Effect of the Chemical Composition of Mesoporous Cerium-Zirconium Oxides on the Modification with Sulfur and Gold Species and Their Application in Glycerol Oxidation

Piotr Kaminski 1, 2,*

1 Adam Mickiewicz University in Poznań, Faculty of Chemistry, ul. Umultowska 89b, 61-614 Poznań, Poland; e-mail: piotr.kaminski@amu.edu.pl
2 Wrocław Research Centre EIT+, the Polymer Materials Laboratory, ul. Stabłowicka 147, 54-066 Wrocław, Poland; e-mail: piotr.kaminski@eitplus.pl

* Correspondence: piotr.kaminsk i2905@gmail.com; Tel.: +48-71-734-7112

Abstract: Ceria, zirconia and mixed cerium-zirconium mesoporous oxides were synthesized and used as supports for sulfur and gold species. The materials were characterised using selected advanced techniques (ICP-OES, elemental analysis, XPS, XRD, N2 adsorption and desorption isotherms, UV-vis, ATR-FTIR, TPR-H2, TG-DTA) which allowed monitoring of the oxidation state of metals (cerium and gold) and the surface properties of the catalysts, in particular the concentration of the components on the surface and in the bulk of materials. The interactions between gold, sulfur and metals from oxides were considered. The goal of this work was studied the changes in the chemical composition of materials and the oxidation states of cerium species after the modification of oxides with sulfur and gold species and the estimation of the influence of these changes on the surface properties. The chemical composition of surface affects the mobility of surface oxygen and the oxidation state of cerium, which can play the role of redox sites (e.g. Ce3+/Ce4+ species), and therefore it strongly influences on the adsorption of hydrogen sulfide and then gold loading. Additionally, gold catalysts modified with sulfur species were tested in the reaction of glycerol oxidation in the liquid phase at basic conditions as the test reaction of the catalytic oxidation of organic pollutants from water.

Keywords: ceria; zirconia; gold; sulfur; catalysts characterisation; glycerol oxidation

1. Introduction

Ceria is an oxide characterised of high oxygen storage/transport capacity. This oxide is able to release oxygen under oxygen deficient environment and quickly reoxidize under oxygen rich environment, but these processes are lower effective under high temperatures and reductive conditions. Exhibiting a unique redox property of ceria is based on the shift from its reduced state (Ce3+) to oxidized state (Ce4+) [1]. In the oxidation processes in the gas phase, when cerium oxide is reduced, the oxygen vacancies are refilled with air atmosphere, and then a cyclic redox process can run [2], for example in CO hydrogenation, a certain amount of ceria can remarkably enhance the reducibility of the catalyst due to the defect sites of Ce4+ – O – Ce3+ in the crystal structure. This can explain why ceria modified with gold, palladium and/or copper is applied as a catalyst or a promoter in selected oxidation processes, e.g.: Water Gas Shift (WGS) [3,4], methanol oxidation [5], Volatile Organic Compounds (VOCs) oxidation [6], soot combustion [7].

The addition of zirconia stabilizes ceria, forming a ceria-zirconia solid solution in all composition range and it can improve textural parameters, catalytic activity at lower temperatures and oxygen storage/transport properties [8–12]. The theoretical and experimental studies confirmed that the addition of zirconium to the lattice of ceria induces the severe distortion of the atomic
structures on the reduced and unreduced surface. It has been explained by the formation of oxygen
vacancy around zirconium species and the reduction of two neighboring cerium cations by the
electrons left and it leads to the removing of oxygen atom [13]. This way, the presence of zirconium
atoms improves the mobility of oxygen and oxygen storage/transport properties in ceria-zirconia
solid solutions. Additionally, the interaction of zirconia with other oxides can increase of Lewis acid
sites (LAS) concertation on the surface of catalysts and these acid sites can play crucial role in redox
reactions, e.g. hydrodeoxygenation (HDO) reaction [14–17]. The occurrence of oxygen mobility on
the surface of cerium-zirconium oxides was applied in catalytic processes, e.g. CO oxidation [13],
prefential oxidation (PrOx) of CO [18], the catalytic reduction of NO by CO [19], hydrogen
production by methanol steam reforming [20] or methanol oxidation [21]. It has been reported in
previous papers [22–24] that the catalysts which contain gold species supported on pure ceria or
SBA-15 with ceria and loaded with additives such as copper and zirconium species are
characterised by the strong interactions between each metals, which were based on the electron
transfer between two metals and this process enhanced on the redox properties of catalysts.
Moreover, the introduction of sulfur to the lattice of support and exchanging between sulfur and
oxygen atoms can lead to the growth of redox properties in the catalytic system [25]. It has been
reported [26,27] that gold nanoparticles can be effective produced and stable thanks the
neighborhood of sulfur species on the surface of solid materials, because gold particles were not
aggregate in the presence sulfanilic acid [27]. It was reported [26] that the phenomena of electron
interaction between gold and sulfur species could be investigated and applied to design the
attractive materials for chemical industry, e.g. electroactive polymer monolayers.

The application of the different compositions of materials described in this paper, it was
possible to obtain the catalysts characterised of the different surface and texture properties. For a
better insight into the observed behavior, mesoporous cerium and zirconium oxides were applied
in this study as supports for gold and sulfur species.

Gold loading on mesoporous materials were applied as catalysts in the catalytic oxidation of
many organic compounds [28–30]. The elimination of organic compounds from water, which are
generally created during the variety of industrial processes, is a challenge for a chemical industry,
because these compounds can be the source of environmental pollutants. This is often complicated
by the fact that the real composition of wastewater is often the mixture of different toxic compounds
such as alcohols, aldehydes, hydrocarbons, etc. The development of highly effective catalysts for
stationary and mobile wastewater installations is still the matter of intensive research [28–31]. Gold
supported on different materials such as activated carbons or mesopores oxides (e.g. TiO₂, Al₂O₃,
CeO₂) has shown high activities in the catalytic oxidation of pollutants in the liquid and/or gas phase
[29,31–37]. The electronic state of gold species and the size of gold particles determine the activity
toward catalytic oxidation of organic compounds in such systems. Moreover, gold nanoparticles
supported on reducible oxides can increase the mobility of lattice oxygen atoms involved in the
reaction process.

The main aim of this work was the preparation and deep characterisation of ceria, zirconia and
mixed cerium-zirconium oxides, their modification with the chemical adsorption of hydrogen
sulfide and with gold species. The materials were characterised using selected advanced techniques
to know their physicochemical properties and were tested as the catalysts in the reaction of glycerol
oxidation in the liquid phase. This reaction was applied as the test reaction of the catalytic oxidation
of organic pollutants from water at basic conditions.

2. Materials and Methods

2.1. Preparation of materials

The synthesis of all mesoporous oxides were carried out using the solution of organic
copolymer – Pluronic® P-123 (poly(ethylene glycol)-block-poly(propylene glycol)-block-
poly(ethylene glycol), average Mn ~5800, Sigma-Aldrich) in dried methanol (POCh, >99.8%).
2.1.1. Preparation of ceria

A portion of 0.9308 g (1.60 \(\cdot 10^{-4} \) mol) of Pluronic P-123 (surfactant) was dissolved in 18.4950 g (0.5759 mol) of methanol. P123 was mixed with methanol at room temperature for 1 h. Then a powder of metal source (precursor) – 40.3684 g (0.0930 mol) of cerium(III) nitrate (Ce(NO₃)₃ \(\cdot \) 6 H₂O, \(\geq 99.99\% \), Sigma-Aldrich) was added to this mixture and stirred for 4 h at room temperature. The surfactant/precursor molar ratio was 0.0017. After mixing, a clear colorless solution was obtained. The solution was transferred to three Petri dishes (Ø = 19 cm), and it was dried at 303 K for 14 days, then step by step at 313 K for 24 h, 323 K for 24 h, 333 K for 24 h and 373 K for 24 h (a heating rate for each step was 1 K min\(^{-1}\)). This procedure of very long drying was applied in the order to remove methanol from the mixture of metal salts and Pluronic P-123 and it was assumed that it has to guarantee that the specific surface area will be larger than 100 m\(^2\) g\(^{-1}\). The procedure of drying was based on laboratory tests. The final material was obtained by heating the sample at 673 K for 4 h (a heating rate of 3 K min\(^{-1}\)). The catalyst was in the form of yellow powder.

2.1.2. Synthesis of cerium-zirconium oxides

For the synthesis of mesoporous mixed cerium-zirconium oxides was assumed that 1.0000 g (1.72 \(\cdot 10^{-4} \) mol) of organic template (Pluronic P-123) will be dissolved in 20.0000 g of methanol (0.624 mol, POCh, >99.8%) and the mass of each oxide after its calcination will be 16.0000 g and 100% of cerium in the oxide will be in the form of CeO₂ and the molar nominal ratio of CeO₂:ZrO₂ will be: 4:1, 2:1, 1:1, 1:2 and 1:4. At the beginning, Pluronic P-123 was mixed with methanol at room temperature for 1 h. Then a mixture of metal sources in the form of powder – cerium nitrate (Ce(NO₃)₃ \(\cdot \) 6 H₂O, \(\geq 99.99\% \), Sigma-Aldrich) and zirconium oxonitrate (ZrO(NO₃)₂ \(\cdot \) x H₂O, \(\geq 99.99\% \), Sigma-Aldrich) were added to this mixture and the mixture was stirred for 4 h at room temperature. After mixing, a white colorless solution was obtained. The solution was transferred to three Petri dishes (Ø = ~19 cm), and the procedures of drying and calcination were the same as for pure ceria (the procedures were described in the paragraph 2.1.1. of this paper). The catalysts were in the form of yellow powders. At the final, five catalysts were prepared: CeZrOₓ(4:1), CeZrOₓ(2:1), CeZrOₓ(1:1), CeZrOₓ(1:2) and CeZrOₓ(1:4) in which 0 \(\leq \) x \(\leq \) 2 and the ratio in brackets means the nominal molar ratio between ceria and zirconia in the catalysts.

2.1.3. Synthesis of zirconia

A portion of 1.2987 g (2.24 \(\cdot 10^{-4} \) mol) of Pluronic P-123 was dissolved in 25.9910 g (0.8093 mol) of methanol. P123 was mixed with methanol at room temperature for 1 h. Then a powder of metal source – 30.3304 g (0.1312 mol) zirconium oxonitrate (ZrO(NO₃)₂ \(\cdot \) x H₂O, \(\geq 99.99\% \), Sigma-Aldrich) was added to this mixture and stirred for 4 h at room temperature. After mixing, a white solution was obtained. The solution was transferred to four Petri dishes (Ø = ~19 cm), and the procedures of drying and calcination were the same as for pure ceria (the procedures were described in the paragraph 2.1.1. of this paper). The catalyst was in the form of white powder.

The preparation procedures of all materials were similar, because the goals of this work were the comparison of sulfur-gold catalysts based on different supports, and the preparation of mesoporous oxides, which will be characterised by the specific surface areas larger than 100 m\(^2\) g\(^{-1}\).

2.1.4. Modification of supports with hydrogen sulfide (H₂S)

At the beginning, the portion (8.000 g) of mesoporous oxides in the form of fraction (0.5 < Ø < 1.0 mm) were put into a bed-flow reactor of quartz (Ø = 16 mm and l = 50 mm) and thermal treatment in the flow of inert gas – helium (50 cm\(^3\) min\(^{-1}\), Linde, 5.0 N) for 2 h at 673 K (a heating ramp – 10 K min\(^{-1}\)) to remove water and other contaminations. The adsorption of hydrogen sulfide was performed according to the procedure described below. The samples after thermal treatment in the flow of helium was treatment in the flow of gas mixture H₂S/He (total flow – 50 cm\(^3\) min\(^{-1}\), H₂S/He = 4/96 v/v %, H₂S, Sigma-Aldrich, 99% and He, Linde, 5.0 N) at the beginning at 303 K for 30 minutes then were heated to 673 K for 5 h (a heating ramp – 10 K min\(^{-1}\)). Then physical adsorbed
hydrogen sulfide was removed with samples in flow of pure helium (50 cm3 min$^{-1}$) during cooling from 673 K to 303 K (a cooling ramp – 10 K min$^{-1}$) and at 303 K for 60 minutes. At the final, seven catalysts were prepared: CeO$_x$S$_{(2-x)}$, CeZrO$_x$S$_{(2-x)}$(4:1), CeZrO$_x$S$_{(2-x)}$(2:1), CeZrO$_x$S$_{(2-x)}$(1:1), CeZrO$_x$S$_{(2-x)}$(1:2), CeZrO$_x$S$_{(2-x)}$(1:4) and ZrO$_x$S$_{(2-x)}$ in which x is $0<x<2$ and the ratios in brackets mean the nominal molar ratio between ceria and zirconia in the catalysts.

2.1.5. Modification of samples with gold

A portion of 4.000 g of ceria, zirconia or ceria-zirconia oxides modified with sulfur was used to the introduction of gold according to the literature data [38]. 247 mg of tetrachloroauric acid (HAuCl$_4$ · 3 H$_2$O, Sigma-Aldrich, to achieve nominal 3.0 wt % of gold loading) was added to 392 cm3 of distilled water. Then urea (99%, Fluka, to achieve 0.42 mol dm$^{-3}$) was added. The molar ratio of urea/gold was 100. The solution (pH = 2) was stirred in a quartz flask for 4 h at 353 K. Urea played the role of reducing agent of cationic gold and it stabilized the gold nanocrystals supported on the surface of materials. Then the product was filtered and washed with 85 cm3 of aqua solution of ammonia (25%, NH$_3$·H$_2$O, Avantor, pure to analysis) and 345 cm3 of distilled water to reach pH = 7 and remove chlorides. Then the product was dried at room temperature for 24 h in air.

The final material was obtained after heating in a flow of gas mixture (Ar/H$_2$ = 90/10 v/v %, total volume – 40 cm3 min$^{-1}$) at 373 K for 1 h and then at 573 K for 1 h (a heating rate – 5 K min$^{-1}$). Thus, seven gold catalysts: Au/CeO$_x$S$_{(2-x)}$, Au/CeZrO$_x$S$_{(2-x)}$(4:1), Au/CeZrO$_x$S$_{(2-x)}$(2:1), Au/CeZrO$_x$S$_{(2-x)}$(1:1), Au/CeZrO$_x$S$_{(2-x)}$(1:2), Au/CeZrO$_x$S$_{(2-x)}$(1:4) and Au/ZrO$_x$S$_{(2-x)}$ were made.

2.2. Characterisation of materials

The materials prepared were characterised using ICP-OES analysis, elemental analysis, adsorption/desorption of nitrogen, XRD, XPS, UV-vis spectroscopy, ATR-FTIR spectroscopy, TG-DTA, TEM and TPR by H$_2$.

2.2.1. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) analysis

In order to establish the metal content (cerium, zirconium and gold), the ICP-OES analysis was applied using a Varian ICP-OES VISTA MPX equipment. Prior to analysis, the accurately weighted catalysts portion (around 15-25 mg) was treated first in 2 cm3 of fresh aqua regia (to preparation of solution were taken HCl, 35-38%, POCh and HNO$_3$, 65%, POCh) and brought to reflux on the heating plate in a fume hood and then 1 cm3 of sulfuric acid was added to obtain totally dissolved material. After the following addition of distilled water, the solution was analyzed by ICP-OES.

2.2.2. Elemental analysis

Elemental analyses of the materials were carried out using an Elementar Analyzer Vario EL III. The three accurately weighted catalysts portion (around 20 mg) for each sample were analyzed by thermal decomposition. This method was applied to estimate the content of sulfur.

2.2.3. Adsorption/desorption of nitrogen

The N$_2$ adsorption/desorption isotherms were obtained using an ASAP 2020 Micromeritics at 77 K. The samples were pretreated in situ under vacuum at 363 K for 1 h and then at 573 K for 8 h. The surface area was calculated by the BET method. The pore volume and average of pore volume were determined from BJH method.

2.2.4. X-ray diffraction (XRD)

XRD measurements were carried out on a Bruker AXS D8 Advance diffractometer with Cu K$_\alpha$ radiation (λ = 0.154 nm), with a step size of 0.05° in the wide-angle range (21-81°). XRD analysis was used to try the estimation of the crystallization state and the average size of metallic gold particles using the Scherrer formula [39].
2.2.5. X-ray Photoelectron Spectroscopy (XPS)

Photoelectron spectra were recorded using an Ultra High Vacuum (UHV) System (Specs, Germany). The study was conducted using X-ray Al K_{α} = 1486.6 eV with the parameters of the lamp: 14.5 kV, 20 mA. Measurements were carried out in vacuum of approximately 5.0 10^{-9} mbar in the chamber of the analyzer. The spectra were recorded for the energy range from 1100 eV to 0 eV in increments of 0.4 eV, the energy transition $\text{CAE} = 100$ eV. The XP spectra for metal species were recorded in increments of 0.1 eV, at the energy transition $\text{CAE} = 30$ eV and time counts 50 ms. The number of scans of the range measured was chosen to correspond to a given signal to noise ratio. The powder sample was put on the conductive tape, which was adhered to the carrier surface and positioned in perpendicular to the axis of the analyzer. The X-ray source was set at an angle of 60° to the plane of the surface. The area of the samples analyzed corresponded to the size of the aperture of the analyzer used (large area), ca. 50 mm2. Deconvolution of XP spectra was carried out using OMNIC 8.0™ software. Band intensities were estimated by calculating the integral of each band after smoothing and baseline correction, then set the deconvolution parameters for the experimental curve using the software – Gaussian function, signal sensitivity: small and base line: linear. Atomic ratios were computed from the intensity ratios normalized by atomic sensitivity factors. An estimated error of ±0.1 eV can be assumed for all measurements.

2.2.6. Ultraviolet-visible spectroscopy (UV-vis)

The spectra were recorded for fresh samples on a Varian-Cary 300 Scan UV-vis spectrophotometer. Powder samples were put into a cell with a quartz window. The measurements were conducted in the range of 800-190 nm. Spectralon™ was used as the reference material. The intensity and the positions of UV-vis bands in the spectra can give the information about the coordination of cerium, zirconium and gold species and they can prove the oxidation state of metals.

2.2.7. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR)

The ATR-FTIR spectra were recorded using the Vertex 70 (Bruker) FTIR spectrophotometer (resolution 4 cm$^{-1}$, number of scans = 64, in the range 4000-400 cm$^{-1}$). Samples were put into the Platinum ATR diamond F vacuum A225/Q equipment which was connected to the spectrophotometer. Spectra were recorded for all samples at room temperature (RT). The spectrum without any sample („background spectrum”) was scanned and subtracted from all recorded spectra. The spectra were recorded before and after the thermal treatment of samples at 373 K for 24 h in air conditions.

2.2.8. Thermogravimetric and differential thermal analysis (TG-DTA)

Thermogravimetric analyses of the solids were carried out in air atmosphere using SETARAM SETSYS-12 apparatus with a temperature ramp 5 K min$^{-1}$.

2.2.9. Transmission electron microscopy (TEM)

The powders were deposited on a grid covered with a holey carbon film and transferred to JEOL 2000 electron microscope operating at 80 kV. Before measurement, samples were made in the form of a suspension in 1-butanol. The size of particles was estimated using ImageJ™ software.

2.2.10. Temperature programmed reduction (TPR-H$_2$)

The temperature-programmed reduction (TPR) of all samples was carried out using the flow of mixture gases H$_2$ and He (10 vol. % H$_2$ in He) as a reducing agent (flow rate = 40 cm3 min$^{-1}$). A sample (20 mg) in the form of powder was packed in a quartz tube (\varnothing = 5 mm), treated in a flow of helium at 373 K for 4 h and cooled to room temperature (RT). Then the sample was heated at a rate of 5 K min$^{-1}$ to 1073 K in the presence of the reducing mixture. Hydrogen consumption was measured by a thermal conductivity (TCD) detector.
2.3. Catalytic activity – glycerol oxidation

The glycerol oxidation experiments were performed in a 30 cm³ batch reactor made by Parr Company (USA). The oxidation reactions were carried out with oxygen under pressure 6 atm, at 333 K. 0.200 g of NaOH (POCh, 99%, NaOH/glycerol molar ratio = 2) and 0.050 g of gold catalyst were added to aqua solution of glycerol (0.230 g glycerol, Sigma-Aldrich, 99%). Glycerol was dissolved earlier in 25.000 g of distilled water.

The reaction mixture was stirred at 600 rpm for 5 h at selected temperature. The quantitative analyses of the reaction mixtures were performed by high performance liquid chromatography (HPLC). The analysis was carried out using a HPLC chromatograph (Waters 600) equipped with ultraviolet (UV) and refractive index (RI) detectors. The reactant and the products were separated on an ion exclusion column (IC-Pak Ion Exclusion 7.8×300 mm – Waters) heated at 308 K. The eluent was a solution of H₂SO₄ (0.0004 M). The samples were taken at the end of the reactions, 1 ml of solution after reaction was injected and 5 μl of this solution was analyzed.

3. Results and Discussion

3.1. Chemical composition of materials

The contents of chemical elements in the catalysts were estimated using ICP-OES, elemental analysis and XPS measurements (Tables 1-4). The first technique (ICP-OES) allowed the evaluation of cerium, zirconium and gold contents in the bulk materials (Tables 1 and 2). The second (elemental analysis) was used to the estimation of sulfur content in the bulk materials (Table 3).

Table 1. The comparison between real and nominal molar ratio CeO₂:ZrO₂ in prepared oxides. The results were estimated using ICP-OES. It was assumed that 100% of Ce species are in the form of CeO₂.

<table>
<thead>
<tr>
<th>support before modification</th>
<th>nominal molar ratio CeO₂:ZrO₂</th>
<th>real molar ratio CeO₂:ZrO₂</th>
<th>after modification with Au</th>
<th>after modification with S</th>
<th>after modification with S and Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeZrO₅(4:1)</td>
<td>4.00</td>
<td>7.06</td>
<td>4.97</td>
<td>4.80</td>
<td>4.12</td>
</tr>
<tr>
<td>CeZrO₅(2:1)</td>
<td>2.00</td>
<td>3.33</td>
<td>2.48</td>
<td>2.31</td>
<td>2.20</td>
</tr>
<tr>
<td>CeZrO₅(1:1)</td>
<td>1.00</td>
<td>1.86</td>
<td>1.22</td>
<td>1.18</td>
<td>1.39</td>
</tr>
<tr>
<td>CeZrO₅(1:2)</td>
<td>0.50</td>
<td>0.70</td>
<td>0.56</td>
<td>0.94</td>
<td>0.62</td>
</tr>
<tr>
<td>CeZrO₅(1:4)</td>
<td>0.25</td>
<td>0.34</td>
<td>0.33</td>
<td>0.44</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Table 2. The content of gold and size of its particles.

<table>
<thead>
<tr>
<th>catalyst</th>
<th>gold concentration, wt. %</th>
<th>crystal size of Au particles, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nominal</td>
<td>from ICP-OES</td>
</tr>
<tr>
<td>Au/CeOₓSₓ(2:0)</td>
<td>3.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Au/CeZrOₓSₓ(4:1)</td>
<td>3.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Au/CeZrOₓSₓ(2:1)</td>
<td>3.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Au/CeZrOₓSₓ(1:1)</td>
<td>3.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Au/CeZrOₓSₓ(1:2)</td>
<td>3.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Au/CeZrOₓSₓ(1:4)</td>
<td>3.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Au/ZrOₓSₓ(2:0)</td>
<td>3.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

a from the Scherer’s formula, calculated for the gold particles >5 nm
b the TEM images can give the information about all small crystals loaded on the surface of materials
The last (XPS) provided the information about gold (Table 2), cerium, zirconium, sulfur and oxygen contents on the external surface of materials and it was applied to define the stoichiometric formulas of catalysts (Table 4). The results of ICP-OES analysis show the difference between the nominal (assumed) and real (measured) contents of metals in the materials (Table 1). The real molar ratio between ceria and zirconia for all supports was around 50% higher than the nominal molar ratio. This difference can suggest the inhomogeneous composition of materials and/or the presence of oxygen vacancies in the crystal lattice of catalysts which can be created by the partial removal of oxygen atoms from the crystal structure.

Table 3. The influence of texture parameters on sulfur species content in samples.

<table>
<thead>
<tr>
<th>catalyst</th>
<th>μmol S / g of catalyst</th>
<th>μmol S / m² of catalyst surface</th>
<th>mol S / m³ of catalyst volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeOₓS(2-x)</td>
<td>1197</td>
<td>21.0</td>
<td>74.8</td>
</tr>
<tr>
<td>CeZrOₓS(2-x)(4:1)</td>
<td>1127</td>
<td>16.3</td>
<td>56.3</td>
</tr>
<tr>
<td>CeZrOₓS(2-x)(2:1)</td>
<td>1046</td>
<td>17.7</td>
<td>58.1</td>
</tr>
<tr>
<td>CeZrOₓS(2-x)(1:1)</td>
<td>973</td>
<td>18.0</td>
<td>121.6</td>
</tr>
<tr>
<td>CeZrOₓS(2-x)(1:2)</td>
<td>271</td>
<td>13.5</td>
<td>135.3</td>
</tr>
<tr>
<td>CeZrOₓS(2-x)(1:4)</td>
<td>320</td>
<td>13.3</td>
<td>106.7</td>
</tr>
<tr>
<td>CeOₓS(2-x)</td>
<td>409</td>
<td>9.5</td>
<td>68.2</td>
</tr>
<tr>
<td>Au/CeOₓS(2-x)</td>
<td>342 (29%)</td>
<td>3.9 (19%)</td>
<td>20.1 (27%)</td>
</tr>
<tr>
<td>Au/CeZrOₓS(2-x)(4:1)</td>
<td>331 (29%)</td>
<td>3.7 (23%)</td>
<td>16.6 (29%)</td>
</tr>
<tr>
<td>Au/CeZrOₓS(2-x)(2:1)</td>
<td>391 (37%)</td>
<td>5.4 (30%)</td>
<td>23.0 (40%)</td>
</tr>
<tr>
<td>Au/CeZrOₓS(2-x)(1:1)</td>
<td>489 (50%)</td>
<td>8.0 (44%)</td>
<td>61.1 (50%)</td>
</tr>
<tr>
<td>Au/CeZrOₓS(2-x)(1:2)</td>
<td>181 (67%)</td>
<td>10.1 (74%)</td>
<td>45.3 (33%)</td>
</tr>
<tr>
<td>Au/CeZrOₓS(2-x)(1:4)</td>
<td>139 (43%)</td>
<td>6.0 (45%)</td>
<td>46.3 (43%)</td>
</tr>
<tr>
<td>Au/ZrOₓS(2-x)</td>
<td>199 (49%)</td>
<td>4.9 (51%)</td>
<td>33.2 (49%)</td>
</tr>
<tr>
<td>ZrOₓ modified with H₂S²</td>
<td>65 (32.5)</td>
<td>2.7 (13.5)</td>
<td>no data</td>
</tr>
</tbody>
</table>

1 in brackets are % of sulfur which was still after modification with gold
2 comparison for sample presented in [40], but the adsorption of hydrogen sulfide was carried out for 0.1 g of pure zirconia (which a specific surface area was 24 m² g⁻¹) for 1 h at 673 K and in the bracket was put a hypothetical amount after 5 h

The results of XPS study can evidence the presence of oxygen vacancies, because the value of stoichiometric coefficient for oxygen designated by this method is lower than the assumed stoichiometric coefficient (Table 4). The total introduction of sulfur species to oxides was estimated using elemental analysis (Table 3). The highest sulfur content (1197 μmol S g⁻¹) and the highest concentration of sulfur on the surface of materials (21 μmol S m⁻²) was measured for support based on pure ceria. In the case of the highest concentration of sulfur in the total volume of materials, this parameter was obtained by CeZrOₓS(2-x)(1:2) (135.3 μmol S m⁻³). The real molar ratio between CeO₂ and ZrO₂ was 0.94 in this support and the amount of sulfur per m³ of catalyst was higher than in the case of materials based on pure ceria or pure zirconia. It can suggest the presence of the synergetic effect based on the electron interaction between cerium and zirconium species can lead to higher yield of hydrogen sulfide (H₂S) adsorption. It confirmed the results of the theoretical and experimental studies, that the presence of zirconium species in the crystal structure of ceria can induce the formation of oxygen vacancy around zirconium species [13]. These vacancies can be the places, where sulfur atoms are located during the chemical adsorption of hydrogen sulfide. The presence of zirconium species had also positive effect on the stability of sulfur species after the
Additionally, the materials with high zirconium content were characterised of smaller average pore size than the materials with high cerium content (Table 4). The X-ray photoelectron spectroscopy (XPS) was applied to measure metals content on the external surface of catalysts (to around 3-10 nm into the studied materials). The comparison of the results of gold content estimated using the ICP-OES and XPS techniques was used to the description of the location of gold species in studied catalysts (Table 2). It was observed the increase of gold content on the external surface with the growth of zirconium content. It can be explained by the decrease of average pore diameter with the increase of zirconium concentration, which was confirmed by the results of the adsorption and desorption of nitrogen (Table 4). It could be also by the partial blocking of pores by gold particles, which was evidenced by the increase of average metallic gold particles loading on the surface of materials with the growth of zirconium content estimated using XRD and TEM (Table 2). Gold species were preferentially localized on the surface of all materials, whereas, the location of zirconium species depended strongly on the presence of gold in the bulk of materials.

The prepared cerium-zirconium oxides were studied using the XPS method to the determination of stoichiometric formulas and oxygen vacancies in the crystal lattice of materials.

Table 4. Stoichiometric formulas of oxides estimated using XPS measurements and texture parameters.

<table>
<thead>
<tr>
<th>catalyst</th>
<th>stoichiometric formula</th>
<th>surface area, m² g⁻¹</th>
<th>total pore volume, cm³ g⁻¹</th>
<th>average pore diameter, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeO₂</td>
<td>Ce₁,₀O₂,₀</td>
<td>no data</td>
<td>104</td>
<td>0.18</td>
</tr>
<tr>
<td>CeOₓSₙ (2-x)</td>
<td>Ce₁,₀OₓSₙ (2-x)</td>
<td>Ce₁,₀Oₓ₁,₀Sₙ (2-x)</td>
<td>57</td>
<td>0.16</td>
</tr>
<tr>
<td>Au/CeOₓSₙ (2-x)</td>
<td>Au/Ce₁,₀Oₓ₁,₀Sₙ (2-x)</td>
<td>Au₁,₀/Ce₁,₀Oₓ₁,₀Sₙ (2-x)</td>
<td>87</td>
<td>0.17</td>
</tr>
<tr>
<td>CeZrO₄ (4:1)</td>
<td>Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>94</td>
<td>0.22</td>
</tr>
<tr>
<td>CeZrO₄ (2:1)</td>
<td>Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>67</td>
<td>0.20</td>
</tr>
<tr>
<td>Au/CeZrO₄ (2:1)</td>
<td>Au/Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Au₁,₀/Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>90</td>
<td>0.20</td>
</tr>
<tr>
<td>CeZrO₄ (1:1)</td>
<td>Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>87</td>
<td>0.18</td>
</tr>
<tr>
<td>CeZrO₄ (1:2)</td>
<td>Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>59</td>
<td>0.18</td>
</tr>
<tr>
<td>Au/CeZrO₄ (1:2)</td>
<td>Au/Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Au₁,₀/Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>73</td>
<td>0.17</td>
</tr>
<tr>
<td>CeZrO₄ (1:4)</td>
<td>Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>73</td>
<td>0.08</td>
</tr>
<tr>
<td>CeZrO₄ (2:1)</td>
<td>Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>54</td>
<td>0.08</td>
</tr>
<tr>
<td>Au/CeZrO₄ (2:1)</td>
<td>Au/Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Au₁,₀/Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>61</td>
<td>0.08</td>
</tr>
<tr>
<td>CeZrO₄ (1:2)</td>
<td>Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>73</td>
<td>0.03</td>
</tr>
<tr>
<td>CeZrO₄ (1:1)</td>
<td>Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>20</td>
<td>0.02</td>
</tr>
<tr>
<td>Au/CeZrO₄ (1:1)</td>
<td>Au/Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Au₁,₀/Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>18</td>
<td>0.04</td>
</tr>
<tr>
<td>CeZrO₄ (1:4)</td>
<td>Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>23</td>
<td>0.03</td>
</tr>
<tr>
<td>Au/CeZrO₄ (1:4)</td>
<td>Au/Ce₀,₂Zr₁,₆O₄,₀</td>
<td>Au₁,₀/Ce₀,₂Zr₁,₆O₄,₀ (1.10)</td>
<td>24</td>
<td>0.03</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>Zr₁,₀O₂,₀</td>
<td>no data</td>
<td>46</td>
<td>0.06</td>
</tr>
<tr>
<td>ZrO₄ (2-x)</td>
<td>Zr₁,₀O₄ (2-x)</td>
<td>Zr₁,₀O₄ (2-x) (1.10)</td>
<td>43</td>
<td>0.06</td>
</tr>
<tr>
<td>Au/ZrO₄ (2-x)</td>
<td>Au₁,₀/Zr₁,₀O₄ (2-x)</td>
<td>Au₁,₀/Zr₁,₀O₄ (2-x)</td>
<td>41</td>
<td>0.06</td>
</tr>
</tbody>
</table>

1 x – stoichiometric coefficient can be 0 < x < 2
2 in brackets is the sum of the values of stoichiometric coefficients for oxygen and sulfur
3 calculating by BET method
4 calculating with BJH adsorption
stoichiometric formulas of oxides before and after their modification with sulfur and gold species were shown in Table 4. The measured contents of oxygen on the external surfaces of materials were lower than their nominal (assumed) contents, independently of the presence or the absence of sulfur species. It can suggest the presence of oxygen vacancies in the mesoporous oxides on the external surface, also before their modification with hydrogen sulfide.

The lower values of stoichiometric coefficient for oxygen in the chemical formulas were noted for the catalysts based on the mixed cerium-zirconium oxides, than pure ceria or pure zirconia. The addition of sulfur led to the decrease of oxygen content and it can be explained by the exchanging between oxygen and sulfur atoms from the crystal structure of oxides during the chemical adsorption of hydrogen sulfide. The possibility of exchanging between these two elements was reported in the literature [40–43].

3.2. Characterisation of materials

3.2.1. Texture and structure properties

The positive effect of the addition cerium species to support on the texture parameters (the growth of surface area, total pore volume and average pore size) was confirmed by the results of the adsorption and desorption of nitrogen (Table 4). It can be explained by the better dissolution of cerium nitrate in the solution of methanol and Pluronic P-123, than zirconium oxonitrate during the preparation of oxides and also the longer crystallization of ceria than zirconia. It can be a reason, why the real molar ratios between ceria and zirconia on the external surface of catalysts, which were estimated using the XPS, were higher, than the nominal molar ratios (Table 1). The modification of oxides by sulfur species led to the significant decrease of surface area (from around 30% in the case of pure zirconia to around 45% in pure ceria) and the increase of average pore diameter (excluding CeZrOx(1:4) and ZrO2).

It suggests that hydrogen sulfide was adsorbed mainly in the internal pores of materials. After the modification of materials with gold, the surface area increased to the values similar before the modification with hydrogen sulfide. It can be explained by the partial removal of sulfur species during the thermal treatment of supports after gold loading and the results of elemental analysis can confirm this phenomena (Table 3). The XRD diffraction analysis showed that ceria in all samples with cerium were in the form of cubic (JCPDS ICDD PDF Card–00-043-1002) and zirconia in the samples with zirconium species crystallized in the form of monoclinic (JCPDS ICDD PDF Card–00-007-0343) or tetragonal (JCPDS ICDD PDF Card–00-042-1164) (Fig. 1). It is worth to note, that very small changes in the XRD patterns are observed after the modification of oxides with hydrogen sulfide, because the position and intensities of reflections are very similar before and after the treatment of hydrogen sulfide (excluding CeZrOx(1:1)).
It is worth to note, that the XRD method can be used to estimate the size of crystal phase of particles, which are larger than 5 nm. It means that particles, which are smaller than 5 nm, cannot give any reflections in the XRD patterns. The reflections due to metallic gold particles were observed in the XRD patterns recorded for all samples modified with this metal (Fig. 1). The average size of metallic gold particles was calculated using the Scherrer's formula (Table 2) [39]. The results show that the increase of specific surface area (Table 4) and cerium content (Table 1) had positive effect on the decrease of the average size of gold particles, but this correlation was not linear, because gold particles were much smaller in the case of Au/CeZrO$_x$S$_{2-x}$(1:2), than Au/CeZrO$_x$S$_{2-x}$(1:1) (in the case of gold particles estimated using the Scherrer’s formula [39]). It can be explained by the changes in the average size of pore diameter (Table 4). The decrease of pore diameters favored the agglomeration of gold on the external surface of catalysts. The comparison of gold content in the bulk and on the external surface of materials shows that gold was preferential located on the external surface in all catalysts (Table 2), especially in Au/ZrO$_x$S$_{2-x}$.

The TEM images confirmed the presence of metallic gold particles in the materials modified with gold and the mesoporous structure of the obtained catalysts (Table 2 and Fig. S1). The results obtained using TEM show that the increase of zirconia content in mixed cerium-zirconium oxides had positive effect on the decrease of the average gold particles and better dispersion of gold particles (from 5.3 nm in Au/CeO$_x$S$_{2-x}$(1:1) to 4.7 nm in Au/CeO$_x$S$_{2-x}$(1:4)). It can suggest that the direct interaction between gold, sulfur and zirconium species can protect gold particles in their
agglomeration. It means that the size of gold particles loading on ceria, zirconia and mixed cerium-zirconium oxides can be controlled by the chemical composition of supports.

Fig. 2. XP spectra recorded for Ce 3d species for selected oxides before (support) and after modification with sulphur (H$_2$S) and gold species (Au). The spectra were recorded for the catalysts based on: [A] CeZrO$_x$(4:1) and [B] CeZrO$_x$(1:1).

3.2.2. The oxidation state of metal species

The main form of cerium species on the external surface of studied samples was Ce$^{4+}$ (Table 5). The occurred differences between the catalysts can be explained by the partial reduction of cerium species (from Ce$^{4+}$ to Ce$^{3+}$) during the flow of inert gas (helium) before the modification of materials with hydrogen sulfide. The phenomena of cerium species reduction during the activation of catalysts in the flow of inert gas was explained in earlier studies [24]. The presence of zirconium species in the support led to the easier reduction of cerium species in the mixed oxides before their modification with sulfur and gold species. In the case of mixed cerium-zirconium oxides modified with sulfur species, the increase of zirconium content promoted also the reduction of cerium species.

The distribution of metallic gold (Au0) species estimated using the XPS method was higher in the catalysts based on mixed cerium-zirconium oxides than pure ceria or zirconia (Table 5). It can suggest the presence of synergetic effect supported on the electron interaction between cerium and...
zirconium atoms, which led to the reduction of gold species. In the case of pure ceria or zirconia modified with sulfur and gold, the distribution of anionic gold species on the external surface of metallic gold particles \((\text{Au}^0)\) was higher than in the mixed cerium-zirconium oxides (Tables 5 and 6). It is worth to note, that in earlier study [24], gold loading on the external surface of ceria, zirconia and mixed cerium-zirconium oxides was in the form of metallic \((\text{Au}^0)\) and cationic species \((\text{Au}^\delta^+\)). The anionic species \((\text{Au}^0)^\delta^-\) were current only in the bimetallic copper-gold catalysts [24].

It suggests that the sulfur species can play the same role as copper species in the bimetallic copper-gold catalysts. Sulfur species (e.g. as thiol groups \(-\text{SH}\)) can reduce gold species and they are oxidized to sulfate groups (e.g. as like sulfonic groups \(-\text{SO}_3\)). The results of TG-DTA, XPS and ATR-FTIR measurements confirmed the presence of both groups in the materials modified with hydrogen sulfide.

The mixed oxides modified with sulfur were characterised also by the lower values of stoichiometric coefficient of oxygen in chemical formulas estimated using XPS than pure ceria or zirconia (Table 4). The low value of stoichiometric coefficient of oxygen could suggest the presence of vacancies in external surface.
Table 5. Distribution of species from XPS study and the binding energy (BE) and the form of species on the external surface of samples.

<table>
<thead>
<tr>
<th>catalyst</th>
<th>distribution of species, %</th>
<th>binding energy (BE) and form of species, eV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ce species</td>
<td>Au species</td>
</tr>
<tr>
<td></td>
<td>Ce(^{3+})</td>
<td>Ce(^{4+})</td>
</tr>
<tr>
<td>CeO(_2)</td>
<td>n.d.(^1)</td>
<td>n.d.(^1)</td>
</tr>
<tr>
<td>CeO(x)S({2-x})</td>
<td>48 52</td>
<td>- - 7 93</td>
</tr>
<tr>
<td>Au/CeO(x)S({2-x})(^2)</td>
<td>31 69 17 83 26 74</td>
<td>82.4</td>
</tr>
<tr>
<td>CeZrO(_2)(4:1)</td>
<td>29 71</td>
<td>- - - - - - -</td>
</tr>
<tr>
<td>CeZrO(x)S({2-x})(4:1)</td>
<td>26 74</td>
<td>- - 11 89</td>
</tr>
<tr>
<td>Au/CeZrO(x)S({2-x})(4:1)</td>
<td>36 64 3 97 29 71</td>
<td>82.4</td>
</tr>
<tr>
<td>Au/CeZrO(x)S({2-x})(4:1)(^2)</td>
<td>37 63 0 100 6 94</td>
<td>- - 84.3</td>
</tr>
<tr>
<td>CeZrO(_2)(2:1)</td>
<td>22 78</td>
<td>- - - - - - -</td>
</tr>
<tr>
<td>CeZrO(x)S({2-x})(2:1)</td>
<td>33 67</td>
<td>- - 11 89</td>
</tr>
<tr>
<td>Au/CeZrO(x)S({2-x})(2:1)</td>
<td>25 75 7 93 24 76</td>
<td>82.3</td>
</tr>
<tr>
<td>Au/CeZrO(x)S({2-x})(2:1)(^2)</td>
<td>32 68 7 93 8 92</td>
<td>82.5</td>
</tr>
<tr>
<td>CeZrO(_2)(1:1)</td>
<td>31 69</td>
<td>- - - - - - -</td>
</tr>
<tr>
<td>CeZrO(x)S({2-x})(1:1)</td>
<td>34 66</td>
<td>- - 20 80</td>
</tr>
<tr>
<td>Au/CeZrO(x)S({2-x})(1:1)</td>
<td>32 68 4 96 28 72</td>
<td>82.3</td>
</tr>
<tr>
<td>Au/CeZrO(x)S({2-x})(1:1)(^2)</td>
<td>32 68 0 100 15 85</td>
<td>- - 83.7</td>
</tr>
<tr>
<td>CeZrO(_2)(1:2)</td>
<td>26 74</td>
<td>- - - - - - -</td>
</tr>
<tr>
<td>CeZrO(x)S({2-x})(1:2)</td>
<td>30 70</td>
<td>- - 20 80</td>
</tr>
<tr>
<td>Au/CeZrO(x)S({2-x})(1:2)</td>
<td>38 62 10 90 20 80</td>
<td>82.9</td>
</tr>
<tr>
<td>Au/CeZrO(x)S({2-x})(1:2)(^2)</td>
<td>36 64 0 100 13 87</td>
<td>- - 83.7</td>
</tr>
<tr>
<td>CeZrO(_2)(1:4)</td>
<td>31 69</td>
<td>- - - - - - -</td>
</tr>
<tr>
<td>CeZrO(x)S({2-x})(1:4)</td>
<td>36 64</td>
<td>- - 18 82</td>
</tr>
<tr>
<td>Au/CeZrO(x)S({2-x})(1:4)</td>
<td>37 63 8 92 19 81</td>
<td>82.4</td>
</tr>
<tr>
<td>Au/CeZrO(x)S({2-x})(1:4)(^2)</td>
<td>32 68 16 84 7 93</td>
<td>82.9</td>
</tr>
<tr>
<td>ZrO(_2)</td>
<td>- - - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>ZrO(x)S({2-x})</td>
<td>- - - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>Au/ZrO(x)S({2-x})</td>
<td>- - - - - - -</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>Au/ZrO(x)S({2-x})(^2)</td>
<td>- - - - - - -</td>
<td>- - - - - -</td>
</tr>
</tbody>
</table>

\(^1\) n.d. – no data
\(^2\) after glycerol oxidation at 333 K for 5 h at basic conditions
Fig. 4. XP spectra recorded for Au 4f species for selected Ce-Zr oxides modified with S and Au.

Table 6. The content of chemical elements on external surface before and after the modification of supports with gold species.

<table>
<thead>
<tr>
<th>support</th>
<th>Au before</th>
<th>Au after</th>
<th>S before</th>
<th>S after</th>
<th>Ce before</th>
<th>Ce after</th>
<th>Zr before</th>
<th>Zr after</th>
<th>O before</th>
<th>O after</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeOxS${(2-x)}$</td>
<td>-</td>
<td>1.2</td>
<td>8.9</td>
<td>4.4</td>
<td>35.9</td>
<td>47.0</td>
<td>-</td>
<td>-</td>
<td>55.1</td>
<td>47.3</td>
</tr>
<tr>
<td>CeZrOxS${(2-x)}$(4:1)</td>
<td>-</td>
<td>2.4</td>
<td>6.4</td>
<td>6.1</td>
<td>42.3</td>
<td>37.0</td>
<td>3.2</td>
<td>2.7</td>
<td>48.1</td>
<td>51.7</td>
</tr>
<tr>
<td>CeZrOxS${(2-x)}$(2:1)</td>
<td>-</td>
<td>1.3</td>
<td>6.3</td>
<td>6.8</td>
<td>29.6</td>
<td>32.4</td>
<td>18.4</td>
<td>20.9</td>
<td>45.6</td>
<td>38.6</td>
</tr>
<tr>
<td>CeZrOxS${(2-x)}$(1:1)</td>
<td>-</td>
<td>1.6</td>
<td>5.5</td>
<td>4.5</td>
<td>23.5</td>
<td>23.7</td>
<td>21.4</td>
<td>20.6</td>
<td>49.5</td>
<td>49.6</td>
</tr>
<tr>
<td>CeZrOxS${(2-x)}$(1:2)</td>
<td>-</td>
<td>4.4</td>
<td>3.2</td>
<td>3.1</td>
<td>25.0</td>
<td>25.4</td>
<td>23.3</td>
<td>12.7</td>
<td>48.6</td>
<td>54.4</td>
</tr>
<tr>
<td>CeZrOxS${(2-x)}$(1:4)</td>
<td>-</td>
<td>3.9</td>
<td>1.6</td>
<td>2.2</td>
<td>9.2</td>
<td>9.5</td>
<td>34.8</td>
<td>33.9</td>
<td>54.5</td>
<td>50.5</td>
</tr>
<tr>
<td>ZrOxS${(2-x)}$</td>
<td>-</td>
<td>5.6</td>
<td>2.1</td>
<td>5.9</td>
<td>-</td>
<td>-</td>
<td>41.7</td>
<td>36.0</td>
<td>56.2</td>
<td>52.5</td>
</tr>
</tbody>
</table>

1the element content (at %) calculated estimated using XPS analysis

The XPS spectra (Figures 2-4 and S2-S5) were recorded for the assessment of oxidation state of chemical elements, and proved the changes in the contents of oxygen and sulfur. The increase of sulfur content (Table 3) led to the decrease of gold content on external surface (Table 2).
The comparison of zirconium and sulfur contents showed that the growth of zirconium concentration on external surface led to the decrease of sulfur on the surface of materials. The
The molar ratio between ceria and zirconia around 1 in mixed oxides led to the highest sulfur content (on the external surface) on square meter of materials modified with gold species. The lack of linear correlation between sulfur content and cerium or zirconium content proved that the chemical composition of supports influenced on the surface parameters. This parameter could play a crucial role in the possibility of the migration of gold species to the bulk of materials and the agglomeration of sulfur species on the external surface during the thermal adsorption of hydrogen sulfide.

The largest surface specific area of materials were measured for the materials based on pure ceria CeO$_2$ and mixed oxide CeZrO$_{4:1}$. The decrease of specific surface area below 30 m2 g$^{-1}$ and the average pore size below 9.0 nm (in the case of CeZrO$_{S_{2-x}O}(1:2)$ and CeZrO$_{S_{2-x}O}(1:4)$) led to the increase of gold content (above 3.0 at. % and sulfur below 3.5 at. %). If the specific surface area was around 40 m2 g$^{-1}$ and the average pore size was around 6.0 nm (in ZrO$_{S_{2-x}}$), the gold and sulfur contents on the external surface were higher. It can suggest that the presence of zirconium species had positive effect on the migration of gold and sulfur species on the external surface. The XP spectra for O 2p region showed that the chemical composition of supports influenced on the distribution of the bands due to oxygen species (Fig. 3). The high cerium content in the mixed cerium-zirconium oxides led to the shift of a main band to the lower values of binding energy (BE) and the lower distribution of the area of band at 531-532 eV.

![Fig. 6. UV-vis spectra of selected materials ([A] ceria CeO$_2$, [B] ceria-zirconia CeZrO$_{4:1}$, [C] zirconia ZrO$_2$) before and after modification of H$_2$S and after Au deposition.](image)

It can suggest stronger interaction between oxygen and zirconium species and easier removal from the crystal structure of oxygen atoms which were in the neighborhood of cerium atoms. The...
stoichiometric formulas (estimated using XPS study) confirmed the easier creation of oxygen vacancies in the oxides with higher cerium content (Table 4). The XP spectra of Au 4f region recorded for selected gold catalysts (Fig. 4) showed that presence of cerium can lead to the shift of the bands in the XP spectra to the lower values of binding energy (Table 6). It can be explained by the stronger interaction between cerium and gold species and easier reducibility of cerium species confirmed by TPR by H₂ study.

UV-vis spectroscopy is a method, which can be used to the estimation of oxidation state and the coordination of metals. Figures 6 and S6 display the UV-vis spectra of selected calcined catalysts studied in this work. In the case of samples with cerium species, the bands in the range of 200-400 nm can be due to the ligand-metal charge transfer (LMCT) between oxygen ions (O₂⁻) to cerium cations (Ce⁴⁺). An according to the literature data [13,44] the position of a band coming from ligand to metal charge transfer depends on the ligand field symmetry surrounding the cerium center. It can explain why the charge transfer from oxygen ions to cerium cations requires higher energy of tetra-coordinated cerium cations than that of e.g. hexa-coordinated or octa-coordinated species. In the UV-vis spectra recorded for the materials with cerium species are seen tree bands at around 225, 265 and 350 nm in the UV-vis spectra recorded for the catalysts with cerium (Fig. 6A and 6B) can be assigned to the different LMCT: in crystalline ceria (from O₂⁻ to Ce⁴⁺), from oxygen species O₂⁻ to cerium cations Ce⁵⁺ in tetrahedral coordination and with a higher coordination number than four, respectively. The shape of the UV-vis spectra recorded for samples with cerium species after modification with hydrogen sulfide changed and the intensity of the bands decreased, but the band at around 225 nm is not covered by the band at around 265 nm.

The UV-vis spectra recorded for samples based on zirconia (Fig. 6C) show a band around 230 and 280 nm which can be due to the LMCT from oxygen ions (O₂⁻) to zirconium ions (Zr⁴⁺) with octahedral configuration in zirconia crystallites. In the case of catalysts based on pure zirconia, after its modification with sulfur species, the intensity of band at around 292 nm increased significantly. For support with sulfur, the band at ca. 220 nm is visible. It can suggest the presence of the new kind of coordination of zirconium species by sulfur and/or oxygen atoms.

3.2.3. The form of sulfuric species

The XPS, TG-DTA, TPR by H₂ and ATR-FTIR measurements were applied to the identification of the form of sulfuric species. The comparison of selected XP spectra recorded for the region of sulfur species (S 2p) (Fig. S1) showed the shift of binding energy (BE) to higher values after the modification of samples with gold species (Table 5). An according to the literature data [57], the bands of XPS spectra at around 168 eV could be correspond to sulfur species as oxidized sulfur groups. It was published in [59–61] that the band at 168.1 eV can be assigned to the binding energy of sulfur in sulfate (S=O) groups, respectively and these groups are generated in the presence of oxygen. It was published in [59–61] that the band at 168.1 eV can be assigned to the binding energy of sulfur in
sulfonic groups (-SO₃H). The results of BE present in Table 5 showed that after the modification of oxides with hydrogen sulfide, sulfonyl and/or sulfonic groups could be located on the external surface of materials. The increase of zirconium content favored the presence of sulfonyl groups (S-O) and higher cerium content led to the growth of the distribution of sulfate groups (S=O). These differences can be explained by the changes in the coordination of metal (cerium and zirconium) species and the oxidation state of cerium species. The loading of gold on the surface of samples with high zirconium content changed the main form sulfonyl groups (S-O) to sulfate groups (S=O). In the mixed oxides [CeZrO₂Sₓ(2-x)(2:1); CeZrO₂Sₓ(1:1); CeZrO₂Sₓ(1:2)] before and after their modification with gold, sulfonic groups were the main form of sulfur species on the external surface. These materials were characterised by the molar ratio between CeO₂ and ZrO₂ in the range 0.62 and 2.20 (according to the XPS study) and it suggests the positive effect of interaction between cerium and zirconium species on the creation of sulfonic groups.

Fig. 7. ATR-FTIR spectra recorded for oxides: [A] before and [B] after adsorption of H₂S on the surface, [C] after adsorption of H₂S on the surface and the heating the supports with sulphur at 373 K for 24 h in air, [D] with sulphur species after their modification with gold species. The ATR-FTIR spectra were recorded for samples based on the supports: a) CeO₂, b) CeZrO₂(4:1), c) CeZrO₂(2:1), d) CeZrO₂(1:1), e) CeZrO₂(1:2), f) CeZrO₂(1:4) and g) ZrO₂.

The oxides before and after their modification with hydrogen sulfide and gold species were studied using TG-DTA in the flow of air in the order to know the form of sulfur species on the surface of catalysts and to estimate their thermal stability. The analysis of TGA and DTA profiles of samples modified with sulfur showed that this chemical element was in several forms (Fig. S7). In the supports modified with sulfur, in which the nominal (assumed) content of ceria was higher than zirconia [CeO₂Sₓ(2-x), CeZrO₂Sₓ(4:1) and CeZrO₂Sₓ(2:1)] were observed two peaks. The first peak at
lower temperature was more intense than the second at higher temperature. The first peak at around
500 K could be described to thiol groups (−SH) and the second peak at around 850 K could be due to
sulfonic groups (−SO3H). In the case of samples with higher amount of zirconium after the catalysts
modification with sulfur species (CeZrO(S2−x)(2:1), (CeZrO(S2−x)(1:1), (CeZrO(S2−x)(1:2) and
CeZrO(S2−x)(1:4) were observed two peaks at around 500 and 600 K, which could be due to two forms
of thiol groups located on the external surface and in the bulk of samples, respectively. In the case of
ZrO(S2−x), only one intense peak in the DTA profile was seen, which could be due to sulfonic groups
on the external surface. The results of DTA confirmed that the chemical composition of supports had
influence on the chemical adsorption of hydrogen sulfide.

The samples were heated in the flow of inert gas (helium) before the adsorption of hydrogen
sulfur and then the modification of sulfur species was performed in the flow of the mixture of gases
(helium and hydrogen sulfur). The lack of oxygen in the flow of gases before and during the
modification of samples can suggest that the mechanism of modification thiol groups to sulfonic
groups which was based on the exchanging between hydrogen atoms from hydrogen sulfide and
oxygen atoms from the structure of oxides. This mechanism assumes the presence of oxygen
vacancies in the structure of materials created during the activation of materials in the flow of inert
gas and it is according to the literature data [24]. The comparison of the stoichiometric formulas of
oxides before and after their modification with sulfur species confirms lower oxygen distribution on
the external surface after the adsorption of hydrogen sulfur (Table 4). The increase of signals in the
temperature range of 500-1000 K with the maximum at around 700 K was observed in the case of
selected TGA profiles. These wide peaks were seen for CeZrO(S2−x)(2:1), CeZrO(S2−x)(1:1),
CeZrO(S2−x)(1:2) and CeZrO(S2−x)(1:4). For the same samples were observed peaks at around 600 K in
the DTA profiles which can be due to the thiol groups in the bulk materials (Fig. S7).

The catalysts were characterised using a temperature programmed reduction (TPR) by
hydrogen in the order to know the redox properties of samples. The TPR profiles were shown in
Figure S8. The maximums of hydrogen consumption depend on the chemical composition of
samples and the size of crystals. The TPR profile of pure ceria shows the consumption of hydrogen
in the wide temperature range of 450-700 K with the maximum at 522 K, which can be due to the
reduction of cerium species (from Ce4+ to Ce3+). The consumption of hydrogen at this temperature
can prove the presence of small cerium oxides particles which are smaller than in the mixed
cerium-zirconium oxides. The broad temperature range of hydrogen consumption suggests that the
crystals of ceria are characterised of the broad range of sizes. The modification of ceria with
hydrogen sulfide led to the disappearance of hydrogen consumption at lower temperature. After
medication of ceria with gold and sulfur species, a very weak peak is observed in the broad
temperature range (500-900 K). It can suggest that sulfur and gold species covered the external
surface of supports and the oxidized cerium species (Ce4+) were not able to reduce to the reduced
form of cerium (Ce3+). The addition of zirconium led to the increase of temperature in which
hydrogen is consumed or the disappearance of this process. It means that the presence of zirconium
leads to the protection of cerium species against their reduction at lower temperature.

The ATR-FTIR spectra were recorded at room temperature in the atmosphere of air for all
samples (Fig. 7). In the case of samples modified with hydrogen sulfide, four bands in the region of
1400-800 cm−1 were observed. The most intense band at 1122 cm−1 was not observed on the spectra of
pure oxides. The intensity of this band was also smaller in the case of samples modified with sulfur
and gold. The increase of cerium content had positive effect on the increase of intensity of this band.
The sulfur content increased with the growth of cerium content, so it can suggest that the band at
1122 cm−1 can be assigned to the symmetric stretching band of the sulphone groups as like (-O-SO2).

3.3. Catalytic activity – glycerol oxidation

Catalytic glycerol oxidation was performed at 600 rpm, because a physical diffusion did not
have crucial influence on the catalytic reaction at this stirring speed (this value was set on the base of
earlier study [63]). Therefore, further experiments were carried out using this stirring speed. The
results of the catalytic oxidation of glycerol at 333 K in a basic aqueous solution under pure oxygen for gold catalysts with sulfur species are shown in Table 7. All gold catalysts achieved high yield to gaseous products, which could not analyzed using a HPLC device. An according to the literature data [64,65], the changes of gold dispersion and its electronic state can play a role in the increasing of catalyst activity and selectivity to glyceric acid. The correlation between the increase of glycerol conversion, the increase of gold dispersion and the decrease of selectivity to glyceric acid for small gold particle size (e.g. 2.7 nm) was observed in [64]. In this work, the higher selectivity to glyceric acid was achieved over gold loading on supports based on pure ceria [Au/CeO\textsubscript{x}S\textsubscript{2-x}] or with small amount of zirconia [Au/CeZrO\textsubscript{x}S\textsubscript{2-x}(4:1)]. The selectivities to other oxidation products, such as oxalic and tartronic were observed, but the values of these selectivities were traces (<0.5%). An according to the literature data [66,67], glycerol can be oxidized to glyceric acid at basic conditions over gold catalysts by the initial formation of glyceraldehyde, which is rapidly oxidized to glyceric acid. The presence of tartronic and oxalic acids can be explained by over-oxidation or transformation of glyceric acid.

<table>
<thead>
<tr>
<th>catalyst</th>
<th>GLY1 conversion, %</th>
<th>selectivity, %</th>
<th>yield, % 2</th>
<th>TOF, h13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au/CeO\textsubscript{x}S\textsubscript{2-x}</td>
<td>67</td>
<td>2</td>
<td><0.5</td>
<td>98</td>
</tr>
<tr>
<td>Au/CeZrO\textsubscript{x}S\textsubscript{2-x}(4:1)</td>
<td>72</td>
<td>2</td>
<td><0.5</td>
<td>98</td>
</tr>
<tr>
<td>Au/CeZrO\textsubscript{x}S\textsubscript{2-x}(2:1)</td>
<td>69</td>
<td>1</td>
<td><0.5</td>
<td>99</td>
</tr>
<tr>
<td>Au/CeZrO\textsubscript{x}S\textsubscript{2-x}(1:1)</td>
<td>67</td>
<td><0.5</td>
<td><0.5</td>
<td>100</td>
</tr>
<tr>
<td>Au/CeZrO\textsubscript{x}S\textsubscript{2-x}(1:2)</td>
<td>67</td>
<td><0.5</td>
<td><0.5</td>
<td>100</td>
</tr>
<tr>
<td>Au/CeZrO\textsubscript{x}S\textsubscript{2-x}(1:4)</td>
<td>70</td>
<td><0.5</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Au/ZrO\textsubscript{x}S\textsubscript{2-x}</td>
<td>69</td>
<td>-</td>
<td><0.5</td>
<td>100</td>
</tr>
</tbody>
</table>

1GLY – glycerol, GLA – glyceric acid, OA – oxalic acid, TA – tartronic acid
2yield was calculated only for liquid products of glycerol oxidation which were in the solution after reaction
13TOF was calculated as the number of glycerol moles reacted on one mole of gold per one hour (after 5 h of the reaction)

The interaction between chemical elements in gold catalysts influences on the activity and selectivity in glycerol oxidation. It has been reported [68–72] that the chemical nature of the support and active phase (e.g. palladium-gold, platinum-gold) determine the species formed on the surface during the oxidation process in the liquid phase. In the case of materials modified with sulfur and gold, the increase of zirconium content promoted the transformation of glycerol to tartronic acid. The highest selectivity to glyceric acid was observed for Au/CeZrO\textsubscript{x}S\textsubscript{2-x}(4:1). In this catalyst, the values of the total pore volume and the specific surface were the biggest (Table 4) and it can suggest that the parameters of structure can limit the diffusion of glycerol molecules to active sites. The TOFs were calculated for all samples (Table 7) and higher TOFs values were achieved for gold catalysts modified with sulfur with high zirconium distribution in the support, because the highest value was achieved over Au/CeZrO\textsubscript{x}S\textsubscript{2-x}(1:4). It can prove the strong interaction between reagents molecules and gold, sulfur and zirconium species during glycerol oxidation. The analysis of elemental analysis of selected gold catalysts confirmed that the sulfur species were present in the studied materials after glycerol oxidation, because the content of sulfur decreased from 342 to 230 mol g-1 in the case of Au/CeO\textsubscript{x}S\textsubscript{2-x} and from 199 to 185 mol g-1 in the case of Au/ZrO\textsubscript{x}S\textsubscript{2-x}. It confirms that the composition of support affected on the strength of bonding between transition metal atoms from the support and sulfur species.
The addition of sulfur led to the reduction of gold to in the form of gold with the negative charge on the metallic particles loading on the external surface of catalysts and it was confirmed by XPS study (Table 5). It is worth to note that the increasing of zirconium content in mixed oxides promoted the growth of distribution of sulfonic species, because the highest distribution of sulfonic species measured using XPS study was achieved by Au/CeZrO$_x$S$_{2-x}$(1:4). It is worth to note that it was observed the increase of metallic gold (excluding Au/CeO$_x$S$_{2-x}$) and sulfonic groups (-SO$_3$H) (excluding Au/CeO$_x$S$_{2-x}$ and Au/CeZrO$_x$S$_{2-x}$(1:4)) distribution on the external surface of catalysts after the reaction of glycerol oxidation. The values of binding energies of Au 4f, S 2p and Zr 3d species changed slightly after the reaction. It means that the energy of bonds between atoms with the active phase and supports are similar before and after reaction and these materials are characterised the chemical stability during the reaction of glycerol oxidation in the liquid phase.

The main products of glycerol oxidation are gaseous products and it suggests that glycerol molecules were adsorbed strongly on the metallic gold species loading on ceria, zirconia or mixed cerium-zirconium oxides. Additionally, the results of XPS, UV-vis, ATR-FTIR, TPR by H$_2$ and TG-DTA measurements suggest that these materials were characterised of oxygen vacancies and sulfur species as like sulfonic groups which can promote the adsorption of glycerol molecules during the oxidation process.

4. Conclusions

The chemical adsorption of hydrogen sulfide on the surface of ceria, zirconia or the mixed cerium-zirconium oxides can be the effective method of modification with sulfur species. The texture properties (specific surface area and average pore volume) and the chemical composition had influence on the effective adsorption and the incorporation of sulfur species in the bulk of oxides. The increase of cerium content in the mixed oxides led to the growth of surface area and average pore diameter and also to the higher sulfur content. It means that the control of molar ratio between cerium and zirconium contents in mixed oxides can be used to the preparation of oxides modified with the assumed sulfur content. The chemical composition, the structure and texture parameters influenced also on the loading and the average size of metallic gold particles on the surface of materials. The increase of cerium content led to increase of average pore diameter and the easier migration of metallic gold particles into the pores of materials and also to the decrease of the average size of gold particles estimated using the Scherer’s formula. The chemical composition of supports and their modification with sulfur and gold species influenced on the catalytic activity in glycerol oxidation at basic conditions.

It was evidenced that the presence of cerium led to the increase of glycerol conversion in its oxidation and selectivity to glyceric acid. The catalysts obtained mainly selectivity to gaseous products. It means that gold catalysts modified with sulfur species could be applied in the purification of water from the organic waste, which are difficult removed in the presence of alkali media, e.g. in the purification of water during the production of paper [73].

Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S1: TEM images recorded for the supports without (image on the left) and with (image on the right) S species after modification with Au. Support based on: a) CeO$_x$, b) CeZrO$_{x-y}$, c) CeZrO$_{x-2y}$, d) CeZrO$_{x-3y}$, e) CeZrO$_{x-4y}$, f) CeZrO$_{x-5y}$, g) ZrO$_x$. The lines in the images correspond to 50 nm, Figure S2: XP spectra recorded for S 2p species for samples before and after modification with Au, Figure S3: XP spectra recorded for O 1s species for samples before and after modification with Au, Figure S4: XP spectra recorded for Zr 3d species for selected Ce-Zr oxides and zirconia with S before and after modification with Au, Figure S5: XP spectra recorded for Zr 3d species for Ce-Zr oxides, Figure S6: UV-vis spectra of samples before and after their modification of H$_2$S and after Au deposition for the spectral region of metallic gold species, Figure S7: TG-DTA profiles of the oxides modified with sulfur species without gold species, Figure S8: The TPR H$_2$ profiles performed for the catalysts.

Acknowledgments: The author would like to acknowledge the National Science Centre in Cracow in Poland for the financial support of this study (grants No. 2014/13/N/ST5/01282 and 2015/16/T/ST5/00263) and Prof. Maria Ziolek (Adam Mickiewicz University in Poznan, the Faculty of Chemistry) for a fruitful discussion and value remarks.
Author Contributions: For research articles with several authors, a short paragraph specifying their individual contributions must be provided. The following statements should be used “X.X. and Y.Y. conceived and designed the experiments; X.X. performed the experiments; X.X. and Y.Y. analyzed the data; W.W. contributed reagents/materials/analysis tools; Y.Y. wrote the paper.” Authorship must be limited to those who have contributed substantially to the work reported.

Conflicts of Interest: The author declares no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

27. Cholewa, T.G.; Kappi, F.A.; Tsogas, G.Z.; Vlessidis, A.G.; Giokas, D.L. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry. Talanta 2016, 151, 91–99. [CrossRef]

70. Kim, Y.S.; Wang, F.; Hickner, M.; Zawodzinski, T.A.; McGrath, J.E. Fabrication and characterisation of heteropolyacid (H₅PW₁₂O₄₀)/directly polymerized sulphonated poly(arylene ether sulphone) copolymer composite membranes for higher temperature fuel cell applications. J. Membrane Sci. 2003, 212, 263–282. [CrossRef]

