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Abstract: As shown in former papers, the nonadiabatic Heisenberg model presents a novel1

mechanism of Cooper pair formation generated by the strongly correlated atomic-like motion of2

the electrons in narrow, roughly half-filled “superconducting bands”. These are energy bands3

represented by optimally localized spin-dependent Wannier functions adapted to the symmetry of4

the material under consideration. The formation of Cooper pairs is not the result of an attractive5

electron-electron interaction but can be described in terms of quantum mechanical constraining forces6

constraining the electrons to form Cooper pairs. There is theoretical and experimental evidence that7

only this nonadiabatic mechanism operating in superconducting bands may produce eigenstates in8

which the electrons form Cooper pairs. These constraining forces stabilize the Cooper pairs in any9

superconductor, whether conventional or unconventional. Here we report evidence that also the10

experimentally found superconducting state in bismuth at ambient as well as at high pressure is11

connected with a narrow, roughly half-filled superconducting band in the respective band structure.12

This observation corroborates once more the significance of constraining forces in the theory of13

superconductivity.14

Keywords: superconductivity; bismuth at ambient pressure; Bi–I; bismuth at high pressure; Bi–V;15

constraining forces; nonadiabatic Heisenberg model16

1. Introduction17

Bismuth shows sequential structure transition as function of the applied pressure, as summarized
in an illustrative form by O. Degtyareva et al. [1]:

Bi–I 2.55 GPa−−−−→ Bi–II 2.7 GPa−−−−→ Bi–III 7.7 GPa−−−−→ Bi–V < 122 GPa (1)

At ambient pressure, Bi crystallizes in the structure Bi–I, an As-type structure with a trigonal18

(rhombohedral) space group and two atoms in the unit cell [2]. This structure is stable up to a19

pressure of 2.55 GPa. Then, with increasing pressure, Bi undergoes the monoclinic structure Bi–II and20

the host-guest structure Bi–III. A further structure called Bi–IV exists above the temperature of 450 K21

and is not relevant in this paper. Between a pressure of 7.7 and (at least) 122 GPa, the cubic Bi–V phase22

is stable [1].23

It is interesting, that all these Bi phases become superconducting at low temperatures. The Bi–I24

phase is superconducting with the extremely low transition temperature Tc = 0.53mK [3]. In the Bi–II25

and Bi–III structures, the transition temperature increases with increasing pressure from about 4 K to 726

K. Finally, in the Bi–V phase, Tc has the maximum value of about 8 K [4]. The different values of Tc27

are evidently connected with the different crystal structures since Tc changes discontinuously at the28

transitions from one structure to another [4].29

This striking symmetry-dependence of the superconducting transition temperature suggests that30

also in bismuth superconductivity is connected with narrow, roughly half-filled “superconducting31

bands”. A closed energy band (Definition 2 of Ref. [5]) with optimally localized, symmetry-adapted,32

and spin-dependent Wannier functions is called superconducting band (Definition 22 of Ref. [5])33

because those metals (and only those metals) that possess such a narrow, roughly half-filled34
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superconducting band in its band structure experimentally prove to be superconductors, see the35

Introduction of Ref. [5]. This observation can be interpreted within the group-theoretical nonadiabatic36

Heisenberg model (NHM) [6], a new model of strongly correlated atomic-like electrons. Within this37

model, the formation of Cooper pairs is still mediated by boson excitations (responsible, as usual, for38

the isotope effect). However, these boson excitations produce constraining forces as they are familiar39

from classical mechanics: below Tc, they reduce the degrees of freedom of the electron system by40

forcing the electrons to form Cooper pairs. A short description of the NHM and this novel mechanism41

of Cooper pair formation is given in Secs. 2 and 3, respectively, of Ref. [7]. In Sec. 4 we shall summarize42

this new concept of superconductivity in the form of single statements.43

There is theoretical evidence that the constraining forces operating in narrow, roughly half-filled44

superconducting bands are required for the Hamiltonian of the system to possess eigenstates in which45

the electrons form Cooper pairs [8]. The aim of the present paper is to corroborate this important46

assertion by showing that also the experimentally established superconductivity in bismuth [3,4] is47

evidently connected with superconducting bands.48

In this context, we consider (in the following Sec. 2) only the two structures Bi–I and Bi–V49

at the beginning and the end of the sequence (1). Bi–I and Bi–V possess the lowest and highest50

superconducting transition temperatures, respectively. Bi–II is not very informative within the NHM51

since it has only a low monoclinic symmetry. At this stage, it would be complicated to apply the52

NHM to the incommensurate host-guest structure of Bi–III. Both Bi–I and Bi–V, on the other hand,53

have clear symmetries with the trigonal space group R3m (166) and the cubic space group Im3m (229),54

respectively [1,2]. Bi–V even has the highest possible symmetry in a solid state with allows the NHM55

to make clear predictions.56

2. Superconducting bands in the band structure of bismuth57

2.1. Band structure of Bi–I58

The band structure of Bi–I is depicted in Fig. 1. The Bloch functions of the band highlighted in red
are labeled by the single-valued representations

Γ−2 , Γ+
3 ; Z+

3 , Z−3 ; L+
1 , L−2 ; F+

1 , F−2 . (2)

It is clear that this band (or any other band in the band structure) does not contain a closed band59

(Definition 2 of Ref. [5]) with the symmetry of band 1 or band 2 in Table A4, meaning that we cannot60

unitarily transform the Bloch functions into best localized and symmetry-adapted Wannier functions61

situated at the Bi atoms. The situation is changed when we consider the double-valued representations62

of the Bloch functions:63

According to Table A3, we may unitarily transform the Bloch functions (2) into Bloch functions
labeled by the double-valued representations,

Γ−2 → Γ−4 , Γ+
3 → Γ+

4 + Γ+
5 + Γ+

6 ;

Z+
3 → Z+

4 + Z+
5 + Z+

6 , Z−3 → Z−4 + Z−5 + Z−6 ;

L+
1 → L+

3 + L+
4 , L−2 → L−3 + L−4 ;

F+
1 → F+

3 + F+
4 , F−2 → F−3 + F−4 .

(3)

The underlined representations belong to the band listed in Table A5. Thus, we can unitarily transform64

the Bloch functions of this band into spin-dependent Wannier functions being best localized, centered at65

the Bi atoms, and symmetry-adapted to the group R3m. Consequently, according to Definition 22 of66

Ref. [5], the band highlighted in red is a superconducting band.67
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Figure 1. Band structure of Bi–I calculated by the FHI-aims program [9,10], using the structure
parameters given by O. Degtyareva et al. [1]. The symmetry labels are determined by the author. Bi–I
has the trigonal space group R3m [2] (international number 166), the notations of the points and lines
of symmetry in the Brillouin zone for Γrh follow Fig. 3.11 (b) of Ref. [11], and the symmetry labels are
defined in Table A1. EF denotes the Fermi level. The band highlighted in red is the superconducting
band.

2.2. Band structure of Bi–V68

The band structure of Bi–V is depicted in Fig. 2. The Bloch functions of the band highlighted in
red now are labeled by the single-valued representations

Γ−4 ; H−4 ; P5; N−3 . (4)

Again, this band (or any other band in the band structure) does not contain a closed band
(Definition 2 of Ref. [5]) with the symmetry of the bands listed in Table A8. Hence, we cannot unitarily
transform the Bloch functions into best localized and symmetry-adapted Wannier functions situated at
the Bi atoms. According to Table A7, we may unitarily transform the Bloch functions (4) into Bloch
functions labeled by the double-valued representations,

Γ−4 → Γ−6 + Γ−8 ,
H−4 → H−6 + H−8 ,
P5 → P7 + P8,
N−3 → N−5 .

(5)

The underlined representations belong to band 4 listed in Table A9. Thus, we can unitarily transform69

the Bloch functions of this band into spin-dependent Wannier functions being best localized, centered at70
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Figure 2. Band structure of Bi–V at the pressure of 13.5 GPa calculated by the FHI-aims program [9,10],
using the structure parameters at this pressure as given by O. Degtyareva et al. [1]. The symmetry
labels are determined by the author. Bi–V has the cubic space group Im3m [1] (international number
229), the notations of the points and lines of symmetry in the Brillouin zone for Γv

c follow Fig. 3.15
of Ref. [11], and the symmetry labels are defined in Table A6. EF denotes the Fermi level. The band
highlighted in red forms the superconducting band.

the Bi atoms, and symmetry-adapted to the group Im3m. Consequently, according to Definition 22 of71

Ref. [5], the band highlighted in red is a superconducting band.72

2.3. Interpretation73

Both structures Bi–I and Bi–V possess a superconducting band in their band structure that74

• is one of the narrowest bands in the band structure;75

• is nearly half filled;76

• and comprises a great part of the electrons at the Fermi level.77

Consequently, the NHM predicts that both phases become superconducting below a transition78

temperature Tc.79

The superconducting band of Bi–I (Fig. 1) even comprises all the electrons at the Fermi level.80

However, the small Fermi surface and the small density of states at the Fermi level results in the81

extremely low superconducting transition temperature of Tc = 0.53mK [3].82

The superconducting band of Bi–V (Fig. 2) closely resembles the superconducting band of niobium83

as depicted, e.g., in Fig. 1 of Ref. [8]: both nearly half-filled bands have comparable widths and comprise84

a comparable part of the Fermi level. Consequently, we may expect that both the Bi–V phase of bismuth85

and the elemental metal niobium have similar transition temperatures. Indeed, we have Tc ≈ 8K86
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and Tc = 9.2K for Bi–V and niobium, respectively. Narrow and half-filled superconducting bands87

rarely arise in crystals with the high bcc symmetry. So the elemental bcc metals Ta, W, and Mo possess88

superconducting bands which are far from being half-filled and, consequently, have lower transition89

temperatures. In the band structures of the most elemental metals (such as Li, Na, K, Rb, Cs, Ca Cu, Ag,90

and Au), narrow, roughly half-filled superconducting bands cannot be found and, hence, these metals91

do not become superconducting [12]. Consequently, there is high evidence that the superconducting92

state in Bi–V is connected with the narrow and almost perfectly half-filled superconducting band in93

the band structure of this phase.94

3. Results95

In terms of superconducting bands, the NHM confirms the experimental observations that96

• the Bi–I phase (i.e., bismuth at ambient pressure) becomes superconducting below an extremely97

low transition temperature and98

• the Bi–V phase (i.e., bismuth at high pressure) becomes superconducting below a transition99

temperature comparable with the transition temperature of niobium.100

4. Discussion101

This group-theoretical result demonstrates again [5] the significance of the theory of102

superconductivity defined within the NHM. We summarize the main features of this novel concept of103

superconductivity (a more detailed description is given in Ref. [7]):104

• The NHM is based on three postulates [6] concerning the atomic-like motion of the electrons in105

narrow, half-filled energy bands as it was already considered by Mott [13] and Hubbard[14].106

• The postulates of the NHM are physically evident and require the introduction of nonadiabatic107

localized states of well-defined symmetry emphasizing the correlated nature of any atomic-like108

motion.109

• The atomic-like motion is determined by the conservation of the total crystal-spin angular110

momentum which must be satisfied in the nonadiabatic system. In a narrow, roughly half-filled111

superconducting band this conservation law plays a crucial role because the localized (Wannier)112

states are spin-dependent.113

• The strongly correlated atomic-like motion in a narrow, roughly half-filled superconducting114

band produces an interaction between the electron spins and “crystal-spin-1 bosons”: at any115

electronic scattering process two crystal-spin-1 bosons are excited or absorbed in order that the116

total crystal-spin angular momentum stays conserved.117

• Crystal-spin-1 bosons are the energetically lowest localized boson excitations of the crystal that118

possess the crystal-spin angular momentum 1 · h̄ and are sufficiently stable to transport it (as119

Bloch waves) through the crystal.120

• The spin-boson interaction in a narrow, roughly half-filled superconducting band leads to the121

formation of Cooper pairs below a transition temperature Tc.122

• The Cooper pairs arise inevitably since any electron state in which the electrons possess their full123

degrees of freedom violates the conservation of crystal-spin angular momentum.124

• This influence of the crystal-spin angular momentum may be described in terms of constraining125

forces that constrain the electrons to form Cooper pairs. This feature distinguishes the present126

concept from the standard theory of superconductivity.127

• As already mentioned in Sec. 1, there is evidence that only these constraining forces may produce128

superconducting eigenstates.129

• Hence, the constraining forces are responsible for all types of superconductivity, i.e., conventional,130

high-Tc and other superconductivity.131

• Crystal-spin-1 bosons are coupled phonon-plasmon modes that determine the type of the132

superconductor.133
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• In the isotropic lattices of the transition elements, crystal-spin-1 bosons have dominant phonon134

character and confirm the electron-phonon mechanism that enters the BCS theory [15] in these135

materials.136

• Phonon-like excitations are not able to transport crystal-spin angular-momenta within the137

anisotropic materials of the high-Tc superconductors [16], often containing two-dimensional138

layers. Within these anisotropic materials, the crystal-spin-1 bosons are energetically higher139

lying excitations of dominant plasmon character leading to higher superconducting transition140

temperatures [15].141

• The theory of superconductivity as developed so far is valid without any restrictions in narrow,142

roughly half-filled superconducting bands because constraining forces do not alter the energy of143

the electron system.144

• However, the standard theory may furnish inaccurate information if no narrow, roughly145

half-filled superconducting band exists in the band structure of the material under consideration.146

It is clear that this concept of superconductivity as developed in the last 40 years should be further147

refined in the future.148

Acknowledgments: I am very indebted to Guido Schmitz for his support of my work. I thank Günter Zerweck149

for his valuable reference to bismuth.150

Abbreviations151

The following abbreviation is used in this manuscript:152

153

NHM Nonadiabatic Heisenberg model154

Appendix A. Group-theoretical tables for the trigonal space group R3m (166) of Bi–I155

It is sometimes useful to represent trigonal (rhombohedral) systems in a hexagonal coordinate156

system. In this case, the unit cell contains two additional inner points which, however, are connected to157

each other and to the points at the corners by the translation symmetry of the system. In the framework158

of the group theory of Wannier functions as presented in Ref. [5], the inner points of a unit cell must159

not be connected by the translation symmetry. Thus, the group theory of Wannier functions is not160

applicable to trigonal system represented by hexagonal axes. Therefore, in the present paper, we use161

exclusively the trigonal coordinate system as given in Table 3.1 of Ref. [11].162
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Table A1. Character tables of the single-valued irreducible representations of the trigonal space group
R3m = ΓrhD5

3d (166) of Bi–I.

Γ(000), Z( 1
2

1
2

1
2 )

E I S±6 C±3 C′2i σdi
Γ+

1 , Z+
1 1 1 1 1 1 1

Γ+
2 , Z+

2 1 1 1 1 -1 -1
Γ−1 , Z−1 1 -1 -1 1 1 -1
Γ−2 , Z−2 1 -1 -1 1 -1 1
Γ+

3 , Z+
3 2 2 -1 -1 0 0

Γ−3 , Z−3 2 -2 1 -1 0 0

L(0 1
2 0)

E C′22 I σd2
L+

1 1 1 1 1
L−1 1 1 -1 -1
L+

2 1 -1 1 -1
L−2 1 -1 -1 1

F( 1
2

1
2 0)

E C′23 I σd3
F+

1 1 1 1 1
F−1 1 1 -1 -1
F+

2 1 -1 1 -1
F−2 1 -1 -1 1

Notes to Table A1

1. i = 1, 2, 3.
2. The symmetry elements are labeled in the Schönflies notation as illustrated, e.g., in Table 1.2 of

Ref. [11].
3. The character tables are determined from Table 5.7 of Ref. [11].
4. The notations of the points of symmetry follow Fig. 3.11 (b) of Ref. [11].

Table A2. Character tables of the single-valued irreducible representations of the point group C3v of
the positions of the Bi atoms (Definitions 11 and 12 of Ref. [5]) in Bi–I.

E C±3 σdi
d1 1 1 1
d2 1 1 -1
d3 2 -1 0

i = 1, 2, 3.

Table A3. Compatibility relations between the single-valued (upper row) and double-valued (lower
row) representations of the space group R3m.

Γ(000), Z( 1
2

1
2

1
2 )

R+
1 R+

2 R−1 R−2 R+
3 R−3

R+
4 R+

4 R−4 R−4 R+
5 + R+

6 + R+
4 R−5 + R−6 + R−4

L(0 1
2 0), F( 1

2
1
2 0)

R+
1 R−1 R+

2 R−2
R+

3 + R+
4 R−3 + R−4 R+

3 + R+
4 R−3 + R−4

Notes to Table A3

1. The letter R stands for the letter denoting the relevant point of symmetry. For example, at point
F the representations R+

1 , R+
2 , . . . stand for F+

1 , F+
2 , . . . .

2. Each column lists the double-valued representation Ri × d1/2 below the single-valued
representation Ri, where d1/2 denotes the two-dimensional double-valued representation of the
three-dimensional rotation group O(3) given, e.g., in Table 6.1 of Ref. [11].

3. The single-valued representations are defined in Table A1.
4. The notations of double-valued representations follow strictly Table 6.13 (and Table 6.14) of

Ref. [11]. In this paper the double-valued representations are not explicitly given but are
sufficiently defined by this table.
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Table A4. Single-valued representations of all the energy bands in the space group R3m of Bi–I with
symmetry-adapted and optimally localized usual (i.e., spin-independent) Wannier functions centered
at the Bi atoms.

Bi(zzz) Bi(zzz) K Γ Z L F
Band 1 d1 d1 OK Γ+

1 + Γ−2 Z+
1 + Z−2 L+

1 + L−2 F+
1 + F−2

Band 2 d2 d2 OK Γ+
2 + Γ−1 Z+

2 + Z−1 L−1 + L+
2 F−1 + F+

2

Notes to Table A4

1. z = 0.23 . . . [1]; the exact value of z is meaningless in this table. In the hexagonal unit cell, the Bi
atoms lie at the Wyckoff positions 6c(00± z) [1]. In the trigonal system, their positions in the
unit cell are ρ = ±(zT1 + zT2 + zT3), where the vectors T1, T2, and T3 denote the basic vectors of
the trigonal lattice as given, e.g., in Table 3.1 of Ref. [11].

2. The notations of the representations are defined in Table A1.
3. Assume a closed band of the symmetry in one of the two rows of this table to exist in the band

structure of Bi–I. Then the Bloch functions of this band can be unitarily transformed into Wannier
functions that are

• localized as well as possible;
• centered at the Bi atoms; and
• symmetry-adapted to the space group R3m (166) [5].

The entry “OK” below the time-inversion operator K indicates that the Wannier functions may
even be chosen symmetry-adapted to the magnetic group

M = R3m + K · R3m,

see Theorem 7 of Ref. [5].
However, a closed band (Definition 2 of Ref. [5]) with the symmetry of band 1 or band 2 does not
exist in the band structure of Bi–I (see Fig. 1).

4. The bands are determined following Theorem 5 of Ref. [5].
5. The Wannier functions at the Bi atoms listed in the upper row belong to the representation di of

C3v included below the atom. These representations are defined in Table A2.
6. Each row defines one band consisting of two branches, because there are two Bi atoms in the

unit cell.
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Table A5. Double-valued representations of the superconducting band in the space group R3m of Bi–I.

Bi(zzz) Bi(zzz) K Γ Z L F
Band 1 d d OK Γ+

4 + Γ−4 Z+
4 + Z−4 L+

3 + L+
4 + L−3 + L−4 F+

3 + F+
4 + F−3 + F−4

Notes to Table A5

1. z = 0.23 . . . [1]; the exact value of z is meaningless in this table. In the hexagonal unit cell, the Bi
atoms lie at the Wyckoff positions 6c(00± z) [1]. In the trigonal system, their positions in the
unit cell are ρ = ±(zT1 + zT2 + zT3), where the vectors T1, T2, and T3 denote the basic vectors of
the trigonal lattice as given, e.g., in Table 3.1 of Ref. [11].

2. Assume an isolated band of the symmetry listed in this table to exist in the band structure of Bi–I.
Then the Bloch functions of this band can be unitarily transformed into spin dependent Wannier
functions that are

• localized as well as possible;
• centered at the Bi atoms; and
• symmetry-adapted to the space group R3m (166) [5].

The entry “OK” below the time-inversion operator K indicates that the spin-dependent Wannier
functions may even be chosen symmetry-adapted to the magnetic group

M = R3m + K · R3m,

see Theorem 10 of Ref. [5]. Hence, the listed band forms a superconducting band, see Definition
22 of Ref. [5].

3. The listed band is the only superconducting band of Bi–I.
4. The notations of the double-valued representations are (indirectly) defined by Table A3.
5. Following Theorem 9 of Ref. [5], the superconducting band is simply determined from one of

the two single-valued bands listed in Table A4 by means of Equation (97) of Ref. [5]. (According
to Definition 20 of Ref. [5], both single-valued bands in Table A4 are affiliated bands of the
superconducting band.)

6. The superconducting band consists of two branches, because there are two Bi atoms in the unit
cell.

7. The point group of the positions of the Bi atoms (Definitions 11 and 12 of Ref. [5]) is the group
C3v. The Wannier functions at the Bi atoms belong to the double-valued representation

d = d1 ⊗ d1/2 = d2 ⊗ d1/2 (A1)

of C3v where d1 and d2 are defined in Table A2 and d1/2 denotes the two-dimensional
double-valued representation of O(3) as given, e.g., in Table 6.1 of Ref. [11]. Note that the
two representations d1 ⊗ d1/2 and d2 ⊗ d1/2 are equivalent.
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Appendix B. Group-theoretical tables for the cubic space group Im3m (229) of Bi–V163

Table A6. Character tables of the single-valued irreducible representations of the space group Im3m =
Γv

c O9
h of Bi–V.

Γ(000), H( 1
2

1
2

1
2 )

E I σm C2m C±3j S±6j C±4m S±4m C2p σdp

Γ+
1 , H+

1 1 1 1 1 1 1 1 1 1 1
Γ+

2 , H+
2 1 1 1 1 1 1 -1 -1 -1 -1

Γ−2 , H−2 1 -1 -1 1 1 -1 -1 1 -1 1
Γ−1 , H−1 1 -1 -1 1 1 -1 1 -1 1 -1
Γ+

3 , H+
3 2 2 2 2 -1 -1 0 0 0 0

Γ−3 , H−3 2 -2 -2 2 -1 1 0 0 0 0
Γ+

4 , H+
4 3 3 -1 -1 0 0 1 1 -1 -1

Γ+
5 , H+

5 3 3 -1 -1 0 0 -1 -1 1 1
Γ−4 , H−4 3 -3 1 -1 0 0 1 -1 -1 1
Γ−5 , H−5 3 -3 1 -1 0 0 -1 1 1 -1

P( 1
4

1
4

1
4 )

E C2m S±4m σdp C±3j
P1 1 1 1 1 1
P2 1 1 -1 -1 1
P3 2 2 0 0 -1
P4 3 -1 1 -1 0
P5 3 -1 -1 1 0

N(00 1
2 )

E C2z C2b C2a I σz σdb σda
N+

1 1 1 1 1 1 1 1 1
N+

2 1 -1 1 -1 1 -1 1 -1
N+

3 1 1 -1 -1 1 1 -1 -1
N+

4 1 -1 -1 1 1 -1 -1 1
N−1 1 1 1 1 -1 -1 -1 -1
N−2 1 -1 1 -1 -1 1 -1 1
N−3 1 1 -1 -1 -1 -1 1 1
N−4 1 -1 -1 1 -1 1 1 -1

Notes to Table A6

1. m = x, y, z; p = a, b, c, d, e, f ; j = 1, 2, 3, 4.
2. The symmetry elements are labeled in the Schönflies notation as illustrated, e.g., in Table 1.2 of

Ref. [11].
3. The character tables are determined from Table 5.7 of Ref. [11].
4. The notations of the points of symmetry follow Fig. 3.15 of Ref. [11].
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Table A7. Compatibility relations between the single-valued (upper row) and double-valued (lower
row) representations of the space group Im3m.

Γ(000), H( 1
2

1
2

1
2 )

R+
1 R+

2 R−2 R−1 R+
3 R−3 R+

4 R+
5 R−4 R−5

R+
6 R+

7 R−7 R−6 R+
8 R−8 R+

6 + R+
8 R+

7 + R+
8 R−6 + R−8 R−7 + R−8

P( 1
4

1
4

1
4 )

P1 P2 P3 P4 P5
P6 P7 P8 P6 + P8 P7 + P8

N(00 1
2 )

N+
1 N+

2 N+
3 N+

4 N−1 N−2 N−3 N−4
N+

5 N+
5 N+

5 N+
5 N−5 N−5 N−5 N−5

Notes to Table A7

1. In the table for Γ and H, the letter R stands for the letter denoting the point of symmetry. For
example, at point H the representations R+

1 , R+
2 , . . . stand for H+

1 , H+
2 , . . . .

2. Each column lists the double-valued representation Ri × d1/2 below the single-valued
representation Ri, where d1/2 denotes the two-dimensional double-valued representation of the
three-dimensional rotation group O(3) given, e.g., in Table 6.1 of Ref. [11].

3. The single-valued representations are defined in Table A6.
4. The notations of double-valued representations follow strictly Table 6.13 (and Table 6.14) of

Ref. [11]. In this paper the double-valued representations are not explicitly given but are
sufficiently defined by this table.

Table A8. Single-valued representations of the space group Im3m of all the energy bands of Bi–V with
symmetry-adapted and optimally localized usual (i.e., spin-independent) Wannier functions centered
at the Bi atoms.

Bi(000) K Γ H P N
Band 1 Γ+

1 OK Γ+
1 H+

1 P1 N+
1

Band 2 Γ+
2 OK Γ+

2 H+
2 P2 N+

3
Band 3 Γ−2 OK Γ−2 H−2 P1 N−3
Band 4 Γ−1 OK Γ−1 H−1 P2 N−1

Notes to Table A8

1. The notations of the representations are defined in Table A6.
2. Assume a closed band of the symmetry in any row of this table to exist in the band structure of

Bi–V. Then the Bloch functions of this band can be unitarily transformed into Wannier functions
that are

• localized as well as possible;
• centered at the Bi atoms; and
• symmetry-adapted to the space group Im3m (229) [5].

The entry “OK” below the time-inversion operator K indicates that the Wannier functions may
even be chosen symmetry-adapted to the magnetic group

M = Im3m + K · Im3m,

see Theorem 7 of Ref. [5].
However, a closed band (Definition 2 of Ref. [5]) with the symmetry of the bands in this table
does not exist in the band structure of Bi–V (see Fig. 2).

3. The bands are determined following Theorem 5 of Ref. [5].
4. The point group of the positions of the Bi atoms (Definitions 11 and 12 of Ref. [5]) is the full cubic

point group Oh. The Wannier functions at the Bi atoms belong to the representations of Oh listed
in the second column. These representations are defined in Table A6.
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Table A9. Double-valued representations of the space group Im3m of all the energy bands of Bi–V
with symmetry-adapted and optimally localized spin-dependent Wannier functions centered at the Bi
atoms.

Bi(000) K Γ H P N
Band 1 Γ+

1 ⊗ d1/2 = Γ+
6 OK Γ+

6 H+
6 P6 N+

5
Band 2 Γ+

2 ⊗ d1/2 = Γ+
7 OK Γ+

7 H+
7 P7 N+

5
Band 3 Γ−2 ⊗ d1/2 = Γ−7 OK Γ−7 H−7 P6 N−5
Band 4 Γ−1 ⊗ d1/2 = Γ−6 OK Γ−6 H−6 P7 N−5

Notes to Table A9

1. Assume an isolated band of the symmetry listed in any row of this table to exist in the band
structure of Bi–V. Then the Bloch functions of this band can be unitarily transformed into
spin-dependent Wannier functions that are

• localized as well as possible;
• centered at the Bi atoms; and
• symmetry-adapted to the space group Im3m (229) [5].

The entry “OK” below the time-inversion operator K indicates that the spin dependent Wannier
functions may even be chosen symmetry-adapted to the magnetic group

M = Im3m + K · Im3m,

see Theorem 10 of Ref. [5]. Hence, all the listed bands forms superconducting bands, see
Definition 22 of Ref. [5].

2. The notations of the double-valued representations are (indirectly) defined in Table A7.
3. Following Theorem 9 of Ref. [5], the superconducting bands are simply determined from the

single-valued bands listed in Table A8 by means of Equation (97) of Ref. [5]. (According to
Definition 20 of Ref. [5], each single-valued band in Table A8 is an affiliated band of one of the
superconducting bands.)

4. The superconducting bands consists of one branch each, because there is one Bi atom in the unit
cell.

5. The point group of the positions of the Bi atoms (Definitions 11 and 12 of Ref. [5]) is the full
cubic point group Oh. The Wannier functions at the Bi atoms belong to the double-valued
representations of Oh listed in the second column, where the single-valued representations
Γ±1 and Γ±2 are defined by Table A6, and d1/2 denotes the two-dimensional double-valued
representation of O(3) as given, e.g., in Table 6.1 of Ref. [11].
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