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Abstract: Dynamic measurement error correction is an effective method to improve the sensor 15 
precision. Dynamic measurement error prediction is an important part of error correction, support 16 
vector machine (SVM) is often used to predicting the dynamic measurement error of sensors. 17 
Traditionally, the parameters of SVM were always set by manual, which can not ensure the model’s 18 
performance. In this paper, a method of SVM based on an improved particle swarm optimization 19 
(NAPSO) is proposed to predict the dynamic measurement error of sensors. Natural selection and 20 
Simulated annealing are added in PSO to raise the ability to avoid local optimum. To verify the 21 
performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM’s 22 
parameters, they are the particle swarm optimization algorithm (PSO), the improved PSO 23 
optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic 24 
measurement error data of two sensors are applied as the test data. The root mean squared error 25 
and mean absoluter percentage error are employed to evaluate the prediction models’ 26 
performances. The experiment results show that the NAPSO-SVM has a better prediction precision 27 
and a less prediction errors among the three algorithms, and it is an effective method in predicting 28 
dynamic measurement errors of sensors. 29 

Keywords: Sensors; Dynamic measurement errors; Prediction; Improved PSO; Support Vector 30 
Machine 31 

 32 

1. Introduction 33 
Today, sensors are widely used in the real world, sensor error is on of the key to evaluate the 34 

measurement quality of the sensor results. With the development of modern measurement 35 
technology, dynamic measurement has gradually become the mainstream of modern measurement.  36 

As an effective theory to improve the measurement accuracy and reduce the measurement error, 37 
real-time error correction of sensors have been widely used in the dynamic measurement. Predicting 38 
the dynamic measurement error is useful to correct the errors of sensor. Dynamic measurement errors 39 
of sensors are difficult to modeling with traditional mathematics cause they has four features[1]: time-40 
varying, randomness, correlation and dynamic. Because its complexity, predicting the dynamic error 41 
has been a popular research fields[2-3]. 42 

In recent years, several modeling methods are used to predict dynamic error like the gray theory, 43 
Bayesian networks and neural network. Every method has its own advantages and drawbacks. 44 
Harmonic analysis method is suitable to model the periodic sequences, but it is not suitable for the 45 
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random sequence[4]. Bayesian networks is useful for prediction modeling, however, it requires the 46 
prior distribution and independent samples, which is difficult to achieve in the real systems[5]. Grey 47 
theory model can be constructed by a few samples, but it only depicts a monotonically increasing or 48 
decreasing process[6]. Artificial neural network has a good performance of non-linear mapping, 49 
however, it has disadvantages, such as over-fitting and easy to falls into a local minimum[7].  50 

Support vector machine (SVM) adopts structural risk minimization to improve generalization 51 
ability[8]. It can better solve the problems of nonlinear data and small samples. SVM has been widely 52 
applied to solve the problem of function fitting[9]. However, the generalization ability of SVM 53 
depends heavily on the appropriate parameters, the model's parameters has huge influence on the 54 
precision of the model predictions[10-11]. Thus, many optimization algorithms have been adopted to 55 
optimize the SVM parameters, like the particle swarm optimization algorithm, genetic algorithm and 56 
glowworm swarm optimization algorithm. There are limitations in these methods, the particle swarm 57 
optimization and genetic algorithm fall into the local extremes easily[12-14], the glowworm swarm 58 
optimization algorithm has low convergence precision and slow convergence speed[15]. NAPSO 59 
algorithm is an improved particle swarm optimization algorithm based on the natural selection 60 
strategy and simulated annealing mechanism. these two methods are used to improve the global 61 
search ability and convergence speed. In this study, a method of dynamic measurement error 62 
prediction for sensors based on NAPSO optimize support vector machine is proposed. 63 

The rest of the paper is organized as follows, in section 2, the overview of SVM algorithm is 64 
provided in detail. Then, in section 3, PSO, NAPSO algorithm and the process of Optimization are 65 
described briefly. Section 4 reports on a simulation of the dynamic measurement error prediction 66 
model. The results of experiments are discussed in section 5. Conclusions are drawn in the last section.   67 

2. SVM Algorithm  68 

2.1. SVM 69 
SVM is a machine learning method based on the statistical learning theory developed in mid-70 

1990s. The basic idea of SVM is that the data of input space nR  are mapped to a high dimensional 71 
feature space F  by a nonlinear mapping, then finish the linear regression operations in the high 72 
dimensional feature space. 73 

For a given training dataset },2,1),,{( niyx ii = , ix  is a n-dimensional input vector and iy  74 
is the corresponding output value, )(xφ  is the nonlinear mapping from input space nR  to high 75 
dimensional feature space F . 76 

)(: xxFRn φ→→         (1) 77 
The regression function of SVM is formulated as follows: 78 

( ) [ ( )] ,mf x x b R b Rω ϕ ω= ⋅ + ∈ ∈       (2) 79 
Where ω  is the weight vector and b  is the threshold, the main goal of the SVM is to find the 80 
optimal ω , the optimization equation can be expressed as follows: 81 

   

2

,

1min                  ( )
2

s.t.        ( ) ,   i 1,2, , ni iy f x
ω ξ

ϕ ω ω

ε

=

− ≤ =
       (3) 82 

Where ε  is a parameter of the insensitive loss function. In practice, two slack variables * ,i iξ ξ  and 83 
a punishment coefficient C  are introduced in the equation (3). According to the risk minimization, 84 
equation (3) can be rewritten as the equation (4). The first item of equation (4) is the regularization 85 
part, which is used to smooth the function, improves generalization ability. And the second item is 86 
an empirical error term. C  is the punishment coefficient, which can regulate the balance of the two 87 
items. 88 
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Introduce the Lagrange multipliers iα  and *
iα , then the regression problem can be solved by 90 

solving a dual problem as equation(5). 91 
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Where ),( ji xxK  is the Kernel function. In the last, the SVM regression function is formulated as: 93 

    *

1
( ) ( ) ( , ) b

n

i i i j
i

f x K x xα α
=

= − +         (6) 94 

2.2. Kernel Function 95 
Kernel function is a key concept of SVM, the performance of SVM mainly depends on the kernel 96 

function. As shown in the equation (1), the kernel function establishes a relation between the input 97 
space nR  and the high dimensional feature space F . Different selection of kernel functions will 98 
construct different regression models.  99 

)()(),( j
T

iji xxxxK φφ ⋅=         (7) 100 
The common kernel functions include the polynomial kernel function, linear kernel function, 101 

fourier kernel function and radial basis function (RBF) kernel function. The kernel function 102 
parameters has a directly influence on the complexity of the function, RBF kernel function has the 103 
advantages of fewer parameters and good performance. Thus, RBF kernel function is used in this 104 
paper.  105 

The RBF kernel function is expressed as follows: 106 
2

2( , ) exp
2

i j
i j

x x
K x x

σ

 − = − 
  

        (8) 107 

Where σ  is the width coefficient of the kernel function. 108 
The SVM parameters determine both its generalization ability and learning ability, the 109 

punishment coefficient C  and RBF kernel function width σ  have a directly impact on the accuracy 110 
and efficiency of the SVM prediction model. C  adjusts the balance between generalization and 111 
empirical error. When C  is greater, the model’s complexity will be increased and it will fall into the 112 
“over-fitting” phenomenon easily, if C  is too small, the model’s complexity will be reduced and it 113 
will fall into the “under-fitting” phenomenon easily. The value of σ  affects the complexity of the 114 
sample data distribution in feature space. In this paper, NAPSO algorithm is used to optimize the 115 
two parameters to achieve a better prediction results. 116 

3. SVM Parameters Optimization Based On NAPSO 117 
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3.1. PSO 118 
Particle swarm optimization was proposed by Eberhart and Dr. Kennedy in 1995[12], PSO was 119 

derived from research on bird flocks’ preying behavior. When a flock of birds is looking for food in 120 
an area randomly, if there is only one piece of food in the area being searched, the most effective and 121 
simple method to find the food is to follow the bird that is closest to the food. 122 

In PSO algorithm, every single solution is a particle in the search space. Each particle has a fitness 123 
value, which is determined by an optimization function, each particle has its own velocity and 124 
position. The velocity and position of each particle will be changed by the particle best position and 125 
global best position. The update equations of the velocity and position are shown by the following 126 
expression: 127 

. . 1 1 . 2 2 .( 1) ( ) [ ( ))] [ ( ))]i d i d best i d best i dv t v t c r p x t c r g x tω+ = + − + −    (9) 128 
)1()()1( ... ++=+ tvtxtx dididi        (10) 129 

In the D-dimensional space, t  is the iteration number, . ( )i dv t  is the velocity of particle i  at 130 
iteration t , . ( 1)i dv t +  is the velocity of particle i  at iteration 1t + , . ( )i dx t  is the position of 131 
particle i  at iteration t , . ( 1)i dx t +  is the position of particle i  at iteration 1t + , ω  is the 132 
inertia weight. 1c  is the cognition learning factor, 2c  is the social learning factor, 1r  and 2r  are 133 
random numbers that are uniformly distributed in [0,1], bestp  is the particle best position for the 134 
individual variable of particle i , bestg  is the global best position variable of the particle swarm. 135 

The initial position and velocity of each particle are randomly generated and will be updated 136 
based on the formula (9) and formula (10) until a satisfactory solution is found. In the PSO algorithm, 137 
a single particle moves to its bestp  and bestg , each particle’s movement generates fast convergence, 138 
thus PSO algorithm converges rapidly. However, the fast convergence also makes the update of each 139 
particle depend too much on its bestp  and bestg , which makes the algorithm fall into local optimum 140 
and premature convergence easily. Therefore, in this paper, an improved PSO algorithm (NAPSO) is 141 
used to optimize the parameters of SVM. 142 

3.2. NAPSO 143 
NAPSO algorithm is an improved PSO algorithm based on the methods of natural selection and 144 

simulated annealing. In the NAPSO algorithm, the simulated annealing mechanism is used to 145 
improve the ability of the algorithm to jump out of a local optimum trap, the natural selection method 146 
is employed to accelerate the rate of convergence. 147 

NAPSO algorithm starts with a set of random velocities and positions. Before the iteration, each 148 
particle’s personal best position and global best position are calculated by the fitness function. Each 149 
particles update its velocity and position by the formula (9) and formula (10) at each iteration. 150 

After updating a particle’s speed, position l  and fitness value 'f , the particle moves to a 151 
random position '

1l  in its neighborhood and computes its new fitness value '
1f . The movement 152 

formula is expressed as follows: 153 
'
1 3 [ ]max min 1l l r * v - v * r= +         (11) 154 

Where 3r  is the normally distribution random numbers of D-dimension that are distributed in [0,1], 155 

4r  is a random number that is uniformly distributed in [0,1], maxv  is the maximum value of the 156 
velocity, and minv  is the minimum value of the velocity. 157 

When '
1 bestf g> , keep the position l . When '

1 bestf g< , if ' '
1f f< , use the new position '

1l  158 
to replace the position l ; if ' '

1f f> , use the new position '
1l  to replace the position l  by the 159 

simulated annealing operation, the operation of simulated annealing is expressed as follows: 160 
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'
1

exp(( 1)*( ) / 4)
exp(( 1)*( ) / 4)

' '
1
' '

1

l if f - f T r
l

l if f - f T r
 − >

=  − <= 
       (12) 161 

Where 4r  is a random number that is uniformly distributed in [0,1], T  is the simulated annealing 162 
temperature. 163 

Each particle uses the simulated annealing operation to determine whether to accept the new 164 
position, and then updates the particle's bestp  and bestg  by its position. The simulated annealing 165 
operation can significantly enhance the ability of the algorithm to jump out of the local optimum trap. 166 
At the end of each iteration, all particles have been ranked by their fitness values, from best to worst, 167 
and using the better half to replace the other half. In this way, the stronger adaptability particles are 168 
saved. Finally, the NAPSO algorithm is terminated by the satisfaction of a termination criterion.  169 

The pseudo code of the NAPSO algorithm is presented as follows: 170 
Algorithm NAPSO 
Input ω , 1c , 2c ,T  

Output bestg  

Initialization: x , bestp , bestg  

while t<maximum number of iterations and bestg >minimum fitness do 
for each particle do 

update the velocity v, position l , and fitness 'f  
find a new position '

1l  in the neighborhood and Calculate its fitness value '
1f  

if1 ( '
1 bestf g< ) then 

if2 ( ' '
1 0f f− < ) then 

accept the new position '
1l  

else if2 
accept the new position '

1l  by the simulated annealing operation 
end if2  

else if1 
accept the old position l  

end if1 
update the bestp , bestg  and Simulated temperature T  

end for 
rank all particles by their fitness value, use the better half to replace the other half. 
t=t+1 

end while 
return the bestg  

The simulated annealing operation will slow the rate of convergence, thus increasing the 171 
convergence time. The natural selection operation will reduce the sample diversity of samples. 172 
However, these two operations can compensate for each other, the simulated annealing operation 173 
can increase sample diversity, and the natural selection operation can speed up the convergence rate. 174 
These two operations are used to both ensure the convergence rate of the algorithm and guarantee 175 
that the ability of the algorithm to jump out of the local optimal trap can be enhanced. 176 

3.3. Otimization Process 177 

The NAPSO algorithm is applied to optimize the SVM parameters C  and σ  as follows: 178 
Step 1: Initialize the NAPSO algorithm, set the number of particles velocity, particles positions 179 

and the other parameters. Because the search space is 2 dimensional, the position of each particle 180 
contains two variables. Set T  to be the simulated temperature; the initial T  is 5000°C, and the 181 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2017                   doi:10.20944/preprints201711.0132.v1

Peer-reviewed version available at Sensors 2018, 18, 233; doi:10.3390/s18010233

http://dx.doi.org/10.20944/preprints201711.0132.v1
http://dx.doi.org/10.3390/s18010233


 6 of 12 

 

lower limit of T  is 1°C. Calculate the fitness value of each particle. The fitness evaluation function 182 
is defined as follows: 183 

 
=

−=
n

i
ii nYYJ

1

2' /)(         (13) 184 

Where iY  is the actual value, '
iY  is the predicted value and n  is the number of the training samples. 185 

Step 2: According to the fitness value of each particle to set the personal best position bestp  and 186 
global best position bestg . 187 

Step 3: Update the position l  and velocity of each particle. Evaluate the fitness value 'f .Then, 188 
randomly find a new position '

1l  in the neighborhood of the particle, calculate the new fitness value 189 

( '
1f ) of the new position. 190 

Step 4: Calculate the difference between the fitness value 'f and the new fitness value '
1f , 191 

''
1 fff −=Δ . 192 

Step 5: When '
1 bestf g>= , keep the original position l . When 0>Δf  and bestgf <'

1 , 193 
according the formula (12) to accept the new position '

1l , if 0<Δf  and bestgf <'
1 , replace the 194 

original position with the new position. Then, update the bestp  and bestg . 195 
Step 6: When the updates of each particle has completed, then rank all of the particles according 196 

to the each particle’s fitness value, employ the better half particles’ information to replace the other 197 
half particles’ information and update the temperature *0.9T T= . 198 

Step 7: If the termination conditions are satisfied, output the two variables of the bestg ; 199 
Otherwise, return to Step 2. 200 

4. Experiments 201 

4.1. Data Description 202 
In this paper, two cases have been considered to illustrate the effectiveness of the proposed 203 

method. The data of case 1 is the dynamic error sequence, which is derived from the measuring error 204 
of the angular instrument with anticlockwise rotation (speed 2r/min) based on standard value 205 
interpolation under room temperature, the error sequence contains a total of 240 samples. In case 2, 206 
the measuring error sequence of the length grating contains a total 141 samples. The process of 207 
collecting data is expressed as follows: the measurement range is 500mm and the sample interval is 208 
25mm, the computer receive the actual displacement from the laser interferometer and the measuring 209 
displacement from the length grating. The difference of the two data is the dynamic measurement 210 
error of the length grating. 211 

4.2. Preprocessing 212 
The two datasets both are one-dimensional data, in order to achieve the better predict results 213 

and get more information from the data, these two one-dimensional data must be converted to multi-214 
dimensional data[16]. Assuming p  is the dimension of the input vector, the reconstructed samples 215 
are listed in Table 1. 216 

According to the reconstructed method listed in the Table 1, in case 1,the dimension number p  217 
is 16, the number of restructured sample is 224, selecting the first 124 samples for training and the 218 
final 100 samples for testing. The proportion of training samples to testing samples is 1.24:1, in case 219 
2, the dimension p  is 12, the number of restructured sample is 129, the first 100 samples are selected 220 
as training data and the rest are used as testing data. The proportion of training samples to testing 221 
samples is 3.44:1. 222 
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Table 1. Reconstructed samples. 223 
Input Output

)(,),2(),1( pXXX ( 1)X p +
)1(,),3(),2( +pXXX )2( +pX

… … 
)1(,),1(),( −+−− nXpnXpnX  )(nX  

Preprocess the data by the normalized method, then perform parameter optimization and train 224 
the model. 225 

4.3. Valuation Index 226 
To further evaluate the prediction of the NAPSO-SVM model, the root mean square error 227 

(RMSE) and mean absolute percent error(MAPE) are used as evaluation indices. The definition of 228 
MAPE and RMSE are expressed as follows:       229 


=

−=
n

i
ii YY

n 1

2' )(1RMSE        (14) 230 

'

1

1MAPE
n

i i

i i

Y Y
n Y=

−=         (15)
 

231 

Where iY  is the actual value, '
iY  is the prediction value and n  is the number of the training 232 

sample.  233 
Using the NAPSO algorithm to determine the punishment coefficient C  and RBF kernel 234 

function width σ . The SVM model is built based on the training samples and optimal parameters. 235 
To show the performance of the proposed method, the particles swarm optimization and glowworm 236 
swarm optimization are also implemented. 237 

5. Results 238 
In case 1, the prediction results of three models are shown in Figures. 1, 2 and 3, respectively.  239 

 240 
Figure 1. Predicted results of the NAPSO-SVM (case1) 241 

To make a fair comparison, the maximum generation, population size, minimum fitness value, 242 
range of gains, dimension of search space and initial positions are identical for all the algorithms. The 243 
maximum number of generations is 100, the minimum fitness value is 0.1, the size of the population 244 
is 100, and the dimension of the search space is 2. The parameters for NAPSO were set as follows: the 245 
inertia weight 9.0=w , the acceleration constant 1c  and 2c  are 2, the initial temperature is 246 
10000℃, the lower limit of temperature is 1℃, the maximum value of velocity is 1, the minimum 247 
value of velocity is -1. In GSO algorithm, the light absorption coefficient is 50, the minimum value of 248 
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attractiveness is 0.8, the maximum value of attractiveness is 1.0, the value of initial step size factor is 249 
0.5. The PSO algorithm has the same inertia weight and acceleration constant as the NAPSO 250 
algorithm.  251 

Figure.4 presents the comparison results of predicted residuals by the three models. The MAPE 252 
value and RMSE value of the three models are listed in Table 2. 253 

 254 
Figure 2. Predicted results of the PSO-SVM (case1) 255 

 256 
Figure 3. Predicted results of the GSO-SVM (case1) 257 

 258 
Figure 4. Comparison of three models for predicted residuals (case 1) 259 
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By comparing Figures. 1-3, we find that the NAPSO-SVM model outperforms the PSO-SVM and 260 
GSO-SVM model. The prediction performance of NAPSO-SVM is better than GSO-SVM model and 261 
accuracy much better than PSO-SVM. 262 

The residual curves of the three models are shown in the Figure. 4, The prediction residual curve 263 
of the PSO-SVM model is large, ranging from -11 to ''8 , and the prediction residual of the GSO-SVM 264 
model is smaller than the PSO-SVM model. But it is still relatively large, ranging from -8 to ' '6 . The 265 
predicted residual of the NAPSO-SVM is smaller than the others and tends to more gentle, ranging 266 
from -5 to ''4 .The results prove that dynamic measurement error prediction ability of NAPSO-SVM 267 
model is better than PSO-SVM and GSO-SVM model, and the NAPSO algorithm is an effective 268 
method for parameters optimization. 269 

To further verify the ability of the three models. Table 2 lists the comparison results between the 270 
three models for prediction accuracy indexes. 271 

Table 2. Comparison of the index value among the three models (case 1). 272 
MODEL MAPE RMSE

NAPSO-SVM 0.0744 0.1879 
PSO-SVM 0.2423 0.4710 
GSO-SVM 0.1493 0.3128 

In Table 2, the MAPE value and RMSE value of the NAPSO-SVM model are smaller than the 273 
PSO-SVM and GSO-SVM model. The MAPE value is approximately 0.0744 for NAPSO-SVM model 274 
compared with approximately 0.2423 and 0.1493 for the PSO-SVM and GSO-SVM model, respectively. 275 
Furthermore, the RMSE value is 0.1876 in the case of NAPSO-SVM model. Compared with the 276 
NAPSO-SVM model, the RMSE value of the GSO-SVM model and PSO-SVM model are 0.4710 and 277 
0.3128 respectively. In summary, the results of the Table 2 are accorded with the Figure. 4, the 278 
NAPSO-SVM model has the best dynamic measurement error prediction ability among the three 279 
methods. 280 

In case 2, the parameters of each algorithm are essentially the same as the previous case, the 281 
prediction results of three models are shown in Figures.5, 6 and 7. Figure.8 shows the comparison 282 
results of predicted residuals by three models. The MAPE value and RMSE value of the three models 283 
are listed in the Table 3. 284 

 285 
Figure 5. Predicted results of the NAPSO-SVM (case 2) 286 

In Figures.5-7, when the ratio of training samples and testing samples is approximately 3.5, the 287 
prediction curve of the NAPSO-SVM model is closest to the actual value curve, and the prediction 288 
curve of the NAPSO-SVM model is approximately the same as the actual value curve. However, 289 
unlike the case 1, The prediction results of the PSO-SVM model is better than the PSO-SVM model, 290 
but the prediction curves of these two models still lag behind the actual value curve. 291 
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 292 
Figure 6. Predicted results of the PSO-SVM (case 2) 293 

 294 
Figure 7. Predicted results of the GSO-SVM (case2) 295 

 296 
Figure 8. Comparison of the predicted residuals of the three models(case2) 297 

In Figure.8, the prediction residual of the NAPSO-SVM model is smallest among the three 298 
models, ranging from -0.013 to 0.014 mm. The prediction residual of the GSO-SVM model is ranging 299 
from -0.035 to 0.026 mm, and the prediction residual of the PSO-SVM model is ranging from -0.032 300 
to 0.013 mm. 301 
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Table 3. Comparison of the index value among the three models (case 2). 302 
MODEL MAPE RMSE

NAPSO-SVM 1.0833 0.0013 
PSO-SVM 1.9714 0.0021 
GSO-SVM 2.2948 0.0023 

As Table 3 shows, the MAPE value is approximately 1.0833 for the NAPSO-SVM model 303 
compared with approximately 1.9714 and 2.2948 for the PSO-SVM model and GSO-SVM model. 304 
NAPSO-SVM model has the smallest RMSE value of the three algorithms, acquiring RMSE value of 305 
0.0013 and the RMSE values of the PSO-SVM model and GSO-SVM model are 0.0021 and 0.0023, 306 
respectively. The prediction ability of the NAPSO-SVM model is clearly better than the other models, 307 
and GSO-SVM model has the worst performance. 308 

The results of the two cases show that the NAPSO-SVM model has the best prediction accuracy 309 
among the three methods. This indicate that the NAPSO algorithm has the better capability of global 310 
search than the other two algorithm, the reason is that the updating of the position and velocity of 311 
the particles in the PSO algorithm are dependent too much on current best particle. Compared with 312 
the PSO algorithm, the NAPSO algorithm uses the simulated annealing and natural selection 313 
mechanism, it is easier jump out of the local trap and search the global optimal solution in the global 314 
space. 315 

6. Conclusions 316 
Dynamic measurement has been a hot area of research for several years, and dynamic 317 

measurement error prediction is an useful method to improve the sensor measurement accuracy. In 318 
this study, a method of dynamic measurement error prediction based on NAPSO-optimized SVM 319 
parameters is proposed. To improve the prediction accuracy, the NAPSO algorithm is used to 320 
optimize the SVM parameters to avoid the problems of “over-fitting” and “under-fitting” of SVM. 321 
The results of the two cases show that compared with the PSO-SVM and GSO-SVM model, the 322 
NAPSO-SVM model has the better prediction accuracy. The proposed method provides a new way 323 
for predicting the sensor’s dynamic measurement error and has definite value for application in 324 
dynamic measurement. However, like the standard PSO, NAPSO has the intrinsic property 325 
randomness. In the future, we plan to study which is the more effective method for improving the 326 
prediction results. 327 
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