

1 Article

2

On the Statistical Mechanics of Alien Species 3 Distribution

4 Michael G. Bowler¹, Colleen K. Kelly^{2,3}5 ¹ Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK;

6 michael.bowler@physics.ox.ac.uk

7 ² Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK;

8 clnkelly10@gmail.com

9 ³ current affiliation Department of Integrative Biology, University of South Florida, Tampa, USA

10 **Abstract:** Many species of plants are found in regions to which they are alien. Their global
11 distributions are characterised by a family of exponential functions of the kind that arise in
12 elementary statistical mechanics (an example in ecology is MacArthur's broken stick). We show here
13 that all these functions are quantitatively reproduced by a model containing a single parameter –
14 some global resource partitioned at random on the two axes of species number and site number. A
15 dynamical model generating this equilibrium is a two fold stochastic process and suggests a curious
16 and interesting biological interpretation in terms of niche structures fluctuating with time and
17 productivity; with sites and species highly idiosyncratic. Idiosyncrasy implies that attempts to
18 identify *a priori* those species likely to become naturalized are unlikely to be successful. Although
19 this paper is primarily concerned with a particular problem in population biology, the two fold
20 stochastic process may be of more general interest.

21 **Keywords:** statistical mechanics; resource partitioning; stochastic processes; population dynamics

22

23

1. Introduction

24 The study of macro-ecology has benefited from application of methods from the physical
25 sciences. For example, species area relationships have been modeled mathematically [1, 2]. Species
26 abundance distributions have been addressed with the methods of statistical mechanics [3-7]. Harte's
27 state-variable approach to macro-ecological metrics covers both and is based on maximum entropy
28 [8-10], very closely similar to statistical mechanics [7]. A more general review of the application of
29 statistical mechanics in biology is given by Frank [11]. Here we apply statistical mechanics to a very
30 different problem in macro-ecology, the distribution of alien species (as opposed to individuals of
31 those species) over the globe.

32 In a previous study, we approached species naturalization from a global point of view,
33 investigating the processes behind the observed distribution of 5350 naturalized species over 16
34 globally distributed sites. Each alien species has a footprint given by the number of sites at which it
35 has established; the sum over all these species we termed 'the alien footprint' [12]. We determined
36 that the observed distribution of alien species shared among sites was not an effect of geographical
37 distance between sites, but instead indicates a statistical mechanics of naturalized species'
38 distribution, with the alien footprint a conserved quantity. Given the diversity of sites and life
39 history types, this finding supports the inference of complex but highly deterministic 'idiosyncratic'
40 dynamics *sensu* Pueyo et al [4], that is, naturalization results not from any one given factor, but as a
41 result of simultaneously being the right species, at the right place, at the right time. An additional
42 implication of the character of the distribution is that of a 'regulator' – measured by the alien footprint
43 - fixing the number of naturalizations in any one era.

44 In this paper we find an explanation unifying all the various exponential distributions in the
 45 data that are indicative of a statistical mechanics. This explanation is in terms of some global resource
 46 supporting alien establishment, divided along the two axes of site and species. We address the
 47 possible machinery for reaching these distributions in a dynamical model.

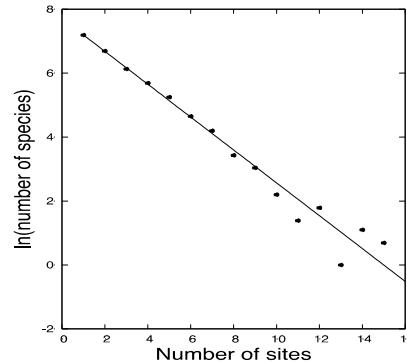
48 **2. Background**

49 In our previous paper, analysis of this substantial sample revealed certain remarkable features.
 50 The first is that the number of species found alien at n sites is, for $n > 1$, exponentially distributed with
 51 n

52
$$S(n) = S_0 \exp(-\beta n) \quad (1)$$

53 where the parameter β has a value of 0.52 (see Fig 1 of [12]). Thus there are 873 species found alien
 54 to two sites (such as Wyoming and New Zealand) and 43 species alien to 8 sites and there found. No
 55 species was found at more than 13 sites. It is no surprise to find very many species at one or two sites
 56 to which they are alien and fewer at many, but an exponential distribution, as opposed to (say) a
 57 binomial or normal, must reflect some particular mechanism of community assembly. The result for
 58 $S(n)$ from our stochastic mechanism is shown in Fig.1.

59 The second remarkable observation contained in the data of our previous report is that the
 60 number of species shared pairwise has no relationship to the distance on the surface of the globe
 61 separating the sites. In Fig. 2 of that paper, each pair of sites is plotted as a point in the plane of
 62 number of species in common versus geographical separation. The distribution of points with respect
 63 to the distance between site pairs is strongly clustered geographically; the distribution of points with
 64 respect to the number of species shared falls off exponentially with that number (Fig. 3a of [12]). Yet
 65 there is no correlation between the number of naturalised species common to a pair of sites and the
 66 separation of those sites – pairs with comparatively few species in common are found in all
 67 geographical clusters and pairs with very many species in common are found at very large
 68 separations as frequently as at small separations. (The lack of any significant correlation was
 69 established quantitatively with a Mantel test.) This lack of dependence of the number of species
 70 shared on the distance separating members of the paired sites rules out any attempt to interpret the
 71 exponential falloff in the number of species at n sites as an exponential attenuation with distance [12].
 72 Thus alien species must effectively be available everywhere all the time for establishment, and
 73 dispersal may not be a significant factor. The exponential form of $S(n)$ must be associated with the
 74 availability of sites for alien species and the explanation sought in such terms.



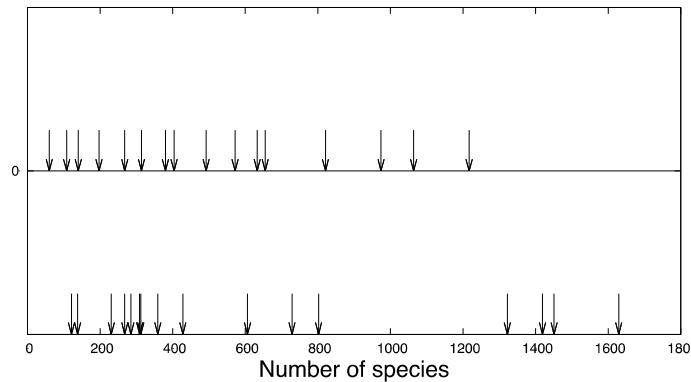
75

76 **Figure 1.** The model exponential distribution of the number of species over the number of sites at
 77 which they are found. The points were generated by a single run of the weighted species algorithm
 78 (section 7). The corresponding data are shown in Fig. 1 of [12].

79 The exponential function for $S(n)$ might suggest to the ecologist apportionment of suitable
 80 resource for alien species according to MacArthur's broken stick [13], where a fixed resource
 81 sufficient to support a specified number of alien establishments is divided at random among a fixed

82 number of species. To the physicist that exponential suggests a version of the microcanonical
 83 ensemble in statistical mechanics, where a conserved quantity (such as energy for a simple gas) is
 84 distributed over a fixed number of agents. For this problem, the fixed resource (or conserved
 85 quantity) is the total number of alien establishments (the alien footprint of [12]) and the agents are
 86 the alien species. These two suggestions are equivalent (a third formulation is maximisation of the
 87 information entropy, with a uniform prior). This is the explanation for the exponential distribution
 88 of the number of species found at n sites put forward in [12]. Thus the observations above contain
 89 two significant results: first the implication that the distribution of alien species can be understood in
 90 terms of some fixed global resource partitioned by simple random processes and secondly that
 91 dispersal seems to be universal.

92 The data of [12] also contain correlations with exponential distributions. These concern pairs and
 93 triplets of sites and the number of alien species that they share – for example, Wyoming and New
 94 Zealand have in common 164 species alien to both. The number of site pairs sharing p species is
 95 exponentially distributed in p . Similarly the number of triplets of sites sharing t alien species is
 96 exponential in t (and the pattern repeats even for quartets). These correlations depend not only on
 97 the distribution of species over sites but also on the distribution of sites over species. There are 560
 98 triplets of sites and 120 pairs; their exponential distributions are well defined. The distribution of
 99 the number of sites $M(s)$ at which s species are found cannot, for a single sample of only 16 sites,
 100 look like a continuous distribution. An ideogram (Fig.2, *lower panel*) shows individual site occupancy
 101 widely spread, but tending to cluster at low values; these data are consistent with having been drawn
 102 from an underlying exponential distribution [12]. That the origin of these additional exponential
 103 distributions is related to that of the exponential $S(n)$ was a matter of conjecture. We have now shown
 104 that if the same global resource divided randomly over species is also divided randomly over the
 105 sites axis, then all these features are unified within a simple statistical model. We address the possible
 106 machinery for reaching these distributions in a dynamical model, which turns out to have aspects not
 107 purely local.



108

109 Fig.2 The arrows indicate the number of species at each of 16 sites, covering a range from ~ 100 to ~
 110 1600. The *upper panel* is a stochastic model simulation for an exponential probability distribution
 111 function, the *lower panel* displays the data of [12] Kelly et al, not illustrated in that paper.

112 3. Indicators of biological machinery

113 Having conjectured that the combination of an exponential distribution $S(n)$ and an
 114 exponential singlet distribution $M(s)$ might generate the exponentially distributed multiplets, we
 115 considered processes, in the context of statistical mechanics, that result in these two exponentials and
 116 how they might be combined. In order to explore correlations, we need an algorithm yielding the
 117 contents of every cell in a matrix $N(J,K)$ in which rows represent the 16 sites (from Chile to

118 Wyoming) and columns the thousands of alien species involved (species 5350 is *Zygophyllum fabago*).
 119 From such a matrix the pair and other multiplet distributions can be constructed. An algorithm
 120 containing the observed distributions must exist, but Nature's algorithms are not always easy to find
 121 and interpret. Two aspects of the data led to construction of a dynamical niche based picture and an
 122 algorithm which yields a species-site population matrix in excellent agreement in all respects with
 123 the data set. The first aspect is the complete lack of dependence of the number of species shared on
 124 the separation over the globe of the sites in a pair. The second is the possibility of interpreting the
 125 exponential distributions $S(n)$ and $M(s)$ in terms of analogues of niches opening and closing,
 126 accepting and rejecting alien species.

127 If the system is dynamical (like the internal workings of a gas) as suggested by the fact of the
 128 spread of alien species over the globe, the dynamics of approach to the equilibrium distribution can
 129 be modelled with a simple master equation (see e.g. [6, 7, 14])

$$130 \quad \frac{dS(n)}{dt} = -(r_n^+ + r_n^-)S(n) + r_{n-1}^+S(n-1) + r_{n+1}^-S(n+1) \quad (2)$$

131 Here, $S(n)$ is the number of species found at n sites. The parameters r_n^- and r_n^+ are rates at
 132 which a species vanishes from some site or appears at a site from which it was previously absent. The
 133 content of Eq.(2) is that if a species is present at n sites $S(n)$ is reduced by 1 if that species vanishes
 134 from one site or if that species appears at one additional site. Similarly, $S(n)$ is augmented by 1 by
 135 adding to a new site a species present at $n-1$ sites, or by losing from a site a species present at $n+1$
 136 sites. The equation evolves to a steady state at which

$$137 \quad S(n+1) = \frac{r_n^+}{r_{n+1}^-} S(n)$$

138 Iterating this equation, the solution is an exponential in n provided that the ratio of rates
 139 r_n^+ / r_{n+1}^- is independent of the number of sites n at which the species is present. Then we can write
 140 $r_n^+ = r^+ f(n+1)$, $r_n^- = r^- f(n)$ and obtain

$$141 \quad S(n) = S(0) \left(\frac{r^+}{r^-} \right)^n \quad (3)$$

142 a negative exponential if $r^+ < r^-$. If a species is at n sites, it is removed from one of those sites a
 143 little more often than it is added to a new site. In (3), $S(0)$ is the number of species present at no alien
 144 site at any given time, after a dynamic equilibrium has been reached (in which the individual species
 145 wander stochastically in the number of sites at which they are found). The most economical way of
 146 achieving the exponential solution (3) is to have neither of the parameters r_n^+ and r_n^- depend on n ,
 147 $f(n) = 1$. We have made this assumption for the purpose of simulating Eq.(2) as a stochastic
 148 process to fill the matrix $N(J, K)$. Any algorithm leading to (3) will of course generate an exponential
 149 distribution (see section 8a).

150 4. Implementation as a stochastic process

151 The content of Eqs. (2) and (3) can be simulated very simply for the purpose of obtaining the
 152 distribution of species over sites, represented by the matrix $N(J, K)$ introduced in section 3. If
 153 species J is present at site K then that element of the matrix is 1, otherwise 0. Apply the following
 154 operations to this matrix- it is perfectly reasonable to start with all elements zero. Choose at random
 155 a species J . Then choose at random whether to open a new site for this species or remove one of the
 156 sites already filled, the ratio of choices being r^+ / r^- . If the choice is for putting J into a site it does
 157 not already occupy, choose one of the empty sites and change that element of the matrix from 0 to 1.

158 If on the other hand the lot was cast for emptying a site, choose one of the elements for J with
 159 occupancy 1 and change it to 0. For the purpose of generating $S(n)$ it does not matter by what recipe
 160 the empty site to be filled is chosen, nor the full site emptied. Repeat this operation a sufficiently large
 161 number of times for the equilibrium configuration to emerge (further repetition changes which
 162 species are at a given n sites but leaves the distribution unchanged). Then for each species count the
 163 number of filled K elements (sites) and count that species into the appropriate bin to yield the
 164 distribution $S(n)$. It is an exponential and the exponent parameter β of (1) is given by

165
$$\beta = -\ln\left(\frac{r^+}{r^-}\right)(4)$$

166 Thus this picture of alien species available for suitable niches, which open and close at rates
 167 independent of the total niche space already filled, straightforwardly accounts for the exponential
 168 distribution of the number of species as a function of the number of sites (as does a single multiple
 169 fracture of MacArthur's stick; [13]. The results of a model calculation are shown in Fig.1, which may
 170 be compared with Fig.1 of [12]. Simulation was not needed to obtain this result, but this is only the
 171 $S(n)$ part of the problem; there is the second axis concerning $M(s)$ and simulation is desirable to
 172 generate $N(J,K)$ and study correlations, statistical fluctuations and the time evolution of the
 173 system.

174 **5. Complications in two dimensions**

175 Table 1 shows a small portion of the matrix $N(J,K)$ from which the model results in Figs. 1 –
 176 3 of this paper were drawn.

177 **Table 1.** A portion of the model calculation of $N(J,K)$. Each row gives the status of a single species at
 178 each of 16 sites. In the full matrix there are thousands of species and hence thousands of rows.

179	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
181	1	1	1	1	0	0	1	0	0	0	0	1	0	0	0	0
182	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
183	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
184	1	1	1	0	0	1	0	0	1	0	0	0	0	0	0	0
185	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
186	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
187	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
188	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
189	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
190	1	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0
191	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
192	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0
193	0	1	1	0	0	1	0	0	1	1	0	0	1	0	0	0
194	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0

195	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
196	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
197	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
198	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
199	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0
200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
201	1	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0

202 The number of sites at which a species is present is found by counting horizontally along the
 203 appropriate row; thus the third species in the list is found at six sites and the fourth is found at one.
 204 The number of species found at any given site is obtained by counting vertically. It is immediately
 205 clear that although an exponential distribution $S(n)$ results from opening or closing as appropriate
 206 any of the sites for a given species (a species algorithm) regardless of how selected, the distribution
 207 of species over sites is determined by how that selection is made. Thus if a choice is made at random
 208 among the filled sites as to which to delete and similarly a random choice is made of which empty
 209 site to fill, then all sites are being treated in the same way and the distribution of occupancy will be
 210 approximately normal about the mean (approximately 600 species per site). This is very unlike the
 211 data where the singlets are consistent with being drawn from an exponential distribution, extending
 212 from under 200 to over 1600 species at a site (Fig. 2). Thus in a species algorithm, selection of the next
 213 site to open or close must be made according to a recipe that will yield a singlet distribution consistent
 214 with exponential.

215 6. Distribution of site species populations

216 If the matrix $N(J,K)$ is addressed differently, there is an obvious way of generating an exponential
 217 singlet distribution. Choose at random any site (out of only 16) and then either add a species not
 218 already present or, slightly more often, delete a species at that site. Regardless of how a species is
 219 chosen, an exponential distribution (more accurately, a set consistent with having been drawn from
 220 an exponential distribution) will result from this site algorithm. However, in looking for both an
 221 exponential distribution of $S(n)$ and simultaneously an exponential distribution of singlets $M(s)$ with
 222 occupation number s , elements of $N(J,K)$ must be changed consistently, working both horizontally
 223 (species algorithm) and vertically (site algorithm). For the horizontal approach yielding an
 224 exponential $S(n)$ the ratio r^+/r^- for species gaining or losing sites needed for an exponential
 225 matching the data is ~ 0.6 , yet to generate a singlet distribution with a mean of ~ 600 (as observed)
 226 requires a ratio r^+/r^- for sites gaining or losing species ~ 0.998 . The length of the stick to be broken,
 227 that is, the total resource to be partitioned, is in both cases the sum of elements in the matrix, the alien
 228 footprint. Nonetheless, the exponential singlets distribution can be made consistent with the mean
 229 number of sites per species and yet be attributed to opening and closing of niche structures in
 230 essentially the same way as $S(n)$.

231 We envisage a site as having a degree of receptivity to alien species (rather than specific niches)
 232 and that receptivity fluctuating with time. It might correspond to capacity for a certain number of
 233 alien species, that number increasing or decreasing by amounts independent of the number itself.
 234 This could be described by a master equation for $M(s)$ of the same type as (2) and with a suitable ratio
 235 of the frequency of increasing to decreasing capacity yields outputs consistent with being drawn from
 236 an exponential with a mean ~ 600 . While site populations from a single run of the site algorithm can
 237 only be displayed as an ideogram, the sum over many separate independent runs turns into a
 238 histogram of clearly exponential nature, realising the underlying probability distribution. We
 239 suppose, then, that alien species are available to colonize sites whose receptivity has evolved to an

240 exponential probability distribution. The recipe for picking sites from which to remove a species or
 241 add a new species must reflect this underlying receptivity, expressed in the form of weights.

242 One way is to generate a set of individual occupations with a single run of a site algorithm.
 243 Examples of two independent runs are in Table 2,

244 **Table 2.** Results from two independent runs of the site algorithm. {R} denotes site rank.

245	1	97	{15}	256	{10}
246	2	782	{ 6}	1165	{ 3}
247	3	468	{ 8}	435	{ 5}
248	4	1526	{ 3}	349	{ 7}
249	5	133	{13}	873	{ 4}
250	6	859	{ 5}	427	{ 6}
251	7	1636	{ 1}	163	{13}
252	8	187	{12}	2874	{ 1}
253	9	767	{ 7}	1781	{ 2}
254	10	1136	{ 4}	168	{12}
255	11	75	{16}	220	{11}
256	12	1601	{ 2}	307	{ 9}
257	13	106	{14}	16	{16}
258	14	467	{ 9}	328	{ 8}
259	15	242	{11}	40	{14}
260	16	357	{10}	35	{15}

261 where the left hand column specifies the site K and the right hand columns the number of potential
 262 species accommodated. These sets of numbers give the relative receptivity of each site at the time the
 263 evolution was sampled. The label K has no significance, but ordering the sites by receptivity creates
 264 a rank $\{R\}$. Separate runs give sets of numbers drawn from the same underlying exponential
 265 distribution. If all that is wanted from the site algorithm is a set of numbers of species at each site,
 266 the individual species can be ignored and the site algorithm collapsed to the one dimension K ,
 267 computationally much more efficient. Table 2 indicates how much scatter there is between runs; we
 268 have chosen rather to present results obtained using averaged weights determined by the underlying
 269 exponential probability distribution.

270 **7. A method of averaged weighting**

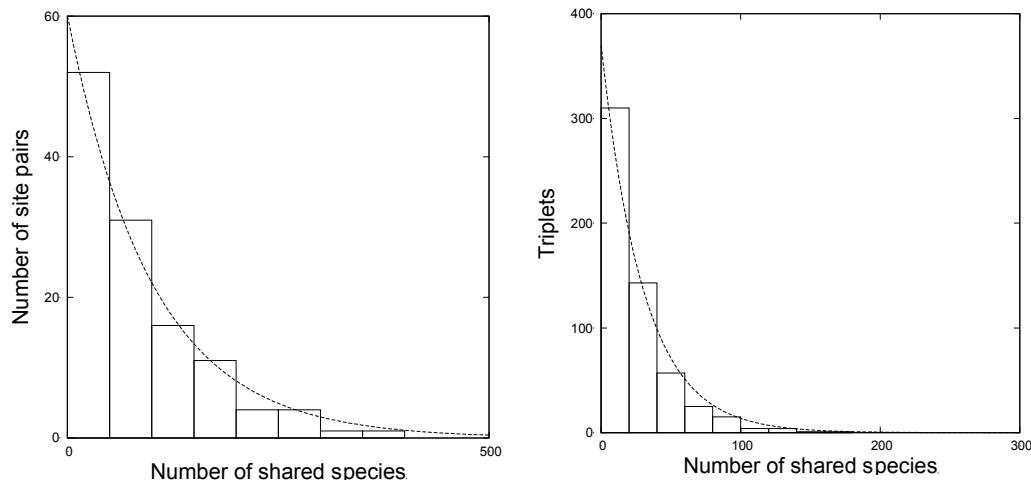
271 If the site algorithm numbers are ordered by rank, the averages of s_R over many independent
 272 runs of the stochastic algorithm can be calculated for each R . Thus for the most receptive sites
 273 $s_1 \sim 2000$ but for the least $s_{16} \sim 50$ (see Table 2). As samples accumulate the means cluster ever
 274 closer to a straight line with s_R proportional to $\ln R_0 - \ln R$, where the constant R_0 emerging from
 275 the accumulated runs is close to 17. An exact calculation of these averages can be made analytically
 276 from the underlying exponential probability distribution and shows that the above simple relation is
 277 sufficiently accurate. The relative weight (or receptivity) of a site of rank R we therefore took as

278 $\ln R_0 - \ln R$. These averaged rank ordered receptivities were used in weighting the rank ordered sites
 279 when applying the species algorithm to produce our final results shown in the figures.

280 To implement the species algorithm with the sites appropriately weighted is straightforward. If
 281 a chosen species is to be removed, choose one of its occupied sites at random and delete the species.
 282 If on the other hand a species is to be added to a site, choose among the (ordered) sites without this
 283 species according to their relative weights (receptivities) $\ln R_0 - \ln R$. Thus the site with $R = 15$ seldom
 284 gains a new species. This implements the notion of some sites having wandered over aeons to a
 285 state more receptive of alien species than others. Fig. 2 shows ideograms of the singlet populations
 286 for both the data and the output of our final algorithm. They are consistent with each other. Since a
 287 tick mark is made for each individual population number, the exponential nature of the underlying
 288 distributions is manifest in ticks being denser at the low end of the occupancy axis. Similar
 289 distributions are obtained for separate runs of the singlet algorithm (for example, ideograms drawn
 290 from Table 2) and many runs of the algorithm for singlet populations can be summed into histogram
 291 bins and accumulated to define an exponential.

292 When the species algorithm is run according to this weighted recipe the output of a single run
 293 is in admirable agreement with the data, from which the value of the alien footprint for $n > 1$ and the
 294 2049 such species determines the ratio r^+ / r^- (0.6, the only parameter fine tuned) for the species
 295 algorithm. The simulation then yields a distribution $S(n)$ with a mean of about 2 sites per species (Fig.
 296 1). The same number also determines for the 16 sites the value of r^+ / r^- for the site algorithm, with
 297 a mean of ~ 600 species per site (Fig. 2). The full matrix $N(J, K)$ thus generated was interrogated to
 298 yield the number of site pairs sharing species as a function of the number of species shared and the
 299 number of triplets as a function of the number of species common to three sites at which they are
 300 alien. The simulation reveals that these shapes are indeed exponential; Fig. 3 does not differ
 301 significantly from the pairs and triplets found in the data, shown in Fig. 3 of [12].

302 The results from our simulation shown are for 5700 species loose and drifting in and out of
 303 naturalisation, to match the results of [12] containing approximately 3400 species under the
 304 exponential in Fig. 1 of that paper. The distribution $S(n)$ is exponential by construction; the pair and
 305 triplet distributions emerge as exponential. The parameters of these exponentials are then given; the
 306 curves shown in Fig. 3 are not fits to the data, but were calculated from the distribution $S(n)$, just as
 307 in [12]. These conclusions are robust; see section 8 below.



308

309 **Fig.3** Modelled distributions for multiplets. *Left panel*: The number of site pairs as a function of the
 310 number of shared species. *Right panel*: The number of triplets as a function of the number of species
 311 shared. Both are exponential, generated by the weighted species algorithm. To be compared with the
 312 data shown in Fig.3 of [12].

313

314 **8. Other ways of filling the matrix**315 *8.1 Variations on the dynamical algorithm*

316 Forming the weights from a single run of the site algorithm shows the same features as described
317 in section 7, but the output is noisier. It is not known what single run of the site algorithm might be
318 most representative of the real world; nonetheless, when relative weights were taken from either of
319 the runs listed in Table 2, the resulting multiplet distributions are in good accord with Fig.3 and with
320 the observations. The alien footprint for the successfully naturalised species and 16 sites is the single
321 parameter in the model, unifying the various exponential distributions found by [12]. We finally note
322 that in the above discussion we have tacitly assumed that the distribution of site receptivities has
323 settled down before the alien species are unleashed. While this seems a natural assumption to make,
324 it is not necessary and our conceptual structure is more general. The site algorithm (operating in the
325 K dimension) can be embedded in the weighted species algorithm and (as an example) a site capacity
326 updated each time a species has its complement of sites updated. The equilibrium distributions
327 nonetheless emerge in agreement with Figs. 1-3 (but noisier).

328 These algorithms generated directly an exponential $S(n)$ and distributions $M(s)$ drawn from an
329 underlying exponential probability distribution. For convenience the probabilities of adding a new
330 site to a species or removing a site from the species are independent of the number of sites at which
331 that species is present; similarly for augmenting or decreasing a site's complement of species. It is
332 clear that any choice of the function $f(n)$ in implementing the master equation (2) would be equally
333 successful in matching the data; all that is required is that $r_n^+ = r^+ f(n+1)$ with $r_n^- = r^- f(n)$.

344 *8.2 A static algorithm*

345 The matrix $N(J,K)$ can be populated assuming the underlying exponential probability
346 distributions without considering the machinery by which they are reached. The matrix $N(J,K)$ is then
347 populated by first calculating analytically the most probable site receptivities as a function of rank R .
348 The number of species alien to only one site is – say – 1300, at two sites 800, at three sites 450 and so
349 on, falling exponentially with the number of sites. In such a scheme species numbers 1 – 1300 are
350 assigned each to a single site randomly in accord with the relative receptivities. The next 800 are
351 assigned to two sites, in accord with the relative receptivities and so on. The matrix $N(J,K)$ thus
352 constructed can be interrogated to find the number of pairs of sites as a function of the number of
353 species they have in common, similarly for the number of triplets. When this static algorithm is
354 implemented, the version of Fig.3 produced is in excellent agreement with that from the dynamical
355 algorithm.

346 **9. Discussion**

347 The naturalisation of many thousands of plant species over the globe is inherently a dynamical
348 process of great complexity, yet has emergent properties described by a simple statistical model. A
349 resource (represented by the alien footprint $\sum_n nS(n)$ and global in nature) is partitioned at random
350 among 16 sites and then again at random among over ~5000 species alien to those sites. All sites are
351 treated as equivalent and all species likewise. The most probable configuration is then drawn from
352 exponential probabilities for the number of species found at n sites and the number of sites containing
353 s species. These distributions are a simple application of the microcanonical ensemble in statistical
354 mechanics, or of maximum entropy with uniform priors. In the language of ecology, this is generating
355 distributions of alien species according to a twofold example of MacArthur's broken stick.
356 MacArthur's broken stick model failed in its original application to the very different problem of
357 species abundance, but it is realised in abundance of species - the global distribution of alien species.
358 Any algorithm that generates an exponential distribution of species over the number of sites at which
359 they are present and simultaneously species populations of sites drawn from an exponential
360 distribution yields exponential distributions for pairs and triplets of sites, as shown in Fig.3 above
(c.f. Fig.3 of [12]).

362 If these distributions are the result of dynamical processes represented by the master equation
363 (2) then the exponential distributions imply curious and interesting conditions. The ratio formed from
364 the rate for introducing a species, present at n sites, to an unoccupied site divided by the rate of losing
365 that species, when present at $n+1$ sites, from an occupied site is independent of n . There is an
366 analogous condition for assigning species to sites. As set out in section 3, the requirement can be
367 represented algebraically as $r_n^+ = r^+ f(n+1)$, $r_n^- = r^- f(n)$. It was convenient to choose $f(n) = 1$
368 which satisfies this condition trivially, but the rates at which species become naturalised or extinct at
369 any site depend on the processes involved. The appropriate function $f(n)$ is not suggested by the
370 data nor determined by the model, but there are biological implications, usefully illustrated by two
371 rather different examples.

372 The first is for $f(n) = 1$. Then the rate at which a species gains a new site is independent of the
373 number it already occupies, which does not seem implausible because occupied sites are not expected
374 to reproduce and give rise each to new ones. However, the rate at which a species loses a site is also
375 independent of the number at which it is present, yet there is an intuitive expectation that the more
376 sites at which a species is present the faster it will vanish from one of them. This is reinforced by the
377 notion of *per capita* death rates for individuals in populations of given species, but the ecology of alien
378 establishments is a very different problem. The intuitive expectation is based upon an assumption,
379 usually not made explicit, that events such as extinction of a particular species have the same
380 probability of occurring at any site and are uncorrelated. It does not have to be so. The requirement
381 could be met if at any particular time a species is vulnerable at only one site and it is at that site that
382 it takes the hit. The ecological significance would be that establishment and extinction of alien species
383 are not determined wholly by independent local processes; the global picture is important. For this
384 case of $f(n) = 1$ it could be thought of in terms of some global niche space for a given species, that
385 space expanding and contracting by absolute amounts (as opposed to fractional changes).
386 Naturalisation is not, in the application of the master equation, purely a local process.

387 The second example applies to the case where extinctions are random and uncorrelated. In this
388 case the function $f(n) = n$ and this does agree with intuitive notions. If so, then the observation of
389 the exponentials in the distribution of alien species requires that the rate at which a species present
390 at n sites is naturalised at one more is proportional to $n+1$. The most obvious interpretation would
391 be that colonies give rise to new colonies at the same rate as the parent site. This is not the only
392 possible interpretation, but other possibilities also seem to depend on fine tuning. In no case is there
393 any implication that a species currently found at many sites is likely to be a menace at any of these
394 sites or at any site at which it is not currently naturalised. The feature common to all these scenarios
395 generating exponential distributions is a global ceiling.

396 The mathematical techniques used here are not in any sense restricted to problems in population
397 biology. It is amusing to speculate on possible applications as diverse as storage in a demented
398 warehouse or vapour deposition on silicon

399 10. Conclusions

400 This work has established a simple theoretical foundation unifying the separate observations to
401 be found in [12], much as conjectured therein. The inferences about the biology of alien species and
402 sites in that work are thus strongly supported.

403 Perhaps the most important inference comes from the mere applicability of elementary statistical
404 mechanics to this problem. In these models, no site is special and it is as a result of random processes
405 that it reaches a particular capacity for alien species. Similarly, no species is special and it reaches a
406 particular number of sites through random processes. These equivalences among sites and among
407 species might come about through genuine identity, known as neutrality in the context of species
408 abundance distributions, but given the variety of sites and species, this is not credible. Rather, the
409 equivalence must arise through extreme individuality of both sites and species – the idiosyncrasy of
410 [3, 4]. This idiosyncrasy may be highly relevant to the general problem of community assembly – [12]

411 describes two documented examples of species within guilds distributed exponentially over sites [15,
412 16].

413 We have an indication of the machinery underlying the statistical mechanics of alien species - a
414 global reservoir of alien species, each awaiting the opening or rejected by the closing of suitable
415 geographic sites. In the context of such a dynamical model, the process of naturalisation is not purely
416 local; these are global aspects. Underlying the ebb and flow of species is a global conserved quantity,
417 the number of alien establishments – the alien footprint of [12]. This alien footprint, for a given
418 number of sites and of species, is (mathematically) the only free parameter in the model. Biologically,
419 it represents some resource that may be related to global net primary productivity and it is an instance
420 of the process of 'biotic resistance' and the fundamental regulation of community diversity [17-22].
421 CO₂ has been shown elsewhere to enhance net primary productivity above the general action of
422 climate change (temperature and water availability; [23] suggesting that it may be the fundamental
423 factor responsible for the ongoing rate of species naturalizations currently being observed throughout
424 the globe [24-28].

425 **Acknowledgment:** In the early stages of this research CKK was supported in part by DEB 0713866 and a grant
426 from the National Geographic Society.

427 References

1. Grilli J, Azaele S, Banavar J R, Maritan A. Spatial aggregation and the species-area relationship across scales. *Journal of Theoretical Biology* 2012 313, 87-97.
2. Thompson C J, Lee T E, McCarthy M A. Species distributions and area relationships. *Journal of Theoretical Biology* 2014 363, 129-133.
3. Pueyo S. Diversity: between neutrality and structure. *Oikos* 2006 112, 392-405.
4. Pueyo S, He F, Zillio T. The maximum entropy formalism and the idiosyncratic theory of biodiversity. *Ecology Letters* 2007 10, 1017-1028.
5. Banavar J R, Maritan A, Volkov I. Applications of the principle of maximum entropy: from physics to ecology. *Journal of Physics-Condensed Matter* 2010 22, 13 pp.
6. Bowler M G, Kelly C K. On the statistical mechanics of species abundance distributions. *Theoretical Population Biology* 2012 82, 85-91.
7. Bowler M G. Species abundance distributions, statistical mechanics and the priors of maxent. *Theoretical Population Biology* 2014 92, 69-77.
8. Harte J, Zillio T, Conlisk E, Smith A B. Maximum entropy and the state-variable approach to macroecology. *Ecology* 2008 89, 2700-2711.
9. Harte J. *Maximum Entropy and Ecology*. Oxford Series in Ecology and Evolution, Oxford University Press, New York, NY, 2011, ISBN 978-0-19-959341-5.
10. Harte J, Newman E A. Maximum information entropy: a foundation for ecological theory *Trends in Ecology & Evolution* 2014 29, 384-389.
11. Frank S A. The common patterns of nature. *Journal of Evolutionary Biology* 2009 22, 1563-1585.
12. Kelly C K et al. The statistical mechanics of community assembly and species distribution. *New Phytologist* 2011 191, 819-827.
13. MacArthur R H. On the relative abundance of species. *American Naturalist* 1960 94, 25-36.
14. Volkov I, Banavar J R, Hubbell S P, Maritan A. Neutral theory and relative species abundance in ecology. *Nature* 2003 424, 1035-1037.
15. Trejo I, Dirzo R. Floristic diversity of Mexican seasonally dry tropical forests. *Biodiversity and Conservation* 2002 11, 2063-2084.
16. Lee W J, Patterson D J. Diversity and geographic distribution of free-living heterotrophic flagellates --

456 analysis by PRIMER. *Protist* **1998** *149*, 229-244.

457 17. Elton C. *The Ecology of Invasions by Animals and Plants*. Chapman & Hall, London, 1958.

458 18. Hutchinson G F. Homage to Santa Rosalia, or Why are there so many kinds of animals? *American*
459 *Naturalist* **1959** *93*, 145-159.

460 19. May R M. *Stability and Complexity in Model Ecosystems*. Princeton University Press, Princeton NJ,
461 1973.

462 20. MacArthur R H. Patterns of species diversity. *Biological Reviews* **1965** *40*, 510-533.

463 21. Pimm S L. *The Balance of Nature?* University of Chicago, Chicago, 1991.

464 22. Tilman D. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource
465 competition, invasion, and community assembly. *Proceedings of the National Academy of Sciences* **2004**
466 *101*, 10854-10861.

467 23. Woodward F I, Kelly C K. Responses of global plant diversity capacity to changes in carbon dioxide
468 concentration and climate. *Ecology Letters* **2008** *11*, 1229-1237.

469 24. Stohlgren T J et al. Species richness and patterns of invasion in plants, birds, and fishes in the United
470 States. *Biological Invasions* **2006** *8*, 427-447.

471 25. Mack R N et al. Biotic invasions: causes, epidemiology, global consequences, and control. *Ecological*
472 *Applications* **2000** *10*, 689-710.

473 26. Sax D F. Native and naturalized plant diversity are positively correlated in scrub communities of
474 California and Chile. *Diversity and Distributions* **2002** *8*, 193-210.

475 27. Stohlgren T J, Rejmanek M. No universal scale-dependent impacts of invasive species on native plant
476 species richness. *Biology Letters* **2014** *10*, 5.

477 28. Lonsdale W M. Global patterns of plant invasions and the concept of invasibility. *Ecology* **1999** *80*,
478 1522-1536.

479