1 Article

2 Hydrazone Derivatives Enhance Antileishmanial

Activity of Thiochroman-4-ones

- 4 Esteban Vargas ¹, Fernando Echeverri ¹, Yulieth A. Upegui ², Sara M. Robledo ² and
- 5 Wiston Quiñones 1,*
- Química Orgánica de Productos Naturales, Instituto de Química, Facultad de Ciencias Exactas y Naturales,
 Universidad de Antioquia, calle 70 No. 52-21, Medellin A.A 1226, Colombia; esteban.vargasc@udea.edu.co
 (E.V); wiston.quinones@udea.edu.co (W.Q); fernando.echeverri@udea.edu.co (F.E)
- 9 ² PECET-Facultad de Medicina, Universidad de Antioquia, calle 70 No. 52-21, Medellin A.A 1226, Colombia; yulexa1@gmail.com (Y.A.U) sara.robledo@udea.edu.co (S.M.R)
 - *Correspondence: wiston.quinones@udea.edu.co (W.Q); Tel.: +57-4-2196596 (W.Q)

Abstract: Cutaneous Leishmaniasis (CL) is a neglected tropical disease, which causes severe skin lesions. Due to the lack of effective vaccines, treatment can be complex and prolonged, high toxicity, side effects and high cost, there is an urgent need to develop alternatives for the treatment for CL that may have different mechanisms of action. In our effort to search for new promising hits against *Leishmania* parasites we prepared 18 acyl hydrazone derivatives of thiochroman-4-ones. Compounds were evaluated for their *in vitro* antileishmanial activity against intracellular amastigotes form of *Leishmania panamensis* and cytotoxic activity against human monocytes (U-937 ATCC CRL-1593.2); our results show that derivatization with acyl hydrazones significantly enhance the antileishmanial activity, among the compounds tested semicarbazone (19) and thiosemicarbazone (20) derivatives of thioflavanone display the highest antileishmanial activities with EC₅₀ values of 5.4 and 5.1 μM both with low cytotoxicities, 100.2 a 50.1 μM resulting in high selectivity index (SI).

Keywords: Leishmania; thiochroman-4-ones; acyl hydrazone; cytotoxicity

1. Introduction

Leihsmaniasis is a parasitic disease caused by some species of protozoans of the genus *Leishmania* [1]. The parasites has complex life cycle including stages in the mammal host and the vector, in the mammal host parasites exist in two forms: as intracellular amastigotes, the replicative form, and as promastigotes, non-replicative forms, the later occurs also in the vector [1–3].

Cutaneous leishmaniasis causes severe skin lesions, mainly in face, arms and feet. Because of the high occurrence and the lack of therapeutic alternatives the World Health Organization, WHO, considered leishmaniasis a neglected tropical disease and encourages countries to search for new antileishmanial drugs with novel mechanism of action [1,4].

In our search for new chemotherapeutic alternatives to fight leishmaniasis we have explored thiochroman compounds, which could be considered a potential privileged scaffold [5,6] because of its great similarity with the chroman compounds which display a broad range of bioactivities [7].

In addition, numerous hydrazones have been found to show interesting biological activities [8,9]; we focused our attention to those bioactivities that deals with parasitic diseases as malaria, leishmaniasis and trypanosomiasis [3,10–17]; the inhibition of proteases [15,18–20] represent the most common mechanism for the hydrazones. Avery *et al.* [15,16] in the search for new drugs against novel targets in *Leishmania* explored the cysteine proteases inhibitors, 241000 compounds were screened and found a total of 24 interesting compounds which showed inhibition of one or more cysteine proteases or antileishmanial activity, 16 out of the 24 interesting compounds possess hydrazone or imine moieties. Semicarbazones and thiosemicarbazones have also been shown to be potent inhibitors of cysteine proteases, specifically of cathepsin L [19–23], the thiosemicarbazone

derivatives of thiochroman-4ones also showed inhibition of Cathepsin L [20]. Although these compounds inhibited the cysteine proteases there are no reports on their antileishmanial or cytotoxic activities. After considering the many interesting biological activities displayed by compounds bearing the hydrazone moiety and the ability of some thiosemicarbazone derivatives of thiochroman-4ones to inhibit cysteine proteases of protozoan parasites we synthesized a series of analogues in order to screen their antileishmanial and cytotoxic activities.

2. Results

2.1. Synthesis.

Thiochroman-4-ones were prepared by addition of thiophenol or 4-fluorothiophenol to α,β -unsaturated carboxylic acids (acrylic acid, crotonic acid or cinnamic acid). The resulting carboxylic acids undergo a ring closing reaction upon treatment with sulfuric acid to give the thiochroman-4-ones; in the case of thioflavanone ring closing reaction was carried out with oxalyl chloride followed by tin chloride. Resultant ketones were condensed with acyl hydrazides (benzoic hydrazide, isonicotin hydrazide, semicarbazide or thiosemicarbazide) and afforded the desired acyl hydrazones in moderate to good yields.

$$R_1$$
 + R_2 OH R_1 R_1 OH R_2 OH

(i) I₂ or TBAF; (ii) H₂SO₄ or CH₃SO₃H or (COCl)₂, SnCl₄; (iii) CH₃COOH.

2.2. Antileishmanial and Cytotoxic activities.

All synthesized compounds were screened for their *in-vitro* antileishmanial and cytotoxic activities in comparison with amphotericin B as a control with EC50 and LC50 values of 0.32 μ M and 39.6 μ M respectively (Table 1).

Selectivity was calculated by the ratio of LC50/ EC50 and defined as selectivity index, SI.

Table 1. In vitro antileishmanial and cytotoxic activities.

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_5

Compound	R ₁	R ₂	R 3	Х	EC ₅₀ (μΜ) ¹	LC ₅₀ (μM) ¹	SI ²
1	Н	Н	-	-	343.8 ± 75.6	>1000	-
2	F	Н	-	_	> 109.9	>706.0 ± 34.6	< 6.5
3	Н	CH_3	-	-	444.6 ± 7.3	604.2 ± 86.4	1.4
4	F	CH_3	-	-	422.0 ± 9.2	578.9 ± 59.1	1.4
5	Η	C_6H_5	-	-	44.1 ± 0.9	>41.61	> 0.9
6	Н	Н		О	63.7 ± 9.2	248.3 ± 49.6	3.9
7	Н	Н	N	Ο	56.8	> 705.8	> 12.4
8	Н	Н	$-NH_2$	Ο	91.5 ± 33.4	637.2 ± 37.9	7.0
9	Н	Н	$-NH_2^-$	S	55.7 ± 22.1	>842.6	> 15.1
10	F	Н		О	37.3 ± 3.3	>665.9	> 17.6
11	F	Н	— N	О	39.9 ± 5.3	>663.7	> 16.6
12	F	Н	$ \left\langle -\right\rangle -$ NH ₂	О	95.5 ± 6.9	>634.2	> 6.6
13	Н	СН3		О	38.1 ± 16.2	150.1 ± 24.3	3.9
14	Н	CH ₃	$-\sqrt{}N$	О	56.6 ± 0.7	>672.5	> 11.9
15	Н	СН3	-NH ₂	О	91.8 ± 13.5	102.1 ± 15.1	1.1
16	F	CH ₃		О	43.9 ± 4.5	>636.2	14.5
17	F	CH ₃	N	О	98.9 ± 19.3	203.3 ± 25.4	2.1
18	F	СН3	$ NH_2$	O	160.7 ± 2.4	31.0 ± 7.0	0.2
19	Н	C_6H_5	$-NH_2$	Ο	5.4 ± 1.0	100.2 ± 19.8	18.6
20	Н	C_6H_5	$-NH_2$	S	5.1 ± 1.3	50.1 ± 4.1	9.8
21	Н	C ₆ H ₅		О	28.5 ± 2.8	528.6 ± 7.0	19.6
22	Н	C ₆ H ₅	— N	О	16.4 ± 3.6	>556.4	> 33.9
thiosemicarbazide					nt	>1000	-
Amphotericin B	-	-	-	-	0.32 ± 1.04	39.6 ± 8.7	132.0

 $^{^{1}}$ Results reported as the mean value \pm standard deviation of the half-maximum concentration in μM .

81

82

83

84

² Selectivity Index (SI) = LC₅₀/EC₅₀.

 $^{^{\}scriptscriptstyle 3}$ Abbreviation: nt, not tested because the inhibition percent at the highest evaluated concentration 50 μM was 0.0.

3. Discussion

Complete data concerning antileishmanial and cytotoxic activities are reported in Table 1. Almost all the thiochroman-4-one compounds (**1-6**) revealed weak antileishmanial activity since none of EC₅₀ values was lower than 10 μM. Thioflavanone **6** displayed moderate antileishmanial activity but also high cytotoxic activity resulting in a low selectivity index. In general the antileishmanial activities of hydrazones were higher than those of their ketone precursors; cytotoxic activity for the hydrazones has remained low resulting in a selectivity index higher than those of the thiochroman-4-ones. Incorporation of an aromatic ring at C2 (thioflavanone **6**) resulted in improved antileishmanial activity (compare **19**, **20**, **21**, **21** with **6**, **7**, **8**, **9**), semicarbazone **20** and thiosemicarbazone **21** analogues displayed the highest antileishmanial activity (EC₅₀ values of 5.38 and 5.11 μM, respectively). 4-amino benzoic hydrazones (**12**, **15** and **18**) are more basic than other hydrazones; the increased basicity due to the amino group could be related with the lower antileishmanial activity of these compounds.

Although hydrazones have good stability towards hydrolysis [24] it is important to determine whether the increased of antileishmanial activity is due to the hydrazone itself or perhaps, the *in situ* hydrolysis products are responsible enhanced activity; Garces-Eisele and Scior [25] studied the *in vitro* antituberculotic activity of over 200 hydrazone derivatives of isonicotinic acid hydrazide (isoniazid, INH) and found that the derivatives do not improve the activity of isonicotinic acid hydrazide, hydrolysis delivers extra or/and intracelular portions of INH which itself is the active compound nor the hydrazones. In this work the antileishmanial activity of thiosemicarbazide was evaluated and compared with its hydrazones 9 y 20 in both cases the derivative showed better activity than its precursors, in fact thiosemicarbazide itself is inactive against *Leishmania parasites*. In spite of the available information, however, it cannot be ruled out that acyl hydrazone derivatives can act as a prodrug [26,27] which facilitates passage through the membrane of the macrophage, parasitophorous vacuole or to enter the parasite carrying the hydrazide to site of action.

- parasitophorous vacuole or to enter the parasite carrying the hydrazide to site of action.

 Since several hydrazones have shown to inhibit cysteine proteases the mechanism of action may be related to this therapeutic target, moreover, Song *et al* [20] showed that semicarbazones of some thiochroman-4-ones inhibit Cathepsin L, which is structurally related with the cysteine protease, cruzain present in other trypanosomatyd parasites responsible for the Chagas disease.
- 114 4. Materials and Methods
- *4.1. Chemistry*
- 116 4.1.1. General

All commercially available reagents and solvents were obtained from commercial suppliers and used without further purification. Commercial thiocroman-4-one was purchased from Sigma Chemical Co. (St. Louis, MO). The reaction progress was monitored with thin layer chromatography on silica gel TLC aluminum sheets (60F₂₅₄, Merck, Darmstadt, Germany). The melting points were determined using a Mel-Temp apparatus (Electrothermal, Staffordshire, UK) and are uncorrected. FTIR spectra were obtained on a Bruker Alpha FTIR spectrometer (Bruker Optic GmbH, Ettlingen, Germany. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded using Bruker DRX 300 spectrometer (Bruker Bio-Spin GmbH, Rheinstetten, Germany) operating at 300 MHz for ¹H and 75 MHz for ¹³C. Chemical shifts were reported relative to internal tetramethylsilane (δ 0.00 ppm) for ¹H, and CDCl₃ (δ 77.0 ppm) for ¹³C. HRMS was obtained using Q-ToF quadrupole/orthogonal spectrometry (Waters, Milford, MA, USA) in either negative (reported as [M – H]-) or positive mode (reported as [M + H]+) and Bruker Impact II UHR-Q-TOF mass spectrometer (Bruker Daltonik, Bremen, Germany) in positive mode.

4.1.2. Synthesis of Thiochroman-4-ones and Thioflavanone.

134 135 136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

6-fluorothiochroman-4-one (2) To a mixture of acrylic acid (700 µL, 720 mg, 10 mmol) and 4-fluorothiophenol (1985 mg, 15 mmol) was added I₂ (20% mol, 760 mg, 3 mmol) and the mixture was stirred at 50 °C for 24 h. After completion of reaction (monitored by TLC), a cold saturated sodium thiosulfate solution (30 mL) was added and extracted with dichloromethane (2 x 25 mL); the combined organic layers were mixed with a saturated solution of sodium bicarbonate and extracted to remove the unreacted starting material. The water layer was acidified with hydrochloric acid (10% aq) and extracted with dichloromethane (3 × 50 mL). The combined organic layers were dried over Na₂SO₄, evaporation of the solvent under reduced pressure afforded 1150 mg (64%) of the desired addition product. The product was cooled down to 0 °C in an ice bath and 3 mL of concentrated sulfuric acid was added and the reaction mixture was allowed to warm to room temperature for 2 h with magnetic stirring. The reaction was quenched with ice and the mixture was extracted with dichloromethane (3 × 50 mL). The combined organic layers were washed once with water, followed by saturated NaHCO3 solution. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography over silica gel using hexane:EtOAc (9:1) as eluent to give 570 mg (90%) of pure 2 as a yellow solid. mp: 86–88 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.07 (dd, *J*=8.0, 1.4 Hz, 1H), 7.16—7.11 (m, 2H), 3.25—3.23 (m, 2H), 2.99—2.96 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 193.5, 160.9 (d, $J_{C-F} = 245 \text{ Hz}$), 137.8, 132.7, 129.8 (d, $J_{C-F} = 7 \text{ Hz}$), 121.70 (d, $J_{C-F} = 23.0 \text{ Hz}$), 115.6 (d, $J_{C-F} = 22.6 \text{ Hz}$), 39.7, 27.1. IR v: 1659, 1595, 1565. HRMS (ESI) calculated for C₂H₆FOS [M - H]-181.0123, found 181.0165.

155156157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

2-Methylthiochroman-4-one (3). To a mixture of crotonic acid (860 mg, 10 mmol) and thiophenol (1.650 g, 15 mmol) was added I2 (20 mol %, 255 mg, 1 mmol) and the mixture was stirred at room temperature for 12 h. After completion of the reaction (monitored by TLC), a cold saturated sodium thiosulfate solution (20 mL) was added and extracted with dichloromethane (2 x 50 mL); then, combined organic layers were mixed with a saturated solution of sodium bicarbonate and extracted to remove the unreacted starting material. The water layer was acidified with hydrochloric acid (10% aq) and extracted with dichloromethane (3 × 40 mL). The combined organic layers were dried over Na₂SO₄, evaporation of the solvent under reduced pressure afforded 1.962 g (86%) of the desired addition product. After, 200 mg (1.0 mmol) of this product were cooled down to 0 °C in an ice bath and 3.0 mL of concentrated sulfuric acid was added; the reaction mixture was stirred for 30 min, and, after that, the ice bath was removed allowing the reaction mixture to warm to room temperature for another 2 hours under continuous stirring. The reaction was quenched with ice and the mixture was extracted with dichloromethane (3 × 25 mL). The combined organic layers were washed once with water, followed by addition of a saturated NaHCO3 solution. The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography over silica gel using hexane:EtOAc (9:1) as eluent, to give 137 mg (75%) of pure 3 as a yellowish oil. 1 H NMR (300 MHz, CDCl₃) δ 8.08 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 7.8 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 3.74–3.53 (m, 1H), 2.98 (dd, J = 17.6, 8.8 Hz, 1H), 2.84–2.66 (m, 1H), 1.43 (d, J = 6.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 194.9, 141.9, 133.7, 130.1, 129.1, 127.65, 125.1, 48.0, 36.5, 20.6. IR v: 2964, 1679, 1587. HRMS (ESI) calculated for C₁₀H₁₁OS [M + H]+179.0525, found 179.0536.

177178179

180

181

182

183

184

185

6-fluoro-2-methylthiochroman-4-one (4). To a mixture of crotonic acid (172 mg, 2 mmol) and 4-fluorothiophenol (385 mg, 3.0 mmol) was added I₂ (20% mol, 52 mg, 0.2 mmol) and the mixture was stirred at room temperature for 12 h. After completion of reaction (monitored by TLC), a cold saturated sodium thiosulfate solution (20 mL) was added and extracted with dichloromethane (2 x 25 mL); the combined organic layers were mixed with a saturated solution of sodium bicarbonate and extracted to remove the unreacted starting material. The water layer was acidified with hydrochloric acid (10% aq) and extracted with dichloromethane (3 × 25 mL). The combined organic

layers were dried over Na₂SO₄, evaporation of the solvent under reduced pressure afforded 200 mg (94%) of the addition product. Thus, compounds were cooled down to 0 °C in an ice bath and 2.0 mL of concentrated sulfuric acid was added and the reaction mixture was allowed to warm to room temperature for 2 h with continuous stirring. The reaction was quenched with ice and the mixture was extracted with dichloromethane (3×25 mL). The combined organic layers were washed once with water, followed by saturated NaHCO₃ solution. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography over silica gel using hexane:EtOAc (9:1) as eluent to give 128 mg (64%) of pure 4 as a yellowish oil. ¹H NMR (300 MHz, CDCl₃) δ 7.84–7.72 (m, 1H), 7.39–6.97 (m, 2H), 3.78–3.47 (m, 1H), 3.07–2.95 (m, 1H), 2.80–2.68 (m, 1H), 1.43 (d, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 194.2, 160.7 (d, J_{C-F} = 246 Hz), 137.6, 132.3, 129.7 (d, J_{C-F} = 7.0 Hz), 121.8 (d, J_{C-F} = 23.1 Hz), 115.4 (d, J_{C-F} = 22.8 Hz), 47.9, 37.0, 20.7. IR v: 2967, 1684, 1602. HRMS (ESI) calculated for C₁₀H₁₀FOS [M + H]⁺197.0431, found 197.0443.

2-phenylthiochroman-4-one (thioflavanone) (5).

Cinnamic acid (297 mg, 2 mmol) and thiophenol (330 mg, 3 mmol) were mixed with 75% aqueous solution of TBAF (140 µL sln, 0.4 mmol) and the mixture was stirred for 4 h at 60 °C. A saturated solution of sodium bicarbonate was added and extracted with dichloromethane (3 x 25 mL) to remove the unreacted starting material. The water layer was acidified with hydrochloric acid (10% aq) and extracted with dichloromethane (3 × 30 mL). The combined organic layers were dried over Na₂SO₄; evaporation of the solvent under reduced pressure gave the crude addition product which was dissolved in anhydrous dichloromethane and placed in an oven-dried round bottomed flask under N2 in an ice cooling bath. Consequently, oxalyl chloride (365 µL, 3.0 mmol) was added dropwise followed by two drops of DMF and the reaction mixture is left to warm to room temperature. After stirring for 2.5 h, the solution was cooled to -10 °C, and a solution of 1M SnCl4 (3.0 mL, 3.0 mmol) in CH₂Cl₂ was added dropwise. The resulting mixture was stirred at 0 °C for 10 min and then allowed to warm to room temperature. After stirring at room temperature for 12 h, water (25 mL) was added and extracted with dichloromethane (3 x 25 mL). The combined organic layers dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography over silica gel using hexane:EtOAc (2:1) as eluent to give the desired thioflavanone 5. Yield 215 mg (45%) white solid. mp. 155-157 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.20 (dd, J = 7.9, 1.2 Hz, 1H), 7.52–7.36 (m, 6H), 7.35–7.30 (m, 1H), 7.30–7.21 (m, 1H), 4.77 (dd, J = 12.7, 3.3 Hz, 1H), 3.56-3.07 (m, 2H). IR v: 1665, 1586, 1556, 1452, 1433. HRMS (ESI) calculated for $C_{15}H_{13}OS [M + H]^{+}241.0687$, found 241.0694.

4.1.3. General procedure for the preparation of acyl hydrazone derivatives.

thiochroman-4-ones (0.5 mmol) were dissolved in anhydrous methanol (25 mL). The mixture was heated at reflux and then hydrazide (1.0 mmol, 2 equiv) and glacial acetic acid 60 μ L were added. After 12 h at reflux, the resulting precipitate was collected through filtration and washed with methanol. After drying under vacuum, the residue was passed through a small pad of silica gel with ethyl acetate, after evaporation of the solvent acyl hydrazones were obtained as white solids.

(E)-N'-(thiochroman-4-ylidene)benzohydrazide (6). Yield 80%, mp: 160-161°C. 1 H NMR (300 MHz, DMSO) δ (300MHz, DMSO) 10.79 (s , 1H), 8.20 (br s, 1H), 7.87 (br s, 2H), 7.54 (d, J = 7.8Hz, 1H), 7.52 (d, J = 7.8Hz, 2H), 7.24 (m, 2H), 7.16 (br s, 1H), 3.07 (br s 4H). 13 C NMR (75 MHz, CDCl₃) δ 164.5, 153.1, 136.8, 134.5, 132.0, 129.9, 128.8, 128.40, 128.39, 121.8, 126.0, 125.7, 25.7, 28.4. HRMS (ESI) calculated for $C_{16}H_{15}N_2OS$ [M + H] $^+$ 283.0900 found 283.0906. IR v: 2997, 1645, 1597, 1532, 1275, 1136.

(*E*)-*N*′-(*thiochroman-4-ylidene*)*isonicotinohydrazide* (**7**). Yield 60%, mp: 175-176°C. ¹H NMR (300 MHz, CDCl₃) δ 9.56 (s, H), 8.81 (d, J = 5.9 Hz, 2H), 7.70 (d, J = 5.9 Hz, 2H), 7.35 – 7.03 (m, 4H), 3.16 – 3.02 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 169.1, 149.8, 146.8, 140.8, 136.6, 131.0, 129.6, 128.4, 127.6, 125.9,

238 123.7, 27.6, 25.8. HRMS (ESI) calculated for C₁₅H₁₄N₃OS [M + H]⁺ 284.0852 found 284.0864. IR v: 239 2924, 1637, 1597, 1530, 761.

240 241

242

243

244

(E)-2-(thiochroman-4-ylidene)hydrazinecarboxamide (8) Yield 79%, mp:214-216°C. ¹H NMR (300 MHz, DMSO) 8 9.34 (s, 1H), 8.21 (d, *J* = 7.8 Hz, 1H), 7.24 – 7.03 (m, 3H), 6.56 (s, 2H), 3.15 – 2.90 (m, 2H), 2.91 - 2.72 (m, 2H). ¹³C NMR (75 MHz, DMSO) δ 157.7, 142.4, 135.5, 132.2, 128.9, 128.3, 127.1, 125.8, 28.2, 25.7. HRMS (ESI) calculated for C₁₀H₁₂N₃OS [M + H]⁺ 222.0696 found 222.0703. IR v: 3456, 3186, 1697, 1584, 1430, 1248, 1201.

245 246

247 (E)-2-(thiochroman-4-ylidene)hydrazinecarbothioamide (9). Yield 55%, mp: 228-230°C. ¹H NMR (300 248 MHz, DMSO) δ 10.21 (s, 1H), 8.32 (d, J = 8.0 Hz, 2H), 8.00 (s, 1H), 7.27 – 7.19 (m, 2H), 7.12 (ddd, J = 8.0 Hz, 2H), 8.00 (s, 1H), 8 249 8.3, 6.1, 2.5 Hz, 1H), 3.01 (s, 4H). ¹³C NMR (75 MHz, DMSO) δ 179.3, 145.8, 136.6, 131.4, 129.7, 128.3, 250 127.8, 125.7, 28.4, 25.5. HRMS (ESI) calculated for C₁₀H₁₂N₃S₂ [M + H]⁺238.0467 found 238.0482. IR ν: 251 3410, 3126, 1596, 1468, 1285.

252

253 (E)-N'-(6-fluorothiochroman-4-ylidene)benzohydrazide (10). Yield 76%, mp:168°C. ¹H NMR (300 MHz, 254 DMSO) δ 10.91 (s, 1H), 8.02 – 7.77 (m, 3H), 7.58 (dd, J = 15.3, 8.6 Hz, 1H), 7.52 (t, J = 7.3 Hz, 2H), 7.33 255 (dd, J = 8.9, 5.2 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 3.10 (br s, J = 24.2 Hz, 4H). ¹³C NMR (75 MHz, DMSO) 256 δ 164.2, 159.9 (d, J = 241.4 Hz), 151.0, 133.9, 133.2 (d, J = 7.3 Hz), 131.9, 131.7, 130.0 (d, J = 7.7 Hz), 128.4 257 (s), 128.1, 117.1 (d, J = 18.7 Hz), 112.5 (d, J = 24.1 Hz), 27.6, 25.21. HRMS (ESI) calculated for 258 C₁₆H₁₄FN₂OS [M + H]⁺301.0805 found 301.0820. IR v: 1666, 1643, 1537, 1282, 1138.

259 260

261

262

263

264

(E)-N'-(6-fluorothiochroman-4-ylidene)isonicotinohydrazide (11). Yield 53%, mp: 182-183°C. ¹H NMR $(300 \text{ MHz}, \text{DMSO}) \delta 11.14 \text{ (s, 1H)}, 8.77 \text{ (br s, 2H)}, 7.89 \text{ (d, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.81 \text{ (br s, 2H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H)}, 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H}), 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H}), 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H}), 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H}), 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H}), 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H}), 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H}), 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H}), 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H}), 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H}), 7.33 \text{ (dd, } \textit{J} = 10.5 \text{ Hz}, 1\text{H}), 7.33 \text{ (dd,$ 12.1, 6.3 Hz, 1H), 7.21 (t, J = 9.5 Hz, 1H), 3.10 (br s, 4H). ¹³C NMR (75 MHz, DMSO) δ 162.8, 159.9 (d, J= 242.6 Hz), 152.4, 150.2, 140.9, 132.9, 132.3, 130.1 (d, J = 7.6 Hz), 122.0, 117.5 (d, J = 22.8 Hz), 112.7 (d, J = 22.8 Hz), 112.7 (d, J = 22.8 Hz), 120.7 = 23.7 Hz), 27.8, 25.2. HRMS (ESI) calculated for $C_{15}H_{13}FN_3OS [M + H]^+302.0758$ found 302.0773. IR v: 3461, 3100, 2920, 1666, 1539, 1281.

265 266

267 (E)-4-amino-N'-(6-fluorothiochroman-4-ylidene)benzohydrazide (12). Yield 82%, mp: 223-224°C. ¹H NMR 268 $(300 \text{ MHz}, \text{DMSO}) \delta 10.40 \text{ (s, 1H)}, 7.84 \text{ (d, } J = 10.8 \text{ Hz, 1H)}, 7.64 \text{ (d, } J = 8.5 \text{ Hz, 2H)}, 7.30 \text{ (dd, } J = 8.7, 5.6 \text{ (dd, } J = 8$ 269 Hz, 1H), 7.15 (td, J = 8.4, 2.9 Hz, 1H), 6.60 (d, J = 8.6 Hz, 2H), 5.75 (d, J = 17.4 Hz, 2H), 3.07 (s, 4H). 13 C 270 NMR (75 MHz, DMSO) δ 164.7, 160.1 (d, *J* = 241.1 Hz), 152.5, 148.5, 133.6 (d, *J* = 7.2 Hz), 131.7 (d, *J* = 2.5 Hz), 130.1 (d, J = 7.5 Hz), 130.0, 119.7, 116.8 (d, J = 22.5 Hz), 112.7, 112.5 (d, J = 22.3 Hz), 27.5, 25.4. 272 HRMS (ESI) calculated for C₁₆H₁₅FN₃OS [M + H]⁺316.0914 found 316.0933. IR ν: 3480, 3332, 1647, 273 1634, 1614, 1594, 1533, 1507, 1267, 1148.

274 275

276

277

278

279

271

(E)-N'-(2-methylthiochroman-4-ylidene)benzohydrazide (13). Yield 79%, mp: 205-206°C. ¹H NMR (300 MHz, DMSO) δ 10.86 (s, J = 46.9 Hz, 1H), 8.18 (br s, 1H), 7.88 (br s, 2H), 7.64 – 7.45 (m, J = 14.3, 6.8 Hz, 3H), 7.34 - 7.14 (m, 3H), 3.58 - 3.32 (m, 2H), 2.70 (dd, J = 17.1, 10.8 Hz, 1H), 1.36 (d, J = 6.7 Hz, 3H). 13 C NMR (75 MHz, DMSO) & 164.0, 152.7, 135.8, 134.0, 131.6, 130.8, 129.8, 128.3, 128.0, 127.8, 126.7, 125.2, 35.6, 34.8, 20.3. HRMS (ESI) calculated for C₁₇H₁₇N₂OS [M + H]⁺ 297.1056 found 297.1067. IR v: 3217,1665, 1527, 1276, 1132.

280 281 282

283

284

285

286

(E)-N'-(2-methylthiochroman-4-ylidene)isonicotinohydrazide (14). Yield 65%, mp: 194-195°C. ¹H NMR (300 MHz, CDCl₃) δ 9.57 (s, 1H), 8.90-8.75 (m,2H), 7.85-7.71 (m, 2H), 7.05 – 7.40 (m, 4H), 3.57 – 3.36 (m, 1H), 3.21 (dd, J = 16.4, 3.0 Hz, 1H), 2.66 (dd, J = 16.4, 11.0 Hz, 1H), 1.50 (d, J = 6.7 Hz, 3H). ¹³C NMR (75 MHz, DMSO) δ 162.6, 154.1, 150.2, 141.0, 136.1, 130.5, 130.1, 127.8, 126.8, 125.2, 122.0, 35.7, 34.7, 20.3. HRMS (ESI) calculated for C₁₆H₁₆N₃OS [M + H]⁺ 298.1009 found 298.1024. IR v: 3174, 2962, 1650, 1600, 1529, 1281.

287 288 295

303

311

320

327

- 289 (*E*)-4-amino-N'-(2-methylthiochroman-4-ylidene)benzohydrazide (**15**). Yield 60%, mp: 168-169°C. ¹H 290 NMR (300 MHz, DMSO) δ 10.35 (s, 1H), 8.12 (d, *J* = 7.8 Hz, 1H), 7.65 (d, *J* = 8.5 Hz, 2H), 7.38 6.97 (m, 291 3H), 6.60 (d, *J* = 8.6 Hz, 2H), 5.74 (d, *J* = 9.2 Hz, 2H), 3.65 3.11 (m, 2H), 2.67 (dd, *J* = 16.8, 10.4 Hz, 1H), 1.35 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (75 MHz, DMSO) δ 164.3, 152.4, 150.5, 135.5, 131.2, 130.1, 129.6, 127.9, 126.6, 125.3, 119.9, 112.7, 35.4, 34.9, 20.5. HRMS (ESI) calculated for C₁₇H₁₈N₃OS [M + H]⁺ 312.1165 found 312.1187. IR v: 3473, 3360, 2921, 1634, 1613, 1612, 1372.
- 296 (*E*)-*N*′-(6-fluoro-2-methylthiochroman-4-ylidene)benzohydrazide (**16).** Yield 52%, mp: 206-207°C. ¹H NMR 297 (300 MHz, DMSO) δ 10.92 (s, 1H), 8.03 7.75 (m, 3H), 7.65 7.46 (m, 3H), 7.30 (dd, *J* = 8.8, 5.4 Hz, 1H), 7.25 7.15 (m, 1H), 3.50 3.27 (m, 2H), 2.69 (dd, *J* = 17.1, 10.9 Hz, 1H), 1.35 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (75 MHz, DMSO) δ 164.2, 159.9 (d, *J* = 241.4 Hz), 151.1, 133.9, 132.7 (d, *J* = 7.3 Hz), 131.7, 131.3, 300 129.8 (d, *J* = 7.7 Hz), 128.3, 128.1, 117.3 (d, *J* = 23.0 Hz), 112.3 (d, *J* = 24.3 Hz), 35.3, 34.8, 20.2. HRMS (ESI) calculated for C₁₇H₁₆FN₂OS [M + H]+315.0962 found 315.0977. IR v: 3235, 1667, 1526, 1280, 1132.
- 304 (*E*)-N'-(6-fluoro-2-methylthiochroman-4-ylidene)isonicotinohydrazide (17). Yield 85%, mp: 210-212°C. 1 H 305 NMR (300 MHz, DMSO) δ 11.16 (s, 1H), 8.77 (br s, 2H), 7.89 (d, J = 10.1 Hz, 1H), 7.80 (br s, 2H), 7.29 (dd, J = 17.4, 11.5 Hz, 1H), 7.21 (t, J = 9.1 Hz, 1H), 3.51 3.22 (m, J = 28.2 Hz, 2H), 2.69 (dd, J = 17.0, 11.0 Hz, 1H), 1.35 (d, J = 6.5 Hz, 3H). 13 C NMR (75 MHz, DMSO) δ 162.9, 159.9 (d, J = 241.2 Hz), 152.5, 150.2, 140.9, 132.4 (d, J = 7.3 Hz), 131.7, 129.9 (d, J = 7.6 Hz), 122.1, 117.7 (d, J = 22.8 Hz), 112.5 (d, J = 23.3 Hz), 35.5, 34.9, 20.2. HRMS (ESI) calculated for $C_{16}H_{15}FN_3OS$ [M + H]+316.0914 found 316.0923. IR v: 3183, 1646, 1376, 1269.
- 312 (E)-4-amino-N'-(6-fluoro-2-methylthiochroman-4-ylidene)benzohydrazide (18). Yield 60%, mp: 187-189°C. 313 ¹H NMR (300 MHz, DMSO) δ 10.42 (s, 1H), 7.85 (dd, *J* = 11.0, 3.2 Hz, 1H), 7.65 (s, 2H), 7.27 (dt, *J* = 314 10.1, 5.0 Hz, 1H), 7.16 (tt, J = 8.6, 4.3 Hz, 1H), 6.60 (d, J = 8.6 Hz, 2H), 5.79 (s, J = 19.0 Hz, 1H), 3.58 – 315 3.14 (m, 2H), 2.67 (dd, J = 17.1, 10.4 Hz, 1H), 1.35 (d, J = 6.7 Hz, 3H). ¹³C NMR (75 MHz, DMSO)* δ 316 164.9, 160.1 (d, J = 241.3 Hz), 152.5, 148.7, 133.2 (d, J = 7.5 Hz), 131.0 (d, J = 2.4 Hz), 130.2, 129.9 (d, J = 2.4 Hz), 130.2, 317 7.5 Hz), 119.7 (s), 117.1 (d, J = 22.4 Hz), 112.7, 112.3 (d, J = 23.8 Hz), 35.1, 35.0, 20.3. HRMS (ESI) 318 calculated for C₁₇H₁₇FN₃OS [M + H]⁺ 330.1071 found 330.1093. IR v: 3381, 3065, 2955, 1623, 1604, 319 1566, 1372.
- 321 (*E*)-2-(2-phenylthiochroman-4-ylidene)hydrazinecarboxamide **(19).** Yield 47%, mp: 194-195°C. ¹H NMR 322 (300 MHz, DMSO) δ 9.46 (s, 1H, NH), 8.26 (d, J = 7.7 Hz, 1H, H5), 7.49 (d, J = 7.3 Hz, 2H), 7.35 (dt, J = 19.1, 7.0 Hz, 3H), 7.28 7.09 (m, 3H), 6.56 (s, 2H), 4.51 (dd, J = 11.9, 3.0 Hz, 1H, H2), 3.56 (cae en solvente1H, H3), 3.03 (dd, J = 17.4, 12.0 Hz, 1H, H3). ¹³C NMR (75 MHz, DMSO) δ 157.6, 142.7, 139.9, 135.3, 131.9, 129.2, 129.1, 128.4, 128.1, 128.0, 127.0, 126.1, 43.9, 34.8. HRMS (ESI) calculated for C₁₆H₁₆N₃OS [M + H]+298.1009 found 298.1024. IR v: 3465, 3136, 1696, 1664, 1412, 746.
- 328 (*E*)-2-(2-phenylthiochroman-4-ylidene)hydrazinecarbothioamide **(20).** Yield 38%, mp: 198-200°C. 1 H NMR 329 (300 MHz, DMSO) δ 10.42 (s, 1H,), 8.39 (d, J = 7.8 Hz, 1H), 8.29 (s, 1H), 8.04 (s, 1H), 7.74 7.21 (m, 7H), 7.17 (t, 1H) 4.52 (d, J = 9.8 Hz, 1H), 3.54 3.51 (m, 1H), 3.16 (dd, J = 17.4, 12.4 Hz, 1H). 13 C NMR 331 (75 MHz, DMSO) δ 179.4, 146.0, 139.7, 136.4, 131.1, 130.0, 129.1, 128.5, 128.1, 128.0, 127.7, 126.0, 43.8, 35.1. HRMS (ESI) calculated for $C_{16}H_{16}N_{3}S_{2}$ [M + H]+314.0780 found 314.0779. IR v: 3423, 3240, 2925, 1593, 1504, 1461.
- 334
 335 (*E*)-*N*′-(2-phenylthiochroman-4-ylidene)benzohydrazide (21). Yield 45%, mp: 232-233°C. ¹H NMR (300 MHz, DMSO) δ 10.90 (s, 1H, NH), 7.81 (d, *J* = 7.2 Hz, 2H), 7.64 7.15 (br m, 12H), 4.57 (dd, *J* = 12.3, 2.9 Hz, 1H), 3.57 (m, 1H), 3.21 (dd, *J* = 17.2, 12.4 Hz, 1H). ¹³C NMR (75 MHz, DMSO) δ 164.9 (C=O), 152.7 (C=N), 139.9, 136.6, 134.2, 132.1, 131.3, 130.3, 129.2, 128.8, 128.6, 128.4, 128.1, 128.0, 127.3, 126.0, 44.1 (C3), 35.2 (C2). HRMS (ESI) calculated for C₂₂H₁₉N₂OS [M + H]+359.1213 found 359.1232. IR v: 3059, 1633, 1567, 763.

341342

343

344

345

346

(*E*)-*N*′-(2-phenylthiochroman-4-ylidene)isonicotinohydrazide (**22**). Yield 45%, mp: 240-242°C. ¹H NMR (300 MHz, DMSO) δ 11.12 (s, 1H), 8.71 (d, J = 4.0 Hz, 2H), 8.23 (d, J = 7.7 Hz, 1H), 7.73 (d, J = 3.8 Hz, 2H), 7.50-7.10 (m, 8H), 4.58 (dd, J = 12.3, 2.7 Hz, 1H), 3.58 (d, J = 16.1 Hz, 1H), 3.20 (dd, J = 16.8, 12.8 Hz, 1H). ¹³C NMR (75 MHz, DMSO) δ 163.5, 153.9, 150.5, 141.5, 139.8, 136.9, 131.1, 130.6, 129.2, 128.6, 128.2, 128.1, 127.4, 126.0, 122.4, 44.0, 35.4. HRMS (ESI) calculated for C₂¹H¹¹8N³OS [M + H]+360.1165 found 360.1184. IR ν : 3167, 1635, 1534, 756.

347348

4.2. Biological Activity

349350351

4.2.1. Cytotoxic Activity

352353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

Cytotoxicity of the compounds was evaluated over human monocytes (U-937 ATCC CRL-1593.2) in exponential growing phase and, adjusted at 1 × 105 cells/mL in RPMI-1640 enriched with 10% fetal bovine serum (FBS). One hundred microliters of cell suspension were dispensed in each well of a 96-wells microplate and then, 100 µL of each compound or standard drug (amphotericin B) at four serial dilution concentrations (200, 50, 12.5 and 3.125 µg/mL) were added dissolved in pbs with 0.5% DMSO. Cell exposed to compounds or standard drugs were incubated 72 h at 37 °C and 5% of CO₂. Cytotoxic activity of each compound was determined according to the the on the cell viability by MTT microenzymatic method 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide is reduced to a purple product named formazan by mitochondrial enzyme succinate dehydrogenase. Thus, 10 µL/well of MTT solution (5 mg/mL) were added to each well of exposed and unexposed cells, and plates were incubated at 37 °C, 5% CO₂ during 3 h. The reaction was stopped by adding 100 µL/well of isopropanol with 50% and 10% of SDS (sodium dodecyl sulfate). The concentration of formazan was determined spectrophotometrically at 570 nm (Varioskan Flash Multimode Reader, Thermo Scientific, Waltham, MA, USA) and intensity of color (absorbance) was registered as O.D. Cells exposed to control drug (amphotericin B) were used as control for toxicity (positive control) while cell incubated in absence of any compound or drug were used as control for viability (negative control). Non-specific absorbance was corrected by subtracting absorbance (O.D) of the blank. Determinations were done by triplicate in at least two independent experiments [31].

371372373

4.2.2. Antileishmanial Activity

374375

376

377

378

379

380

381

382

383

384

385

386

387

388

Antileishmanial activity of compounds was determined according to the ability of the compound to reduce the infection by L. panamensis parasites. For this, the antileishmanial activity was tested on intracellular amastigotes of L. panamensis transfected with the green fluorescent protein gene (MHOM/CO/87/UA140-EGFP strain) [24]. Briefly, U-937 human cells at a density of 3 × 105 cells/mL in RPMI 1640 and 0.1 µg/mL of PMA (phorbol-12-myristate-13-acetate) were dispensed on 24-wells microplate and then infected with stationary phase growing L. panamensis promastigotes in 15:1 parasites per cell ratio. Plates were incubated at 34 °C and 5% CO₂ for 3 h and then cells were washed twice with phosphate buffer solution (PBS) to eliminate not internalized parasites. Fresh RPMI-1640 was added into each well (1 mL) and plates were incubated again. After 24 h of infection, the RPMI-1640 medium was replaced by fresh culture medium containing each compound at four serial dilutions (50, 12.5, 3.125 and 0.78 µg/mL) and plates were then incubated at 37 °C and 5% CO₂ during 72 h, then, cells were removed from the bottom plate with 100 µL of EDTA/Trypsin (250 mg) solution. The cells were centrifuged at 1100 rpm during 10 min at 4 °C, the supernatant was discarded and cells were washed with 1 mL of cold PBS and centrifuged at 1100 rpm for 10 min at 4 °C. Cells were washed two times employing PBS, as previously, and after the last wash, the supernatant was discarded and cells were suspended in 500 µL of PBS.

Cells were analyzed by flow cytometry employing a flow cytometer (cytomics FC 500MPL, Beckman Coulter. Pasadena, CA, USA) reading at 488 nm (exciting) and 525 nm (emitting) over an

argon laser and counting 10,000 events. Infected cells were determined according the events for green fluorescence (parasites). All determinations for each compound and standard drug were carried out by triplicate, in two experiments. Infected cells exposed to control drug (amphotericin B) were used as control for antileishmanial activity (positive control) while infected cells incubated in absence of any compound or drug were used as control for infection (negative control). Nonspecific fluorescence was corrected by subtracting fluorescence of unstained cells. Determinations were done by triplicate in at least two independent experiments [24,32].

4.2.2. Statistical Analysis

Cytotoxicity was determined according to viability and mortality percentages obtained for each experimental condition (synthetized compounds, amphotericin B and culture medium). Results were expressed as the mean lethal concentrations (LC50), concentration necessary to kill 50% of cells, calculated by the parametric method of linear regression that permits doses-response analysis (Probit analysis) [32].

Initially, viability percentages were calculated by Equation (1), where the O.D of control well, corresponds to 100% of viability.

% viability = (O.D exposed cells/O.D unexposed cells)
$$\times$$
 100 (1)

Then, the percentage of cell growth inhibition was calculated using Equation (2):

% inhibition =
$$100 - (\% \text{ Viability})$$
 (2)

The toxicity was defined according to LC50 values, using the follow scale: Toxic; LC50 < 100 μ M; moderately toxic; LC50 > 100 μ M and <200 μ M and potentially nontoxic; LC50 > 200 μ M.

Antileishmanial activity was determined according reduction of percentage of fluorescent parasites determined according to the median fluorescence intensity (MFI), obtained for each experimental condition by cytometry. The parasite values for each concentration of compound were calculated by Equation (3), where the % of parasites in the control well, corresponds to 100% of parasites.

Then, inhibition percentage was calculated with Equation (4):

% inhibition of parasites =
$$100 - (\% \text{ parasites})$$
 (4)

Results of antileishmanial activities were expressed as the median effective concentrations (EC50) measured by Probit method. The activity of each compound was established according to EC50 values as: high activity: EC50 < 25 μ M; moderate activity: EC50 > 25 μ M and <100 μ M and low activity: EC50 > 100 μ M.

Acknowledgments: Authors thank to Universidad de Antioquia (CODI) for financial support through the project 7749-"Obtención de compuestos tipo tiocromano, en la búsqueda de nuevos fármacos potenciales agentes antiparasitarios". Esteban Vargas thank to COLCIENCIAS for a fellowship in the Program Doctorados Nacionales 2012.

Author Contributions: Esteban Vargas, Wiston Quiñones and Fernando Echeverri were responsible for the synthesis and characterization of the compounds and the data analysis; Sara M. Robledo and Yulieth A.

430 Upegui were responsible for the biological studies and analysis of results.

Conflicts of Interest: The authors declare no conflict of interest.

432 References

- 433 1. world health organization Leishmaniasis fact sheet Available online: 434 http://www.who.int/mediacentre/factsheets/fs375/en/ (accessed on Nov 5, 2016).
- 435 2. Kaye, P.; Scott, P. Leishmaniasis: complexity at the host–pathogen interface. *Nat. Rev. Microbiol.* **2011**, 9,

- 436 604–615, doi:10.1038/nrmicro2608.
- 437 3. Caputto, M. E.; Ciccarelli, A.; Frank, F.; Moglioni, A. G.; Moltrasio, G. Y.; Vega, D.; Lombardo, E.;
- Finkielsztein, L. M. Synthesis and biological evaluation of some novel 1-indanone thiazolylhydrazone
- derivatives as anti-Trypanosoma cruzi agents. *Eur. J. Med. Chem.* **2012**, *55*, 155–163, doi:10.1016/j.ejmech.2012.07.013.
- 441 4. Machado-Silva, A.; Guimarães, P. P. G.; Tavares, C. A. P.; Sinisterra, R. D. New perspectives for
- leishmaniasis chemotherapy over current anti-leishmanial drugs: a patent landscape. Expert Opin. Ther.
- 443 *Pat.* **2015**, 25, 247–260, doi:10.1517/13543776.2014.993969.
- Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Privileged scaffolds for library design and drug discovery.
- 445 *Curr. Opin. Chem. Biol.* **2010**, *14*, 347–361, doi:10.1016/j.cbpa.2010.02.018.
- 446 6. Keri, R. S.; Budagumpi, S.; Pai, R. K.; Balakrishna, R. G. Chromones as a privileged scaffold in drug
- 447 discovery®: A review. Eur. J. Med. Chem. 2014, 78, 340–374, doi:10.1016/j.ejmech.2014.03.047.
- 448 7. Emami, S.; Ghanbarimasir, Z. Recent advances of chroman-4-one derivatives: Synthetic approaches and
- 449 bioactivities. Eur. J. Med. Chem. 2015, doi:10.1016/j.ejmech.2015.02.048.
- 450 8. Rollas, S.; Küçükgüzel, S. G. Biological Activities of Hydrazone Derivatives. *Molecules* 2007, 12,
- 451 1910–1939, doi:10.3390/12081910.
- 452 9. Verma, G.; Marella, A.; Shaquiquzzaman, M.; Akhtar, M.; Ali, M. R.; Alam, M. M. A review exploring
- 453 biological activities of hydrazones. *J. Pharm. Bioallied Sci.* **2014**, *6*, 69–80, doi:10.4103/0975-7406.129170.
- Coimbra, E. S.; Antinarelli, L. M. R.; da Silva, A. D.; Bispo, M. L. F.; Kaiser, C. R.; De Souza, M. V. N.
- 7-chloro-4-quinolinyl hydrazones: A promising and potent class of antileishmanial compounds. *Chem.*
- 456 *Biol. Drug Des.* **2013**, *81*, 658–665, doi:10.1111/cbdd.12112.
- 457 11. Al-Kahraman, Y. M. S. A.; Yasinzai, M.; Singh, G. S. Evaluation of some classical hydrazones of ketones
- and 1,2-diketones as antileishmanial, antibacterial and antifungal agents. Arch. Pharm. Res. 2012, 35,
- 459 1009–1013, doi:10.1007/s12272-012-0608-7.
- 460 12. Gemma, S.; Giovani, S.; Brindisi, M.; Tripaldi, P.; Brogi, S.; Savini, L.; Fiorini, I.; Novellino, E.; Butini, S.;
- 461 Campiani, G.; Penzo, M.; Blackman, M. J. Quinolylhydrazones as novel inhibitors of Plasmodium
- falciparum serine protease PfSUB1. Bioorganic Med. Chem. Lett. 2012, 22, 5317–5321,
- 463 doi:10.1016/j.bmcl.2012.06.023.
- Taha, M.; Baharudin, M. S.; Ismail, N. H.; Khan, K. M.; Jaafar, F. M.; Samreen; Siddiqui, S.; Choudhary,
- M. I. Synthesis of 2-methoxybenzoylhydrazone and evaluation of their antileishmanial activity.
- 466 Bioorganic Med. Chem. Lett. **2013**, 23, 3463–3466, doi:10.1016/j.bmcl.2013.03.051.
- 467 14. Da Silva, R. B.; Loback, V. B.; Salomão, K.; De Castro, S. L.; Wardell, J. L.; Wardell, S. M. S. V; Costa, T. E.
- M. M.; Penido, C.; De Oliveira Henriques, M. D. G. M.; Carvalho, S. A.; Da Silva, E. F.; Fraga, C. A. M.
- Synthesis and trypanocidal activity of novel 2,4,5-triaryl-N- hydroxylimidazole derivatives. *Molecules*
- 470 **2013**, *18*, 3445–3457, doi:10.3390/molecules18033445.
- 471 15. Prashant V. Desai, A. P.; Yogesh Sabnis; Babu Tekwani; Jiri Gut; Philip Rosenthal; Anuradha Srivastava,
- 472 A.; Mitchell Avery Identification of Novel Parasitic Cysteine Protease Inhibitors Using Virtual
- 473 Screening. 1. The ChemBridge Database. *J. Med. Chem.* **2004**, 47, 6609–6615, doi:10.1021/JM0493717.
- 474 16. Prashant V. Desai, A. P.; Jiri Gut, Philip J. Rosenthal, Babu Tekwani, Anuradha Srivastava, A.; Mitchell
- 475 Avery Identification of Novel Parasitic Cysteine Protease Inhibitors by Use of Virtual Screening. 2. The
- 476 Available Chemical Directory. *J. Med. Chem.* **2006**, 49, 1576–1584, doi:10.1021/JM0505765.
- 477 17. Benítez, J.; Cavalcanti De Queiroz, A.; Correia, I.; Alves, M. A.; Alexandre-Moreira, M. S.; Barreiro, E. J.;
- Lima, L. M.; Varela, J.; González, M.; Cerecetto, H.; Moreno, V.; Pessoa, J. C.; Gambino, D. New

- oxidovanadium(IV) N-acylhydrazone complexes: Promising antileishmanial and antitrypanosomal agents. *Eur. J. Med. Chem.* **2013**, *62*, 20–27, doi:10.1016/j.ejmech.2012.12.036.
- 481 18. Schöder, J.; Noack, S.; Marhöfer, R. J.; Mottram, J. C.; Coombs, G. H.; Selzer, P. M. Identification of
- Semicarbazones, Thiosemicarbazones and Triazine Nitriles as Inhibitors of Leishmania mexicana Cysteine Protease CPB. *PLoS One* **2013**, *8*, e77460, doi:10.1371/journal.pone.0077460.
- 484 19. Kishore Kumar, G. D.; Chavarria, G. E.; Charlton-Sevcik, A. K.; Arispe, W. M.; MacDonough, M. T.;
- Strecker, T. E.; Chen, S.-E.; Siim, B. G.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. Design, synthesis, and
- biological evaluation of potent thiosemicarbazone based cathepsin L inhibitors; 2010; Vol. 20;.
- 487 20. Song, J.; Jones, L. M.; Kumar, G. D. K.; Conner, E. S.; Bayeh, L.; Chavarria, G. E.; Charlton-Sevcik, A. K.;
- Chen, S.-E.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. Synthesis and Biochemical Evaluation of
- Thiochromanone Thiosemicarbazone Analogues as Inhibitors of Cathepsin L. ACS Med. Chem. Lett.
- 490 **2012**, 3, 450–453, doi:10.1021/ml200299g.
- 491 21. Siles, R.; Chen, S.-E.; Zhou, M.; Pinney, K. G.; Trawick, M. L. Design, synthesis, and biochemical
- $492 \hspace{1.5cm} \text{evaluation of novel cruzain inhibitors with potential application in the treatment of Chagas' disease.} \\$
- 493 Bioorg. Med. Chem. Lett. 2006, 16, 4405–4409, doi:10.1016/j.bmcl.2006.05.041.
- 494 22. Parker, E. N.; Song, J.; Kishore Kumar, G. D.; Odutola, S. O.; Chavarria, G. E.; Charlton-Sevcik, A. K.;
- Strecker, T. E.; Barnes, A. L.; Sudhan, D. R.; Wittenborn, T. R.; Siemann, D. W.; Horsman, M. R.;
- Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. Synthesis and biochemical evaluation of
- benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L.
- 498 Bioorg. Med. Chem. 2015, 23, 6974–6992, doi:10.1016/j.bmc.2015.09.036.
- 499 23. Song, J.; Jones, L. M.; Chavarria, G. E.; Charlton-Sevcik, A. K.; Jantz, A.; Johansen, A.; Bayeh, L.; Soeung,
- V.; Snyder, L. K.; Lade, S. D.; Chaplin, D. J.; Trawick, M. L.; Pinney, K. G. Small-molecule inhibitors of
- cathepsin L incorporating functionalized ring-fused molecular frameworks. Bioorg. Med. Chem. Lett.
- **2013**, 23, 2801–2807, doi:10.1016/j.bmcl.2012.12.025.
- 503 24. Kalia, J.; Raines, R. T. Hydrolytic Stability of Hydrazones and Oximes. *Angew. Chemie* 2008, 120,
- 504 7633–7636, doi:10.1002/ange.200802651.
- 505 25. Scior, T.; Garces-Eisele, S. Isoniazid is Not a Lead Compound for its Pyridyl Ring
- Derivatives, Isonicotinoyl Amides, Hydrazides, and Hydrazones: A Critical Review. Curr. Med. Chem.
- **2006**, *13*, 2205–2219, doi:10.2174/092986706777935249.
- 508 26. Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; J?rvinen, T.; Savolainen, J. Prodrugs:
- design and clinical applications. *Nat. Rev. Drug Discov.* **2008**, 7, 255–270, doi:10.1038/nrd2468.
- 510 27. Jornada, D.; dos Santos Fernandes, G.; Chiba, D.; de Melo, T.; dos Santos, J.; Chung, M. The Prodrug
- Approach: A Successful Tool for Improving Drug Solubility. *Molecules* **2015**, 21, 42,
- 512 doi:10.3390/molecules21010042.
- 513 **Sample Availability:** Samples of the acyl hydrazone compounds are available from the authors.