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ABSTRACT 

The knowledge of protein function is essential for the study of biological processes, the understanding of 

disease mechanism and the exploration of novel therapeutic target. Apart from experimental methods, a 

number of in-silico approaches have been developed and extensively used for protein function prediction. 

Among these approaches, BLAST predicts functions based on protein sequence similarity, and machine 

learning predicts functional families from protein sequences irrespective of their similarity, which 

complements BLAST and other methods in predicting diverse classes of proteins including distantly 

related proteins and homologous proteins of different functions. However, their identification accuracies 

and the false discovery rate have not yet been assessed so far, which greatly limits the usage of these 

prediction algorithms. Herein, a comprehensive comparison of the performances among four popular 

functional prediction algorithms (BLAST, SVM, PNN and KNN) was conducted. In particular, the 

performance of these algorithms were systematically assessed by four metrics (sensitivity, specificity, 

accuracy and Matthews correlation coefficient) based on the independent test datasets generated from 93 

protein families defined by UniProtKB Keywords. Moreover, the false discovery rates of these algorithms 

were evaluated by scanning the genomes of four representative model species (homo sapiens, arabidopsis 

thaliana, saccharomyces cerevisiae and mycobacterium tuberculosis). As a result, the substantially higher 

sensitivity and stability of BLAST and SVM were observed compared with that of PNN and KNN. But 

the machine learning algorithms (PNN, KNN and SVM) were found capable of significantly reducing the 

false discovery rate (SVM < PNN ≈ KNN). In summary, this study comprehensively assessed the 

performance of four popular algorithms applied to protein function prediction, which could facilitate the 

selection of the most appropriate method in the related biomedical research. 
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1. INTRODUCTION 

The knowledge of protein function is essential for the study of biological processes [1], the understanding 

of disease mechanism [2] and the exploration of novel therapeutic target [3-7], and a variety of databases 

are currently available for providing functional annotations from the perspectives of protein sequence [8], 

protein-protein interaction [9,10], biological network [11-15] and many specific protein functional classes 

[16-22]. However, there is a huge gap between the total number of protein sequences discovered and that 

of proteins characterized with known function [23]. To fill this gap, thousands of high-throughput genome 

projects are now ongoing [24] and more than 13 million protein sequences are discovered, but only 1% of 

which has been validated by the experimental annotation [25]. Apart from those experimental approaches, 

many in-silico methods have been developed and extensively applied to predict the protein function [26]. 

These include sequence similarity [27,28], sequence clustering [29], evolutionary analysis [30], structural 

comparison [31], gene fusion [32], protein-protein interaction [33,34], protein functional classification via 

sequence-derived [35-38] and domain [39-43] features, OMICs profiling [44-47], and integrated methods 

which combine multiple algorithms and/or data sources for enhanced function prediction [48-51]. 

Among these in-silico methods [52], the basic local alignment search tool (BLAST) [53] revealing protein 

functions based on excess sequence similarity [54] demonstrated great capacity and attracted substantial 

interests from the researchers of this field [55,56]. Apart from BLAST, the methods based on the machine 

learning algorithm (a specific type of artificial intelligence) were frequently used in recent years to predict 

protein function [57-62], and various types of software together with several web-based tools integrating 

these methods were developed to predict the protein function from sequences irrespective of sequence or 

structural similarity [36,63]. These software and tools showed powerful performance to complement other 

in-silico methods or as part of the integrated method in predicting the function of diverse protein classes, 

including those distantly related proteins and the homologous proteins of different functions [64,65]. 

So far, three machine learning algorithms, including support vector machine (SVM), K-nearest neighbor 

(KNN) and probabilistic neural network (PNN), have been developed and explored to classify protein into 

functional families by analyzing sequence-derived structural and physicochemical properties [64,65], and 

to facilitate the collective assessment of protein functional class [63]. These algorithms are recognized as 

powerful alternative method for the functional prediction of both proteins [66-70] and other biomolecules 

[71]. However, over one third of the protein sequences in the UniProt [26] are still labeled as “putative”, 

“uncharacterized”, “unknown function” or “hypothetical”, and the difficulty in discovering the functional 

class of the remaining proteins are reported to come from the false discovery rate of the in-silico methods 

[55,56,72]. Moreover, the identification accuracies of those approaches still need to be further improved 

[55,56,73]. Thus, it is urgently necessary to assess the identification accuracies and false discovery rates 

among those different in-silico approaches. 
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In this study, the performances of four popular functional prediction algorithms (BLAST, SVM, KNN and 

PNN) were comprehensively evaluated from two perspectives. In particular, the identification accuracies 

(measured by sensitivity, specificity, accuracy and Matthews correlation coefficient) of various algorithms 

were systematically evaluated based on the independent test data for 93 functional families. Secondly, the 

false discovery rates of these algorithms were compared by scanning the genomes of four representative 

model organisms (human, arabidopsis thaliana, saccharomyces cerevisiae, mycobacterium tuberculosis). 

In summary, the finding of this work provided detail information on the performances of those algorithms 

popular for protein function prediction, which may facilitate the selection of the most appropriate method 

in the related biomedical research. 

2. MATERIALS AND METHODS 

To develop a useful sequence-based statistical predictor for a biological system as reported in a series of 

recent publications [74-83], the Chou’s 5-step rule should be observed [84]: (1) How to construct or select 

a valid dataset to train and test the predictor? (2) How to formulate the biological sequence samples with 

an effective mathematical expression that can truly reflect their intrinsic correlation with the target to be 

predicted? (3) How to introduce a powerful algorithm to operate function prediction? (4) How to evaluate 

and validate the anticipated accuracy of the predictor; (5) How to establish a user-friendly web-server for 

the predictor that is accessible to the public? The corresponding methods and steps adopted in this study 

were provided and described below. 

2.1 Collecting the Protein Sequences of Different Functional Families 

Table 1 provided the complete list of 93 protein functional families collected from UniProt database [43] 

and the performances of the popular protein function prediction methods (BLAST, SVM, KNN and PNN) 

were measured by independent test dataset (the way to generate independent dataset was demonstrated in 

the following section 2.2). These 93 families included 12 molecular binding families (e.g. sodium-binding, 

potassium-binding, SH3-binding, RNA-binding), 15 ligand families (e.g. plastoquinone ligand, vitamin C 

ligand, and ubiquinone ligand), 58 functional families defined by Gene Ontology (40 molecular functions 

and 18 biological processes) and 8 broad families defined by the UniProt database [43]. All families were 

contained in the keyword categories provided by UniProt database, and the majority (82.7%) of these 93 

families were able to be mapped to their corresponding GO terms (Table 1). Protein entries haven’t been 

manually annotated and reviewed by UniProtKB curators in a keyword category were not considered for 

analysis in this study. As a result, 107 ~ 49,517 protein-entries from 93 functional families across various 

species were collected. 

2.2 Construction of the Training and Testing Datasets 

The independent test dataset was frequently constructed to evaluate the performances of protein function 

predictors in recent year [85-90]. To construct a valid set of data for building the model of each functional 
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family, the datasets of training, testing and independent test were prepared by following a strict procedure 

after the data collection described in section 2.1. Firstly, protein members of the same name but different 

species origins were grouped together. Secondly, protein members in each group were iteratively selected 

and put into the datasets of training, testing, and independent test as positive samples. Protein members in 

each functional family were then mapped into Pfam [16] protein families for generating negative samples. 

The Pfam family with at least one member of the functional family was defined as the “positive family”, 

while the rest of the Pfam families were named as “negative family”. Finally, three representative proteins 

from each “negative family” were randomly selected and then iteratively put into the datasets of training, 

testing, and independent test as negative samples. It is necessary to emphasize that there were no overlap 

among the datasets of training, testing, and independent test. A similar procedure for dataset construction 

is described in the previous publications [60,61]. 

To assess the false discovery rate among algorithms, the genomes of four model organisms representing 

four species kingdoms (homo sapiens from Animalia, arabidopsis thaliana from Plantae, saccharomyces 

cerevisiae from Fungi and mycobacterium tuberculosis from Bacteria) were collected from UniProt. The 

protein entries without any manual annotation and review by the UniProtKB curators were not taken into 

consideration. In total, 20,183, 15,169, 6,721 and 2,166 protein sequences in fasta format were collected 

for human, arabidopsis thaliana, saccharomyces cerevisiae and mycobacterium tuberculosis, respectively. 

2.3 Feature Vectors Used for Representing the Protein Sequence 

Every protein sequence can be represented by a feature vector assembled from encoded representations of 

nine tabulated residue properties: (1) amino acid composition, (2) hydrophobicity, (3) normalized Van der 

Waals volume, (4) polarity, (5) polarizability, (6) charge, (7) surface tension, (8) secondary structure and 

(9) solvent accessibility for each residue in protein sequence [36,91-93]. Then, 3 descriptors (composition, 

transition and distribution) were used to describe each of these properties [36]. The composition was the 

number of amino acids of a particular property divided by the total number of amino acids. The transition 

referred to the percent frequency with which amino acids of a particular property was followed by amino 

acids of a different property. The distribution indicated the chain length within which the first, 25, 50, 75 

and 100% of the amino acids of a particular property was located respectively. The detailed procedure for 

generating feature vectors from protein sequence has been described in our previous publications [36,65]. 

These features have already been successfully applied to facilitate the prediction of enzyme functional [94] 

and structural classes [93]. 

2.4 Construction of Protein Function Prediction Model Based on Machine Learning 

During the model construction, the parameter optimization for each training set was tested by testing set. 

When the optimized parameter was found, the training and testing sets were combined together to form a 

new training set, and the optimized parameter was further applied to train a new prediction model. Then, 
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the independent test dataset was used to evaluate the performance of the newly constructed model and to 

detect possible over-fitting. Duplicated proteins in each training, testing, independent evaluation dataset 

or among them were removed before the model construction. 

2.5 Construction of Protein Functional Prediction Model Based on Sequence Similarity 

Sequence similarity was assessed by the NCBI Protein-Protein BLAST (version 2.6.0+) [53,54]. Firstly, 

the combined training and testing dataset was adopted to form the BLAST database, and the sequences in 

the independent test dataset were used as queries. The BLAST E-value and percentage sequence identity 

were usually applied to represent the level of similarity between sequences [95]. The functional variation 

between proteins was reported to be rare when their sequence identity was more than 40% [96,97]. Thus, 

a E-value of 0.001 and a sequence identity of 40% were adopted as the cutoffs in this study to assess the 

functional conservation of BLAST hits. 

2.6 Assessing the Identification Accuracies of the Studied Methods 

The performance of protein function prediction algorithms were systematically assessed by four popular 

metrics: sensitivity (SE), specificity (SP), accuracy (ACC) and Matthews correlation coefficient (MCC) 

based on the independent test datasets generated from the studied 93 families (Supplementary Table S1). 

All these 4 metrics were widely used in assessing the performance of protein function predictors [98-103]. 

In particular, the SE was defined by the proportion of real positive cases that were correctly predicted as 

positive [104,105] (shown in Equation 1): 

ࡱࡿ = TPTP + FN                                                                        (Eq. 1) 

The SP indicated the proportion of real negative cases that were correctly predicted as negative [104,105] 

(shown in Equation 2): 

ࡼࡿ = TNTN + FP                                                                        (Eq. 2) 

The ACC referred to the proportion of true results (both true positives and true negatives) among the total 

number of cases examined (shown in Equation 3): 

࡯࡯࡭ = TP + TNTP + FN + TN + FP                                                          (Eq. 3) 

The MCC was an important metric reflecting the stability of a protein function predictor, which described 

the correlation between a predictive value and an actual value [104,105]. It has been considered as one of 

the most comprehensive parameters in any category of predictors due to its full consideration of all four 

results (TP, TN, FP and FN). In particular, the MCC could be calculated by Equation 4: 

࡯࡯ࡹ = (TP ∗ TN − FP ∗ FN) ∗ (TP ∗ TN − FP ∗ FN)(TP + FN) ∗ (TP + FP) ∗ (TN + FP) ∗ (TN + FN)                          (Eq. 4) 
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where TP, TN, FP and FN indicated the number of true positives, true negatives, false positives and false 

negatives, respectively [104,105]. It is very important to emphasize that this set of metrics is valid only 

for the single-label systems (in which each protein only belongs to one functional class). For the 

multi-label systems (in which a protein may belong to several functional classes, frequently existed in 

system biology [106-110] and system medicine [75,111] and biomedicine [103]), a completely different 

set of metrics as defined in [112] is needed. 

2.7 Evaluating the False Discovery Rates of the Studied Methods 

As reported, genome scanning was a comprehensive method to evaluate the capacity of protein functional 

prediction tools in identifying and classifying protein family [113,114]. In this paper, an evaluation on the 

false discovery rate of the studied protein function predictors was performed by scanning the genomes of 

4 model organisms representing 4 species kingdoms (homo sapiens from Animalia, arabidopsis thaliana 

from Plantae, saccharomyces cerevisiae from Fungi and mycobacterium tuberculosis from Bacteria). In 

reality, the number of proteins outside a specific family should significantly surpass that within the family. 

Thus, a slight decline in the value of SP could induce tremendous false positive prediction results, which 

reminded us to use SP as an indicator when evaluating the model’s false discovery rates. 

3. RESULTS AND DISCUSSION 

3.1 Assessment of the Identification Accuracies Measured by Four Popular Metrics 

The statistical differences in SE (Figure 1A), SP (Figure 1B), ACC (Figure 1C) and MCC (Figure 1D) 

among four popular functional prediction algorithms were illustrated. As illustrated in Figure 1A, the SE 

of BLAST measured by the independent test dataset of 93 families was roughly equivalent to that of SVM, 

but statistically higher than that of both PNN and KNN. In particular, the SE of 93 functional families was 

50.00 ~ 99.99% for SVM, 43.98 ~ 99.99% for BLAST, 65.52 ~ 99.99% for PNN and 51.06 ~ 99.99% for 

KNN, and SEs’ median values of BLAST, SVM, PNN and KNN equaled to 90.52%, 90.08%, 84.62% and 

76.26%, respectively. As shown in Figure 1B, the majority of the SPs of all algorithms surpassed 99.50% 

with an ascending trend in SPs’ standard deviation (PNN < SVM < BLAST < KNN). In particular, the SP 

of 93 functional families was 95.98 ~ 99.99% for SVM, 97.32 ~ 99.99% for BLAST, 98.50 ~ 99.99% for 

PNN and 97.78 ~ 99.99% for KNN, and SPs’ median values of BLAST, SVM, PNN and KNN equaled to 

99.88%, 99.93%, 99.93% and 99.83%, respectively. These results revealed a relatively low level of false 

discovery rates for all popular functional prediction algorithms. 

Due to the dominant number of negative samples in the independent test datasets, the statistical difference 

in ACC was very similar to that of SP (Figure 1C). The majority of the ACCs of all algorithms surpassed 

99% with an ascending trend in ACCs’ standard deviation (PNN < BLAST < SVM < KNN). In particular, 

the ACCs of 93 protein functional families were between 94.34% and 99.99% for SVM, between 66.74% 

and 99.99% for BLAST, between 96.43% and 99.99% for PNN, & between 95.69% and 99.98% for KNN. 
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Moreover, the ACCs’ median values of BLAST, SVM, PNN and KNN equaled to 99.78%, 99.88%, 99.87% 

and 99.71%, respectively. 

The MCC was frequently applied to reflect the stability of protein function predictor, and was considered 

as one of the most comprehensive parameters because of its full consideration of TP, TN, FP and FN. As 

illustrated in Figure 1D, the MCC of both BLAST and SVM was better than that of PNN and KNN with 

the majority of the MCCs higher than 0.7. In particular, the MCCs of 93 functional families were between 

0.20 and 0.99 for SVM, between 0.22 and 0.97 for BLAST, between 0.17 and 0.94 for PNN, & between 

0.15 and 0.86 for KNN. The median values of MCCs for BLAST, SVM, PNN and KNN equaled to 0.75, 

0.80, 0.68 and 0.51, respectively. In sum, there was a consistently low level of false discovery rate among 

all algorithms as assessed by the metric SP. However, when positive discovery rate (SE) and the stability 

of prediction (MCC) were considered, both BLAST and SVM stood out as more powerful algorithms for 

protein function prediction. 

3.2 Evaluating the Statistical Differences in SE and MCC among Four Metrics 

For those machine learning algorithms (SVM, PNN and KNN), there was significant statistical difference 

in their SEs and MCCs. As shown in Figure 1A, the statistical difference in SEs between SVM and PNN 

equaled to 0.007, while that between SVM and KNN was 8.8 × 10ିଽ. Moreover, there was a significant 

statistical difference between PNN and KNN (p-value=0.001). In particular, the number of families with 

the SEs of  > 90%, ≤ 90% & > 80% and ≤ 80% for SVM equaled to 51, 31 and 11, respectively; the 

number of families with the SEs of  > 90%, ≤ 90% & > 80% and ≤ 80% for PNN equaled to 17, 25 

and 19, respectively; and the number of functional families with SEs of  > 90%, ≤ 90% & > 80% and ≤ 80% for KNN equaled to 17, 14 and 45, respectively. Similar to SE, the statistical difference in MCC 

between SVM and PNN equaled to 3.0 × 10ି଼, and that between SVM and KNN equaled to 2.2 ×10ିଵ଺. Moreover, there was clear statistical difference between PNN and KNN (p-value=1.1 × 10ିହ). In 

particular, the number of families with MCCs of  > 0.85, ≤ 0.85 & > 0.7 and ≤ 0.7 for SVM equaled 

to 36, 35 and 22, respectively; the number of functional families with MCCs of  > 0.85, ≤ 0.85 & > 0.7 

and ≤ 0.7 for PNN was to 8, 17 and 37, respectively; and the number of protein families with MCCs of  > 0.85, ≤ 0.85 & > 0.7 and ≤ 0.7 for KNN equaled to 1, 11 and 65, respectively. In sum, there were 

clear ascending trends in both SE and MCC as shown in Figure 1A and 1D (from KNN to PNN to SVM). 

Similar to SVM, the BLAST also demonstrated great performances in both SE and MCC. The statistical 

differences (measured by p-value) in SE and MCC between BLAST and SVM equaled to 0.07 and 0.03, 

respectively. As demonstrated in Table 1 and Supplementary Table S1, the SE of BLAST surpassed that 

of SVM in 49 families, but was worse than that of SVM in 42 families. Moreover, the SEs’ median values 

(90.52% for BLAST and 90.08% for SVM) and mean values (88.70% for BLAST and 87.90% for SVM) 

indicated that the SE of BLAST was slightly better than that of SVM and significantly better than that of 
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PNN and KNN. Meanwhile, MCC of SVM was higher than that of BLAST in 53 families, but was lower 

than that of BLAST in 40 families. The MCCs’ median values (0.75 for BLAST, 0.80 for SVM) and mean 

values (0.75 for BLAST, 0.79 for SVM) indicated a slight improvement in prediction stabilities by SVM. 

The amphibian defense peptide family (KW-0878) was the family with the highest SE (99.99%) for SVM, 

BLAST and KNN, which was known to be rich source of antimicrobial peptides with broad spectrum of 

antimicrobial activities against pathogenic microorganisms [115-117]. The superior SE of this family may 

come from its nature as an evolutionarily well-conserved component of the host innate defense system in 

a wide range of organisms from bacteria to mammals [118]. 

3.3 In-depth Assessment of the False Discovery Rate by Genome Scanning 

The genome scanning has been frequently used to evaluate the false discovery rate of function prediction 

tools [113,114]. To have a comprehensive understanding of methods’ false discovery rate, the genomes of 

4 model organisms representing 4 species kingdoms (homo sapiens from Animalia, arabidopsis thaliana 

from Plantae, saccharomyces cerevisiae from Fungi and mycobacterium tuberculosis from Bacteria) 

were collected. As demonstrated in Table 2 and Supplementary Table S2, the genome scanning revealed 

that the number of proteins in any of those studied 93 families predicted by SVM, PNN and KNN did not 

exceed 10% of the total number of proteins in the whole genome, and this was the same situation for the 

majority (82%) of the studied 93 families by BLAST. The higher number of proteins predicted for certain 

functional family may indicate a higher false discovery rate [113,114]. For human genome, the number of 

proteins identified by SVM was equivalent to or was slightly higher than that of both PNN and KNN, but 

was significantly lower than that of BLAST (Figure 2a). In addition, the proteins identified by PNN were 

lower than that of KNN in 11 families and higher in 20 families. 

Moreover, 15 protein families only existed in plants, microbes or viruses (Supplementary Table S3, not 

existing in the human genome) were collected for assessing the false discovery rate of each algorithm. For 

example, the covalent protein-RNA linkage family (KW-0191) contained proteins attaching covalently to 

the RNA molecules in virus [119] and the storage protein (KW-0758) included the proteins as a source of 

nutrients for the development or growth of organism in plants. For these families (Supplementary Table 
S3), SVM did not identify any proteins from the human genome, while 0.06% and 0.25% of the proteins 

in human genome were falsely assigned by BLAST to the family of covalent protein-RNA linkage protein 

and storage protein, respectively. As illustrated in Figure 3, several other families (such as plant defense, 

virulence) also demonstrated a significantly higher false discovery rate by BLAST than that of SVM. 

For other three genomes, their situation was similar to the human genome. Take the arabidopsis thaliana 

genome as an example, proteins identified by SVM was equivalent to or slightly higher than that of PNN 

and KNN in all protein families, but lower than that of BLAST in 77 families, and the number of protein 

discovered by PNN was lower than that of KNN in 26 families. In summary, the level of false discovery 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 November 2017                   doi:10.20944/preprints201711.0160.v1

Peer-reviewed version available at Int. J. Mol. Sci. 2018, 19, 183; doi:10.3390/ijms19010183

http://dx.doi.org/10.20944/preprints201711.0160.v1
http://dx.doi.org/10.3390/ijms19010183


rate (Figure 2b, Figure 2c and Figure 2d) could be ordered by BLAST > SVM > PNN and KNN. These 

results revealed that BLAST was more prone to generate false discovery rate than the other three machine 

learning methods (SVM > PNN ≈ KNN). 

As demonstrated in a series of recent publications [106-110,120], a user-friendly and publicly accessible 

web-server represents the future direction for developing practically more useful prediction methods and 

computational tools. A variety of web-servers have increasing impacts on medical science [121], driving 

medicinal chemistry into an unprecedented revolution [122], the efforts shall be made in future to provide 

a web-server for the prediction and performance assessment presented in this study. 

4. CONCLUSION 

This study discovered substantially higher sensitivity (SP) and stability (MCC) of BLAST and SVM than 

that of PNN and KNN. But the machine learning algorithms (PNN, KNN and SVM) were found capable 

of significantly reducing the false discovery rate (with PNN and KNN performed the best). In conclusion, 

this study comprehensively assessed the performances of popular algorithms applied for protein function 

prediction, which could facilitate the selection of appropriate method in the related biomedical research. 
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Table 1. The performance of four protein function prediction algorithms assessed by four popular metrics: sensitivity (SE), specificity (SP), accuracy (ACC) 
and Matthews correlation coefficient (MCC). 

Uniprot 
Keyword 

Protein Functional 
Family GO Category 

BLAST SVM PNN KNN 

SE % SP % AC % MCC SE % SP % AC % MCC SE % SP % AC % MCC SE % SP % AC % MCC 

KW-0020 Allergen - 76.32 99.95 99.80 0.68 85.19 99.88 99.84 0.51 86.42 99.92 99.89 0.60 74.11 99.95 99.87 0.59 

KW-0049 Antioxidant GO:0016209 94.68 99.97 99.94 0.89 89.00 99.97 99.94 0.80 86.00 99.94 99.90 0.68 69.05 99.92 99.82 0.51 

KW-0117 Actin capping GO:0051693 94.55 99.99 99.98 0.86 95.10 99.98 99.97 0.89 91.18 99.90 99.87 0.65 73.33 99.93 99.90 0.40 

KW-0147 Chitin-binding GO:0008061 86.96 99.98 99.96 0.78 92.42 99.90 99.86 0.78 75.36 99.91 99.77 0.62 93.63 98.60 98.57 0.28 

KW-0157 Chromophore GO:0018298 96.70 98.51 98.48 0.49 93.83 99.93 99.87 0.88 86.91 99.87 99.73 0.77 89.38 99.49 99.37 0.60 

KW-0195 Cyclin GO:0061575 89.34 99.93 99.89 0.72 97.96 99.98 99.98 0.87 89.80 99.94 99.93 0.60 74.74 99.84 99.78 0.39 

KW-0251 Elongation factor GO:0003746 99.51 99.73 99.73 0.92 97.48 99.97 99.91 0.96 84.14 99.87 99.49 0.79 95.84 99.56 99.47 0.80 

KW-0339 Growth factor GO:0008083 94.05 99.91 99.86 0.85 88.89 99.92 99.85 0.79 86.01 99.91 99.82 0.74 76.74 99.87 99.70 0.63 

KW-0343 GTPase activation GO:0005096 76.06 99.96 99.77 0.71 92.92 99.94 99.92 0.77 86.73 99.93 99.89 0.68 61.84 99.56 99.36 0.26 

KW-0344 Guanine-nucleotide 
releasing factor GO:0005085 74.09 99.72 99.58 0.43 83.33 99.95 99.91 0.64 89.74 99.85 99.83 0.50 93.79 99.18 99.15 0.29 

KW-0396 Initiation factor GO:0003743 96.88 99.92 99.83 0.94 91.36 99.86 99.70 0.85 74.21 99.93 99.43 0.70 77.63 99.65 99.22 0.62 

KW-0497 Mitogen GO:0051781 83.87 99.98 99.94 0.76 92.74 99.93 99.86 0.86 83.60 99.92 99.75 0.76 85.19 99.77 99.62 0.67 

KW-0505 Motor protein GO:0098840 93.38 99.97 99.91 0.89 89.47 99.97 99.94 0.81 80.70 99.95 99.89 0.67 64.32 99.46 99.27 0.25 

KW-0514 Muscle protein - 94.22 99.96 99.93 0.89 95.38 99.96 99.95 0.86 89.23 99.91 99.87 0.69 79.77 99.89 99.81 0.61 

KW-0515 Mutator protein GO:1990633 97.65 99.93 99.93 0.75 83.82 100.0 99.97 0.82 77.94 99.91 99.87 0.49 70.00 99.95 99.90 0.51 

KW-0568 Pathogenesis related 
protein GO:0009607 92.86 99.99 99.98 0.82 96.33 99.98 99.94 0.94 94.87 99.93 99.88 0.89 91.26 99.91 99.81 0.83 

KW-0734 Signal transduction 
inhibitor GO:0009968 81.25 99.96 99.93 0.64 84.62 99.91 99.89 0.42 84.62 99.98 99.96 0.68 87.04 99.94 99.92 0.57 

KW-0786 Thiamine 
pyrophosphate binding - 97.08 99.95 99.92 0.93 96.53 99.94 99.91 0.90 87.70 99.85 99.75 0.73 74.64 99.44 99.22 0.40 

KW-0830 Ubiquinone binding - 98.37 99.61 99.54 0.91 94.07 99.93 99.76 0.91 82.58 99.67 99.19 0.72 91.50 99.32 99.10 0.72 

KW-0847 Vitamin C binding GO:0031418 94.21 99.96 99.95 0.85 91.89 100.0 99.99 0.92 97.30 99.89 99.89 0.46 81.63 99.94 99.91 0.50 
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Table 2. The false discovery rate accessed by the percentage of proteins identified from human and thaliana genomes by different algorithms. 

UniProt 
Keyword Protein Functional Family 

Homo sapiens Arabidopsis thaliana 

Uniprot 
(%) 

SVM 
(%) 

BLAST 
(%) 

PNN 
(%) 

KNN 
(%) 

Uniprot 
(%) 

SVM 
(%) 

BLAST 
(%) 

PNN 
(%) 

KNN 
(%) 

KW-0117 Actin capping 0.09 0.12 0.72 0.10 0.10 0.05 0.07 0.11 0.05 0.05 
KW-0020 Allergen 0.02 0.18 3.68 0.11 0.04 0.01 0.17 6.22 0.07 0.09 
KW-0049 Antioxidant 0.07 0.09 0.50 0.08 0.07 0.09 0.16 1.11 0.12 0.13 
KW-0147 Chitin-binding 0.02 0.16 0.36 0.02 0.10 0.08 0.24 3.57 0.08 0.18 
KW-0157 Chromophore 0.07 0.15 2.10 0.07 0.10 0.28 0.38 0.88 0.23 0.30 
KW-0195 Cyclin 0.16 0.24 0.40 0.18 0.19 0.33 0.36 0.61 0.34 0.34 
KW-0251 Elongation factor 0.08 0.11 0.45 0.08 0.09 0.15 0.19 0.48 0.14 0.16 
KW-0339 Growth factor 0.65 0.93 2.50 0.71 0.73 0.12 0.18 0.24 0.13 0.14 
KW-0343 GTPase activation 0.97 1.19 5.47 0.93 1.02 0.28 0.24 1.36 0.21 0.23 
KW-0344 Guanine-nucleotide releasing factor 0.73 0.86 5.37 0.73 0.75 0.18 0.20 2.12 0.17 0.19 
KW-0396 Initiation factor 0.24 0.39 1.70 0.26 0.25 0.26 0.38 1.71 0.24 0.28 
KW-0497 Mitogen 0.20 0.65 4.37 0.30 0.35 0.00 0.07 0.52 0.01 0.02 
KW-0505 Motor protein 0.66 0.75 4.07 0.67 0.67 0.59 0.45 2.14 0.34 0.42 
KW-0514 Muscle protein 0.31 0.42 4.35 0.37 0.39 0.00 0.17 1.26 0.11 0.13 
KW-0515 Mutator protein 0.01 0.02 0.05 0.01 0.01 0.01 0.01 0.05 0.01 0.01 
KW-0568 Pathogenesis-related protein 0.00 0.08 0.09 0.04 0.05 0.13 0.20 0.91 0.15 0.16 
KW-0734 Signal transduction inhibitor 0.22 0.23 1.22 0.21 0.21 0.01 0.01 0.74 0.01 0.01 
KW-0786 Thiamine pyrophosphate binding 0.06 0.07 0.13 0.06 0.06 0.12 0.15 0.28 0.13 0.14 
KW-0830 Ubiquinone binding 0.08 0.71 0.12 0.19 0.60 0.13 0.25 0.42 0.17 0.18 
KW-0847 Vitamin C binding 0.10 0.12 0.18 0.10 0.09 0.07 0.11 0.53 0.07 0.08 
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Figure 1. Statistical differences in the performance of 4 protein function prediction algorithms (BLAST, 

SVM, PNN and KNN) assessed by four metrics: (A) sensitivity (SE), (B) specificity (SP), (C) 
accuracy (ACC) and (D) Matthews correlation coefficient (MCC). Significant and moderately 
significant differences were shown by p-value < 0.01 (**) and < 0.05 (*), respectively. 
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Figure 2. The false discovery rates reflected by the percentage of proteins identified from the genomes of 

(a) homo sapiens, (b) arabidopsis thaliana, (c) saccharomyces cerevisiae & (d) mycobacterium 
tuberculosis. 
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Figure 3. The false discovery rates reflected by the percentage of proteins of 15 protein families only 

existed in plants, microbes or viruses but not existing in human genome identified from the 
genomes of homo sapiens. 
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