

1 Article

2 **Atmospheric Emissions from Oil and Gas Extraction
3 and Production in Greece**4 **Georgios Papailias * and Ilias Mavroidis**

5 School of Science and Technology, Hellenic Open University, Aristotelous 18, 26 335, Patra

6 Emails: g_papahlias@yahoo.com; imavr@tee.gr

7 * Correspondence: g_papahlias@yahoo.com; Tel.: +30-6974791842

8

9 **Abstract:** This paper addresses the atmospheric emissions from oil and gas extraction and
10 production in Greece. The study was carried out in 2014 in the Kavala gulf, which currently is the
11 only location of oil and gas production in Greece and where the exploration activities for
12 hydrocarbons started in the late '60's. This study presents the qualitative and quantitative
13 characteristics of atmospheric emissions, in relation also to the emissions' control management
14 system. Particular reference is made to sulphur compounds since the existence of volcanic rocks
15 results to increased amounts of H₂S. The results shows that, currently, atmospheric emissions of
16 pollutants during extraction and production of hydrocarbons in Greece are very low and do not
17 have any significant effect on air quality and climate change. Since it is expected that exploitation of
18 hydrocarbons and oil and gas extraction and production will increase in the future, appropriate
19 measures should be taken to ensure environmental protection, such as the development of
20 integrated monitoring systems and the use of up to date emission control technologies.21 **Keywords:** oil and gas production; atmospheric emissions; greenhouse gases; gas flaring; H₂S

22

23 **1. Introduction**24 **1.1 Oil and gas extraction and production in Greece**25 Oil and gas exploration in Greece begun in 1969, when the State granted hydrocarbon
26 exploration concession rights, in the Gulf of Kavala, to a Consortium of foreign companies. The first
27 well drilling in the region was the «EAST THASSOS-1» in 1971, while in 1972 the "SOUTH KAVALA"
28 natural gas reservoir was discovered. Nowadays, there are three sour crude oil reservoirs in the
29 Prinos area and one sweet gas reservoir in south Kavala [1].30 The present work focuses on atmospheric emission from the Prinos facilities in 2014. In order to
31 fully understand the potential impacts of oil and gas extraction on the environment, it is important
32 to understand the activities involved [2]. The facilities in reservoirs such as that of Prinos, are
33 developed both offshore and onshore and the produced fluid is transported through pipelines from
34 offshore to onshore (Figure 1).

35

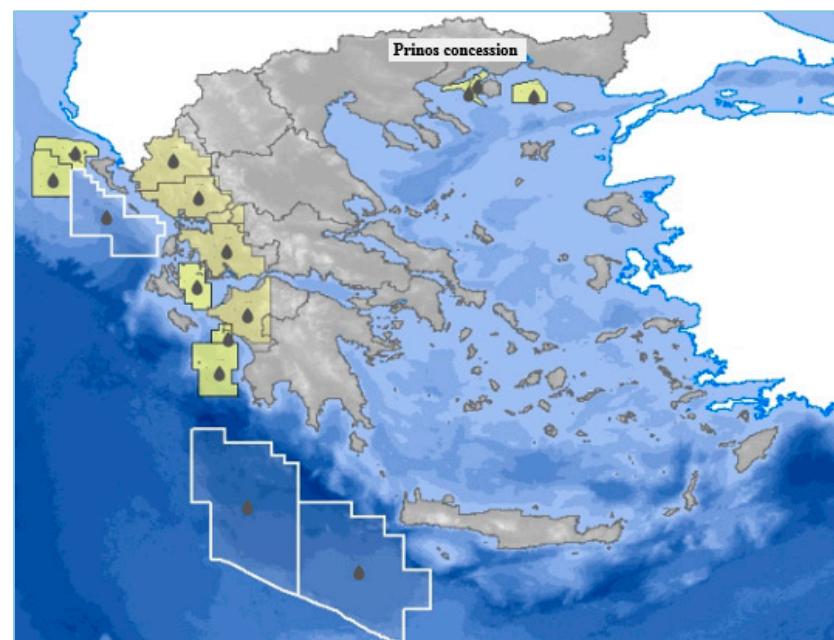
36

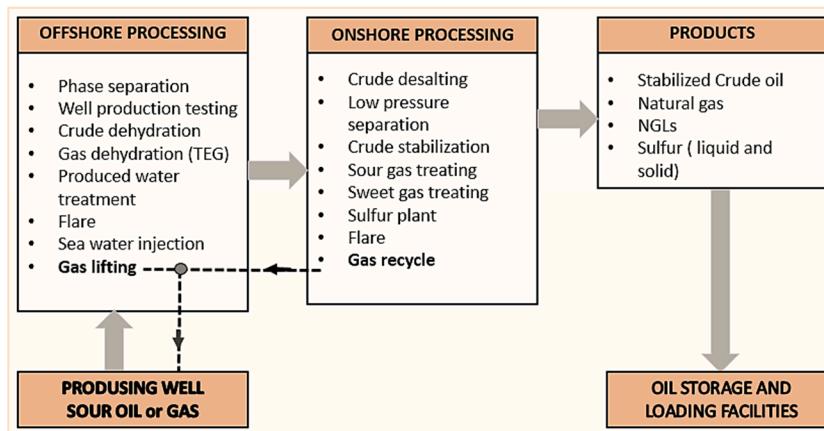
37



Figure 1 Region of Prinos in Kavala gulf, East Macedonia/Thrace, Greece.

Onshore facilities account for the final processing of the oil and gas streams into stabilized crude oil, natural gas, natural gas in liquid form and elemental sulfur. The total atmospheric emissions from the oil and gas production industry in 2014 in Greece originated from the facilities of the gulf of Kavala. The average oil and gas production of 2014 was 1,486 bopd [3]. For the following years a new investment programme will be implemented, in order to increase the current production up to 20,000 bopd [4]. Nowadays the onshore and offshore leases in Western Greece and in the Ionian Sea are increasing the exploration agenda in the western part of the country to nine leases (Figure 2) [5].




Figure 2 The onshore and offshore leases in Western Greece, Ionian Sea and south of Crete.

Hence, it is essential examine the current situation and to provide insight so that in the future the oil and gas industry's activities in Greece will meet the atmospheric emission and air quality standards, through applying an integrated programme for the monitoring and control of atmospheric emissions.

59 1.2 Atmospheric emissions from oil and gas extraction

60

61 In most oil and gas reservoirs, initially the fluid flows naturally to the surface under the pressure
 62 from the bottom hole. When the produced fluid reaches the surface, it is driven to the separation
 63 units. Particularly, the crude oil is separated from the dissolved gas (associated gas) and the hydrogen
 64 sulfide (H_2S) and then is stored in order to be loaded in tankers. In Prinos, the recovery of
 65 hydrocarbons is mainly achieved with the use of gas lifting. The operator injects sweet natural gas
 66 into the producing wells using gas lifting facilities (enhanced oil recovery); as a result the oil & gas
 67 production is increased and the produced fluid contains less hydrogen sulfide (Figure 3).
 68

69
70 **Figure 3** Oil and gas processing in the case study area.
71

72 The extraction and storage process results to three main types of atmospheric emissions:
 73 combustion gases, fugitive emissions, as a result of the storage of fluids in tanks, and
 74 chlorofluorocarbons coming from refrigeration systems. The types of atmospheric emissions are
 75 described in Table 1. The most significant emissions from the production oil and gas in Greece are
 76 those of carbon dioxide (CO_2), sulfur dioxide (SO_2) and nitrogen oxides (NO_x).
 77

78 **Table1** Air emission sources and components of Greek oil and gas extraction and production.
79

Emissions from energy production (conversion) or power generation	Emissions from storage and loading of oil	Fugitive emissions
CO_2 , NO_x , SO_2 , $Pm10$, $Pm 2,5$, CO and nmVOC	CH_4 & nmVOC	CH_4 & nmVOC

80

81 **2. Methodology**82 *2.1 Criteria air pollutants*

83 The offshore and onshore facilities are located about 8 km north-west of the island of Thasos and
 84 10 kilometers east of the city of Kavala, respectively. According to the Greek and European Union
 85 legislation, the operator must control air pollutants into the atmosphere from all oil and gas activities
 86 within approximately 100 km from the coast in order to ensure high air quality levels and to protect
 87 the human health [6].

Figure 4 Locations of air quality monitoring network in Kavala gulf.

88

89

90

91 For this purpose, the operator has installed an air quality monitoring network in the gulf of
 92 Kavala (Figure 4). Furthermore, there are twelve total sulfation monitoring stations (Concentration
 93 Measurement Instruments) in different onshore locations and one central environmental monitoring
 94 station (Continuous Emission Monitoring & Recording Systems) close to the onshore facilities. The
 95 monitoring network is common for the onshore and offshore installations. The main environmental
 96 station records hydrogen sulfide (H_2S), sulfur dioxide (SO_2), total hydrocarbons (THC), methane
 97 (CH_4), non-methane hydrocarbons (NMHC) and meteorological parameters (wind direction and
 98 speed, ambient temperature, relative humidity). Sulphur dioxide concentrations are measured by
 99 ultraviolet fluorescence. Nitrogen oxides and nitrogen dioxide are measured by chemiluminescence.

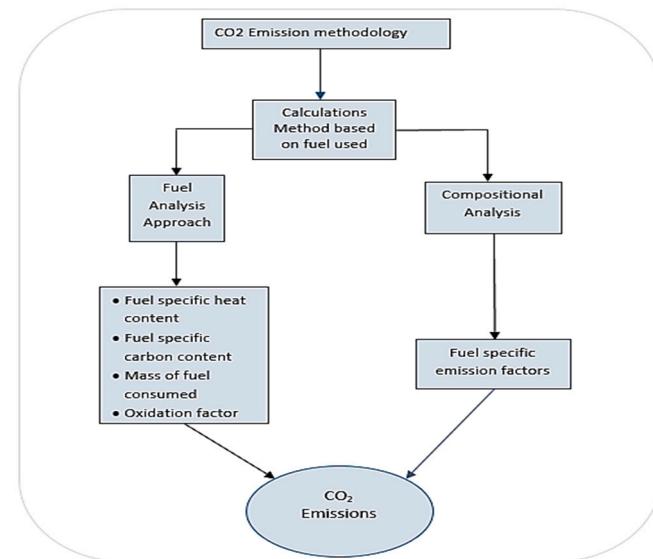
100 The twelve total sulfation measuring stations record concentrations of sulfur compounds using
 101 a passive concentration measurement device based on the assumption that lead dioxide can oxidize
 102 sulphur gases such as sulfur dioxide, hydrogen sulfide and mercaptans to lead sulphate (total
 103 sulfation). To this end, a special paste of lead dioxide and mastic alcoholic solution is placed on
 104 special surfaces which are exposed to the atmosphere for a period of one month. Then, they are
 105 treated in the laboratory with a sodium carbonate solution. The unreacted lead dioxide is filtered and
 106 its pH is adjusted at 2.5; as a result, the sulfates precipitate as boron sulphate ($BaSO_4$). The turbidity
 107 due to the boron sulphate precipitation is measured using spectrophotometer at 420 nm. Finally, the
 108 total sulfur is calculated using the following equation:

109

$$mg SO_2 \text{ per day} / 100 \text{ cm}^2 = \frac{mg BaSO_4 * \left(\frac{MW_{SO_3}}{MW_{BaSO_4}} \right)}{d * a} \quad (1)$$

110

111 Where d is the number of days, α is the area in cm^2 , MW_{SO_3} is the molecular weight of SO_3 and
 112 MW_{BaSO_4} is the molecular weight of $BaSO_4$


113 Furthermore, a continuous monitoring system is used for undertaking direct emission
 114 measurements of SO₂ and NO_x (as NO₂) in the furnace of the Sulfur Unit Incinerator. In the other
 115 furnaces of the combustion units discontinuous measurements are contacted every semester to
 116 evaluate the quantities of SO₂ and NO_x present in the emissions [7]. The results from the twelve
 117 sulfation monitoring stations and from the central environmental station are presented in monthly
 118 and annual environmental reports. The calculation of SO₂ emissions in all combustion plants
 119 (excluding the incinerator) is based on the content of sulfur (S) in the fuel. The S content is obtained
 120 as an average of 52 measurements/year (1 measurement/week) and corresponding composition
 121 analysis. These data are used to derive an emission factor of sulfur dioxide which is related to the
 122 sulfur content (%) of the fuel and it is calculated based on the H₂S content of the gas. The SO₂ emission
 123 factor of the flare process at the offshore installations is equivalent to 2.79*10-3tn SO₂/m³ of produced
 124 water. The average value of the SO₂ emission factor for stationary combustion units is 30 ppmv S
 125 (81.24*10-9tn SO₂/S m³). Exceptionally, continuous monitoring is conducted in the furnace of the
 126 Sulfur Unit Incinerator, where the amount of pollutant emitted each day adds up separately to the
 127 total annual emissions of SO₂ on the basis of the volumetric flow rates of waste gases. The NO_x
 128 emission factor is equivalent to 0.003 kg NO_x/Nm³ of natural gas, for all combustion engines, while
 129 the NO_x coefficient for turbines is equivalent to 0.006 kg NO_x/Nm³ of natural gas. NO_x values for all
 130 combustion units are calculated as the average of twelve measurements per year (1 measurement per
 131 month) in each furnace using a portable analyzer [8].

132

133 *2.2 Greenhouse gases*

134

135 The operator of the oil and gas extraction and production facility monitors, controls and reports
 136 greenhouse gas emissions on the basis of the internationally agreed obligations. To this end, a
 137 greenhouse gas inventory is prepared each year, using field-specific emission factors in accordance
 138 with the requirements of the «Greenhouse Gas Emission Regulations» and the approved monitoring
 139 program of Hellenic Ministry of Environment and Energy for the relevant facility [9 &10].

140

141

142

Figure 5 Analytical framework for CO₂ emission estimations.

143 The annual CO₂ emissions are calculated from the mass of fuel consumed times an emission
 144 factor (Figure 5). The CO₂ emissions of combustion engines are calculated using the standard tier
 145 uncertainty estimation methodology, using appropriate emission factors. Tier 2a of IPCC has been
 146 used in particular to estimate emissions from fuel combustion by source subcategories. To derive the
 147 field-specific emission factor of CO₂, a detailed analysis of the hydrocarbon composition is
 148 performed, taking into account the carbon contents of the fuels composition, the carbon oxidation
 149 factors and the fuel quality. (Table 2). Following this approach, the CO₂ emissions which have been
 150 used to estimate the annual inventory of the fuel gas domestic mixture is equivalent to 56.95 tn CO₂/TJ
 151 [11]. It should be noted that emission factors may vary over time, since they are associated with the
 152 composition of the fuel. Therefore, a reliable analysis of the hydrocarbon composition is the
 153 cornerstone of emission factor estimations.

154

155 **Table 2** Carbon dioxide emission factors (in t CO₂ / TJ) and net calorific value (in TJ / kt) by fuel type.

Fuel type	Net calorific value (in TJ / kt)	Carbon content CC tc/TJ	Oxidation factor %	EF (TCO ₂ /TJ)
Diesel oil	42.8	20.12	100	73.78
Heavy fuel oil	40.14	21.38	100	78.4
Natural gas-Domestic		15.95-16.22	100	56.95
Natural gas-Imports		15.15-15.18	100	55.55-55.67

156 **3. Results and discussion**

157 **3.1 CO₂ emissions**

158

159 CO₂ is emitted during all combustion processes as a function of the carbon number of the fuel
 160 used. The major sources contributing to CO₂ emissions are boilers, in which fuels are oxidized in
 161 order to generate heat for internal use, and turbines (gas turbines), used for power generation [12].
 162 Annual greenhouse gas emissions in Greece were 34933.8 tn CO₂ in 2014 (Figure 6). These inventories
 163 are verified by authorized external auditors, according to Regulations 600/2012/EC and 601/2012/EU.
 164 Emissions of greenhouse gases from the offshore facilities (Delta complex & Kappa) during 2014 were
 165 1684.3 tn CO₂, which equals to 4.82 % of the total emissions (Figure 6). It should be noted that in
 166 offshore facilities the major CO₂ emissions are due to gas flaring, glycol dehydrators, electricity
 167 generator and diesel gas compressor. Although a CO₂ emission factor derived from compositional
 168 analysis is used, the maximum uncertainty of the flare inventory according to Tier II requirements
 169 could be ±12.5% [13].

170

171

172

173

174

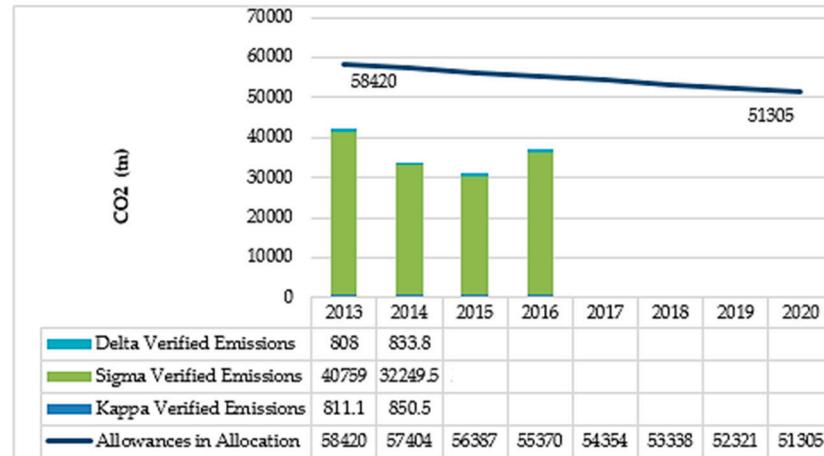


Figure 6 Comparison of the CO₂ emissions inventory (tn) with allocated allowances in the EU emissions trading system.

*For the years 2015 and 2016 the annual verified emissions are 31044tn and 36980tn respectively.

At the onshore facilities (Sigma), the main emission sources are the direct-fired boilers, the super heater and the sulfur tail gas incinerator of the Sulfur Plant (two Claus units in parallel and three sulfreen type batch reactors). Turbines have not been used since 2010, therefore they are not included in the greenhouse gas emissions for the year 2014. It should be noted that the operator has a holding account in the Greek Registry of GHG Emissions and participates in the emission trading system, and will meet the greenhouse gas emission reduction commitment requirements until 2020 (Figure 6).

Figure 7 presents the historical trend for direct and indirect CO₂ emissions, per barrel of hydrocarbons delivered per day, in the 2000-2014 period [14]. The data from the period 2000 to 2014 revealed that the trend of oil production was linearly decreasing, while CO₂ emissions were in general rising for the same period. Furthermore, emissions of CO₂ decreased by 67.73% for 2014 as compared to CO₂ emissions in 2008, a year where emissions had peaked [15].

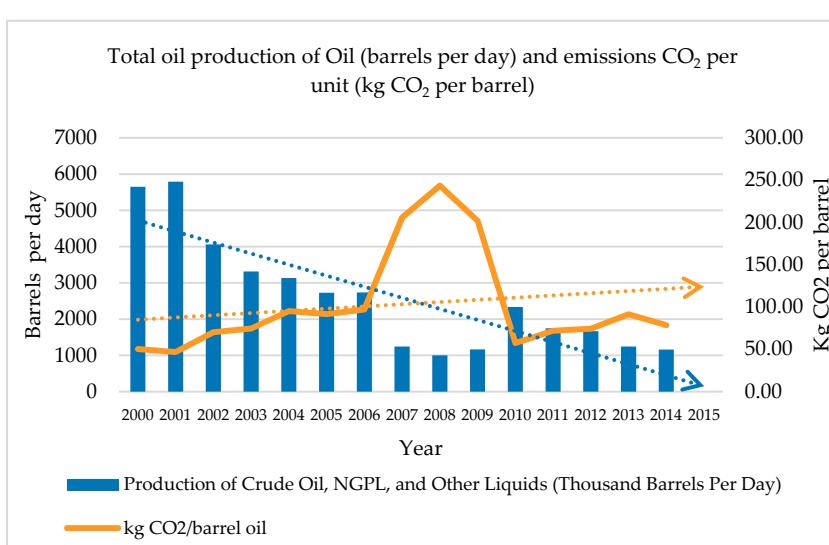


Figure 7 CO₂ emissions and Oil and Gas Extraction in Greece for the period 2000 – 2014.

It is also observed that for the years 2007, 2008 and 2009, oil production was quite low [11]. On the other hand, CO₂ emissions presented maximum values. One possible reason could be that more

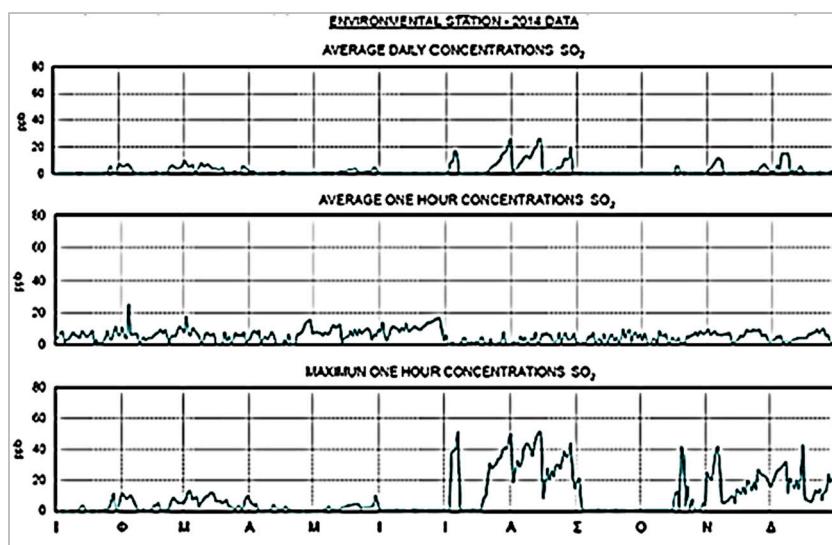
196 energy is required to extract the oil and gas from the reservoir, due to more energy demanding
197 activities [16], as well as to the fact that during these years, turbines were operated (both electricity
198 and heat). Then, in 2010, the operator decided to close all the turbines in order to cover the energy
199 demand with natural gas provided by the Public Gas Corporation (DEPA) for financial and technical
200 reasons [8].

201 Overall, CO₂ emissions of oil and gas production are mainly due to the operation of boilers using
202 sweet gas, to diesel combustion engines, to boilers for glycol regeneration using sour gas, and to
203 flaring.

204

205 *3.2 Sulfur emissions (H₂S and SO₂)*

206

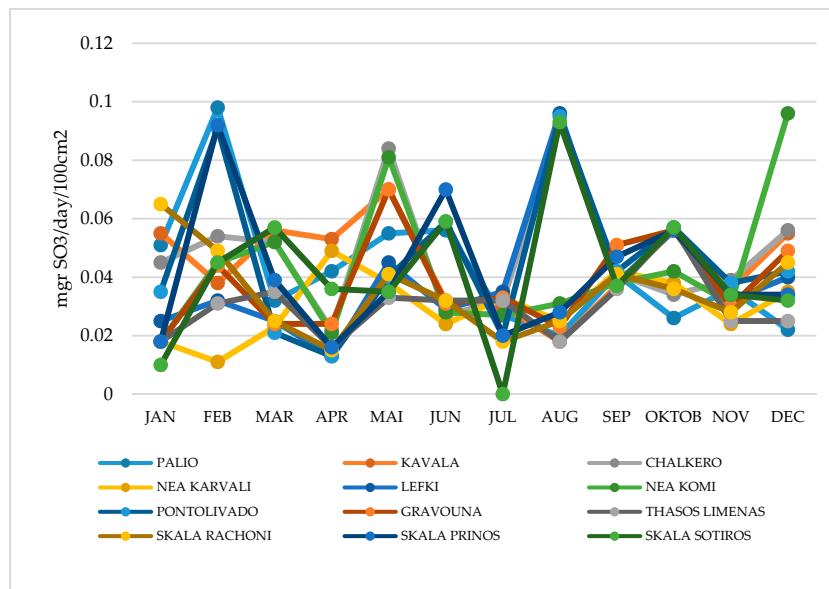

207 Emissions of sulfur dioxide are related to the sulfur content (%) of the fuel and are calculated
208 based on the H₂S content of the gas, indicated in ppm. The composition of hydrocarbons depends on
209 the geological formations in each region and affects the quantity of SO₂ emissions. SO₂ emissions from
210 oil and gas extraction and production in Greece are important, due to the existence of significant
211 quantities of hydrogen sulphide (H₂S) in volcanic rocks. Two adjacent reservoirs may produce crude
212 oil with a different composition, with the composition varying even in terms of extraction depth. The
213 average content of H₂S in the deposit reservoirs of Kavala Gulf ranges from 35% to 40% [17].

214 For the year 2014, data on sulfur dioxide (SO₂), collected by the central monitoring station and
215 the twelve (12) linked sulphur monitoring stations, show that the measured values are below of the
216 permitted limits (Figures 8 & 9). More specifically, SO₂ concentrations have a maximum value of
217 average daily concentrations of approximately 25 ppb or 0.06547 mg/m³ and a maximum value of
218 one hour concentration of 50 ppb or 0.13 mg/m³. The limit values according to the European union
219 legislation are 125mg/m³ for an averaging period of one hour (not to be exceeded more than 3 times
220 a calendar year) and 350 mg/m³ for an averaging period of one day (not to be exceeded more than 3
221 times a calendar year).

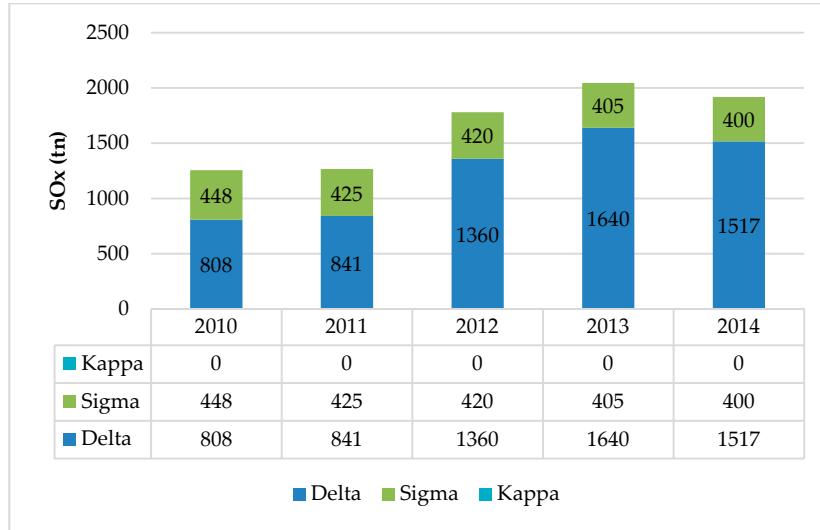
222

223

224


225

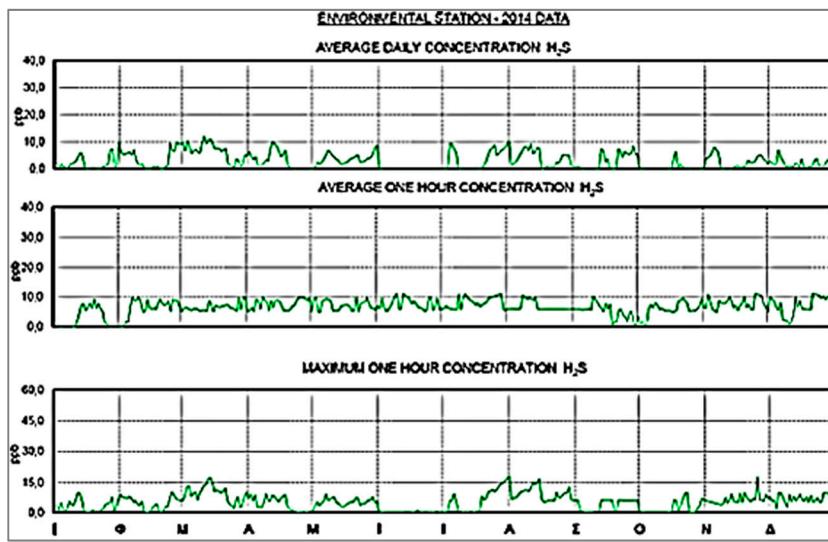
226


Figure 8 SO₂ emissions (ppb) at the central monitoring station in the onshore installations.

227

228

229
230 **Figure 9** SO₂ emissions at the twelve (12) linked Sulphur monitoring stations located at the Kavala gulf.
231
232 Emissions of sulfur dioxide (SO₂) from the offshore installations (Kappa & Delta complex) in
233 2014 were 1517tn, which is equivalent to 79.13% of the total emissions (Figure 10). The main source
234 of SO₂ was the gas flare; sweet gas and a small amount of sour gas were burnt in the process of water
235 treatment. Combustion engines were using diesel fuel with very low sulfur content (ultralow sulfur
236 diesel), and therefore their emissions have not been calculated for the annual inventory.
237

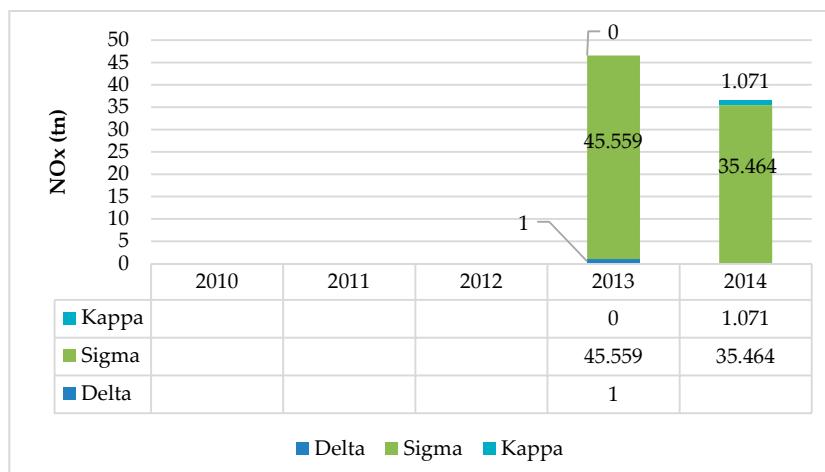


238
239 **Figure 10** SO_x/SO₂ atmospheric emissions inventory from Oil and Gas extraction from 2010 to 2014.
240

241 On the contrary, at the onshore facilities (Sigma), the Sulfur Plant converts 99% of the H₂S
242 included in the sour gas to sulfur. As a result, the produced natural gas is low in sulfur content and
243 is used as fuel for energy production. Hence, the emissions of SO₂ at the onshore facilities were very
244 low, as shown in Figure 10. The main source of sulfur emissions at the onshore facilities is the
245 incinerator stack, where the sulfur unit tail gas is safely burned.

246 H₂S measured concentrations have a maximum value of about 15 ppb (0.015ppm) or 0.021 mg/m³
247 (Figure 11). The limit of 10 ppm time-weighted average (TWA) is used, according to OSHA
248 Standards. The ambient concentration measurements of H₂S at the twelve total sulfation monitoring
249 stations and at the central environmental monitoring station located close to the onshore facilities,
250 suggest that H₂S emissions are negligible (Figure 11). It should be noted that the lowest-adverse-effect

251 level of hydrogen sulfide is 15 mg/m³. As result hydrogen sulfide concentrations should not be
252 allowed to exceed 7 µg/m³, with a 30-minute averaging period [18].
253


254
255 **Figure 11** H₂S concentrations (ppb) measured at the central monitoring station at the onshore installations.
256

257 As noted above, H₂S concentrations have a maximum value of about 15 ppb or 0.021 mg/m³
258 (Figure 11). There is not an established limit for the hydrogen sulfide (H₂S) emissions; some people
259 can detect hydrogen sulfide odor at a concentration equivalent to 0.5 ppb, but 90% of people detect
260 hydrogen sulfide in concentrations equivalent to 50 ppb. Hydrogen sulfide is a key parameter for the
261 daily operation of the facilities and H₂S concentrations are measured to ensure the protection of the
262 employees and of the inhabitants of the surrounding region. The H₂S concentration measurements of
263 show that H₂S emissions are negligible.
264

265 3.3 Emissions of nitrogen oxides (NO_x) and nitrous oxide (N₂O)

266 The total emissions of nitrogen oxides (NO_x=NO+NO₂) and nitrous oxide (N₂O) at the offshore
267 and onshore facilities during 2014, expressed as NO₂ equivalent, were 36.535 tn (Figure 12). The
268 emissions from onshore facilities accounted for 97.6% of the total emissions, as at the offshore
269 facilities combustion engines for power generation (which are the main source for NO_x and N₂O)
270 were not used. Onshore facilities are supplying electricity to the offshore installations through a
271 submarine cable. Moreover, natural gas is used as a fuel to cover energy needs at the onshore facilities
272 and is the main reason for the very low, emissions of NO_x from the oil and gas production in Greece.
273

274 Nitrogen oxides are emitted by diesel combustion engines, by drilling rig engines, by flares and
275 by the dehydration process of sour gas. The biggest source of NO_x emissions from the oil and gas
276 exploration and production activities, are the combustion engines at the onshore installations.

277
278
279

Figure 12 NO₂ atmospheric emissions inventory from Oil and Gas extraction for year 2014.

280 4. Conclusions

281 The monitoring of atmospheric emissions represents a critical component of the assessment of
282 the environmental performance of oil and gas exploration and production, and is necessary for
283 ensuring a good air quality status and for protecting the health and safety of employees and the
284 quality of life of the local population.

285 Concentration measurements and emission inventories for the year 2014 from oil and gas
286 activities in Greece confirm that emissions of atmospheric pollutants and greenhouse gases are very
287 low and within the limits set by the national air quality standards and the European Union legislation.
288 The examination of the CO₂ emission inventories for the years 2007, 2008 and 2009, showed that the
289 main source of CO₂ emissions were the turbines. Emissions of CO₂ were low, since they are controlled
290 within the framework of efforts of the European Union to reduce greenhouse gas emissions up to
291 2020, contributing to the global emissions reduction goals.

292 The total offshore emissions (Delta complex) of sulfur dioxide (SO₂) are equivalent to 1517 tn for
293 the year 2014. The majority of SO₂ emissions originates from combustion of sweet gas and off a small
294 amount of sour gas (process of water treatment) in the flare of the offshore facilities. Although the
295 produced oil and gas contains about 50% hydrogen sulfide, the operator has developed specific
296 techniques to make the development of sour resources as safe as possible for the environment.

297 In conclusion, the oil and gas production industry in Greece does not result in significant
298 atmospheric emissions, taking to account the progress made in the efforts to reduce emissions and to
299 protect the environment, through the use of emission control technologies and the continuous
300 monitoring and assessment of atmospheric emissions and of local air quality. However, since the
301 establishment of the Hellenic Hydrocarbons Management Company S.A. in 2011 (Law 4001/2011),
302 rights for exploration and exploitation of hydrocarbons are being granted in Greece, and it is expected
303 that following this first stage, exploitation of hydrocarbons and oil and gas extraction and production
304 will increase in the future. Therefore, it is necessary for decision-makers and operators to ensure
305 environmental protection and the health and safety of employees and general population, *inter alia*
306 through the development of appropriate monitoring systems and the use of up-to-date emission
307 control technologies, thus establishing a closed optimization system.

308

309 **Acknowledgments:** The authors are sincerely grateful to Mr. Vasilis Tsetoglou, Group HSE Manager (KAVALA
310 OIL) for providing the air emission data from the central environmental monitoring station.

311 **Author Contributions:** All authors contributed equally in the preparation of this paper.

312 **Conflicts of Interest:** The authors declared that there is no conflict of interest with respect to the research,
313 authorship, and/or publication of this article.

314

315 **References**

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

1. Kavala Oil S.A., (2016a). History. Available on line: <http://www.kavalaoil.gr/index.php?act=viewCat&catId=1> (accessed on 30 March 2016).
2. E&P Forum/UNEP (1997), Environmental management in oil and gas exploration and production, ISBN 92-807-1639-5, (pp. 12-13.).
3. Kavala Oil S.A. (2016b). Offshore facilities. Available on line: <http://www.kavalaoil.gr/index.php?act=viewCat&catId=20> (accessed on 30 March 2016).
4. Energean Oil and Gas, (2016), Reserves and Resources. Available on line: <http://www.energean> (accessed on 30 March 2016).
5. Hellenic Hydrocarbons Recourse Management, (2017), Offshore Ionian & Crete Tenders 2017. Available online: <http://www.greekhydrocarbons.gr/> (accessed on 30 January 2017)
6. European Commission, (1996), Directive 96/62/EC, On ambient air quality assessment and management. Available online :<http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31996L0062&from=EN> (accessed on 30 June 2016)
7. European Commission, (2010), Directive 2010/75/EC, On industrial emissions (integrated pollution prevention and control). Available on line: <http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:334:0017:0119:en:PDF> (accessed on 30 June 2016)
8. Tsetoglou V., Group HSE Manager, (2016), personal communication through email (30 March 2016).
9. European Commission, (2012), The Monitoring and Reporting Regulation –General guidance for installations, Measurement based approaches (pp.26-27). Available on line: http://ec.europa.eu/clima/policies/ets/monitoring/index_en.htm (accessed on 30 May 2016)
10. European Commission, (2013) JRC Reference Report on Monitoring of emissions from IED-installation. Available on line: http://eippcb.jrc.ec.europa.eu/reference/BREF/ROM_FD_102013_online.pdf 7. (accessed on 30 May 2016)
11. Hellenic Ministry of Environment and Energy, (2016), National Inventory Report 2016. Available on line: http://unfccc.int/national_reports, (accessed on 30 April 2016)
12. Romi L., vel-Cerovec-kin S., (2000), Atmospheric emissions from sources of air pollution in Petroleum Industry-Emission Inventory, In: SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, 26-28 June, Stavanger, Norway, Paper SPE 61509 MS, Society of Petroleum Engineers, <https://doi.org/10.2118/61509-MS>
13. IPCC Guidelines for National Greenhouse Gas Inventories (2006), Energy- Stationary combustion. Available on line: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf (accessed on 30 April 2016)
14. U.S. Energy Information Administration, (2016). International Energy Statistics. Available online: <http://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=5&pid=55&aid=1&cid=GR,&syid=2000&eyid=2015&unit=TBD> (accessed on 30 June 2016).
15. Hellenic Ministry of Environment and, Energy and Climate Change, (2014) Greece – National Inventory Report 2014. Available online: http://unfccc.int/national_reports (accessed on 30 April 2016).
16. Skjerpen T., Gavenas E., Rosendahl K. (2015), CO2- emissions from Norwegian oil and gas extraction, Energy 90, 1958-1959
17. Varotsis N., (2010), Reservoir Engineering (Eds.), Chemical composition of hydrocarbons (pp. 13-14), Chania, Greece: Department of Mineral Resources Engineering, The Technical University of Crete
18. WHO-Air Quality Guidelines Second Edition (2000), Chapter 6.6 Hydrogen sulfide. Available online: http://www.euro.who.int/_data/assets/pdf_file/0019/123076/AQG2ndEd_6_6Hydrogensulfide.PDF (accessed on 30 June 2016).