

1 *Type of the Paper: Article*

2 **Solar Ray Tracing Analysis to Determine Energy 3 Availability in a CPC Designed for Use as a 4 Residential Water Heater**

5 **Miguel Terrón-Hernández¹, Manuel I. Peña-Cruz², J. G. Carrillo^{1*}, Ulises Diego-Ayala³, and
6 Vicente Flores⁴**

7 ¹ Centro de Investigación Científica de Yucatán, Renewable Energy Department, Mérida, México, 97200;
8 miguel.terron@cicy.mx, jgcb@cicy.mx,

9 ² Conacyt - Centro de Investigaciones en Óptica, Unidad de Aguascalientes, Prol. Constitución 607, Reserva
10 Loma Bonita, Aguascalientes, México, 20200; mipec@cio.mx

11 ³ Arian International Projects, c/ Baldiri Reixach, 4, Barcelona, 08028; udiegocicy@hotmail.com

12 ⁴ Instituto Tecnológico Nacional de México, Campus Apizaco, Metal-Mechanical Department, Av. Instituto
13 Tecnológico S/N, Apizaco, México, 90300; f117u2@yahoo.com

14 *Correspondence: jgcb@cicy.mx; Tel.: +52 999 9428330

15 **Abstract:** Compound parabolic concentrators are relevant systems used in solar thermal
16 technology. With adequate tailoring, they can be used as an efficient and low-cost alternative in
17 residential water applications. This work presents a simulation study using a ray tracing
18 methodology. With this technique we simulate the interaction between solar rays and solar
19 concentrator to quantify the amount of energy that impinges on the receiver at a particular time.
20 Energy availability is evaluated in a comparison of two configurations: stationary at 21°
21 throughout the year and multi position setup; tilted with respect to the horizontal depending on
22 three seasonal positions: 0° for summer, 16° for spring / autumn and 32° for winter, with the
23 objective of increasing the amount of available energy in each season. The fact that a tracking
24 system can be dispensed with also represents an economical option for the proposed application.
25 The results showed that at 21°, the proposed system works satisfactorily; however, by carrying out
26 the selected angular adjustments, the overall energy availability increased by 22%, resulting in a
27 more efficient option. The methodology developed herein proved to be a valuable tool for
28 prototype design and performance evaluation.

29 **Keywords:** ray tracing analysis; compound parabolic concentrator; solar water heating; photonics;
30 optics

32 **1. Introduction**

33 Compound Parabolic Solar Concentrators (CPC's) were described as a collector for cosmic light from
34 Cherenkov counters by Hinterberger in Winston's book [1]. CPCs are considered to be ideal
35 concentrators, identified in the family of non-image concentrators. The application, design and
36 geometrical parameters for solar concentrators with cylindrical receivers are described by Winston
37 [1]. Ari Rabl conducted a study to determine the optical and thermal properties of a CPC. From this
38 work, it was determined that the CPC is very close to being the ideal solar concentrator, because it
39 reaches the highest concentration possible for any angle of acceptance [2, 3]. This study also provides
40 the formulae for calculating average reflections within a CPC. For an ideal CPC, only two
41 parameters are required, acceptance angle and receiver diameter; in this way, there is only one
42 parameter to define, the acceptance angle which defines the concentrator's width and height [4],
43 because a CPC usually requires few or no adjustments to its angular position, for example, seasonal
44 position for few adjustments [4-8]. A CPC system usually has construction imperfections that impact

45 its efficiency, therefore, a common task is to minimize losses by taking into account the restrictions
46 imposed by the design, material properties and cost considerations [5, 9, 10]. In this manner, the
47 quality of the optical properties and the shape of the reflecting surface of a concentrator determine
48 the level of concentration that the receiver can reach. The deviations from the ideal performance are
49 due to optical errors of the concentrator [11, 12]. These can be classified into two types: first, the
50 shape of the surface of the concentrator, the closer it is to the ideal, the smaller the error will be; this
51 error is commonly called contour error. The second is the error produced by the specular reflection
52 of the material; this error is mainly due to surface roughness, i.e., surface imperfections at micro and
53 meso-scale [13].

54 In this type of collector, the lack of solar radiation on the lower part of the receiver can be resolved
55 by matching the acceptance angle of the concentrator with the solar vector, thereby obtaining a more
56 homogeneous impinging of the sun's rays on the concentrator. It is important to consider that a
57 uniform solar illumination of the receiver area is desired, due to the intense radiation generated by
58 the concentration effect. If there are deformations or manufacturing defects on the concentrator
59 surface (or misalignment), radiation hot spots will be promoted, giving an uneven distribution of
60 heat on the receiver. These types of errors can be ignored for a high conductivity receiver, but
61 practical systems require the minimization of this issue if proper heat transfer is desired [13-15].

62 A solar concentrator depends greatly on its focal alignment, thus, in static systems, a significant loss
63 in energy availability can occur [1]. Ray tracing software is a very useful tool, since it allows the user
64 to estimate the amount and distribution of concentrated solar energy that the receiver is capable of
65 transmitting at any moment, defining geometry and construction materials. For example, in 2010,
66 Colina – Marquez used a solar tracing software tool to determine energy distribution on the receiver,
67 testing three reflective surfaces [16]. In 2014, Kuo [17] proposed a modification in the positioning of
68 the receiver, varying the focal point from the relationship between height and diameter, and found
69 that the optimal ratio between them was 0.46; the angle of incidence from 1.5 to 6 degrees was also
70 evaluated using a ray tracing analysis to estimate the amount of concentrated energy in the receiver.
71 In the same year, Waghmare presented a ray tracing-based analysis, which analyzed the effect of
72 limiting the diameter of the receiver in order to reduce optical losses [18]. Yurchenko established a
73 ray tracing analysis for the optical and thermal optimization of a CPC, resulting in the use of a
74 configuration of V vents with which an optimal value was obtained for the positioning of these in
75 the receiver for a typical CPC [5]. In 2015, Chen analyzed a two dimensional CPC with a tubular
76 absorber, varying the collector's profile and truncating the reflector to a lower height; the CPC is
77 seasonal tilted and is oriented to east - west. Using the ray tracing method, a numerical model is
78 developed to study the performance of the modified collector [19]. In 2016, Bellos applied the use of
79 a ray tracing tool combined with finite element analysis to optimize a CPC design from optical and
80 thermal performance [20].

81 According to Kalogirou, CPC is classified as a medium temperature application (100 - 250 °C) [8, 21,
82 22]. The present study proposes the dimensioning of a CPC system that operates in a low
83 temperature range (40-60 °C), using Tonatiuh® ray tracing software to determine the energy
84 availability in two scenarios; static and multi- position setups. The study also proposes the use of a
85 ray-tracing tool to help in the design of a low temperature CPC system [20, 23]. The analysis for this

86 particular work was carried out in the geographic location of Merida, Mexico; however, it could be
 87 used in any region of interest.

88 **2. Materials and Methods**

89 *2.1 Concentrator Factor*

90 The concentration factor, C_R , together with the receiver diameter represents the basic parameters for
 91 a CPC design. For the C_R , the relative movement of the sun in the celestial vault throughout the
 92 year (Analemma) is taken into account, and the calculation is carried out with reference to the solar
 93 noon θ_z using the equations proposed by Duffie [2]. For the coordinates of this study ($21.02^\circ N$,
 94 $-89.63^\circ O$), the summer solstice, the maximum angle of the sun is -4.27° , taking as a reference the
 95 vertical (Y axis), whereas in the winter solstice, the maximum angle reached is 42.16° .

96 It is well known that a high concentration factor gathers more energy; however, this entails the need
 97 for more periodical adjustments during the day. Based on this, and taking into consideration the
 98 solar trajectory in the celestial vault, in order to reduce the loss of solar incidence throughout the
 99 year, a concentrator acceptance angle of 45° was selected.

100 Before calculating the available energy at the receiver and in order to facilitate a better
 101 understanding of the results of solar ray trace campaign, the concentrator acceptance angle aligned
 102 with β (inclination angle of the concentrator) was evaluated. Figure 1(a) presents an evaluation of
 103 the CPC profiles calculated for nominal commercial copper tubing of 13, 25, 51 and 102 mm and
 104 their dimensions to aid in the selection of the best concentrator. From these profiles, and taking one
 105 meter as the tube length for this study, virtual models were created with Tonatiuh® software to
 106 obtain the available energy in each receiver; the results are shown in Figure 1(b). Here, 13 mm tube
 107 was selected as reference, as this is the nominal size of common residential installations. The graph
 108 shows that for the 25 mm tube, there would be twice the available energy compared to the 13 mm
 109 diameter, which is congruent since the area exposed to the sun's energy increases in the same
 110 proportion, applying the same correspondence for other diameters.

111
 112 **Figure 1** (a) 13, 25, 51 and 102 mm, nominal diameters CPC's profiles; (b) Available energy vs.
 113 receiver diameter

114 In order to select the receiver diameter, and for comparison purposes, the volume of a commercial
 115 flat plate solar heater of $1 m^2$ was taken as a reference, which has 10 copper tubes 13 mm in diameter

116 and a volume capacity of 2.17 liters. In order to have similar volume capacity in a length of only 1 m,
 117 an internal diameter of 51 mm was required.

118 *2.2. Concentrator design*

119 The concentrator is composed of two identical curved reflecting surfaces placed in such a way that
 120 both surfaces are oppositely reflecting a focal point [1, 2, 20, 24-26]; in 2004, Saravia provided the
 121 appropriate description for the design which uses a cylindrical receiver, contemplating the total
 122 illumination of the receiver [25].

123 Equations for the CPC profile in Cartesian plane were described by Winston and Rabl [1, 2, 20];
 124 however, the equations applicable to this study were described by Eduardo Rincón [27], projecting
 125 the profile of the concentrator from the external diameter of the tubular receiver. The profile is
 126 composed of two parts with their respective governing equations. The first part is the bottom profile
 127 denominated the involute; the second part at the top is the cup. These equations are evaluated at the
 128 lower and upper limits which allow the identification of the points of intersection between the
 129 involute and the lower part of the cup. The upper limit sets the maximum width of the cup, which
 130 consequently determines the concentrator height. The idea is based on taking advantage of the
 131 geometric principle of focusing two curves that shape the cup, which match with the receiver at a
 132 certain angle at opposite ends, as well as at the bottom (involute), receiving the solar rays and
 133 redirecting them to the receiver. The equations used, and their limits for the profile design are as
 134 follow.

135 Involute:

$$x_t = r(\cos \theta + \theta \sin \theta) \quad (1a)$$

$$y_t = r(\sin \theta + \theta \cos \theta) \quad (1b)$$

136 Evaluated between the limits of $[-\frac{\pi}{2} - \theta_a \text{ to } \frac{\pi}{2} + \theta_a]$

137 Cup:

$$x = \left(\frac{\sin \theta_a * \cos(\theta - \theta_a) - \frac{\pi}{2} + \theta_a + \theta * \cos \theta}{1 + \sin(\theta - \theta_a)} + \cos \theta_a \right) r \quad (2a)$$

$$y = \left(\frac{\cos \theta_a * \cos(\theta - \theta_a) + \sin \theta_a * \frac{\pi}{2} + \theta_a + \theta}{1 + \sin(\theta - \theta_a)} - \sin \theta_a \right) r \quad (2b)$$

138 Evaluated between the limits of $[-\pi - \theta_a \text{ to } -\frac{\pi}{2} - \theta_a] \cup [\frac{\pi}{2} + \theta_a \text{ to } \pi + \theta_a]$

139 Where:

140 θ_a = acceptance angle

141 r = external receiver radius

142 For the present study, equations 1 and 2 with their respective evaluation limits, and the receiver
 143 diameter, were used to determine the width and height of the concentrator.

144 In order to speed up the thermosiphon and reduce the scale accumulation in the receiver wall (at
 145 higher temperatures), which interferes with the heat transfer process and, in consequence, reduces
 146 the efficiency; a 3 W submersible pump was installed in the system, which provides a maximum

147 flow of 0.05 l/s, reporting a ΔT of 7 °C. For these conditions, if the internal diameter is reduced, the
 148 flow velocity of the fluid used, increases, which directly results in a reduction in the temperature
 149 difference between input and output. On the other hand, if the diameter increases, the material and
 150 therefore the cost, also increase. Consequently, it was decided to evaluate a CPC using a copper
 151 receiver with 54 mm external diameter (51 mm internal diameter), coated with matte, non-selective,
 152 high-temperature black paint.

153 In summary, the CPC system was designed with a 51 mm nominal internal diameter receiver, with a
 154 complete concentrator profile whose dimensional parameters are: 0.24 m aperture width, 0.19 m
 155 height and 1 m length, with an acceptance angle of 45°, which correspond to a concentration factor of
 156 1.41, Hsieh [28]. The theoretical temperature of the thermodynamic limit for this concentration factor
 157 is 156.5 °C [29]. However, this presents three challenges to tackle; the manufacture of a complex
 158 involute and cup profile, high cost of materials and greater energy demand for heating the fluid due
 159 to volume increase.

160 *2.3. Experimental Procedure*

161 A virtual model was generated using Tonatiuh® software, taking into consideration characteristic
 162 materials available in the market for its construction. The model was positioned in the coordinates
 163 (21.02° N, -89.63° O) of the city of Merida, Mexico and was oriented in the direction of the solar path,
 164 i.e., along the east-west axis, tilted to the south at angle β . The present system intends to occupy as
 165 little space as possible, considering actual residential areas. One alternative optimization is to
 166 explore a few adjustments of the concentrator with the inclination angle β , according to the season of
 167 the year, the aim being to increase energy availability. Therefore, it was necessary to determine the
 168 zenith angle interval of the solar noon ($Sn-\theta_z$). Table 1 shows the values of the $Sn-\theta_z$ as a function of
 169 the months of the year for Merida, and the corresponding recommended value of the inclination
 170 angle (β) of the collector, which applies to any angle of acceptance between -4.27° and 42.16°, thus
 171 valid for the proposed coordinates.

172

173

Table 1. Merida Solar noon θ_z ($Sn-\theta_z$)

Date	$Sn -\theta_z$ (°)	β (°)
January 15th	40.102	32
February 15th	32.12	32
March 15th	21.65	16
April 15th	9.41	16
May 15th	0.041	0
June 15th	-4.27	0
July 15th	-2.68	0
August 15th	5.049	0
September 15th	16.61	16
October 15th	28.43	32
November 15th	37.98	32
December 15th	42.16	32

174

175 Two cases were analyzed here; static and multi-position orientation. For the first case, the inclination
 176 angle β throughout the year is equal to the present latitude of Merida city, 21 degrees with respect to

177 the horizontal, as represented in [Figure 2\(a\)](#). With the information provided in [Table 1](#), three angles
 178 of inclination were selected: 0° for summer, 16° for autumn/spring and 32° for winter as shown in
 179 [Figures 2 \(b\), \(c\) and \(d\)](#), all tilted anticlockwise with respect to East view. This involves four
 180 adjustments a year in three different angular positions. With these data, an analysis campaign was
 181 carried out, with the respective seasonal tilted adjustment.

182

183 **Figure 2** Comparison of CPC tilting (a) Static setup, (b) summer 0°, (c) spring- autumn 16°, and (d) winter 32°

184 The evaluation period was carried out from 8-17 hours local time. A flowchart of the analysis is
 185 shown in [Figure 3](#). From the determination of the concentration ratio (C_R) and external diameter of
 186 the selected tube, the virtual model is generated, assigning the concentrator and receiver optical
 187 properties; subsequently, the environmental parameters were adjusted, which indicate the sun
 188 shape, time, and date; for the following random generator and the number of rays. Then we set the
 189 receiver type as the target, and the data is stored for further processing with Matlab® software.

190

191

192

193

194

195 Tonatiuh® ray tracing software has a fixed sunshape, with the shape of the sun being understood as
 196 the variation in the radial energy distribution of the sun derived from its consideration as a

Figure 3 CPC flowchart methodology

197 non-point light source. There are two techniques to evaluate this: Pillbox and Buie, both were
 198 evaluated using the same weather conditions (season, radiation and time value). The results
 199 obtained are shown in [Table 2](#), where values in Pillbox are slightly higher than in Buie, with the
 200 highest difference corresponding to spring with 9.36 kJ (0.31%) and the lowest difference
 201 corresponding to autumn with 3.39 kJ (0.11%), indicating that no significant differences were found.
 202 Further analysis was conducted with the multi-position setup in order to prove the similarity
 203 response, finding an agreement in all cases.

204 **Table 2** Buie and Pillbox comparative sunshape energy for one specific day

Time [h]	Local		Autumn		Winter		Spring		Summer	
	Buie	Pillbox	Buie	Pillbox	Buie	Pillbox	Buie	Pillbox	Buie	Pillbox
	[kJ]	[kJ]	[kJ]	[kJ]	[kJ]	[kJ]	[kJ]	[kJ]	[kJ]	[kJ]
8	20.12	20.99	132.51	132.15	154.58	154.73	1.8	1.44		
9	131.9	133.03	248.47	247.97	263.34	263.39	130.53	130.03		
10	262.98	265.77	349.99	350.60	348.73	348.23	224.38	224.99		
11	364.32	365.83	427.42	430.70	420.87	418.19	334.58	337.86		
12	451.44	449.96	465.8	469.69	472.5	472.64	420.08	423.97		
13	480.85	479.34	407.95	410.51	421.05	418.49	474.22	476.78		
14	409.32	410.24	323.64	321.88	352.29	345.63	419.36	417.60		
15	367.48	367.52	216.18	216.43	265.03	262.89	350.56	350.81		
16	301.64	301.51	97.88	96.41	188.96	187.42	224.96	223.49		
17	133.95	133.31	7.66	7.61	98.82	96.49	97.95	97.90		
Total	2946.06	2949.45	2677.5	2683.93	2995.48	3004.84	2678.43	2684.86		

205 Since both techniques gave similar results, for this study the pillbox sunshape was chosen due to the
 206 simplicity of its process. Direct normal irradiance (DNI), which is the incident power in the direction
 207 of propagation of the solar radiation captured in a surface unit, was fixed at 1000 W/m². In all cases,
 208 the equinox of spring and autumn are taken into account, as well as the summer and winter solstice.
 209 Since the highest and lowest apparent positions of the sun in the sky are reached in the solstice, the
 210 maximum is in summer with the angle of -4.27° and the lowest in winter with the angle of 42.16°,
 211 both with respect to the vertical, as shown in [Figure 2\(a\)](#); subsequently, the location coordinates
 212 were considered. This allows us to calculate the angular parameters, azimuth and elevation angle in
 213 the study time. In order to obtain a confidence level of 97%, according to Blanco [30], a ray tracing of
 214 1'000,000 rays was chosen for the analysis.

215 Data generated from the ray trace software requires the designing of a post-processing algorithm for
 216 data analysis. A Matlab® algorithm was designed to identify data from sun photons and to classify
 217 them as primary, secondary (by rebound), tertiary, etc., in order to provide numerical values (ID,
 218 coordinates, power per photon, etc.) and the location of photon impact on the receiver.

219 The proposed prototype, which is represented in [Figure 4](#), uses a heat isolated metallic box to
 220 support and hold the receiver tube; the walls of the box also help to avoid heat exchange between the
 221 receiver and the environment. In addition, a commercial 4 mm thick, flat glass cover was placed on

222 top to reduce convective heat losses to the environment, mainly due to the influence of constant air
 223 currents.
 224

225
 226 **Figure 4** CPC prototype for the present study

227 The concentrator was designed with 95% high reflectance aluminum (specular reflectivity),
 228 according to ASTM 891-87, where the incident ray on this surface is reflected at the same angle of
 229 incidence with respect to the normal surface. The values of the optical properties of the materials are
 230 shown in [Table 3](#).

231 **Table 3** Optical properties of the materials used for the CPC
 232

Element	Reflectivity	Transmissivity	Absorptivity	Emissivity
Concentrator	0.87	0.03	0.05-10	0.05
Receiver	0.09	0	0.91	0.94
Glass	0.07	0.81	0.12	0.92

233
 234 *2.4. Optical modeling.*
 235 The importance of the optical analysis lies in the fact that it provides information regarding the
 236 available energy at the receiver. The input energy was determined using the ray tracing tool and
 237 evaluating the energy distribution by incident beam radiation on the collector surface, as
 238 represented in [Figure 5](#). The beam radiation follows the path A, B, C, where A and C comply with
 239 Fresnel's law, and B is the energy absorbed by the concentrator. If the angle and energy values of the
 240 photon coming from the sun are known (in addition to specular properties of the concentrator), we
 241 can determine the path that it follows, impacting the receiver or leaving it out, thereby determining
 242 the energy that the receiver reaches.

243 If the diffuse radiation is taken into account, it is important to consider that the energy and impact
 244 angle of a photon is difficult to estimate, since the path depends on the particles present in the
 245 atmosphere with which it may impact (dust, water steam and aerosol), therefore the trajectory and
 246 the energy can be affected by the constantly changing environmental composition, making it
 247 impossible for the program to predict the partial amount of diffuse energy aligned to the receivers
 248 direction. It is important to consider that diffuse radiation can contribute up to 50% of the energy
 249 available in CPC, particularly on cloudy days. This study is based on clear skies, where diffuse

250 radiation is low compared to beam radiation. Given that the objective is to heat water, beam
 251 radiation is more effective.

252 In the same figure (Figure 5), D represents the diffuse trajectory, with different energy path and
 253 angle of incidence in comparison with A. In the same way, E is the diffuse energy absorbed by the
 254 concentrator, G represents the beam energy absorbed by the concentrator and H is the energy
 255 transferred from the concentrator to the insulation material [31].

256

257

258 **Figure 5** Representative energy diagram in the concentrator

259 To determine the available energy at the receiver, a virtual model is proposed which takes into
 260 account the properties of the materials (concentrator, receiver, covers) as well as dimensions,
 261 system configuration, position of the sun and the amount of available solar irradiation.

262 For this study, the following assumptions were made:

263 (1) The CPC geometric concentration ratio (C_R) is expressed using the formula used by Hsieh
 264 [28]:

$$C_R = \frac{1}{\sin \theta_a} \quad (3)$$

265 (2) The system is considered to be free of manufacturing errors.

266 (3) The physical and optical properties of the materials are assumed to be temperature
 267 independent.

268 (4) The geographical coordinates correspond to the city of Merida, Mexico, 21.0291° N and
 269 89.6381° W.

270 Once the virtual model is implemented, with the characteristics of sun and materials introduced, the
 271 energy availability at receiver can be obtained.

272

273

274 2.5. Ray Tracing

275 The ray tracing software is based on the Monte Carlo method. It uses the principles of geometric
 276 optics, as well as a statistical method that simulates the behavior of a solar concentration system, by
 277 generating rays from a simulated source and observing the interactions between the rays and the

278 surfaces of the system. It is conceived as a useful tool in the design and analysis of solar
279 concentration systems [32].

280 For the analysis, it is assumed that the ray trajectory equals the angle of incidence and the reflected
281 radiation (R); that is, they comply with the Fresnel law. In this sense, the spectral reflectance depends
282 on the reflective material with its refractive index. Before proceeding, it was necessary to determine
283 the incidence angle of the rays (I); this angle is formed between the normal surface (N) and the
284 incident radiation. In order to establish the ray tracing model, the following equation of reflected
285 radiation is used [33]:

$$R = I - 2(N \cdot I)N \quad (4)$$

286 To facilitate the analysis, this is decomposed into Cartesian coordinates, applying the following
287 equations:

$$x_R = \sin \theta_i - 2(\cos \theta_i \cos \alpha_N + \sin \theta_i \sin \alpha_N) \cos \alpha_N \quad (5a)$$

$$y_R = \sin \theta_i - 2(\cos \theta_i \cos \alpha_N + \sin \theta_i \sin \alpha_N) \cos \alpha_N \quad (5b)$$

288 where:

289 α_N = normal angle of the reflective surface with respect to the coordinate system.

290 The incident angle can be determined by:

$$\theta_R = \tan^{-1} 2(y_R, x_R) \quad (6)$$

291

292 In practice, real surfaces are far from ideal; they are related to wavelength λ and incidence angle θ_i
293 (specular reflection). The specular reflection is subjected in the same way to Fresnel's law; which
294 can be determined by the following equation [33]:

$$\rho(\theta_i, \lambda) = \frac{(\rho_{\perp} + \rho_{\parallel})}{2} \quad (7)$$

295

296 where ρ_{\perp} and ρ_{\parallel} , refers to the parallel and perpendicular reflectivity, determined by the following
297 equations:

$$\rho_{\perp} = \frac{\alpha^2 + \beta^2 - 2\alpha \cos \theta_i + \cos^2 \theta_i}{\alpha^2 + \beta^2 + 2\alpha \cos \theta_i + \cos^2 \theta_i} \quad (8)$$

$$\rho_{\parallel} = \frac{\alpha^2 + \beta^2 - 2\alpha \cos \theta_i \tan \theta_i + \sin^2 \theta_i \tan^2 \theta_i}{\alpha^2 + \beta^2 + 2\alpha \cos \theta_i \tan \theta_i + \sin^2 \theta_i \tan^2 \theta_i} \quad (9)$$

298 2.6. Thermal Analysis of CPC

299 Amount of incident radiation on the receiving tube:

$$S = I_b * \tau_{cov} * \rho_{conc} * \alpha_{rec} + I_d * \tau_{cov} * \rho_{conc} * \alpha_{rec} + I_g * \tau_{cov} * \rho_{conc} * \alpha_{rec} \quad (10)$$

300

301 Where:

302 $I_b = I_{bn} * \cos(\theta_a)$

303 $I_d = I_{dn} / C_R$

304 θ_a = acceptance angle

305 Useful heat:

$$q_u = F_R * A_{rec} * (T_{inlet} - F' * (T_{inlet} - T_{amb})) \quad (11)$$

306 where:

307 F_R = Heat removal factor

308 F' = Collector efficiency factor

309 A_{rec} = Receiver area

310 T_{inlet} = Inlet fluid temperature

311 T_{amb} = Ambient temperature

312

313 Optical efficiency:

$$\eta_{op} = \rho_{conc}^n (\tau_c * \alpha_{rec}) \quad (12)$$

314 where:

$$n = \left(1 - \frac{1}{CR}\right)$$

316 Thermal efficiency:

$$\eta = \frac{\dot{m} * cp(T_{outlet} - T_{inlet})}{\int A_{cov} I dt} \quad (13)$$

317 3. Results and Discussion

318 3.1. Static position setup

319 The results of the ray trace campaign, positioned at 21° (as the static format), are shown in [Table 4](#).
 320 The values are grouped in columns corresponding to the seasons of the year, and the rows to a
 321 progressive timeline at every hour from 8-17 h. The analysis shows visually the amount of photons
 322 that impinge on the receiver in order to observe the energy distribution, represented by photon dots
 323 impacting on the receiver, where each photon is counted with an energy value depending on the
 324 previous rebound made; direct from the sun and those that impacted first on the reflective surface of
 325 the concentrator, one or more times, before reaching the receiver. Although the analysis shows
 326 visually the amount of photons that impinge on the receiver, it is difficult to estimate the total energy
 327 accumulated by each photon impact, since the energy of each photon is path dependent; that is, if it
 328 directly impacts the receiver, it will take all the energy available, where the coordinates of this
 329 photon are recorded accordingly. In the cases where the photon impacts first on the concentrator
 330 (reflecting surface), it will lose energy due to the reflectivity coefficient of the surface [\[9\]](#). This
 331 tracking procedure is carried out individually until each photon has been counted [\[30\]](#).

332 [Table 4](#) shows the complete energy availability gathered with the ray trace software. The table shows
 333 the total energy produced by photon impacts incident on the receiver for each season. As can be
 334 seen, autumn and spring present greater availability of energy, while winter and summer are
 335 around 11.88% below those seasons. The total energy available from the interaction of the photons
 336 for each season resulted in an annual average of 2,824 kJ.

337

338

Table 4 Energy availability on static setup receiver (21°) for annual seasons.

339

Local Time	Autumn [kJ]	Winter [kJ]	Spring [kJ]	Summer [kJ]
8	20.12	132.51	154.58	1.8
9	131.90	248.47	263.34	130.53
10	262.98	349.99	348.73	224.38
11	364.32	427.42	420.87	334.58
12	451.44	465.80	472.5	420.08
13	480.85	407.95	421.05	474.22
14	409.32	323.64	352.29	419.36
15	367.48	216.18	265.03	350.56
16	301.64	97.88	188.96	224.96
17	133.95	7.66	98.82	97.95
Total	2946.06	2677.5	2995.48	2678.43

340

341 Another interesting fact observed is that in winter and summer, there is a total of three hours in
 342 which the incidence of photons is very low (values less than 130 kJ). This is due to the effect of the
 343 concentrator lateral walls and the relative position of the sun in the celestial vault. [Figure 6](#) shows
 344 the virtual model with a visual representation of these cases, evaluated in summer. To provide
 345 further information on the effect of shading by the lateral walls, the ray tracing evolution through
 346 the subsections is plotted. In [Figure 6\(a, f\)](#) it is noticeable that at 8 h, rays impact the lateral wall and
 347 an external part of the CPC concentrator (non-reflecting surface). Photons that impact the
 348 concentrator on the reflecting surface are rebound and impact the receiver, although some of them
 349 go from one side to another of the concentrator until they leave this without impinging on the
 350 receiver. This is due to the photons having an angle of incidence which is greater than 47° with
 351 respect to the horizontal. The non-impacted area of the receiver is shown as a white space. [Figure](#)
 352 [6\(b, g\)](#) shows how the shading effect decreases and the impacts on the receiver increase. Direct
 353 impacts occur on the top of the receiver due to the sun's direct rays and on the sides and bottom
 354 parts of the system due to reflection from the concentrator, which contribute to the sum of the
 355 energy. [Figure 6\(c, h\)](#) shows that at 12 h, the number of photon impacts are still incrementing. The
 356 maximum impact of photons occurs around 13 h, which corresponds to solar noon, in which
 357 practically all of the top receiver is directly impacted by photons, as shown in [Figure 6 \(d, i\)](#). Finally,
 358 [Figure 6 \(e, j\)](#) gives information from 14 h, where the photon impacts decrease again, partly due to
 359 the influence of the lateral walls that once again begin to block the path of the photons. Since there is
 360 a symmetrical behavior, there will be another two hours in which shading is produced in the
 361 concentrator on the left side towards the sunset.

362

363

364 **Figure 6** Evolution of (a – e) shading and (f-j) photon impacts on the receiver for summer solstice from 8 to 14
 365 hours.

366 **Figure 7** shows a graph for the analyses of the responses from the four seasons, in static setup. The
 367 highest concentration of energy in the day is located in spring with 2,995 kJ, while the lowest energy
 368 registered is in winter with 2,677 kJ, 10.62% less than the highest one. The availability of energy in
 369 autumn is 2,946 kJ, 1.65% less than spring; summer is 2,678 kJ, 10.59% less than spring also. On
 370 comparing spring versus autumn and summer versus winter, differences of 1.65% and 0.035%,
 371 respectively, can be observed. A detailed inspection of **Figure 7** shows that there are two types of
 372 curve patterns: one for the spring and winter seasons and another for autumn and summer,
 373 although the total energy under the curves resulted in similar energy values. A comparison of the
 374 energy curves shows a modest decrease in energy caption, suggesting the feasibility of
 375 implementing a solar heater in a static setup, since only around 11% of energy will be unavailable for
 376 the winter and summer seasons in comparison with the autumn and spring seasons.

377

378 **Figure 7** Comparison of available energy on receiver per season in static setup

379

380

381 3.2 *Multi-position setup*

382 The results of the evaluation of energy distribution in the receiver in a multi-position setup are
 383 shown in [Table 5](#). The evaluations are carried out for the same time span, from 8-17 h. The
 384 adjustments of the system were implemented manually (see details in [Figure 4](#)). After carrying out
 385 the data processing routine, energy availability information was gathered; shown in [Table 5](#). It is
 386 noticeable that the greatest energy availability occurs in autumn and spring and the least favored
 387 season is once again winter. The highest energy concentration in the day is located in autumn with
 388 3,860 kJ, while the lowest energy is registered in winter with 3,370 kJ; that is 12.70% less than the
 389 highest season (autumn). The total energy available from the interaction of the photons for each
 390 season resulted in an annual average of 3,587 kJ.

391

392 **Table 5** Seasonal energy availability at receiver for multi-position setup

393

Local Time [h]	Autumn [kJ]	Winter [kJ]	Spring [kJ]	Summer [kJ]
8	251.14	185.97	221.60	171.79
9	380.59	289.47	359.73	277.87
10	421.16	374.67	396.30	353.07
11	473.78	436.35	462.38	415.98
12	479.59	475.70	481.21	463.72
13	487.62	462.35	480.51	490.50
14	452.34	413.57	464.40	475.16
15	409.57	338.32	380.84	385.85
16	310.78	247.02	269.96	276.70
17	193.57	146.63	123.91	166.29
Total	3860.14	3370.05	3640.84	3476.93

394 [Figure 8](#) shows a graph for the analysis of the responses from the four seasons, in multi-position
 395 setup. One can observe that energy availability in spring is 3,641 kJ, 5.68% less than autumn, the
 396 highest total energy recorded (3,860 kJ), whereas in summer it is 3,477 kJ, 9.93%, less than autumn
 397 also. Interestingly, on comparing summer versus winter, a difference of only 3.07% can be observed.
 398 A detailed inspection of [Figure 8](#) shows that there is similarity in the curve patterns, where the total
 399 energy under curves, resulted in higher energy values in comparison with static setup. The
 400 comparison of the energy curves shows a slight decrease in energy caption between the most
 401 energetic (autumn) and the least energetic (winter), where, in the case of multi position setup, the
 402 biggest difference between seasons resulted in an energy difference of around 13%. This resulted in a
 403 more attractive option to implement as a solar heater (multi-position setup) in comparison with the
 404 static setup. The highest energy values available for these curves, were observed at around 13 h,
 405 corresponding to the solar noon.

406 A data comparison of the static setup ([Table 4](#)) and the multi-position setup ([Table 5](#)), showed
 407 important differences; where the energy available for autumn in the multi-position setup (16°) is

408 3,860 kJ, while at 21° it resulted in 2,946 kJ, giving an energy gain of 31.12%. For winter at 32°, the
409 orientation angle in the multi-position setup reached 3,370 kJ, compared with its static setup
410 counterpart of 2,677 kJ, this being equivalent to a 25.87% energy gain.

411

412

413 **Figure 8** Available energy at receiver with multi-position setup 0°, 16° y 32°

414 Similarly, for spring, the multi-position setup at 16° achieved 3,651 kJ, while the static setup was as
415 low as 2,995 kJ, representing a 21.91% energy gain. Finally, it was determined that for summer, in the
416 multi-position setup of 0°, an energy availability of 3509 kJ was gathered, while for the static setup,
417 there was an energy availability of 2678 kJ, equivalent to a 31.03% energy gain. In general, an
418 average annual energy of 3,587 kJ was obtained for the multi-position setup, which corresponds to a
419 gain of 22% with respect to the average obtained in static setup (2,824 kJ).

420 Complementary to the analysis, the photons impinging on the receiver was evaluated with only the
421 two less energetic seasons (winter and summer), although the analysis was carried out for the four
422 seasons. [Figure 9](#) shows a comparison of these two seasons, the other two resulted visually equal
423 (autumn and spring); therefore, it was decided to analyze and show the least energetic ones. Here,
424 the seasons are shown in two modalities; 21° corresponding to static setup (SS) and 32° and 0°
425 corresponding to multi-position setup (MS) for winter and summer, respectively. For multi-position
426 setup, winter and summer show similarities in the amount of photon impacts achieved, observed
427 visually (formation of the cylindrical profile), in comparison with the static setup seasons at 21°
428 (winter and summer), where fewer photon impacts can be appreciated.

429

430

431 **Figure 9** Photon impact comparison for winter and summer in static setup (21°) and multi-position setup (0° for
 432 summer and 32° for winter)

433 3.3 Experimental analysis for Static setup

434 Part of the study includes the evaluation of the system in real conditions, where according to Duffie,
 435 low concentration systems with a concentration factor (C_R) between 1 and 3, take advantage of both
 436 diffuse and beam radiation in similar proportions. The present system in study has a $C_R = 1.41$,
 437 therefore, the contribution of beam and diffuse radiation is considered in the application using the
 438 equation 10.

439 Using the proposed system (Figure 5) and the information provided by the Meteonorm[®]
 440 climatological station located in Merida [34], Figure 10 shows the solar radiation/flow vs. time, and
 441 flow/temperature vs. time on a specific winter day (December 29, 2016).

442 **Figure 10 (a)** shows the global beam and diffuse radiation, as well as flow vs. time, where it
 443 demonstrates that global radiation starts practically from zero at 7 h. Between 7 and 12 h a
 444 continuing increase of global radiation is observed, reaching its maximum between 12-13 h, and then
 445 gradually decreasing until it reaches practically 0 global radiation at 18 h; which was consistent with
 446 the radiation distribution of a typical solar day.

447 **Figure 10 (b)** shows the variations in ambient temperature, as well as inlet and outlet fluid
 448 temperature in the receiver during working hours (8-17 h) of the same day (December 29, 2016). It
 449 can be observed that the increase in the outlet temperature results in an increase of global radiation,
 450 up to a point where the outlet temperature decreases (at 9 h); this is related to the activation of the
 451 submersible pump controlled by a thermostat that kept working from 9-17 h. An hour later (10 h), it
 452 can be seen the outlet temperature recovers, due to the increase in diffuse radiation. This
 453 radiation-temperature increase relationship continues until 13 h. Similarly, when the radiation starts
 454 to decrease continuously (Figure 10 (a)), the outlet temperature follows the same behavior (Figure 10
 455 (b)).

456

457

458 **Figure 10** (a) Radiation of Merida Yucatan (b) Ambient, inlet and outlet temperatures obtained on the 29th
459 December 2016

460

461 The overall heating energy obtained during the present experiment reached 1,800 kJ (December 29
462 2016), with an efficiency of around 42.98% (using equation 13). This is attributed to the limited
463 incident energy that is transferred to the receiver, as well as the inherent CPC design, with the
464 materials and quality of manufacture of the system, such as the type of paint used on the receiver
465 and manufacturing defects of the concentrator. Further work is required in order to improve the
466 above-mentioned characteristics of the system in order to increase its efficiency.

467

468 4. Conclusions

469 This paper presents a prediction tool to analyze the energy performance of a CPC system under
470 different working conditions over a seasonal year. Here, setups in two modalities were evaluated;
471 stationary and multi-positions. The analysis was performed using Tonatiuh® ray tracing software
472 and a Matlab® plug-in for data processing. The tool proved to be useful to estimate the maximum
473 theoretical energy present in the collector, to study the relevant optical-structural response and to
474 determine the strength and weakness of a prototype before its construction. Adverse conditions such
475 as winter can be predicted and adjustments can be made to adequate the CPC design prior to its
476 construction. The annual energy distribution in the receiver was analyzed, and it proved to be useful
477 for predicting the energy availability, allowing the implementation and use of strategies to reduce
478 heat losses, based on the ideal conditions.

479 From this study, with the data provided, it was possible to determine that, with the use of the static
480 setup of the CPC throughout the year; the energy availability was 22% more for the multi-position
481 setup, resulting in a more attractive alternative. Therefore, the multi-position setup can be taken into
482 consideration as part of a further study for an improved system construction and its validation.

483

484 **Acknowledgments:** This work was partially supported by the project SENER-CONACYT S0019-2014-01, grant
485 number 254667 and the project PDCPN-CONACYT, grant number 2015-01-1651.

486 **Author Contributions:** Miguel Terrón-Hernández and J.G. Carrillo conceived the paper and drafted it, Miguel
487 Terrón-Hernández, Manuel I. Peña-Cruz, performed the ray trace analysis; Miguel Terrón-Hernández and U.
488 Diego-Ayala build and instrumented the CPC; Miguel Terrón-Hernández and Vicente Flores performed the
489 thermal analysis.

490 **Conflicts of Interest:** The authors declare no conflict of interest.

491 References

- 492 1. R. Winston, J. C. Miñano, P. Benitez, *Nonimaging optics*, Academic Press, San Diego, California, USA,
493 2005; pp. 50-63, ISBN [0-12-759751-4](#).
- 494 2. J. A. Duffie, W. A. Beckman, *Solar engineering of thermal processes*, 4th ed.; John Wiley & Sons, New
495 Jersey, USA, 2013; pp. 337-342, ISBN [978-0-470-87366-3](#).
- 496 3. Y. S. Gaos, M. Yulianto, M. Juarsa, Nurrohman; E. Marzuki, D. Yuliaji, K. Budiono, The performance of
497 solar collector CPC (compound parabolic concentrator) type with three pipes covered by glass tubes,
498 in AIP Conference Proceedings. AIP Publishing, 2017, doi:[10.1063/1.4979238](#).
- 499 4. Wang, Q., J. Wang, and R. Tang, Design and Optical Performance of Compound Parabolic Solar
500 Concentrators with Evacuated Tube as Receivers. *Energies* **2016**, 9(10): p. 795, doi:[10.3390/en9100795](#).
- 501 5. V. Yurchenko, E. Yurchenko, M. Ciudem, O. Totuk, Ray tracing for optimization of compound
502 parabolic concentrators for solar collectors of enclosed design. *Turk J Electr Eng Comput Sci* **2015**, 23(6),
503 1761-1768, doi:[10.3906/elk-1404-267](#).
- 504 6. H. Singh, and P. Eames, Correlations for natural convective heat exchange in CPC solar collector
505 cavities determined from experimental measurements. *Sol Energy* **2012**, 86(9), 2443-2457,
506 doi:[10.1016/j.solener.2012.05.014](#).
- 507 7. R. Tchinda, Thermal behaviour of solar air heater with compound parabolic concentrator. *Energy
508 Convers Manage* **2008**, 49(4), 529-540, doi:[10.1016/j.enconman.2007.08.004](#).
- 509 8. P. Horta, T. Osório, M. Collares-Pereira, Energy cost based design optimization method for medium
510 temperature CPC collectors. SolarPACES, 2015; AIP Conference Proceedings, 2016; 1734(1),
511 doi:[10.1063/1.4949035](#).
- 512 9. A. Häberle, P. Apian-Bennewitz, T. Schmidt, T. Troescher, V. Wittwer, Amount of solar radiation
513 absorbed by trough collectors with nonimaging optics. in Optical Materials Technology for Energy
514 Efficiency and Solar Energy Conversion XIII. (1994): International Society for Optics and Photonics
515 doi:[10.1117/12.185398](#).
- 516 10. B. Widyolar, L. Jiang, R. Winston, Thermodynamics and the segmented compound parabolic
517 concentrator. *J Photonics Energy* **2017**, 7(2), 028002-028002, doi:[10.1117/1.JPE.7.028002](#).
- 518 11. K. Lovegrove, W. Stein, *Concentrating solar power technology: principles, developments and applications*,
519 Woodhead Publishing Limited, Sawston, U. K., 2012; pp. 26-33, ISBN [978-1-84569-769-3](#).
- 520 12. C. Winter, R. Sizmann, and L. Vant-Hull, *Solar power plants: Fundamentals, technology, system, economics*.
521 Springer-Verlag, Berlín, Germany, 1991; pp. 41-53, ISBN [978-3-642-64759-8](#).
- 522 13. C. A. Arancibia-Bulnes, M. I. Peña-Cruz, A. Mutuberría, R. Díaz-Uribe, M. Sánchez-González, A
523 survey of methods for the evaluation of reflective solar concentrator optics. *Renewable Sustainable
524 Energy Rev* **2017**, 69, 673-684, doi:[10.1016/j.rser.2016.11.048](#).
- 525 14. D. Suresh, J. O'Gallagher, R. Winston, Thermal and optical performance test results for compound
526 parabolic concentrators (CPCs). *Sol Energy* **1990**, 44(5), 257-270, doi:[10.1016/0038-092x\(90\)90054-g](#).
- 527 15. A. Ustaoglu, J. Okajima, X.-R. Zhang, S. Maruyama, Evaluation of the efficiency of dual compound
528 parabolic and involute concentrator. *Energy Sustainable Dev* **2016**, 32, 1-13, doi:[10.1016/j.esd.2016.02.007](#).
- 529 16. J. A. Colina-Marquez, A. F. Lopez-Vasquez, F. Machuca-Martinez, Modeling of direct solar radiation in
530 a compound parabolic collector (CPC) with the ray tracing technique. *Dyna* **2010**, 77(163), 132-140,
531 ISSN: [0012-7353](#).

532 17. C.-W. Kuo, P.-S. Yen, W.-C. Chang, K.-C. Chang, The Design and Optical Analysis of Compound
533 Parabolic Collector. *Procedia Engineering*, 79, 258-262, 2014, doi:10.1016/j.proeng.2014.06.340.

534 18. S. A. Waghmare, N. P. Gulhane, Design and ray tracing of a compound parabolic collector with
535 tubular receiver. *Sol Energy* 2016, 137, 165-172, doi:10.1016/j.solener.2016.08.009.

536 19. L. Chen, J.-X. Chen, X.-R. Zhang, Numerical simulation on the optical and thermal performance of a
537 modified integrated compound parabolic solar concentrator. *Int J Energy Res* 2015, 39(13), 1843-1857,
538 doi:10.1002/er.3338.

539 20. E. Bellos, D. Korres, C. Tzivanidis, K. A. Antonopoulos, Design, simulation and optimization of a
540 compound parabolic collector. *Sustainable Energy Technol Assess* 2016, 16, 53-63,
541 doi:10.1016/j.seta.2016.04.005.

542 21. S. Kalogirou, The potential of solar industrial process heat applications. *Appl Energy* 2003, 76(4),
543 337-361, doi:10.1016/S0306-2619(02)00176-9.

544 22. S. A. Kalogirou, Design and construction of a one-axis sun-tracking system. *Sol Energy* 1996, 57(6),
545 465-469, doi:10.1016/S0038-092x(96)00135-1.

546 23. T. Osório, P. Horta, M. Larcher, R. Pujol-Nadal, J. Hertel, D. W. van Rooyen, A. Heimsath, S. Schneider,
547 D. Benitez, A. Frein, Ray-tracing software comparison for linear focusing solar collectors. *SolarPACES*,
548 2015; AIP Conference Proceedings, 2016; 020017, doi:10.1063/1.4949041.

549 24. P. Gang, L. Guiqiang, Z. Xi, J. Ji, S. Yuehong, Experimental study and exergetic analysis of a CPC-type
550 solar water heater system using higher-temperature circulation in winter. *Sol Energy* 2012, 86(5),
551 1280-1286, doi:10.3390/en5040911.

552 25. J. Chaves, *Introduction to nonimaging optics*, CRC Press, Madrid, Spain, 2008; pp. 10-23, 25-35, ISBN
553 978-1-4200-5429-3.

554 26. B. Abdullahi, R. K. Al-Dadah, S. Mahmoud, R. Hood, Optical and thermal performance of double
555 receiver compound parabolic concentrator. *Appl Energy* 2015, 159, 1-10,
556 doi:10.1016/j.apenergy.2015.08.063.

557 27. M. E. González, M. E. A. Rincón, L. D. Moreno, Using a new solar sterilizer for surgical instruments as
558 a solar oven for cooking. *VIII Congreso Ibérico | VI Congreso Iberoamericano de las Ciencias y Técnicas del*
559 *Frío*, CYTEF 2016, Coimbra, Portugal, 3 May 2016.

560 28. C. K. Hsieh, Thermal analysis of CPC collectors. *Solar Energy* 1981, 27(1), 19-29, doi:
561 10.1016/0038-092x(81)90016-5.

562 29. D. Y. Goswami, F. Kreith, and J. F. Kreider, *Principles of solar engineering*, 3rd ed; CRC Press, Boca Raton
563 FL, U.S.A., 2000; pp. 164-167, ISBN 978-1-4665-6379-7.

564 30. M. Blanco, A. Mutuberria, A. Monreal, R. Albert, Results of the empirical validation of Tonatiuh at
565 Mini-Pegase CNRS-PROMES facility, Proc Solar PACES (2011).

566 31. P. C. Eames, B. Norton, Validated Unified Model for optics and heat transfer in line-Axis concentrating
567 solar energy collectors. *Sol energy* 1993, 50(4), 339-355, doi:10.1016/0038-092x(93)90028-m.

568 32. C. Giovinazzo, L. Bonfiglio, J. Gomes, B. Karlsson, Ray Tracing Modelling of an Asymmetric
569 Concentrating PVT. in Eurosun 2014. 16-19 September 2014, Aix-les-Bains, France.

570 33. A. Ustaoglu, M. Alptekin, J. Okajima, S. Maruyama, Evaluation of uniformity of solar illumination on
571 the receiver of compound parabolic concentrator (CPC). *Sol Energy* 2016, 132, 150-164,
572 doi:10.1016/j.solener.2016.03.014.

573 34. Meteotest. Available online: <http://www.meteonorm.com/> (accessed on 10 february 2017).