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15 Abstract: Dynamic measurement error correction is an effective method to improve the sensor
16 precision. Dynamic measurement error prediction is an important part of error correction, support
17 vector machine (SVM) is often used to predicting the dynamic measurement error of sensors.
18 Traditionally, the parameters of SVM were always set by manual, which can not ensure the model’s
19 performance. In this paper, a method of SVM based on an improved particle swarm optimization
20 (NAPSO) is proposed to predict the dynamic measurement error of sensors. Natural selection and
21 Simulated annealing are added in PSO to raise the ability to avoid local optimum. To verify the

22 performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM’'s
23 parameters, they are the particle swarm optimization algorithm (PSO), the improved PSO
24 optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic

25 measurement error data of two sensors are applied as the test data. The root mean squared error
26 and mean absoluter percentage error are employed to evaluate the prediction models’
27 performances. The experiment results show that the NAPSO-SVM has a better prediction precision
28 and a less prediction errors among the three algorithms, and it is an effective method in predicting
29 dynamic measurement errors of sensors.

30 Keywords: Sensors; Dynamic measurement errors; Prediction; Improved PSO; Support Vector
31 Machine

32

33 1. Introduction

34 Today, sensors are widely used in the real world, sensor error is on of the key to evaluate the
35  measurement quality of the sensor results. With the development of modern measurement
36  technology, dynamic measurement has gradually become the mainstream of modern measurement.
37 As an effective theory to improve the measurement accuracy and reduce the measurement error,
38  real-time error correction of sensors have been widely used in the dynamic measurement. Predicting
39  the dynamic measurement error is useful to correct the errors of sensor. Dynamic measurement errors
40  of sensors are difficult to modeling with traditional mathematics cause they has four features[1]: time-
41  varying, randomness, correlation and dynamic. Because its complexity, predicting the dynamic error
42 hasbeen a popular research fields[2-3].

43 In recent years, several modeling methods are used to predict dynamic error like the gray theory,
44  Bayesian networks and neural network. Every method has its own advantages and drawbacks.
45  Harmonic analysis method is suitable to model the periodic sequences, but it is not suitable for the
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46  random sequence[4]. Bayesian networks is useful for prediction modeling, however, it requires the
47  prior distribution and independent samples, which is difficult to achieve in the real systems[5]. Grey
48  theory model can be constructed by a few samples, but it only depicts a monotonically increasing or
49  decreasing process[6]. Artificial neural network has a good performance of non-linear mapping,
50  however, it has disadvantages, such as over-fitting and easy to falls into a local minimum(7].

51 Support vector machine (SVM) adopts structural risk minimization to improve generalization
52 ability[8]. It can better solve the problems of nonlinear data and small samples. SVM has been widely
53 applied to solve the problem of function fitting[9]. However, the generalization ability of SVM
54 depends heavily on the appropriate parameters, the model's parameters has huge influence on the
55  precision of the model predictions[10-11]. Thus, many optimization algorithms have been adopted to
56  optimize the SVM parameters, like the particle swarm optimization algorithm, genetic algorithm and
57  glowworm swarm optimization algorithm. There are limitations in these methods, the particle swarm
58  optimization and genetic algorithm fall into the local extremes easily[12-14], the glowworm swarm
59  optimization algorithm has low convergence precision and slow convergence speed[15]. NAPSO
60  algorithm is an improved particle swarm optimization algorithm based on the natural selection
61  strategy and simulated annealing mechanism. these two methods are used to improve the global
62  search ability and convergence speed. In this study, a method of dynamic measurement error
63  prediction for sensors based on NAPSO optimize support vector machine is proposed.

64 The rest of the paper is organized as follows, in section 2, the overview of SVM algorithm is
65 provided in detail. Then, in section 3, PSO, NAPSO algorithm and the process of Optimization are
66  described briefly. Section 4 reports on a simulation of the dynamic measurement error prediction
67  model. The results of experiments are discussed in section 5. Conclusions are drawn in the last section.

68  2.SVM Algorithm

69 2.1.SVM

70 SVM is a machine learning method based on the statistical learning theory developed in mid-

71 1990s. The basic idea of SVM is that the data of input space R" are mapped to a high dimensional
72 feature space F' by a nonlinear mapping, then finish the linear regression operations in the high
73 dimensional feature space.

74 For a given training dataset {(x,,),),i=1,2, n}, x; isan-dimensional input vectorand Y,

75  is the corresponding output value, @(x) is the nonlinear mapping from input space R" to high

76  dimensional feature space F'.

77 R" = F:x— ¢(x) 1)
78 The regression function of SVM is formulated as follows:
79 f(x)=[w - p(x)]+b we R",be R 2

80 Where @ is the weight vector and b is the threshold, the main goal of the SVM is to find the
81  optimal @, the optimization equation can be expressed as follows:

. 1
min (@) =_|of

s.t. v, - f(x)|<e, i=12, .n

82 ®)

83  Where & isaparameter of the insensitive loss function. In practice, two slack variables &, fl* and

84  apunishment coefficient C are introduced in the equation (3). According to the risk minimization,
85  equation (3) can be rewritten as the equation (4). The first item of equation (4) is the regularization
86  part, which is used to smooth the function, improves generalization ability. And the second item is
87  anempirical error term. C is the punishment coefficient, which can regulate the balance of the two
88  items.
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’ i=1
st. y—f(x)<E +¢€
89 Sx)=yi<g +e @
&.& 20
@=L2, ,n)
90 Introduce the Lagrange multipliers ¢, and 0!1.* , then the regression problem can be solved by
91  solving a dual problem as equation(5).
* 1 & * *
max W(azeaz ) = _E Zl(az - )(aj _aj)K(xjﬁxj)
1L, ]=
—e) (o +a)+) (o —a)
” Zlararg, g

st Y y(e-a)=0
i=l1

O<ea,o, <C, i=L2, ,n

93  Where K(x,,x j) is the Kernel function. In the last, the SVM regression function is formulated as:

94 F()= (@ -)K (x,x,) +b ©

95  2.2. Kernel Function

96 Kernel function is a key concept of SVM, the performance of SVM mainly depends on the kernel
97  function. As shown in the equation (1), the kernel function establishes a relation between the input

98  space R" and the high dimensional feature space F . Different selection of kernel functions will
99  construct different regression models.

_ T
100 K(x;,x;) = 0(x,)" - P(x;) @)
101 The common kernel functions include the polynomial kernel function, linear kernel function,
102 fourier kernel function and radial basis function (RBF) kernel function. The kernel function

103 parameters has a directly influence on the complexity of the function, RBF kernel function has the
104  advantages of fewer parameters and good performance. Thus, RBF kernel function is used in this

105  paper.
106 The RBF kernel function is expressed as follows:
2
[ x|
107 K(xi,xj)=exp —? (8)

108  Where o is the width coefficient of the kernel function.

109 The SVM parameters determine both its generalization ability and learning ability, the
110 punishment coefficient C and RBF kernel function width ¢ have a directly impact on the accuracy
111 and efficiency of the SVM prediction model. C adjusts the balance between generalization and
112 empirical error. When C is greater, the model’s complexity will be increased and it will fall into the
113 “over-fitting” phenomenon easily, if C is too small, the model’s complexity will be reduced and it
114 will fall into the “under-fitting” phenomenon easily. The value of o affects the complexity of the
115  sample data distribution in feature space. In this paper, NAPSO algorithm is used to optimize the
116  two parameters to achieve a better prediction results.

117  3.SVM Parameters Optimization Based On NAPSO
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118  3.1. PSO

119 Particle swarm optimization was proposed by Eberhart and Dr. Kennedy in 1995[12], PSO was
120 derived from research on bird flocks” preying behavior. When a flock of birds is looking for food in
121  anarea randomly, if there is only one piece of food in the area being searched, the most effective and
122 simple method to find the food is to follow the bird that is closest to the food.

123 In PSO algorithm, every single solution is a particle in the search space. Each particle has a fitness
124 value, which is determined by an optimization function, each particle has its own velocity and
125 position. The velocity and position of each particle will be changed by the particle best position and
126  global best position. The update equations of the velocity and position are shown by the following
127  expression:

128 vi.d (t + 1) = a)vi.d (t) + Cll/i[pbest - xi.d (t))] + C‘27'2 [gbest - xlld (t))] (9)
129 X+ =x,(O)+v,,(+1) (10)
130 In the D-dimensional space, ¢ is the iteration number, Vv, ,(¢) is the velocity of particle i at

131  iteration f, v, ,(¢+1) is the velocity of particle i at iteration ¢+1, X, ,(¢) is the position of
132 particle i at iteration #, x,,(t+1) is the position of particle i at iteration #+1, @ is the
133 inertia weight. ¢, is the cognition learning factor, ¢, is the social learning factor, 7, and 7, are
134 random numbers that are uniformly distributed in [0,1], p,,, is the particle best position for the

135 individual variable of particle i, g,,, is the global best position variable of the particle swarm.

136 The initial position and velocity of each particle are randomly generated and will be updated
137  based on the formula (9) and formula (10) until a satisfactory solution is found. In the PSO algorithm,
138 asingle particle moves toits p, , and g, , each particle’s movement generates fast convergence,

139 thus PSO algorithm converges rapidly. However, the fast convergence also makes the update of each
140 particle depend too much onits p, = and g, , which makes the algorithm fall into local optimum

141  and premature convergence easily. Therefore, in this paper, an improved PSO algorithm (NAPSO) is
142 used to optimize the parameters of SVM.

143 3.2. NAPSO

144 NAPSO algorithm is an improved PSO algorithm based on the methods of natural selection and
145  simulated annealing. In the NAPSO algorithm, the simulated annealing mechanism is used to
146 improve the ability of the algorithm to jump out of a local optimum trap, the natural selection method
147  is employed to accelerate the rate of convergence.

148 NAPSO algorithm starts with a set of random velocities and positions. Before the iteration, each
149 particle’s personal best position and global best position are calculated by the fitness function. Each
150 particles update its velocity and position by the formula (9) and formula (10) at each iteration.

151 After updating a particle’s speed, position / and fitness value f ', the particle moves to a
152 random position l{ in its neighborhood and computes its new fitness value f1 The movement
153 formula is expressed as follows:

154 L=l+r*v,

155 Where 7, is the normally distribution random numbers of D-dimension that are distributed in [0,1],

v 1*r 11
min 1

ax

156 7, is a random number that is uniformly distributed in [0,1], v, is the maximum value of the

157  velocity, and v, is the minimum value of the velocity.
158 When f, >g,., keep the position /. When f, <g, ,if f, <f , use the new position /,
159  to replace the position /; if f1 > f ', use the new position l{ to replace the position / by the

160  simulated annealing operation, the operation of simulated annealing is expressed as follows:
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161 ,:{l lfeXp((—l)*(ﬁ-f')/T>r4)} 12)
LI exp(D*(f) - )/ T <=rd)

162 Where 7, is arandom number that is uniformly distributed in [0,1], T  is the simulated annealing

163 temperature.

164 Each particle uses the simulated annealing operation to determine whether to accept the new
165  position, and then updates the particle's p,,, and g, . by its position. The simulated annealing

166  operation can significantly enhance the ability of the algorithm to jump out of the local optimum trap.
167  Atthe end of each iteration, all particles have been ranked by their fitness values, from best to worst,
168  and using the better half to replace the other half. In this way, the stronger adaptability particles are
169  saved. Finally, the NAPSO algorithm is terminated by the satisfaction of a termination criterion.
170 The pseudo code of the NAPSO algorithm is presented as follows:

Algorithm NAPSO

Input w,c,c,, T

Output gbest
Initialization: x, p,.,, &,..

while t<maximum number of iterations and g, >minimum fitness do
for each particle do
update the velocity v, position/, and fitness f"
find a new position / in the neighborhood and Calculate its fitness value f;
ifl1 (f, <g,, ) then
if2(f, —f <0)then

accept the new position /,

else if2
accept the new position [ by the simulated annealing operation
end if2
else ifl
accept the old position /
end ifl
update the p, ., &, and Simulated temperature T’
end for
rank all particles by their fitness value, use the better half to replace the other half.
t=t+1
end while
return the &,
171 The simulated annealing operation will slow the rate of convergence, thus increasing the

172 convergence time. The natural selection operation will reduce the sample diversity of samples.
173 However, these two operations can compensate for each other, the simulated annealing operation
174 canincrease sample diversity, and the natural selection operation can speed up the convergence rate.
175  These two operations are used to both ensure the convergence rate of the algorithm and guarantee
176  that the ability of the algorithm to jump out of the local optimal trap can be enhanced.

177  3.3. Otimization Process

178 The NAPSO algorithm is applied to optimize the SVM parameters C and o as follows:

179 Step 1: Initialize the NAPSO algorithm, set the number of particles velocity, particles positions
180  and the other parameters. Because the search space is 2 dimensional, the position of each particle
181  contains two variables. Set 7' to be the simulated temperature; the initial 7" is 5000°C, and the
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lower limit of 7" is 1°C. Calculate the fitness value of each particle. The fitness evaluation function
is defined as follows:

J=i(Yl——Y;)2/n (13)
i=1

Where Y, is the actual value, Yl is the predicted value and 7 is the number of the training samples.

Step 2: According to the fitness value of each particle to set the personal best position p,. . and
global best position g, .
Step 3: Update the position / and velocity of each particle. Evaluate the fitness value f' ' Then,

randomly find a new position 11' in the neighborhood of the particle, calculate the new fitness value

( f1 ) of the new position.

Step 4: Calculate the difference between the fitness value f "and the new fitness value f1 ,
A =fi—-f.

Step 5: When f, >= 2. » keep the original position /. When Af >0 and f1 < Ghost 7

according the formula (12) to accept the new position /, if Af <0 and f, < g, , replace the

original position with the new position. Then, update the p, . and g, ..

Step 6: When the updates of each particle has completed, then rank all of the particles according
to the each particle’s fitness value, employ the better half particles’ information to replace the other
half particles” information and update the temperature 7 =7 *0.9.

Step 7: If the termination conditions are satisfied, output the two variables of the g, . ;

Otherwise, return to Step 2.
4. Experiments

4.1. Data Description

In this paper, two cases have been considered to illustrate the effectiveness of the proposed
method. The data of case 1 is the dynamic error sequence, which is derived from the measuring error
of the angular instrument with anticlockwise rotation (speed 2r/min) based on standard value
interpolation under room temperature, the error sequence contains a total of 240 samples. In case 2,
the measuring error sequence of the length grating contains a total 141 samples. The process of
collecting data is expressed as follows: the measurement range is 500mm and the sample interval is
25mm, the computer receive the actual displacement from the laser interferometer and the measuring
displacement from the length grating. The difference of the two data is the dynamic measurement
error of the length grating.

4.2. Preprocessing

The two datasets both are one-dimensional data, in order to achieve the better predict results
and get more information from the data, these two one-dimensional data must be converted to multi-
dimensional data[16]. Assuming p is the dimension of the input vector, the reconstructed samples
are listed in Table 1.

According to the reconstructed method listed in the Table 1, in case 1,the dimension number p
is 16, the number of restructured sample is 224, selecting the first 124 samples for training and the
final 100 samples for testing. The proportion of training samples to testing samples is 1.24:1, in case
2, the dimension p is 12, the number of restructured sample is 129, the first 100 samples are selected
as training data and the rest are used as testing data. The proportion of training samples to testing
samples is 3.44:1.

do0i:10.20944/preprints201711.0132.v1
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223 Table 1. Reconstructed samples.
Input Output
XM, X(2), ,X(p) X(p+1)
X(2),XQ3), X(p+]) X(p+2)
X(n=p),X(n=p+D, ,X(n-1) X(n)
224 Preprocess the data by the normalized method, then perform parameter optimization and train
225  the model.
226 4.3. Valuation Index
227 To further evaluate the prediction of the NAPSO-SVM model, the root mean square error

228  (RMSE) and mean absolute percent error(MAPE) are used as evaluation indices. The definition of
229  MAPE and RMSE are expressed as follows:

230 RMSE (14)

231 MAPE (15)

232 Where Y, is the actual value, K is the prediction value and 7 is the number of the training

233 sample.

234 Using the NAPSO algorithm to determine the punishment coefficient C and RBF kernel
235  function width ¢. The SVM model is built based on the training samples and optimal parameters.
236  To show the performance of the proposed method, the particles swarm optimization and glowworm
237  swarm optimization are also implemented.

238 5. Results

239 In case 1, the prediction results of three models are shown in Figures. 1, 2 and 3, respectively.

801 =—a Predicted value |
=—a Actual value
60 ; "
z :
E 4l
s
5
¥ ;
2 20}
>
o
ol
-20 L L L L o
140 160 180 200 220
240 Testing sample
241 Figure 1. Predicted results of the NAPSO-SVM (casel)
242 To make a fair comparison, the maximum generation, population size, minimum fitness value,

243 range of gains, dimension of search space and initial positions are identical for all the algorithms. The
244 maximum number of generations is 100, the minimum fitness value is 0.1, the size of the population
245 is100, and the dimension of the search space is 2. The parameters for NAPSO were set as follows: the
246 inertia weight w=0.9, the acceleration constant ¢, and ¢, are 2, the initial temperature is
247 10000C, the lower limit of temperature is 1°C, the maximum value of velocity is 1, the minimum
248  value of velocity is -1. In GSO algorithm, the light absorption coefficient is 50, the minimum value of
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249 attractiveness is 0.8, the maximum value of attractiveness is 1.0, the value of initial step size factor is
250  0.5. The PSO algorithm has the same inertia weight and acceleration constant as the NAPSO
251  algorithm.

252 Figure.4 presents the comparison results of predicted residuals by the three models. The MAPE
253 value and RMSE value of the three models are listed in Table 2.

80 =—a Predicted value ||
=—a Actual value
60 -
E
£ pf
[
@
9
£
2 20H
>
[a]
[1]8
-20 . . . L L
140 160 180 200 220
254 Testing sample
255 Figure 2. Predicted results of the PSO-SVM (casel)
8o =—a Predicted value ||
=—a Actual value
60| ‘ ’ i I
J h y
=, ) , :
£ f
£ w0}
o |
@ )
o i
£
2 20}
> \
o
[0]8
-20 : . ! 3 N
140 160 180 200 220
256 Testing sample
257 Figure 3. Predicted results of the GSO-SVM (casel)

=—a NAPSO-SVM | |
=—a PSO-SVM
=—a GSO-SVM
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Dynamic error(mm)
o

[&]

=10}

120 140 160 180 200 220
258 Testing sample

259 Figure 4. Comparison of three models for predicted residuals (case 1)
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260 By comparing Figures. 1-3, we find that the NAPSO-SVM model outperforms the PSO-SVM and
261  GSO-SVM model. The prediction performance of NAPSO-SVM is better than GSO-SVM model and
262  accuracy much better than PSO-SVM.

263 The residual curves of the three models are shown in the Figure. 4, The prediction residual curve
264 of the PSO-SVM model is large, ranging from -11 to 8', and the prediction residual of the GSO-SVM
265  model is smaller than the PSO-SVM model. But it is still relatively large, ranging from -8 to 6". The
266  predicted residual of the NAPSO-SVM is smaller than the others and tends to more gentle, ranging
267  from-5to 4 .The results prove that dynamic measurement error prediction ability of NAPSO-SVM
268  model is better than PSO-SVM and GSO-SVM model, and the NAPSO algorithm is an effective
269  method for parameters optimization.

270 To further verify the ability of the three models. Table 2 lists the comparison results between the
271  three models for prediction accuracy indexes.

272 Table 2. Comparison of the index value among the three models (case 1).
MODEL MAPE RMSE
NAPSO-SVM 0.0744 0.1879
PSO-SVM 0.2423 0.4710
GSO-SVM 0.1493 0.3128
273 In Table 2, the MAPE value and RMSE value of the NAPSO-SVM model are smaller than the

274  PSO-SVM and GSO-SVM model. The MAPE value is approximately 0.0744 for NAPSO-SVM model
275  compared with approximately 0.2423 and 0.1493 for the PSO-SVM and GSO-SVM model, respectively.
276  Furthermore, the RMSE value is 0.1876 in the case of NAPSO-SVM model. Compared with the
277  NAPSO-SVM model, the RMSE value of the GSO-SVM model and PSO-SVM model are 0.4710 and
278  0.3128 respectively. In summary, the results of the Table 2 are accorded with the Figure. 4, the
279  NAPSO-SVM model has the best dynamic measurement error prediction ability among the three
280  methods.

281 In case 2, the parameters of each algorithm are essentially the same as the previous case, the
282  prediction results of three models are shown in Figures.5, 6 and 7. Figure.8 shows the comparison
283 results of predicted residuals by three models. The MAPE value and RMSE value of the three models
284  are listed in the Table 3.

0.06 - H Predictled value ||
=—a Actual value
0.05
0.04 +
€
E o3}
_; 0.02 +
N
3 0.01+
0.00 |
-0.01f+
100 165 liO liS léO 12‘5
285 Testing sample
286 Figure 5. Predicted results of the NAPSO-SVM (case 2)
287 In Figures.5-7, when the ratio of training samples and testing samples is approximately 3.5, the

288  prediction curve of the NAPSO-SVM model is closest to the actual value curve, and the prediction
289  curve of the NAPSO-SVM model is approximately the same as the actual value curve. However,
290  unlike the case 1, The prediction results of the PSO-SVM model is better than the PSO-SVM model,
291  but the prediction curves of these two models still lag behind the actual value curve.
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293 Figure 6. Predicted results of the PSO-SVM (case 2)
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295 Figure 7. Predicted results of the GSO-SVM (case2)
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297 Figure 8. Comparison of the predicted residuals of the three models(case2)
298 In Figure.8, the prediction residual of the NAPSO-SVM model is smallest among the three

299  models, ranging from -0.013 to 0.014 mm. The prediction residual of the GSO-SVM model is ranging
300  from -0.035 to 0.026 mm, and the prediction residual of the PSO-SVM model is ranging from -0.032
301  t00.013 mm.
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302 Table 3. Comparison of the index value among the three models (case 2).
MODEL MAPE RMSE
NAPSO-SVM 1.0833 0.0013
PSO-SVM 1.9714 0.0021
GSO-SVM 2.2948 0.0023
303 As Table 3 shows, the MAPE value is approximately 1.0833 for the NAPSO-SVM model

304  compared with approximately 1.9714 and 2.2948 for the PSO-SVM model and GSO-SVM model.
305  NAPSO-SVM model has the smallest RMSE value of the three algorithms, acquiring RMSE value of
306  0.0013 and the RMSE values of the PSO-SVM model and GSO-SVM model are 0.0021 and 0.0023,
307  respectively. The prediction ability of the NAPSO-SVM model is clearly better than the other models,
308  and GSO-SVM model has the worst performance.

309 The results of the two cases show that the NAPSO-SVM model has the best prediction accuracy
310  among the three methods. This indicate that the NAPSO algorithm has the better capability of global
311  search than the other two algorithm, the reason is that the updating of the position and velocity of
312 the particles in the PSO algorithm are dependent too much on current best particle. Compared with
313 the PSO algorithm, the NAPSO algorithm uses the simulated annealing and natural selection
314  mechanism, it is easier jump out of the local trap and search the global optimal solution in the global

315  space.

316 6. Conclusions

317 Dynamic measurement has been a hot area of research for several years, and dynamic
318  measurement error prediction is an useful method to improve the sensor measurement accuracy. In
319  this study, a method of dynamic measurement error prediction based on NAPSO-optimized SVM
320  parameters is proposed. To improve the prediction accuracy, the NAPSO algorithm is used to
321  optimize the SVM parameters to avoid the problems of “over-fitting” and “under-fitting” of SVM.
322 The results of the two cases show that compared with the PSO-SVM and GSO-SVM model, the
323 NAPSO-SVM model has the better prediction accuracy. The proposed method provides a new way
324 for predicting the sensor’s dynamic measurement error and has definite value for application in
325  dynamic measurement. However, like the standard PSO, NAPSO has the intrinsic property
326  randomness. In the future, we plan to study which is the more effective method for improving the
327  prediction results.
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