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Abstract: Many species of plants are found in regions to which they are alien. Their global 10 
distributions are characterised by a family of exponential functions of the kind that arise in 11 
elementary statistical mechanics (an example in ecology is MacArthur's broken stick). We show here 12 
that all these functions are quantitatively reproduced by a model containing a single parameter – 13 
some global resource partitioned at random on the two axes of species number and site number. A 14 
dynamical model generating this equilibrium is a two fold stochastic process and suggests a curious 15 
and interesting biological interpretation in terms of niche structures fluctuating with time and 16 
productivity; with sites and species highly idiosyncratic. Idiosyncrasy implies that attempts to 17 
identify a priori those species likely to become naturalized are unlikely to be successful. Although 18 
this paper is primarily concerned with a particular problem in population biology, the two fold 19 
stochastic process may be of more general interest. 20 

Keywords: statistical mechanics; resource partitioning; stochastic processes; population dynamics 21 
 22 

1. Introduction 23 

The study of macro-ecology has benefited from application of methods from the physical 24 
sciences. For example, species area relationships have been modeled mathematically [1, 2].  Species 25 
abundance distributions have been addressed with the methods of statistical mechanics [3-7]. Harte’s 26 
state-variable approach to macro-ecological metrics covers both and is based on maximum entropy 27 
[8-10], very closely similar to statistical mechanics [7].  A more general review of the application of 28 
statistical mechanics in biology is given by Frank [11]. Here we apply statistical mechanics to a very 29 
different problem in macro-ecology, the distribution of alien species (as opposed to individuals of 30 
those species) over the globe. 31 

In a previous study, we approached species naturalization from a global point of view, 32 
investigating the processes behind the observed distribution of 5350 naturalized species over 16 33 
globally distributed sites. Each alien species has a footprint given by the number of sites at which it 34 
has established; the sum over all these species we termed  ‘the alien footprint’ [12].  We determined 35 
that the observed distribution of alien species shared among sites was not an effect of geographical 36 
distance between sites, but instead indicates a statistical mechanics of naturalized species’ 37 
distribution, with the alien footprint a conserved quantity.  Given the diversity of sites and life 38 
history types, this finding supports the inference of complex but highly deterministic ‘idiosyncratic’ 39 
dynamics sensu Pueyo et al [4], that is, naturalization results not from any one given factor, but as a 40 
result of simultaneously being the right species, at the right place, at the right time.  An additional 41 
implication of the character of the distribution is that of a ‘regulator’ – measured by the alien footprint 42 
- fixing the number of naturalizations in any one era. 43 
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In this paper we find an explanation unifying all the various exponential distributions in the 44 
data that are indicative of a statistical mechanics. This explanation is in terms of some global resource 45 
supporting alien establishment, divided along the two axes of site and species.  We address the 46 
possible machinery for reaching these distributions in a dynamical model. 47 

2. Background 48 

In our previous paper, analysis of this substantial sample revealed certain remarkable features. 49 
The first is that the number of species found alien at n sites is, for n >1, exponentially distributed with 50 
n 51 

(1) 52 

where the parameter  has a value of  0.52 (see Fig 1 of [12]). Thus there are 873 species found alien 53 
to two sites (such as Wyoming and New Zealand) and 43 species alien to 8 sites and there found. No 54 
species was found at more than 13 sites. It is no surprise to find very many species at one or two sites 55 
to which they are alien and fewer at many, but an exponential distribution, as opposed to (say) a 56 
binomial or normal, must reflect some particular mechanism of community assembly. The result for 57 
S(n) from our stochastic mechanism is shown in Fig.1. 58 

The second remarkable observation contained in the data of our previous report is that the 59 
number of species shared pairwise has no relationship to the distance on the surface of the globe 60 
separating the sites. In Fig. 2 of that paper, each pair of sites is plotted as a point in the plane of 61 
number of species in common versus geographical separation. The distribution of points with respect 62 
to the distance between site pairs is strongly clustered geographically; the distribution of points with 63 
respect to the number of species shared falls off exponentially with that number (Fig. 3a of [12]). Yet 64 
there is no correlation between the number of naturalised species common to a pair of sites and the 65 
separation of those sites – pairs with comparatively few species in common are found in all 66 
geographical clusters and pairs with very many species in common are found at very large 67 
separations as frequently as at small separations. (The lack of any significant correlation was 68 
established quantitatively with a Mantel test.) This lack of dependence of the number of species 69 
shared on the distance separating members of the paired sites rules out any attempt to interpret the 70 
exponential falloff in the number of species at n sites as an exponential attenuation with distance [12]. 71 
Thus alien species must effectively be available everywhere all the time for establishment, and 72 
dispersal may not be a significant factor. The exponential form of S(n) must be associated with the 73 
availability of sites for alien species and the explanation sought in such terms.  74 

 75 

Figure 1. The model exponential distribution of the number of species over the number of sites at 76 
which they are found. The points were generated by a single run of the weighted species algorithm 77 
(section 7). The corresponding data are shown in Fig. 1 of [12]. 78 

The exponential function for  might suggest to the ecologist apportionment of suitable 79 
resource for alien species according to MacArthur's broken stick [13], where a fixed resource 80 
sufficient to support a specified number of alien establishments is divided at random among a fixed 81 

S n( ) = S0 exp −βn( )

β

S n( )
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number of species. To the physicist that exponential suggests a version of the microcanonical 82 
ensemble in statistical mechanics, where a conserved quantity (such as energy for a simple gas) is 83 
distributed over a fixed number of agents. For this problem, the fixed resource (or conserved 84 
quantity) is the total number of alien establishments (the alien footprint of [12]) and the agents are 85 
the alien species. These two suggestions are equivalent (a third formulation is maximisation of the 86 
information entropy, with a uniform prior). This is the explanation for the exponential distribution 87 
of the number of species found at n sites put forward in [12]. Thus the observations above contain 88 
two significant results: first the implication that the distribution of alien species can be understood in 89 
terms of some fixed global resource partitioned by simple random processes and secondly that 90 
dispersal seems to be universal. 91 

The data of [12] also contain correlations with exponential distributions. These concern pairs and 92 
triplets of sites and the number of alien species that they share – for example, Wyoming and New 93 
Zealand have in common 164 species alien to both. The number of site pairs sharing p species is 94 
exponentially distributed in . Similarly the number of triplets of sites sharing  alien species is 95 
exponential in  (and the pattern repeats even for quartets). These correlations depend not only on 96 
the distribution of species over sites but also on the distribution of sites over species. There are 560 97 
triplets of sites and 120 pairs; their exponential distributions are well defined.  The distribution of 98 
the number of sites  at which  species are found cannot, for a single sample of only 16 sites, 99 
look like a continuous distribution. An ideogram (Fig.2, lower panel) shows individual site occupancy 100 
widely spread, but tending to cluster at low values; these data are consistent with having been drawn 101 
from an underlying exponential distribution [12]. That the origin of these additional exponential 102 
distributions is related to that of the exponential ܵ(݊)was a matter of conjecture. We have now shown 103 
that if the same global resource divided randomly over species is also divided randomly over the 104 
sites axis, then all these features are unified within a simple statistical model. We address the possible 105 
machinery for reaching these distributions in a dynamical model, which turns out to have aspects not 106 
purely local. 107 

 108 

Fig.2 The arrows indicate the number of species at each of 16 sites, covering a range from ~ 100 to ~ 109 
1600. The upper panel is a stochastic model simulation for an exponential probability distribution 110 
function, the lower panel displays the data of [12]Kelly et al, not illustrated in that paper. 111 

3. Indicators of biological machinery 112 

Having conjectured that the combination of an exponential distribution  and an 113 
exponential singlet distribution  might generate the exponentially distributed multiplets, we 114 
considered processes, in the context of statistical mechanics, that result in these two exponentials and 115 
how they might be combined. In order to explore correlations, we need an algorithm yielding the 116 
contents of every cell in a matrix  in which rows represent the 16 sites (from Chile to 117 

p t
t

M s( ) s

S n( )
M s( )

N J,K( )
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Wyoming) and columns the thousands of alien species involved (species 5350 is Zygophyllum fabago). 118 
From such a matrix the pair and other multiplet distributions can be constructed. An algorithm 119 
containing the observed distributions must exist, but Nature's algorithms are not always easy to find 120 
and interpret. Two aspects of the data led to construction of a dynamical niche based picture and an 121 
algorithm which yields a species-site population matrix in excellent agreement in all respects with 122 
the data set. The first aspect is the complete lack of dependence of the number of species shared on 123 
the separation over the globe of the sites in a pair. The second is the possibility of interpreting the 124 
exponential distributions  and  in terms of analogues of niches opening and closing, 125 
accepting and rejecting alien species. 126 

If the system is dynamical (like the internal workings of a gas) as suggested by the fact of the 127 
spread of alien species over the globe, the dynamics of approach to the equilibrium distribution can 128 
be modelled with a simple master equation (see e.g. [6, 7, 14]) 129 	ௗௌ(௡)ௗ௧ = ௡ାݎ)− + ௡ିݎ )ܵ(݊) + ௡ିଵାݎ ܵ(݊ − 1) + ௡ାଵିݎ ܵ(݊ + 1)   (2) 130 

Here,  is the number of species found at  sites. The parameters  and  are rates at 131 
which a species vanishes from some site or appears at a site from which it was previously absent. The 132 
content of Eq.(2) is that if a species is present at n sites  is reduced by 1 if that species vanishes 133 
from one site or if that species appears at one additional site. Similarly,  is augmented by 1 by 134 
adding to a new site a species present at n-1 sites, or by losing from a site a species present at n+1 135 
sites. The equation evolves to a steady state at which 136 

 137 

Iterating this equation, the solution is an exponential in n provided that the ratio of rates 138 
is independent of the number of sites n at which the species is present. Then we can write 139 

,  and obtain 140 

(3)	141 

a negative exponential if .  If a species is at n sites, it is removed from one of those sites a 142 
little more often than it is added to a new site. In (3), S(0) is the number of species present at no alien 143 
site at any given time, after a dynamic equilibrium has been reached (in which the individual species 144 
wander stochastically in the number of sites at which they are found).  The most economical way of 145 
achieving the exponential solution (3) is to have neither of the parameters  and  depend on n, 146 

.  We have made this assumption for the purpose of simulating Eq.(2) as a stochastic 147 
process to fill the matrix . Any algorithm leading to (3) will of course generate an exponential 148 
distribution (see section 8a). 149 

4. Implementation as a stochastic process 150 

The content of Eqs. (2) and (3) can be simulated very simply for the purpose of obtaining the 151 
distribution of species over sites, represented by the matrix  introduced in section 3. If 152 
species J is present at site K then that element of the matrix is 1, otherwise 0. Apply the following 153 
operations to this matrix- it is perfectly reasonable to start with all elements zero. Choose at random 154 
a species J. Then choose at random whether to open a new site for this species or remove one of the 155 
sites already filled, the ratio of choices being .  If the choice is for putting J into a site it does 156 
not already occupy, choose one of the empty sites and change that element of the matrix from 0 to 1. 157 

S n( ) M s( )

S(n) n rn
− rn

+

S n( )
S(n)

S(n +1) =
rn

+

rn+1
− S(n)

rn
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−
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−
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If on the other hand the lot was cast for emptying a site, choose one of the elements for J with 158 
occupancy 1 and change it to 0. For the purpose of generating S(n) it does not matter by what recipe 159 
the empty site to be filled is chosen, nor the full site emptied. Repeat this operation a sufficiently large 160 
number of times for the equilibrium configuration to emerge (further repetition changes which 161 
species are at a given n sites but leaves the distribution unchanged). Then for each species count the 162 
number of filled K elements (sites) and count that species into the appropriate bin to yield the 163 
distribution . It is an exponential and the exponent parameter  of (1) is given by 164 

(4) 165 

Thus this picture of alien species available for suitable niches, which open and close at rates 166 
independent of the total niche space already filled, straightforwardly accounts for the exponential 167 
distribution of the number of species as a function of the number of sites (as does a single multiple 168 
fracture of MacArthur's stick; [13]. The results of a model calculation are shown in Fig.1, which may 169 
be compared with Fig.1 of [12]. Simulation was not needed to obtain this result, but this is only the 170 

 part of the problem; there is the second axis concerning  and simulation is desirable to 171 
generate  and study correlations, statistical fluctuations and the time evolution of the 172 
system. 173 

5. Complications in two dimensions 174 

Table 1 shows a small portion of the matrix  from which the model results in Figs. 1 – 175 
3 of this paper were drawn. 176 

Table 1.  A portion of the model calculation of N(J,K). Each row gives the status of a single species at 177 
each of 16 sites. In the full matrix there are thousands of species and hence thousands of rows. 178 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 179 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 180 

1  1  1  1  0  0  1  0  0  0  0  1  0  0  0  0 181 

0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0 182 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 183 

1  1  1  0  0  1  0  0  1  0  0  0  0  0  0  0 184 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 185 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 186 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 187 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 188 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 189 

1  1  0  0  0  0  0  0  1  0  1  0  0  0  0  0 190 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 191 

0  0  0  0  0  0  1  1  1  0  0  0  0  0  0  0 192 

0  1  1  0  0  1  0  0  1  1  0  0  1  0  0  0 193 

0  0  1  0  0  0  0  0  0  0  0  0  1  0  0  0 194 

S(n) β

β = −ln
r+

r−



 
 






S(n) M(s)
N(J,K)

N(J,K)
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0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 195 

0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0 196 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 197 

0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0 198 

0  0  0  0  0  0  0  1  0  0  0  0  1  0  0  0 199 

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 200 

1  0  1  0  0  0  0  1  0  0  0  0  0  0  0  0 201 

The number of sites at which a species is present is found by counting horizontally along the 202 
appropriate row; thus the third species in the list is found at six sites and the fourth is found at one. 203 
The number of species found at any given site is obtained by counting vertically. It is immediately 204 
clear that although an exponential distribution S(n) results from opening or closing as appropriate 205 
any of the sites for a given species (a species algorithm) regardless of how selected, the distribution 206 
of species over sites is determined by how that selection is made. Thus if a choice is made at random 207 
among the filled sites as to which to delete and similarly a random choice is made of which empty 208 
site to fill, then all sites are being treated in the same way and the distribution of occupancy will be 209 
approximately normal about the mean (approximately 600 species per site). This is very unlike the 210 
data where the singlets are consistent with being drawn from an exponential distribution, extending 211 
from under 200 to over 1600 species at a site (Fig. 2). Thus in a species algorithm, selection of the next 212 
site to open or close must be made according to a recipe that will yield a singlet distribution consistent 213 
with exponential. 214 

6. Distribution of site species populations 215 

If the matrix N(J,K) is addressed differently, there is an obvious way of generating an exponential 216 
singlet distribution. Choose at random any site (out of only 16) and then either add a species not 217 
already present or, slightly more often, delete a species at that site. Regardless of how a species is 218 
chosen, an exponential distribution (more accurately, a set consistent with having been drawn from 219 
an exponential distribution) will result from this site algorithm. However, in looking for both an 220 
exponential distribution of S(n) and simultaneously an exponential distribution of singlets M(s) with 221 
occupation number s, elements of N(J,K) must be changed consistently, working both horizontally 222 
(species algorithm) and vertically (site algorithm).  For the horizontal approach yielding an 223 
exponential S(n) the ratio  for species gaining or losing sites needed for an exponential 224 
matching the data is ~ 0.6, yet to generate a singlet distribution with a mean of ~ 600 (as observed) 225 
requires a ratio  for sites gaining or losing species ~ 0.998.The length of the stick to be broken, 226 
that is, the total resource to be partitioned, is in both cases the sum of elements in the matrix, the alien 227 
footprint. Nonetheless, the exponential singlets distribution can be made consistent with the mean 228 
number of sites per species and yet be attributed to opening and closing of niche structures in 229 
essentially the same way as S(n). 230 

We envisage a site as having a degree of receptivity to alien species (rather than specific niches) 231 
and that receptivity fluctuating with time. It might correspond to capacity for a certain number of 232 
alien species, that number increasing or decreasing by amounts independent of the number itself. 233 
This could be described by a master equation for M(s) of the same type as (2) and with a suitable ratio 234 
of the frequency of increasing to decreasing capacity yields outputs consistent with being drawn from 235 
an exponential with a mean ~ 600. While site populations from a single run of the site algorithm can 236 
only be displayed as an ideogram, the sum over many separate independent runs turns into a 237 
histogram of clearly exponential nature, realising the underlying probability distribution. We 238 
suppose, then, that alien species are available to colonize sites whose receptivity has evolved to an 239 

r+ r−

r+ r−
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exponential probability distribution. The recipe for picking sites from which to remove a species or 240 
add a new species must reflect this underlying receptivity, expressed in the form of weights. 241 

One way is to generate a set of individual occupations with a single run of a site algorithm.  242 
Examples of two independent runs are in Table 2, 243 

Table 2. Results from two independent runs of the site algorithm. {R} denotes site rank. 244 

     1     97     {15}       256     {10} 245 

     2    782     { 6}       1165     { 3} 246 

     3    468     { 8}        435     { 5} 247 

     4   1526     { 3}        349     { 7} 248 

     5    133     {13}        873     { 4} 249 

     6    859     { 5}        427      { 6} 250 

     7   1636     { 1}        163      {13} 251 

     8    187     {12}       2874      { 1} 252 

     9    767     { 7}        1781     { 2} 253 

           10   1136     { 4}        168      {12} 254 

           11     75     {16}        220     {11} 255 

           12   1601     { 2}        307      { 9} 256 

           13    106     {14}        16      {16} 257 

           14    467     { 9}        328      { 8} 258 

           15    242     {11}        40      {14} 259 

           16    357     {10}        35      {15} 260 

where the left hand column specifies the site K and the right hand columns the number of  potential 261 
species accommodated. These sets of numbers give the relative receptivity of each site at the time the 262 
evolution was sampled. The label K has no significance, but ordering the sites by receptivity creates 263 
a rank {R}. Separate runs give sets of numbers drawn from the same underlying exponential 264 
distribution.  If all that is wanted from the site algorithm is a set of numbers of species at each site, 265 
the individual species can be ignored and the site algorithm collapsed to the one dimension K, 266 
computationally much more efficient.  Table 2 indicates how much scatter there is between runs; we 267 
have chosen rather to present results obtained using averaged weights determined by the underlying 268 
exponential probability distribution. 269 

7. A method of averaged weighting 270 

If the site algorithm numbers are ordered by rank, the averages of over many independent 271 
runs of the stochastic algorithm can be calculated for each R. Thus for the most receptive sites 272 

 but for the least  (see Table 2). As samples accumulate the means cluster ever 273 
closer to a straight line with  proportional to	݈ܴ݊଴ − ݈ܴ݊, where the constant  emerging from 274 
the accumulated runs is close to 17. An exact calculation of these averages can be made analytically 275 
from the underlying exponential probability distribution and shows that the above simple relation is 276 
sufficiently accurate. The relative weight (or receptivity) of a site of rank R we therefore took as 277 

sR

s1 ~ 2000 s16 ~ 50
sR R0
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݈ܴ݊଴ − ݈ܴ݊. These averaged rank ordered receptivities were used in weighting the rank ordered sites 278 
when applying the species algorithm to produce our final results shown in the figures. 279 

To implement the species algorithm with the sites appropriately weighted is straightforward. If 280 
a chosen species is to be removed, choose one of its occupied sites at random and delete the species. 281 
If on the other hand a species is to be added to a site, choose among the (ordered) sites without this 282 
species according to their relative weights (receptivities) ݈ܴ݊଴ − ݈ܴ݊. Thus the site with R = 15 seldom 283 
gains a new species.  This implements the notion of some sites having wandered over aeons to a 284 
state more receptive of alien species than others. Fig. 2 shows ideograms of the singlet populations 285 
for both the data and the output of our final algorithm. They are consistent with each other. Since a 286 
tick mark is made for each individual population number, the exponential nature of the underlying 287 
distributions is manifest in ticks being denser at the low end of the occupancy axis. Similar 288 
distributions are obtained for separate runs of the singlet algorithm (for example, ideograms drawn 289 
from Table 2) and many runs of the algorithm for singlet populations can be summed into histogram 290 
bins and accumulated to define an exponential.  291 

When the species algorithm is run according to this weighted recipe the output of a single run 292 
is in admirable agreement with the data, from which the value of the alien footprint for n > 1 and the 293 
2049 such species determines the ratio  (0.6, the only parameter fine tuned) for the species 294 
algorithm. The simulation then yields a distribution S(n) with a mean of about 2 sites per species (Fig. 295 
1). The same number also determines for the 16 sites the value of  for the site algorithm, with 296 
a mean of ~ 600 species per site (Fig. 2). The full matrix N(J,K) thus generated was interrogated to 297 
yield the number of site pairs sharing species as a function of the number of species shared and the 298 
number of triplets as a function of the number of species common to three sites at which they are 299 
alien. The simulation reveals that these shapes are indeed exponential; Fig. 3 does not differ 300 
significantly from the pairs and triplets found in the data, shown in Fig. 3 of [12]. 301 

The results from our simulation shown are for 5700 species loose and drifting in and out of 302 
naturalisation, to match the results of [12] containing approximately 3400 species under the 303 
exponential in Fig. 1 of that paper.  The distribution S(n) is exponential by construction; the pair and 304 
triplet distributions emerge as exponential. The parameters of these exponentials are then given; the 305 
curves shown in Fig.3 are not fits to the data, but were calculated from the distribution S(n), just as 306 
in [12]. These conclusions are robust; see section 8 below. 307 

 308 

Fig.3 Modelled distributions for multiplets. Left panel: The number of site pairs as a function of the 309 
number of shared species. Right panel: The number of triplets as a function of the number of species 310 
shared. Both are exponential, generated by the weighted species algorithm. To be compared with the 311 
data shown in Fig.3 of [12]. 312 

 313 
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8. Other ways of filling the matrix 314 

8.1 Variations on the dynamical algorithm 315 

Forming the weights from a single run of the site algorithm shows the same features as described 316 
in section 7, but the output is noisier. It is not known what single run of the site algorithm might be 317 
most representative of the real world; nonetheless, when relative weights were taken from either of 318 
the runs listed in Table 2, the resulting multiplet distributions are in good accord with Fig.3 and with 319 
the observations. The alien footprint for the successfully naturalised species and 16 sites is the single 320 
parameter in the model, unifying the various exponential distributions found by [12]. We finally note 321 
that in the above discussion we have tacitly assumed that the distribution of site receptivities has 322 
settled down before the alien species are unleashed. While this seems a natural assumption to make, 323 
it is not necessary and our conceptual structure is more general. The site algorithm (operating in the 324 
K dimension) can be embedded in the weighted species algorithm and (as an example) a site capacity 325 
updated each time a species has its complement of sites updated. The equilibrium distributions 326 
nonetheless emerge in agreement with Figs. 1-3 (but noisier). 327 

These algorithms generated directly an exponential ܵ(݊)and distributions (ݏ)ܯdrawn from an 328 
underlying exponential probability distribution. For convenience the probabilities of adding a new 329 
site to a species or removing a site from the species are independent of the number of sites at which 330 
that species is present; similarly for augmenting or decreasing a site's complement of species. It is 331 
clear that any choice of the function f(n) in implementing the master equation (2) would be equally 332 
successful in matching the data; all that is required is that  with .  333 

8.2 A static algorithm 334 

The matrix N(J,K) can be populated assuming the underlying exponential probability 335 
distributions without considering the machinery by which they are reached. The matrix N(J,K) is then 336 
populated by first calculating analytically the most probable site receptivities as a function of rank R. 337 
The number of species alien to only one site is – say – 1300, at two sites 800, at three sites 450 and so 338 
on, falling exponentially with the number of sites. In such a scheme species numbers 1 – 1300 are 339 
assigned each to a single site randomly in accord with the relative receptivities. The next 800 are 340 
assigned to two sites, in accord with the relative receptivities and so on. The matrix N(J,K) thus 341 
constructed can be interrogated to find the  number of pairs of sites as a function of the number of 342 
species they have in common, similarly for the number of triplets. When this static algorithm is 343 
implemented, the version of Fig.3 produced is in excellent agreement with that from the dynamical 344 
algorithm. 345 

9. Discussion 346 

The naturalisation of many thousands of plant species over the globe is inherently a dynamical 347 
process of great complexity, yet has emergent properties described by a simple statistical model. A 348 
resource (represented by the alien footprint 	and global in nature) is partitioned at random 349 
among 16 sites and then again at random among over  ~5000 species alien to those sites. All sites are 350 
treated as equivalent and all species likewise. The most probable configuration is then drawn from 351 
exponential probabilities for the number of species found at n sites and the number of sites containing 352 
s species. These distributions are a simple application of the microcanonical ensemble in statistical 353 
mechanics, or of maximum entropy with uniform priors. In the language of ecology, this is generating 354 
distributions of alien species according to a twofold example of MacArthur's broken stick.  355 
MacArthur's broken stick model failed in its original application to the very different problem of 356 
species abundance, but it is realised in abundance of species - the global distribution of alien species. 357 
Any algorithm that generates an exponential distribution of species over the number of sites at which 358 
they are present and simultaneously species populations of sites drawn from an exponential 359 
distribution yields exponential distributions for pairs and triplets of sites, as shown in Fig.3 above 360 
(c.f. Fig.3 of [12]. 361 

rn
+ = r+ f (n +1) rn

− = r− f (n)

n nS n( )
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If these distributions are the result of dynamical processes represented by the master equation 362 
(2) then the exponential distributions imply curious and interesting conditions. The ratio formed from 363 
the rate for introducing a species, present at n sites, to an unoccupied site divided by the rate of losing 364 
that species, when present at n +1 sites, from an occupied site is independent of n. There is an 365 
analogous condition for assigning species to sites. As set out in section 3, the requirement can be 366 
represented algebraically as , . It was convenient to choose  367 
which satisfies this condition trivially, but the rates at which species become naturalised or extinct at 368 
any site depend on the processes involved. The appropriate function  is not suggested by the 369 
data nor determined by the model, but there are biological implications, usefully illustrated by two 370 
rather different examples. 371 

The first is for . Then the rate at which a species gains a new site is independent of the 372 
number it already occupies, which does not seem implausible because occupied sites are not expected 373 
to reproduce and give rise each to new ones. However, the rate at which a species loses a site is also 374 
independent of the number at which it is present, yet there is an intuitive expectation that the more 375 
sites at which a species is present the faster it will vanish from one of them. This is reinforced by the 376 
notion of per capita death rates for individuals in populations of given species, but the ecology of alien 377 
establishments is a very different problem. The intuitive expectation is based upon an assumption, 378 
usually not made explicit, that events such as extinction of a particular species have the same 379 
probability of occurring at any site and are uncorrelated. It does not have to be so. The requirement 380 
could be met if at any particular time a species is vulnerable at only one site and it is at that site that 381 
it takes the hit. The ecological significance would be that establishment and extinction of alien species 382 
are not determined wholly by independent local processes; the global picture is important. For this 383 
case of  it could be thought of in terms of some global niche space for a given species, that 384 
space expanding and contracting by absolute amounts (as opposed to fractional changes). 385 
Naturalisation is not, in the application of the master equation, purely a local process. 386 

The second example applies to the case where extinctions are random and uncorrelated. In this 387 
case the function and this does agree with intuitive notions. If so, then the observation of 388 
the exponentials in the distribution of alien species requires that the rate at which a species present 389 
at n sites is naturalised at one more is proportional to n +1. The most obvious interpretation would 390 
be that colonies give rise to new colonies at the same rate as the parent site. This is not the only 391 
possible interpretation, but other possibilities also seem to depend on fine tuning. In no case is there 392 
any implication that a species currently found at many sites is likely to be a menace at any of these 393 
sites or at any site at which it is not currently naturalised. The feature common to all these scenarios 394 
generating exponential distributions is a global ceiling.  395 

The mathematical techniques used here are not in any sense restricted to problems in population 396 
biology. It is amusing to speculate on possible applications as diverse as storage in a demented 397 
warehouse or vapour deposition on silicon …. 398 

10. Conclusions 399 

This work has established a simple theoretical foundation unifying the separate observations to 400 
be found in [12], much as conjectured therein. The inferences about the biology of alien species and 401 
sites in that work are thus strongly supported.  402 

Perhaps the most important inference comes from the mere applicability of elementary statistical 403 
mechanics to this problem. In these models, no site is special and it is as a result of random processes 404 
that it reaches a particular capacity for alien species. Similarly, no species is special and it reaches a 405 
particular number of sites through random processes. These equivalences among sites and among 406 
species might come about through genuine identity, known as neutrality in the context of species 407 
abundance distributions, but given the variety of sites and species, this is not credible.  Rather, the 408 
equivalence must arise through extreme individuality of both sites and species – the idiosyncrasy of 409 
[3, 4]. This idiosyncrasy may be highly relevant to the general problem of community assembly – [12] 410 

rn
+ = r+ f (n +1) rn

− = r− f n( ) f (n) =1

f (n)

f (n) =1

f (n) =1

f (n) = n
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describes two documented examples of species within guilds distributed exponentially over sites [15, 411 
16]. 412 

We have an indication of the machinery underlying the statistical mechanics of alien species - a 413 
global reservoir of alien species, each awaiting the opening or rejected by the closing of suitable 414 
geographic sites. In the context of such a dynamical model, the process of naturalisation is not purely 415 
local; these are global aspects. Underlying the ebb and flow of species is a global conserved quantity, 416 
the number of alien establishments – the alien footprint of [12]. This alien footprint, for a given 417 
number of sites and of species, is (mathematically) the only free parameter in the model. Biologically, 418 
it represents some resource that may be related to global net primary productivity and it is an instance 419 
of the process of ‘biotic resistance’ and the fundamental regulation of community diversity [17-22].  420 
CO2 has been shown elsewhere to enhance net primary productivity above the general action of 421 
climate change (temperature and water availability; [23] suggesting that it may be the fundamental 422 
factor responsible for the ongoing rate of species naturalizations currently being observed throughout 423 
the globe [24-28]. 424 
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