hemagglutination activity when the protein was diluted
152 in 2 M urea was 16-fold greater than that in the 8 M urea condition (Fig. 5a). The protein was
153 precipitated and a loss of activity was observed at less than 2 M urea (Fig. 5). The optimal
154 concentration of urea for refolding was 2 M (Fig. 5).

155

156


157 Figure 5. Refolding of rD2BPL3 inclusion bodies (IBs) by the flash refolding method. (A) Relative
158 hemagglutination activity of rD2BPL3 at various concentration of a denaturant, urea (0.2–8 M); (B)
159 SDS-PAGE, solubility of rD2BPL3 using various concentrations of urea.

160

161 *Carbohydrate Specificity and Heat-Stability of Recombinant Lectin*

162 The recombinant lectin rD2BPL3 showed agglutination activity using human blood cells. The
163 minimum concentration of purified rD2BPL3 required for agglutination was 12.5 µg/mL (Fig. 6a).
164 The hemagglutination activity was clearly inhibited by pre-incubation with *N*-acetyl-D-glucosamine,
165 *N*-acetyl-D-galactosamine, and fetuin, similar to the results obtained for native BPL3 (Fig. 6b). The
166 minimum inhibitory concentration of GlcNAc was 62.5 mM and that of GalNAc was 31.3 mM,
167 corresponding to those of the native form of BPL3 (Table 1). rD2BPL3 also showed similar heat-
168 stability to that of native BPL3 and the protein did not require divalent ions to maintain its sugar
169 binding activity (data not shown).

170

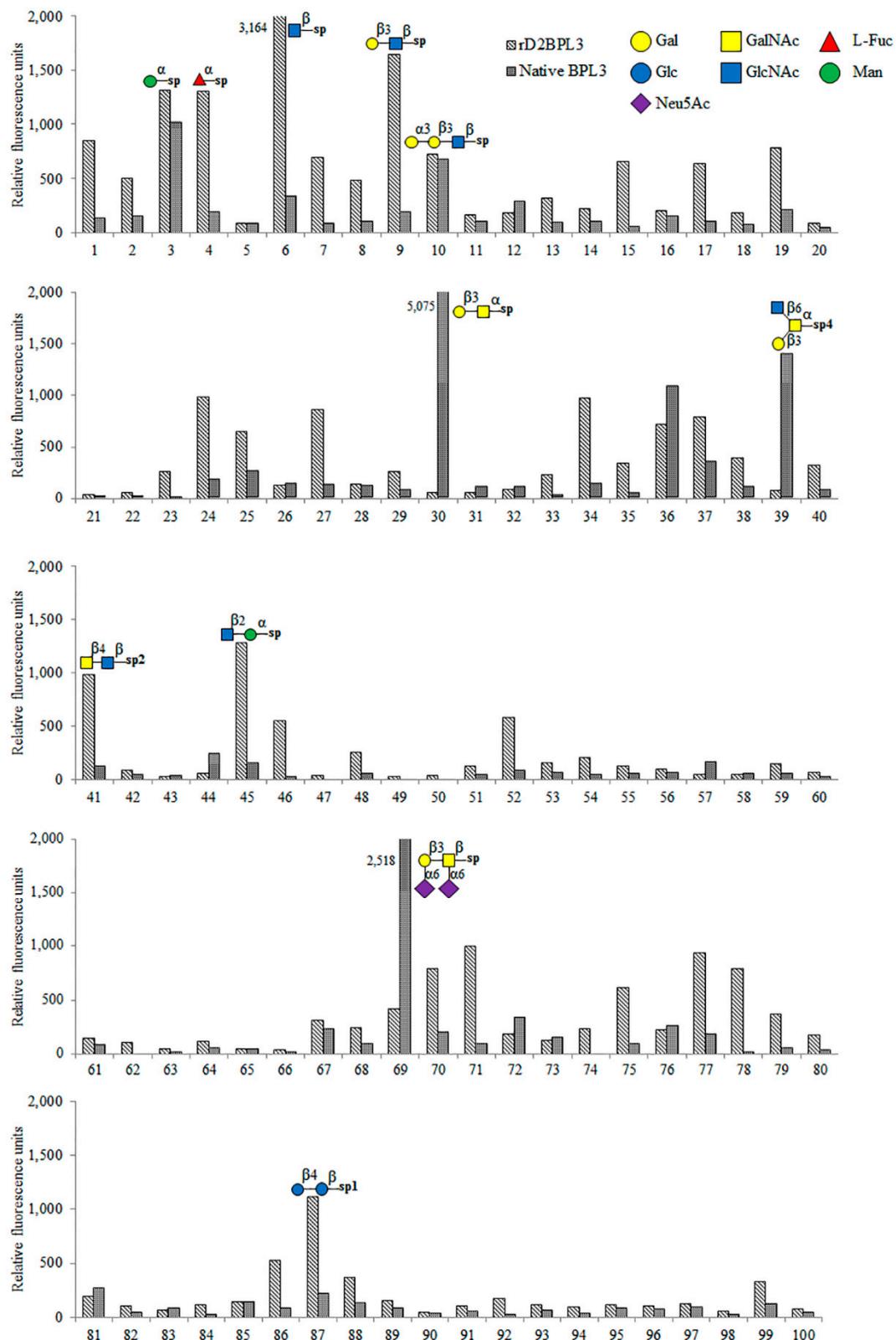
171

172 Figure 6. Hemagglutination activity and inhibition of rD2BPL3 (A) Hemagglutination activity of
 173 rD2BPL3. A serial twofold dilution was obtained (left to right); (B) Inhibition test of rD2BPL3.; NC,
 174 negative control; PC, positive control.

175

176 Table 1. Inhibition of hemagglutination activity of native BPL3 and rD2BPL3 by various substances

Substance	Minimum inhibitory concentration	
	Native BPL3	rD2BPL3
Fetuin	-£	4.45§
D-Mannose	NI	NI
L-Fucose	NI	NI
D-Fructose	NI	NI
β-Lactose	NI	NI
<i>N</i> -acetyl-D-glucosamine	125	62.5
<i>N</i> -acetyl-D-galactosamine	62.5	31.25
D-Galactose	NI	NI
D-Glucose	NI	NI
D-Maltose	NI	NI


177 £, not tested, §, concentration, µg/mL, NI, the absence of inhibition at 500 mM.

178

179 *Glycan micro-array analysis*

180 We used a glycoconjugate microarray to determine the glycan binding properties of rD2BPL3,
 181 rD1BPL3, and native BPL3. rD1BPL3 did not bind to any sugars on the Glycan-100 array (Fig. 7).
 182 rD2BPL3 and native BPL3 exhibited partially different glycan binding specificities, except for the

183 monosaccharide α -Man-Sp (Fig. 7, Table 2). Interestingly, native BPL3 did not bind to GlcNAc- β -Sp
184 or GalNAc- β -Sp; these mono-saccharides were able to inhibit hemagglutination activity. rD2BPL3
185 bound to GlcNAc- β -Sp. Recombinant lectin had specificity to the beta (β -) conformation, e.g., Gal- β -
186 1,3-GlcNAc- β -Sp, LacdiNAc (GalNAc- β -1,4-GlcNAc- β -Sp2), and GlcNAc- β -1,2-Man- α -Sp. Native
187 BPL3 exhibited specificity to the alpha (α -) conformation, e.g., Gal- β -1,3-GalNAc- α -Sp (T-antigen,
188 core structure type 3), GlcNAc- β -1,6-(Gal- β -1,3)-GalNAc- α -O-Ser-Sp4, and Neu5Ac- α -2,6-Gal- β -
189 1,3-(Neu5Ac- α -2,6)-GalNAc- β -Sp (Fig. 7, Table 2).

190

191 Figure 7. Glycan array of recombinant and native BPL3. Relative fluorescence units were
 192 calculated using an array analysis program (RayBioTech). The signal exceeding 1,000 units is marked
 193 with the glycan structure.

194 Table 2. Overview of carbohydrate structures recognized by rD2BPL3 and native BPL3

No.	Glycan structure	RFU (Normalized)	
		rD2BPL3	Native BPL3
Monosaccharides			
3	α -Man-Sp	1,322	1,025
4	α -Fuc-Sp	1,313	205
6	β -GlcNAc-Sp	3,164	348
Disaccharides			
9	Gal- β -1,3-GlcNAc- β -Sp	1,646	201
30	Gal- β -1,3-GalNAc- α -Sp	64	5,075
41	GalNAc- β -1,4-GlcNAc- β -Sp2	993	134
45	GlcNAc- β -1,2-Man- α -Sp	1,290	173
87	D-Cellose- β -Sp1	1,119	225
Gangliosides and Sialylated Oligosaccharides			
24	Neu5Ac- α -2,6-Gal- β -1,4-Glc- β -Sp	991	178
69	Neu5Ac- α -2,6-Gal- β -1,3-(Neu5Ac- α -2,6)- GalNAc- β -Sp	421	2,518
71	Neu5Ac- α -2,6-(Neu5Ac- α -2,3)-Gal- β -1,3- GalNAc- β -Sp	993	96
Blood Groups, Lewis Antigens and Fucosylated Oligosaccharides			
34	Neu5Ac- α -2,3-Gal- β -1,3 -(Fuc- α -1,4)- GlcNAc- β -[Sialyl Lewis A]-Sp	973	138
Globo series, Milk Oligosaccharides and GAGs			
36	Gal- α -1,4-Gal- β -1,3-GlcNAc- β -Sp	721	1,082
O-Glycan, N-Glycans and α-Gal			
39	GlcNAc- β -1,6-(Gal- β -1,3)-GalNAc- α -O-Ser- Sp4	77	1,398
Natural Oligosaccharides			
77	Glc- α -1,6-Glc- α -1,4-Glc- β -Sp1	941	190

195

196

197 **3. Discussion**

198

199 In the past few decades, various *Bryopsis plumosa* lectins (Bryohealin, BPL2–4) have been purified
200 [11, 12, 19–21], but their biochemical properties are unclear, owing to the lack of a sufficient amount
201 of active recombinant protein for analyses. In particular, the high sequence similarity between BPL3
202 and BPL4 (60%) and similar molecular properties have limited their applications [11, 12]. Thus,
203 recombinant protein production was necessary.

204 Monomeric (rD1BPL3) and dimeric (rD2BPL3) proteins were designed based on native *BPL3*
205 cDNA and expressed in a bacterial expression system. rD2BPL3 was highly expressed, while the
206 monomeric recombinant showed weak expression. The bacterial expression system was a sufficient
207 substitute for lectin production from native sources. The expression efficiency of rD2BPL3 was
208 affected by temperature, but IPTG concentration had minimal effects.

209 Recombinant lectin production is an efficient way to overcome obstacles to the application of
210 lectins derived from natural sources because it guarantees a substantial supply of pure lectins for
211 biomedical applications [22]. Despite their advantages, prokaryotic expression systems have issues
212 with respect to the creation of a proper lectin structure, leading to the frequent production of a
213 biologically inactive protein [13]. Eukaryotic expression systems overcome the limitations of
214 prokaryotic expression systems owing to their post-translational modification ability (e.g., the
215 production of glycosylated proteins). Considering disadvantages with respect to genetic
216 transformation efficiency, the efficiency of expression, immune responses, and the cost of culture [23,
217 24], bacterial expression systems are still widely used for the production of active proteins.

218 In this study, recombinant BPL3 was successfully produced using an artificially constructed tandem
219 repeat structure in *E. coli*. Although tandem repeat domain structures have been detected in native
220 lectins, such as the Rhamnose-binding lectin from *Silurus asotus* eggs [16], Galectin from
221 *Caenorhabditis elegans* [25], and mannose-binding lectin from *Boodlea coacta* [17], the contribution
222 of tandem repeat structure to recombinant protein production is still unclear.

223 Previously, Han et al. found that the red algal lectin Rhodobindin consists of a heterologous tandem

224 repeat sequence, and this structure may contribute to protein solubility and hemagglutination activity
225 [13]. The tetrameric structure is advantageous relative to the monomeric form, with 15–30 times
226 greater activity levels for the same concentration [13]. Therefore, the construction of a tandem repeat
227 structure is a potential tool for the production of recombinant lectin [13, 26]. The expression
228 efficiency of rD2BPL3 was enhanced and hemagglutination activity was comparable compared to
229 those of native BPL3. These results support the hypothesis that the tandem repeat structure facilitates
230 lectin production in *E. coli*.

231 Although an enhancement in lectin solubility was predicted in a previous study, rD2BPL3 could not
232 be solubilized in a common buffer system, PBS. Most lectins contain at least two domains that
233 interact by dimerization or multimerization [e.g., 27]. The peptide sequence of BPL3 exhibited
234 similarity to an H type lectin, *Helix pomatia* Agglutinin (HPA), produced by invertebrates [11]. HPA
235 contains two trimeric peptides linked by intramolecular disulfide bonds [28]. Trimerization of HPA
236 occurs by a strong hydrophobic cluster with amino acids in the N- and C-terminal regions of the
237 neighboring monomer. rD2BPL3 designed with two identical domains is probably insufficient to
238 generate hydrophobic interactions between domains, and the formation of inclusion bodies resulted.
239 We assumed that enhanced solubility may be possible by constructing a trimeric repeat structure.
240 rD2BPL3 was solubilized in denaturing conditions and refolded by flash dilution methods. Although
241 activity was detected in denaturing conditions (2 M urea), it was not sufficient for biopharmaceutical
242 applications. Increased solubility in proper buffers should be examined in future studies.

243 rD2BPL3 showed similar sugar specificity to that of native BPL3. Hemagglutination activity was
244 inhibited by treatment with a complementary sugar, D-GlcNAc and D-GalNAc. Moreover,
245 biochemical properties, such as the divalent ion requirement and heat stability, were undistinguishable
246 from those of native BPL3. These results can be explained by the similarity in protein structure
247 between rD2BPL3 and native BPL3.

248 A glycan array is a powerful tool for functional glycomics [29]. We used a glycan array to compare
249 glycan recognition properties between native and recombinant proteins. In contrast to the inhibition
250 test results, the array results indicated that rD2BPL3 and native BPL3 differed with respect to glycan

251 binding properties on the anomeric center of glycan and amino-glycan. Native BPL3 could not bind to
252 β -GlcNAc and β -GalNAc, but the recombinant exhibited strong binding to β -GlcNAc. Native BPL3
253 showed a preference for the alpha (α -) conformation of amino sugars, and rD2BPL3 exhibited binding
254 to the beta (β -) conformation of amino sugars, such as LacdiNAc. A mixed form of amino sugars
255 (alpha (α -) and beta (β -) conformation) is usually provided; thus, the inhibition of hemagglutination
256 activity by treatment with these sugars likely inhibits the agglutination of human erythrocytes.

257 Recombinant and native lectin did not show identical properties. A comparative analysis of
258 recombinant and native frutalin showed that the two lectins had different binding properties in
259 prostate tissues [30]. The distinct carbohydrate-binding affinity explains this difference in binding [30,
260 31].

261 Glycosylation and post-translational modifications were not important factors, as evidenced by the
262 lack of post-translational modifications of native BPL3 in a mass spectrometry analysis [11]. The
263 recombinants were consistent with lectins reported in previous studies. In fact, BPL3 was isolated
264 from a mixture of lectins (Bryohealin) based on a competitive binding assay according to sugar
265 specificity (GlcNAc >> GalNAc) [11].

266 Native BPL3 may consist of 2–6 domains with hydrophobic interactions. BPL3 lacked free
267 sulfhydryl groups; thus, interactions between domains may be flexible. The recombinant protein
268 contained a peptide linker (4 amino acids) to connect homologous domains, resulting in potential
269 tension in the structure. Recombinant WFA with a C272 mutation showed limited binding specificity
270 to GalNAc-terminated glycans [32]; thus, the cysteine residue is important for the maintenance of
271 activity. BPL3 had two intramolecularly connected cysteines. Using the bacterial recombinant system,
272 disulfide bond formation was difficult. It could be concluded that the formation of disulfide bonds is
273 an important determinant of sugar specificity.

274 Purified BPL3 did not exhibit a high purity, and a BPL4 band was not detected by SDS-PAGE. In
275 addition, more than four peptides sequences were found in the *Bryopsis* genome (unpublished, data
276 not shown, cut-off value: e-50). A mixture of lectins could interact mutually, resulting in structural
277 changes that may influence carbohydrate specificity. The effect of denaturants on protein structure is

278 another candidate hypothesis. The denaturant may affect the protein conformation. In a solution with a
279 denaturant, alterations in protein structure and the solvent structure around the protein are possible
280 [33]. However, the precise mechanisms underlying differences in sugar specificity between native and
281 recombinant proteins are unclear; thus, more intensive studies of protein structure are needed.

282 HPA is predicted to protect fertilized eggs from bacteria and is part of the innate immune system of
283 the snail [28]. Several sea slugs that are closely related to the snail do not have any such lectins, but
284 symbiotic algae, *Bryopsis* spp., produce similar lectins. We predict that *Bryopsis* lectins have two
285 roles, i.e., protection from mechanical damage and from bacteria in the vicinity of damaged cells and
286 protection of fertilized eggs of symbiotic sea slugs from bacteria; protoplast formation via mechanical
287 damage by sea slugs is a reproduction strategy [34]. BPL3 has potential as an anti-microbial reagent.

288 Diverse applications of lectins or sugar-binding proteins have been reported [10, 35]. High
289 mannose-binding lectin has received attention owing to its potential to inhibit HIV-1 and influenza
290 virus [17]. Lectins have been identified as simple and convenient for histochemical analyses or as
291 biomarkers for disease detection. HPA (with specificity to α -GalNAc, α -GlcNAc, and α -Gal) has been
292 studied in the normal human prostate, benign prostatic hyperplasia, and prostatic carcinoma [36].
293 WFA has been used as a tool for revealing areal borders and subdivisions. As LacdiNAc (β -D-
294 GalNAc-[1 \rightarrow 4]-D-GlcNAc) is associated with tumor malignancy in leukemia, prostate, pancreatic,
295 ovarian, and liver cancers, WFA is promising for cancer glycobiomarker detection [9, 32]. rD2BPL3
296 recognizes LacdiNAc, similarly to WFA; thus, rD2BPL3 is strong candidate for the development of a
297 cancer glycobiomarker.

298 In our study, recombinant BPL3 was successfully produced using an artificially constructed tandem
299 repeat structure and it demonstrated various advantages for the preparation of pure lectin for industrial
300 purposes. This method may be useful for the production of active proteins. Both lectins (native and
301 recombinant) could be useful histochemical biomarkers.

302 **4. Materials and Methods**

303

304 *Preparation of native BPL3*

305 Native BPL3 was prepared according to the methods of Han et. al. [11]. *Bryopsis plumosa* was
306 ground to a fine powder in liquid nitrogen and dissolved in 5 volumes of 1× phosphate-buffered saline
307 (PBS). Cell debris was removed by centrifugation and the supernatant was collected as a crude extract.
308 The supernatant was directly evaluated by GalNAc-agarose chromatography and BPL3 was eluted by
309 adding 0.2 M GlcNAc in 1× PBS. The purified protein was confirmed by SDS-PAGE. Fractions with
310 active proteins were pooled and dialyzed in 1× PBS overnight.

311

312 *Cloning and construction of the recombinant protein*

313 The *BPL3* cDNA sequence was obtained from the NCBI database (Accession number KX867966).
314 The cDNA was codon-optimized to bacteria K-12 using Geneious ver. 8.1. cDNA was synthesized to
315 mimic the protein with a two-homologous domain fusion structure (rD2BPL3) with restriction
316 enzyme sites from Bioneer (Deajeon, Korea) and cloned into the pBHA vector. *BPL3* DNA was
317 digested and cloned into pET28a(+) (Invitrogen, Carlsbad, CA, USA) (Fig. 1). The synthesized *BPL3*
318 and pET28a(+) were digested with two enzymes, *Bam*HI and *Sac*I (monomeric, rD1BPL3) or *Bam*HI
319 and *Hind*III (dimeric, rD2BPL3), at 37 °C for 2 hours. After digestion, the DNA was purified using
320 the Qiagen Gel Extraction Kit (Valencia, CA, USA). The purified DNA was cloned into pET28a(+) by
321 incubation at 12 °C overnight with 4 units of T4 DNA ligase. The plasmid was transformed into the
322 cloning host DH5 α and spread on LB agar plates containing 25 μ g/mL kanamycin. The positive
323 colonies were isolated and sub-cultured in 10 mL of LB-kanamycin medium. The plasmid containing
324 the *BPL3* sequence was purified and stored at -20 °C until use.

325 *pET28a::BPL3* was transformed into the expression hosts BL21(λDE3), BL21(DE3)*pLysS*,
326 BL21(DE3) codon-plus RIL, and Rosetta(DE3) (Invitrogen, Carlsbad, CA, USA) to determine the
327 optimal host system. The transformants were spread on LB agar plates containing 25 μ g/mL
328 kanamycin. The positive colonies were isolated and sub-cultured in 10 mL of LB-kanamycin medium.

329

330 *Optimization of rBPL3 expression*

331 The transformants were inoculated in LB medium containing kanamycin (25 µg/mL) and cultured
332 overnight at 37 °C. The subculture was diluted 1:100 in 100 mL of LB medium and grown for 1–4
333 hours at 37 °C in an Erlenmeyer flask in a shaker until reaching OD 0.4–0.6. When the designated OD
334 was reached, 1 mL of sample was removed from the flask and the cell pellet was collected by
335 centrifugation (un-induced control). To induce the protein, IPTG (final concentration, 0.4 mM) was
336 added and cultured at various temperatures (20 °C, 25 °C, 30 °C, and 37 °C) overnight. To determine
337 the optimum concentration of IPTG, various concentrations of IPTG (0.1, 0.2, 0.4, and 1 mM) were
338 added to the bacterial culture (OD 0.4–0.6) overnight. The effects of various incubation times (1, 3,
339 and 5 hours and overnight) were determined by incubating bacteria after the addition of IPTG (0.4
340 mM). Aliquots (5 mL) were collected after incubation in different conditions.

341 Total proteins from each cell culture were extracted and analyzed to determine the expression levels
342 of rD1BPL3 and rD2BPL3. Total protein extracts were prepared by heating samples for 5 minutes at
343 90 °C after treatment in 1× SDS-PAGE sample buffer (0.2 mL/mL culture) to the cell precipitates. The
344 extracts were centrifuged at 20,000 × g and the supernatants were used directly for SDS-PAGE.
345 Soluble fractions were obtained from cell precipitates after cell culture (5 mL). Resuspended samples
346 in 1 mL of extraction buffer (1× PBS, 10 mM imidazole, 1 mM PMSF, pH 7.2) were sonicated at a 15%
347 amplitude, repeated 20 times, with 3-second on/off periods. Supernatants were collected by
348 centrifugation at 20,000 × g for 10 minutes. The expression efficiency was determined by calculating
349 the target band intensity after SDS-PAGE using GelAnalyzer 2010 (<http://www.gelanalyzer.com/>).

350

351 *Purification of rBPL3*

352 The bacterial cell culture (500 mL) was centrifuged at 5,000 × g for 10 minutes and resuspended in
353 50 mL of urea extraction buffer (50 mM NaH₂PO₄, 300 mM NaCl, 8 M urea, pH 8.0). Suspensions
354 were sonicated at a 15% amplitude, repeated 20 times with 3-second on/off periods, and centrifuged at
355 20,000 × g for 10 minutes to pellet the cellular debris. The supernatant was collected as a crude

356 extract. The bacterial extract (50 mL) was directly added to 1 mL Ni-NTA chromatography columns
357 (Qiagen) using the FPLC chromatography system (Bio-Rad, Richmond, CA, USA) with a 1 mL/min
358 flow-rate. The column was washed with 15 volumes of wash buffer, 50 mM NaH₂PO₄, 300 mM NaCl,
359 8 M urea, 25 mM imidazole, pH 8.0. Recombinant BPL3 was eluted with an imidazole step gradient,
360 5 volumes of 75 mM, 125 mM, and 250 mM imidazole in extraction buffer. Fractions were collected
361 and analyzed by SDS-PAGE. Fractions including the pure protein were pooled.

362

363 *Refolding of rBPL3*

364 rD2BPL3 inclusion bodies were refolded by the flash dilution method [37]. Purified denatured
365 rD2BPL3 was filtered using a 0.45-μm syringe filter and quickly added to 2, 4, 8, 16, and 40 volumes
366 of refolding buffer (1× PBS with 0.3 M NaCl, pH 7.5). The final concentration of protein was
367 approximately 5–100 μg/mL. The diluted sample was incubated at 20 °C for 3 hours. The insoluble
368 material was removed by centrifugation at 20,000 × g for 10 minutes at room temperature and the
369 supernatant was collected as refolded rD2BPL3.

370

371 *Hemagglutination activity assay*

372 Hemagglutination activity was tested following the protocols described by Han et al. [12]. Human
373 blood type B was obtained from a healthy donor and washed with PBS. A serial two-fold dilution of
374 the purified rD2BPL3 was made in a final volume of 25 μL of PBS in 96-well microtiter plates, and
375 25 μL of erythrocyte suspension (4%) was added to each well. The minimum amount of lectin needed
376 for agglutination was defined as 1 hemagglutinating unit (HU).

377

378 *Determination of carbohydrate specificity*

379 Carbohydrate specificity was determined by inhibition test of hemagglutination activity and a glycan
380 micro-array.

381 For the inhibition test, mono- and disaccharides at 500 mM or 100 mg/mL glycoprotein were used as
382 inhibitors of lectin: *N*-acetyl-glucosamine, *N*-acetyl-galactosamine, L-fucose, D-galactose, D-glucose,
383 D-mannose, D-fructose, β -lactose, D-maltose, and fetuin. Serial two-fold dilutions of sugar samples
384 were prepared in PBS and mixed with an equal volume of 4 HU rD2BPL3. An equal volume (25 μ L)
385 of a 4% human erythrocyte suspension was added to the sugar-lectin mixture. The minimum
386 inhibitory concentration of the sugar in the final reaction mixture was calculated.

387

388 *Glycan microarray*

389 A glycan microarray analysis was performed by Ebiogen (Seoul, Korea). The Glycan Array kit was
390 purchased from RayBioTech (Norcross, GA, USA). An array containing 100 synthetic glycans printed
391 in quadruplicate on a glass slide was used. Label-based detection was performed according to the
392 manufacturer's protocols. Biotinylated recombinant lectins and native lectins at 50 μ g/mL were added
393 to array wells and incubated for >3 hours with gentle rocking. The glass slide was washed with 1 \times
394 wash buffer I and II, provided in the kit. Glycan-lectin binding was detected by incubation with Cy3
395 equivalent dye-conjugated streptavidin for 1 hour at room temperature. For cyanine-3 detection, the
396 signals were visualized using a microarray laser scanner (Genfix 4100A; Molecular Devices,
397 Sunnyvale, CA, USA) with excitation at 554 nm and emission at 568 nm. Data extraction was
398 performed using the microarray analysis software Genfix. Glycan array data were normalized and
399 analyzed using RayBio Analysis software (RayBioTech).

400

401 *Effect of temperature and divalent cations on the agglutination activity*

402 Heat stability was examined according to the methods of Han et al. [12]. Heated aliquots of purified
403 rD2BPL3 were prepared by incubation at various temperatures (4–100 °C) for 30 min. The samples
404 were cooled to room temperature and insoluble materials were removed by centrifugation at 12,000 \times
405 g for 1 minute. The results were expressed as the relative hemagglutination activity shown by the
406 heated samples compared to the non-heated sample (control), representing 100%. The effect of
407 divalent metal ions was determined by adding EDTA or CaCl₂ at 5 mM in the protein solution.

408

409 *Mass Spectrometry*

410 Protein bands obtained by SDS-PAGE were excised, in-gel digested with trypsin, and cleaned with
411 Zip-Tip (Millipore, Billerica, MA, USA). Mass analyses were performed using Capillary LC-Nano
412 ESI-MS with a 6545 Q-TOF LC/MS (Agilent Technologies, Santa Clara, CA, USA). Samples were
413 applied to a ZORBAX 300SB-C8 column (1 × 50 mm, 3.5 µm; Agilent) equilibrated with 0.1% (v/v)
414 formic acid in mass grade water and eluted by a gradient between water and 100% acetonitrile at a
415 flow rate of 10 µL/min. The tuning parameters used for mass analyses were as follows: capillary
416 temperature 300 °C, source voltage 1.9 kV, skimmer voltage 45 V, and fragmentor voltage 175 V.

417

418

419 **5. Conclusions**

420

421 Recombinant BPL3 from the coenocytic marine green alga *B. plumosa* was developed using an *E.*
422 *coli* expression system combined with an artificially constructed tandem repeat structure. The repeat
423 domain contributed to the high expression of the active protein. The recombinant protein recognized
424 *N*-acetyl- β -D-glucosamine, Gal- β -1,3-GlcNAc, LacdiNAc, and GlcNAc- β -1,2-Man. The process
425 developed in this study was suitable for the quality-controlled production of high amounts of soluble
426 recombinant lectins. These results indicate that both lectins (native and recombinant) may have
427 applications as histochemical biomarkers for cancer.

428

429 **Supplementary Materials**

430

431 **Supplementary Figure S1.** Expression efficiency of rD2BPL3 for various expression hosts.

432

433 **Supplementary Figure S2.** Confirmation of the peptide sequence using LC-MS/MS.

434

435 **Supplementary Figure S3.** Purification of native BPL3

436

437 **Supplementary Table S1.** Glycan array of recombinant and native BPL3. Binding signals were
438 normalized using a program provided by RayBioTech.

439

440

441 **Acknowledgments**

442 This work was supported by a grant from MABIK (2017M01300, MABIK program). We would
443 like to thank Editage (www.editage.co.kr) for English language editing.

444

445 **Author Contributions**

446 Gwang Hoon Kim and Jong Won Han conceived and designed the experiments. Jong Won Han,
447 Hyun-ju Hwang, and Jin-Woo Han performed the experiments. Gwang Hoon Kim and Jong Won Han
448 analyzed the data. Jong Won Han contributed reagents/materials/analysis tools. Gwang Hoon Kim,
449 Jong Won Han, and Hyun-ju Hwang wrote the paper.

450

451 **Conflicts of Interest**

452 The authors declare no conflict of interest.

453

454

6. References

455

1. Dan, X.; Liu, W.; Ng, T.B. Development and applications of lectins as biological tools in biomedical research. *Med. Res. Rev.* **2016**, *36*, 221-247.
2. Zheng, T.; Peelen, D.; Smith, L.M. Lectin arrays for profiling cell surface carbohydrate expression. *J. Am. Chem. Soc.* **2005**, *127*, 9982-9983.
3. Norton, P.; Comunale, M.A.; Herrera, H.; Wang, M.; Houser, J.; Wimmerova, M.; Romano, P.R.; Mehta, A. Development and application of a novel recombinant *Aleuria aurantia* lectin with enhanced core fucose binding for identification of glycoprotein biomarkers of hepatocellular carcinoma. *Proteomics* **2016**, *16*, 3126-3136.
4. Strathmann, M.; Wingender, J.; Flemming, H.C. Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of *Pseudomonas aeruginosa*. *J. Microbiol. Methods* **2002**, *50*, 237-248.
5. Hortin, G.L. and Trimpe, B.L. Lectin affinity chromatography of proteins bearing *O*-linked oligosaccharides: application of jacalin-Sepharose. *Anal. Biochem.* **1990**, *188*, 271-277.
6. Hovhannisyan, V.A.; Bazukyan, I.L.; Gasparyan, V.K. Application of silver nanoparticles and CdSe quantum dots sensitized with C-like lectin for detection of *St. aureus*. Comparison of various approaches. *Talanta* **2017**, *175*, 366-369.
7. Seitz, A.; Colodel, E.; Schmitz, M.; Gimeno, E.; Driemeier, D. Use of lectin histochemistry to diagnose *Sida carpinifolia* (Malvaceae) poisoning in sheep. *Vet. Rec.* **2005**, *156*, 386-388.
8. Singh, S.S.; Cheung, R.C.; Wong, J.H.; Ng, T.B. Mannose binding lectin: A potential biomarker for many human diseases. *Curr. Med. Chem.* **2016**, *23*, 3847-3860.
9. Haji-Ghassemi, O.; Gilbert, M.; Spence, J.; Schur, M.J.; Parker, M.J.; Jenkins, M.L.; Burke, J.E.; van Faassen, H.; Young, N.M.; Evans, S.V. Molecular basis for recognition of the cancer glycobiomarker, LacdiNAc (GalNAc[β 1-->4]GlcNAc), by *Wisteria floribunda* Agglutinin. *J. Biol. Chem.* **2016**, *291*, 24085-24095.
10. Teixeira, E.H.; Arruda, F.V.S.; Nascimento, K.S.; Carneiro, V.A.; Nagano, C.S.; Silva, B.R.; Sampaio, A.H.; Cavada, B.S. Biological applications of plants and algae lectins: an overview.

456

458

460

462

464

466

468

470

472

474

476

478

480

481

482 *Carbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology*; InTech, 2012;

483 Chapter 23, pp 533-558.

484 11. Han, J.W.; Yoon, K.S.; Klochkova, T.A.; Hwang, M.S.; Kim, G.H. Purification and

485 characterization of a lectin, BPL-3, from the marine green alga *Bryopsis plumosa*. *J. Appl.*

486 *Phycol.* **2011**, *23*, 745-753.

487 12. Han, J.W.; Yoon, K.S.; Jung, M.G.; Chah, K.H.; Kim, G.H. Molecular characterization of a

488 lectin, BPL-4, from the marine green alga *Bryopsis plumosa* (Chlorophyta). *Algae* **2012**, *27*,

489 55-62.

490 13. Han, J.W.; Jung, M.G.; Shim, E.Y.; Shim, J.B.; Kim, Y.M.; Kim, G.H. Functional

491 recombinants designed from a fetuin/asiofetuin-specific marine algal lectin, rhodobindin.

492 *Mar. Drugs* **2015**, *13*, 2183-2195.

493 14. Lam, S.K.; Ng, T.B. Lectins: Production and practical applications. *Appl. Microbiol.*

494 *Biotechnol.* **2011**, *89*, 45–55.

495 15. Oliveira, C.; Teixeira, J.A.; Domingues, L. Recombinant production of plant lectins in

496 microbial systems for biomedical application—The frutalin case study. *Front. Plant*

497 *Sci.* **2014**, *5*, 390.

498 16. Hosono, M.; Ishikawa, K.; Mineki, R.; Murayama, K.; Numata, C.; Ogawa, Y.; Takayanagi,

499 Y.; Nitta, K. Tandem repeat structure of rhamnose-binding lectin from catfish (*Silurus asotus*)

500 eggs. *Biochim. Biophys. Acta* **1999**, *1472*, 668-675.

501 17. Sato, Y.; Hirayama, M.; Morimoto, K.; Yamamoto, N.; Okuyama, S.; Hori, K. High

502 mannose-binding lectin with preference for the cluster of alpha1-2-mannose from the green

503 alga *Boodlea coacta* is a potent entry inhibitor of HIV-1 and influenza viruses. *J. Biol. Chem.*

504 **2011**, *286*, 19446-19458.

505 18. Shim, E.; Shim, J.; Klochkova, T. A.; Han, J.W.; Kim, G.H. Purification of a sex-specific

506 lectin involved in gamete binding of *Aglaothamnion callophyllidicola* (Rhodophyta). *J.*

507 *Phycol.* **2012**, *48*, 916-924.

508 19. Han, J.W.; Jung, M.G.; Kim, M.J.; Yoon, K.S.; Lee, K.P.; Kim, G.H. Purification and

509 characterization of a D-mannose specific lectin from the green marine alga, *Bryopsis*
510 *plumosa*. *Phycol. Res.* **2010**, *58*, 143-150.

511 20. Yoon, K.S.; Lee, K.P.; Klochkova, T.A.; Kim, G.H. Molecular characterization of the lectin,
512 Bryohealin, involved in protoplast regeneration of the marine alga *Bryopsis plumosa*
513 (Chlorophyta). *J. Phycol.* **2008**, *44*, 103-112.

514 21. Jung, M.G.; Lee, K.P.; Choi, H.G.; Kang, S.H.; Klochkova, T.A.; Han, J.W. & Kim, G.H.
515 Characterization of carbohydrate combining sites of Bryohealin, an algal lectin from
516 *Bryopsis plumosa*. *J. Appl. Phycol.* **2010**, *22*, 793-802.

517 22. Oliveira, C.; Teixeira, J.A.; Domingues, L. Recombinant lectins: an array of tailor-made
518 glycan-interaction biosynthetic tools. *Crit. Rev. Biotechnol.* **2013**, *33*, 66-80.

519 23. Berlec, A.; Malovrh, T.; Zadravec, P.; Steyer, A.; Ravnikar, M.; Sabotič, J.; Poljšak-Prijiatelj,
520 M.; Štrukelj, B. Expression of a hepatitis A virus antigen in *Lactococcus lactis* and
521 *Escherichia coli* and evaluation of its immunogenicity. *Appl. Microbiol. Biotechnol.* **2013**,
522 *97*, 4333-4342.

523 24. Li, Y.; Liao, X.; Chen, G.; Yap, Y.; Zhang, X. Cloning, expression and purification of
524 *Microcystis viridis* lectin in *Escherichia coli*. *Mol. Biotechnol.* **2011**, *47*, 105-110.

525 25. Arata, Y.; Hirabayashi, J.; Kasai, K. Sugar binding properties of the two lectin domains of
526 the tandem repeat-type galectin LEC-1 (N32) of *Caenorhabditis elegans*. Detailed analysis
527 by an improved frontal affinity chromatography method. *J. Biol. Chem.* **2001**, *276*, 3068-
528 3077.

529 26. Kwon, M.; Jeong, S.; Lee, K.H.; Park, Y.K.; Yu, J. Mimicry of tandem repeat peptides
530 against cell surface carbohydrate. *J. Am. Chem. Soc.* **2002**, *124*, 13996-13997.

531 27. Skjoedt, M.O.; Roversi, P.; Hummelshoj, T.; Palarasah, Y.; Rosbjerg, A.; Johnson, S.; Lea, S.
532 M.; Garred, P. Crystal structure and functional characterization of the complement regulator
533 mannose-binding lectin (MBL)/ficolin-associated protein-1 (MAP-1). *J. Biol. Chem.* **2012**,
534 *287*, 32913-32921.

535 28. Sanchez, J. F.; Lescar, J.; Chazalet, V.; Audfray, A.; Gagnon, J.; Alvarez, R.; Breton, C.;

536 Imberty, A.; Mitchell, E.P. Biochemical and structural analysis of *Helix pomatia* agglutinin.

537 A hexameric lectin with a novel fold. *J. Biol. Chem.* **2006**, *281*, 20171-20180.

538 29. Drickamer, K.; Taylor, M.E. Glycan arrays for functional glycomics. *Genome Biol.* **2002**, *3*,

539 1034.1-1034.4

540 30. Oliveira, C.; Teixeira, J. A.; Schmitt, F.; Domingues, L. A comparative study of recombinant

541 and native frutalin binding to human prostate tissues. *BMC Biotechnol.* **2009**, *9*, 1-7.

542 31. Oliveira, C.; Felix, W.; Moreira, R. A.; Teixeira, J. A.; Domingues, L. Expression of frutalin,

543 an alpha-D-galactose-binding jacalin-related lectin, in the yeast *Pichia pastoris*. *Protein Expr.*

544 *Purif.* **2008**, *60*, 188-193.

545 32. Sato, T.; Tateno, H.; Kaji, H.; Chiba, Y.; Kubota, T.; Hirabayashi, J.; Narimatsu, H.

546 Engineering of recombinant *Wisteria floribunda* agglutinin specifically binding to GalNAc β

547 1,4GlcNAc (LacdiNAc). *Glycobiology* **2017**, *27*, 743-754.

548 33. Dunbar, J.; Yennawar, H. P.; Banerjee, S.; Luo, J.; Farber, G. K. The effect of denaturants on

549 protein structure. *Protein Sci.* **1997**, *6*, 1727-1733.

550 34. Klochkova, T.A.; Kwak, M.S.; Kim, G.H. Proteomic profiles and ultrastructure of

551 regenerating protoplast of *Bryopsis plumosa* (Chlorophyta). *Algae* **2016**, *31*, 379-390.

552 35. Hamid, R.; Masood, A.; Wani, I. H.; Rafiq, S. Lectins: proteins with diverse applications. *J.*

553 *Appl. Pharm. Sci.* **2013**, *3*, S93-S103.

554 36. Arenas, M. I.; Romo, E.; De Gaspar, I.; De Bethencourt, F. R.; Sánchez-Chapado, M.; Fraile,

555 B.; Paniagua, R. A lectin histochemistry comparative study in human normal prostate,

556 benign prostatic hyperplasia, and prostatic carcinoma. *Glycoconj. J.* **1999**, *16*, 375-382.

557 37. Burgess, R.R Refolding solubilized inclusion body proteins. *Methods Enzymol.* **2009**, *463*,

558 259-279.