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Abstract: In this paper, the quantum theory of the infinite-component Majorana field 
for the fermionic tower is formulated. This study proves that the energy states with 
increasing spin are simply composite systems made by a bradyon and antitachyons with 
half-integer spin. The quantum field describing these exotic states is obtained by the 
infinite sum of four-spinor operators, which each operator depends on the spin and the 
rest mass of the bradyon in its fundamental state. The interaction between bradyon-
tachyon, tachyon-tachyon and tachyon-luxon has also been considered and included in 
the total Lagrangian. The obtained theory is consistent with the CPT invariance and the 
spin-statistics theorem and could explain the existence of new forms of matter not 
predictable within the standard model. 
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1 Introduction 
The formulation of the quantum field theory based on the finite-dimensional representation of 

the Lorentz group led to the standard model (SM) and coherently explained most of the 
experimental results [1–4]. However, the representation is neither complete nor unitary [5, 6]. This 
gap can be filled through an infinite-dimensional representation, where boosts and rotations take the 
form of infinite matrices. In principle, a theory whose equations are covariant with respect to the 
infinite-dimensional representations could predict new particles or new structures of matter not 
contemplated in the picture of the SM. Although with different aims, Majorana formulated in 1932 
a relativistic equation for particle with arbitrary spin [7], which it is a universal equation that 
describes the physical nature of bosons, fermions and luxons that depends on the considered spin 
and mass. In other words, all spins are simultaneously representations of the inhomogeneous 
Lorentz groups obtained while only considering the spacetime symmetries [8]. The Majorana 
equation has two possible applications depending on the interpretation given to the wave function: 
particles with arbitrary spin or composite systems [8–11]. Therefore, this equation may be 
particularly useful in studying the structure of nuclear systems and their prospective high energy 
exotic states. However, the solution of the Majorana equation leads to results that contrast with 
physical reality (particle with only positive frequency, mass spectrum that asymptotically decreases 
with spin increasing, spacelike solutions) [12]. Moreover, the attempt to quantise the infinite-
component Majorana field violates CPT invariance and is inconsistent with the spin-statistic 
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theorem. In addition, explaining the existence of tachyonic solutions that are incoherent with the 
classical theory of relativity is difficult [12–14]. Sudarshan managed these difficulties while 
separately investigating the three classes of particles predicted by the Majorana equation: slower 
than light particles, luxons and faster than light particles [15]. The method used by Sudarshan, 
therefore, is indirect and is based on the decomposition of the Majorana spinor, i.e. its bradyonic, 
tachyonic and luminal components. However, a direct method to quantise the Majorana field in a 
coherent manner with the fundamental theorems of modern quantum mechanics does not yet exist. 
Moreover, little has been done to apply Majorana field theory to composite (multimass) systems [9]. 

This study investigates the physical nature of the energy states with increasing spins that form 
the Majorana bradyonic tower, but this study is limited to only investigating fermions. These states 
are also proven to be simply exotic composite systems made by a bradyon and antitachyons, which 
all these components with half-integer spin. In this sense, the bradyonic tower includes all the 
possible solutions of the infinite-component equation without needing to face the quantisation 
process for each type of particles (bradyon, tachyon, luxon). However, once again, the field theory 
is formulated in an indirect way as the sum of the (local) Dirac field [16] with positive frequency 
and the tachyonic (local) field with negative frequency [17]. These two fields are connected to each 
other by a Lorentz superluminal transformation [18-19], which also represents the bradyon-tachyon 
interaction mechanism. The Majorana field is, therefore, the infinite sum of four-spinor operators 
which depend on the spin ܬ . In forming this theory, the tachyon-tachyon and tachyon-luxon 
interactions are considered. Because of the lack of experimental data, these interactions are 
introduced in the Lagrangian, making use of some speculative theories available in the scientific 
literature [20,21]. Therefore, the total Lagrangian is the following: ℒெ = ℒ஽శ + ℒ௧ష + ℒ௜௡௧. (1) 
where ℒெ is the Lagrangian of Majorana field, ℒ஽శis the Lagrangian of the Dirac field with positive 
frequencies, ℒ௧ష is the Lagrangian of the tachyonic field with negative frequencies and ℒ௜௡௧. is the 
Lagrangian of the interactions between the local fields. Overall, the obtained theory is consistent 
with the CPT invariance and with the spin-statistics theorem. 

 

2 The Majorana Bradyonic Tower as Composite Systems 
The solution of the Majorana equation for arbitrary spin leads to a discrete mass spectrum: ݉ሺܬሻ = ௠బቀభమା௃ቁ (2) 

where ݉଴  is the rest mass of the particle in the fundamental state. In addition, this study only 
considers fermions with half-integer spin, i.e. ܬ = ଵଶ , ଷଶ , ହଶ , …. 
The occupation probability of a Majorana state with spin ܬ is the following [22]: ݌ሺܬሻ = ௡ߚൣ −  ሺ௡ାଵሻ൧ଵ/ଶ (3)ߚ
where ݊ = ሺ1/2 + ሻܬ  and ߚ  is the relativistic factor. Using the energy-momentum relation, the 
energy difference between whatever state with spin ܬ and the fundamental state is the following: ܧଶሺܬሻ − ଴ሻܬଶሺܧ = ሾ݌ଶሺܬሻ − ଴ሻሿܿଶܬଶሺ݌ − ሺ௃ାଵ/ଶሻమିଵሺ௃ାଵ/ଶሻమ ݉଴ଶܿସ (4) 
Equation (4) is the typical form of the energy-momentum relation for a tachyon with imaginary 
mass: ߤሺܬሻ = ݅ ඥሺ௃ାଵ/ଶሻమିଵሺ௃ାଵ/ଶሻ ݉଴ (5) 
Equation (5) suggests that the Majorana states with decreasing mass are the results of the 
interactions between the ½-spin bradyon quantum field and the ½-spin tachyon field. To this 
purpose, the Majorana equation predicts a discrete bradyonic mass spectrum with only positive 
frequency and a continuous imaginary mass spectrum with both positive and negative frequencies 
[7]. Therefore, Majorana states with spin ܬ >  ଴ may be considered as composite systems made by aܬ
1/2-spin bradyon of rest mass ݉଴ and 1/2-spin tachyons with imaginary mass. Starting from this 
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assumption, a field theory consistent with the spin-statistic theorem and whose Hamiltonian 
operator is upper bound is established. 
 
3 The Dirac Field with Positive Energies 

The Dirac field is a four-dimension spinor that transforms from a given reference frame to 
another under the action of the symmetry elements of the Lorentz group in its four-dimensional 
representation [1]. The Lagrangian density of the Dirac group is the following: ℒ஽ = ത߰஽൫݅ߛఓ ఓ߲ − ݉଴൯߰஽ (6) 
where ߛఓ are the four Dirac matrices (µ=0,…,3) and the conjugate field is the following: ത߰஽ = ߰஽றߛ଴ (7) 
The Dirac field current is the following: ܬఓሺ࢞ሻ = ത߰஽ߛఓ߰஽ (8) 
whose divergence is identically zero: ఓ߲ܬఓሺ࢞ሻ = ൫ ఓ߲ ത߰஽൯ߛఓ߰஽ + ത߰஽ߛఓ ఓ߲߰஽ = ݅݉଴ ത߰஽߰஽ + ത߰஽ሺ−݅݉଴߰஽ሻ = 0 (9) 
Therefore, the Dirac current is a conserved quantity. In addition, the Dirac field is quantised by the 
anticommutation rule: 

 ቊሼ߰௔, ߰௕ሽ = ሺଷሻሺ࢞ߜ − ࢟ሻߜ௔௕ሼ߰௔, ߰௕ሽ = ൛߰௔ற, ߰௕றൟ = 0   (10) 

 As explained in the previous section, the solutions with positive energy are desired, which are 
the same solutions as the Majorana equation for a particle with 1/2-spin [7]. To do this, ߛ଴ = ૤ must 
be set so that relation (7) becomes the following: ത߰஽శ = ߰஽శற  (11) 
and equation (6) becomes the following: ℒ஽ = ߰஽శற ൫݅ߛఓ ఓ߲ − ݉଴൯߰஽శ (12) 
The field operators are obtained solving the Lagrangian equations, and their Fourier expansions in 
terms of creator and annihilator operators are as follows [1]: 

൞ ത߰஽శ = ׬ ௗయ࢖ሺଶగሻయ ଵඥଶாವశ ∑ ൫ܽ࢖௦൯றݑത ௦ሺ࢖ሻ݁݌ݔሼ−݅ሺ࢑࢞ − ሻሽ௦߰஽శݐ߱ = ׬ ௗయ࢖ሺଶగሻయ ଵඥଶாವశ ∑ ሼ݅ሺ࢑࢞݌ݔሻ݁࢖௦ሺݑ௦࢖ܽ − ሻሽ௦ݐ߱  (13) 

where ܧ஽శ = ඥ݌ଶܿଶ + ݉଴ଶܿସ , ߱ = ࢑ ஽శ/ℏ andܧ =  ሻ is the spinor function. The࢖௦ሺݑ ℏ, while/࢖
creator and annihilator operators must satisfy the anticommutation relation: ቄܽ࢖௥, ൫ܽࢗ௦൯றቅ = ሺ2ߨሻଷߜሺଷሻሺ࢖ −  ௥௦ (14)ߜሻࢗ
The current (8) becomes the following: ܬఓሺ࢞ሻ = ߰஽శற  ఓ߰஽శ (15)ߛ
whose gradient is always zero: ఓ߲ܬఓሺ࢞ሻ = ൫ ఓ߲߰஽శற ൯ߛఓ߰஽శ + ߰஽శற ఓߛ ఓ߲߰஽శ = ݅݉଴߰஽శற ߰஽శ + ത߰஽൫−݅݉଴߰஽శ൯ = 0 (16) 
Equation (16) shows that ߰஽శற = ൫߰஽శ൯ିଵ, which agrees with the Majorana equation [7] for ݆଴ =1/2. Therefore, the field current is conserved for the Dirac field with positive energies. Moreover, 
since ߛ଴ = ૤, the explicit form of the current is the following: ܬఓሺ࢞ሻ = ߰஽శற ߰஽శ + ߰஽శற ఓ߰஽శߛ = 1 + ߰஽శற ߛ     ఓ߰஽శߛ = 1,2,3 (17) 
Equation (17) shows that the current always has a positive time component, which confirms that the 
particle is a bradyon.   
 Having limited the Dirac field to the only positive frequencies, the Hamiltonian density 
becomes the following: ℋ = ׬ ௗయ࢖ሺଶగሻయ ሻ࢖஽శሺܧ ∑ ൫ܽ࢖௦൯ற௦ ௦࢖ܽ  (18) 
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Equation (18) is not upper bound and, as expected, is similar to the Hamiltonian obtained when the 
Majorana field is directly quantised [12]. However, for our purpose, the Dirac field with positive 
energies is only a tool needed to coherently quantise the infinite-component field. Nonetheless, the 
trouble produced from equation (18) is overcome when in the desired theory the tachyonic field is 
introduced. 
 
4 The Tachyonic Field with Negative Energies 
 The 1/2–spin tachyonic field theory is developed by limiting the Lemke equation [17] to 
solutions with negative energies. The Lagrangian density is the following: ℒ௅ష = ത߰௅ష൫݅ߛఓ ఓ߲ + ݅݉൯߰௅ష (19) 
where ߛఓ are the Dirac matrices with ߛ଴ = ૤. In this theory, the mass ݉ must satisfy equation (5); 
thus, the Lemke Lagrangian may be rewritten as the following: ℒ௅ష = ത߰௅ష ൬݅ߛఓ ఓ߲ + ݅ ඥሺ௃ାଵ/ଶሻమିଵሺ௃ାଵ/ଶሻ ݉଴൰ ߰௅ష (20) 
whose negative energies are the following: ܧ௅ష = −ටሾ݌ଶሺܬሻ − ଴ሻሿܿଶܬଶሺ݌ − ሺ௃ାଵ/ଶሻమିଵሺ௃ାଵ/ଶሻమ ݉଴ଶܿସ (21) 
Equation (21) has physical meaning only if the following constraint is verified: ሾ݌ଶሺܬሻ − ଴ሻሿܬଶሺ݌ ≥ ሺ௃ାଵ/ଶሻమିଵሺ௃ାଵ/ଶሻమ ݉଴ଶܿଶ (22) 
Therefore, once the impulse of the starting bradyon with ܬ଴ = 1/2  is defined, the antitachyon 
interacting with it must have an impulse such that the constraint (22) is fulfilled. This means that the 
Majorana state with spin ݆ must be the following: ݌ଶሺܬሻ ≥ ଴ሻܬଶሺ݌ + ሺ௃ାଵ/ଶሻమିଵሺ௃ାଵ/ଶሻమ ݉଴ଶܿଶ (23) 
At the limit ݆ → ∞, the squared impulse becomes equal to ሺ݌ଶሺܬ଴ሻ + ݉଴ଶܿଶሻ, i.e. by increasing the 
spin the impulse of the exotic state reaches a minimum value different from zero. Furthermore, 
relativistic kinematics shows that the velocity of the bradyon in the exotic state must be greater than ܿ/√2. Equation (23) also shows that when the velocity of the bradyon in the exotic state with spin ܬ 
approaches the speed of light, the impulse ݌ሺܬ଴ሻ  tends to ݉଴ܿ  and the impulse ݌ሺܬሻ  of the 
composite particle tends to zero. Therefore, to this kinematic limit, the antitachyon energy tends to 
zero, thus being upper bound. 
 The tachyonic field with negative energy as Fourier expansions of creator annihilator 
operators is the following: 

൞ ത߰௅ష = ׬ ௗయ࢖ሺଶగሻయ ∑ ଵඥଶா࢖ ൫࢖ݐ௦,௝൯றݓഥ ௦,௝ሺ࢖ሻ݁݌ݔሼ−݅ሺ࢑࢞ − ሻሽ௦,௝߰௅షݐ߱ = ׬ ௗయ࢖ሺଶగሻయ ∑ ଵඥଶா࢖ ሼ݅ሺ࢑࢞݌ݔሻ݁࢖௦,௝ሺݓ௦,௝࢖ݐ − ሻሽ௦,௝ݐ߱  (24) 

In this case, the sum runs also on the spin index, and the quantities ࢑ and ߱ depend on it: ቐ߱ଶሺܬሻ = ଵℏమ ቂቀ݌ଶሺܬሻܿଶ − ௠బమ௖రሺ௃ାଵ/ଶሻమቁ − ሺ݌ଶሺܬ଴ሻܿଶ − ݉଴ଶܿସሻቃ݇ଶሺܬሻ = ଵℏమ ൫݌ଶሺܬሻ − ଴ሻ൯ܬଶሺ݌  (25) 

Therefore, the exponential functions in the Fourier expansions (24) may be written as follows: ݁݌ݔሼ±݅ሺ࢑࢞ − ሻሽݐ߱ = ሼ±݅ሺ࢑ሺ݆ሻ࢞݌ݔ݁ − ߱ሺ݆ሻݐሻሽ݁݌ݔሼ±݅ሺ࢑ሺ݆଴ሻ࢞ − ߱ሺ݆଴ሻݐሻሽ (26) 
The operator ൫࢖ݐ௦,௝൯ற

creates a tachyon with an impulse that, in accordance with equation (23), 
depends on the momentum of the 1/2-spin bradyon. This means that the creator and annihilator 
tachyonic operators implicitly depend on those bradyonic with positive energies.  
 Since ߛ଴ = ૤, the conjugate tachyonic field is equal to its adjoint, and the scalar product 
between the two fields ത߰௅ష and ߰௅ష is zero [17]: ത߰௅ష߰௅ష = ߰௅షற ଴߰௅షߛ = 0 (27) 
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By the orthogonality property (27), it follows that the tachyonic current is the following: ܬ௅షఓ ሺ࢞ሻ = ߰௅షற ߰௅ష + ߰௅షற ఓ߰௅షߛ = ߰௅షற ߛ     ఓ߰௅షߛ = 1,2,3 (28) 
As expected, the tachyonic current does not have the time coordinate but only the space 
coordinates. 
 The next step should be the quantisation of the tachyonic field, but, the following section 
proves that the tachyonic field is connected with the Dirac field by SLT symmetry and that the 
anticommutation relations fulfilling the Dirac field also hold for the tachyonic one. In other words, 
the quantisation of the Dirac field with positive energies also implies quantisation of the tachyonic 
field with negative energies. 
 
5 Algebraic Connection Between the Bradyonic and Tachyonic Fields 
 The infinite-component Majorana equation provides both bradyonic and tachyonic solutions 
[7]. This suggests that the two fields should coexist and that one should be the algebraic connection 
of the other. This is equivalent to claiming that a symmetry transformation exists between the 
bradyonic operators ൫ܽ࢖௦൯ற and ܽ࢖௦  with the tachyonic ones ൫࢖ݐ௦,௝൯ற

 and ࢖ݐ௦,௝  and that a similar 
transformation exists between the spinors ݑ௦ሺ࢖ሻ  and ݓ௦,௝ሺ࢖ሻ . In other words, an invertible 
transformation that changes a timelike solution in a spacelike solution is determined. This symmetry 
transformation is the interaction force which holds together the exotic state formed by a 1/2-spin 
bradyon and a given number of 1/2-spin antitachyons to be compatible with the total spin ܬ. In 
agreement with Recami [18,19], the desired SLT transformation is antiunitary: ߉்߉ = −૤ (29) 
The transformation depends on the spin J such that acting on the bradyonic operator ܽ࢖௦  gives the 
tachyonic operator ࢖ݐ௦,௝. This transformation occurs through the similarity transformation: ൫߉௃൯ିଵܽ࢖௦߉௃ =  ௦,௝ (30)࢖ݐ
Using the properties (29), equation (30) may be rewritten as the following: ൫߉௃൯ିଵܽ࢖௦߉௃ = ௃൯߉௃ିଵ߉௃൫߉௦࢖௃ିଵܽ߉− =  ௃ (31)߉௃ିଵ߉௦,௝࢖ݐ−
Furthermore, applying equation (31) to the spinor gives the following: ൣ−߉௃ିଵܽ࢖௦߉௃൫߉௃ିଵ߉௃൯൧ݓ௦,௝ሺ࢖ሻ = ሻ࢖௦,௝ሺݓ௃߉௃ିଵ൯߉௃߉௦൫࢖௃ିଵܽ߉− = = ௦࢖௃ିଵܽ߉− ቀ߉௃ݓ௦,௝ሺ࢖ሻቁ =  ሻ (32)࢖௦ሺݑ௦࢖௃ିଵܽ߉−
Equation (32) is the algebraic transformation, linking the bradyonic state with rest mass ݉଴ and the 
tachyonic states with mass ݉ሺܬሻ. The following equations then generalise the transformations: ൝ ሻ࢖௦,௝ሺݓ௦,௝࢖ݐ = ഥݓ௦,௝൯ற࢖ݐሻ൫࢖௦ሺݑ௦࢖௃ିଵܽ߉− ௦,௝ሺ࢖ሻ = തݑ௦൯ற࢖௃ିଵ൫ܽ߉− ௦ሺ࢖ሻ (33) 

The antitachyon field operators become the following: 

൞ ത߰௅ష = − ׬ ௗయ࢖ሺଶగሻయ ∑ ଵඥଶா࢖ തݑ௦൯ற࢖௃ିଵ൫ܽ߉ ௦ሺ࢖ሻ݁݌ݔሼ−݅ሺ࢑࢞ − ሻሽ௦,௝߰௅షݐ߱ = − ׬ ௗయ࢖ሺଶగሻయ ∑ ଵඥଶா࢖ ሼ݅ሺ࢑࢞݌ݔሻ݁࢖௦ሺݑ௦࢖௃ିଵܽ߉ − ሻሽ௦,௝ݐ߱  (34) 

Since the bradyonic operators ܽ௣௦  and ൫ܽ࢖௦൯ற  satisfy the anticommutation relations (14), the 
tachyonic operators comply with the same relations, as follows: ቄ࢖ݐ௦,௝, ൫࢖ݐ௦,௝൯றቅ = ௃߉௦൯ற࢖௃ିଵ൫ܽ߉௃߉௦࢖௃ିଵܽ߉ + ௃߉௦࢖௃ିଵܽ߉௃߉௦൯ற࢖௃ିଵ൫ܽ߉ = = ௃ିଵܽ௣௦߉− ൫ܽ࢖௦൯ற߉௃ − ௃߉௦࢖௦൯றܽ࢖௃ିଵ൫ܽ߉ = ௃ିଵ߉− ቄܽ࢖௥, ൫ܽࢗ௦൯றቅ ௃߉ = = −ሺ2ߨሻଷߜሺଷሻሺ࢖ −  ௥௦ (35)ߜሻ′࢖
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Relation (35) proves that the tachyonic field is quantised according to the anticommutation rules. 
Following the same approach, the anticommutation relation between the tachyonic fields shown in 
equation (24) is proven by the following relation: ൛߰௅ష, ߰௅షற ൟ = ࢖ሺଷሻሺߜ −  ሻ (36)′࢖
 
6 The Infinite-component Majorana Field 
 In section 4, the relationship between the impulses of the exotic state with spin ܬ and of the 
fundamental state was obtained and shown in equation (23). Now the following constraint is 
established: ඥ݌ଶሺܬ଴ሻܿଶ + ݉଴ଶܿସ = ට݌ଶሺܬሻܿଶ − ௠బమ௖రሺ௃ାଵ/ଶሻమ (37) 
from which the following equation is obtained: ݌ଶሺܬሻ = ଴ሻܬଶሺ݌ + ሺ௃ାଵ/ଶሻమାଵሺ௃ାଵ/ଶሻమ ݉଴ଶܿଶ (38) 

Therefore, the energy of the exotic state ranges within ቂ0, ඥ݌ଶሺܬ଴ሻܿଶ + ݉଴ଶܿସቃ, and the energy of 
the tachyonic component contributing to the exotic state is the following: ܧ௧ = ଴ሻ     0ܬሺܧሻܬሺߝ ≤ ሻܬሺߝ ≤ 1 (39) 
The phases of the exponential functions appearing in the Fourier expansion of the quantum fields 
are the following: ݁݌ݔሼ±݅ሺ࢑௧࢞ − ߱௧ݐሻሽ = ሻ݅ሺ࢑଴࢞ܬሺߝ±ሼ݌ݔ݁ − ߱଴ݐሻሽ = ݁ఌሺ௃ሻ݁݌ݔሼ±݅ሺ࢑଴࢞ − ߱଴ݐሻሽ (40) 
where the wave vector and the pulsation of the bradyon in the fundamental state are denoted by ࢑଴ 
and ߱଴, respectively. Therefore, the antitachyon field operators may be rewritten as the following: 

൞ ത߰௅ష = − ∑ ௘ഄሺ಻ሻඥఌሺ௃ሻ ௃ିଵ௃߉ ത߰஽శ߰௅ష = − ∑ ௘ഄሺ಻ሻඥఌሺ௃ሻ ௃ିଵ௃߉ ߰ା  (41) 

By (41), the Lagrangian (19) may be written as the following: ℒ௅ష = ∑ ௘ഄሺ಻ሻඥఌሺ௃ሻ ௃ିଵ߉ൣ ത߰஽శ൫݅ߛఓ ఓ߲ + ݅݉൯߉௃ିଵ߰஽శ൧௃  (42) 
As a result, the tachyonic mass is the following: ߤሺܬሻ = ݅ ඥሺ௃ାଵ/ଶሻమିଵሺ௃ାଵ/ଶሻ ݉଴ =  ሻ݉଴ (43)ܬሺߟ
When ߟሺܬሻ ranges between ሾ0,1ሿ, the Lagrangian (42) becomes the following: ℒ௅ష = ∑ ௘ഄሺ಻ሻඥఌሺ௃ሻ ௃ିଵ߉ൣ ത߰஽శ൫݅ߛఓ ఓ߲ − ௃ିଵ߰஽శ൧௃߉ሻ݉଴൯ܬሺߟ  (44) 
The Lagrangian of the Majorana exotic state with spin ܬ can then be presented as the following: ℒெሺܬሻ = ∑ ௘ഄሺ಻ሻඥఌሺ௃ሻ ௃ିଵ߉ൣ ത߰൫݅ߛఓ ఓ߲൯߉௃ିଵ߰ − ௃ିଵ߉ሻ݉଴ܬሺߟ ത߰߉௃ିଵ߰൧ + ൣ ത߰൫݅ߛఓ ఓ߲൯߰ − ݉଴ ത߰߰൧௃  (45) 
To simplify the notation, the subscripts distinguishing the bradyonic and tachyonic fields have been 
eliminated. Thus, the Lagrangian (45) must be equivalent to: ℒெ = ത߰ெ൫݅ߛெఓ ఓ߲ − ݉଴൯߰ெ (46) 
The infinite-component Majorana field is denoted by ߰ெ, while ߛெఓ represents the infinite matrices 
which develop in block, increasing the value of the spin: ߛெఓ = ൭ߪఓሺ1/2ሻ 0 ⋯0 ఓሺ3/2ሻߪ …⋮ ⋮ ⋱ ൱ (47) 

where ߪఓሺ݊/2ሻ is the spin matrix for the particle with spin ݊/2. Thus, by the equivalence of the 
Lagrangians (45) and (46), the following is obtained: 
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ቐ ത߰ெ൫݅ߛெఓ ఓ߲൯߰ெ ≈ ൜∑ ௘ഄሺ಻ሻඥఌሺ௃ሻ ௃ିଵ߉ൣ ത߰൫݅ߛఓ ఓ߲൯߉௃ିଵ߰൧ + ൣ ത߰൫݅ߛఓ ఓ߲൯߰൧௃ ൠ݉଴ ത߰ெ߰ெ ≈ ݉଴൛ ത߰߰ + ∑ ௃ିଵ߉ሻܬሺߟ ത߰߉௃ିଵ߰௃ ൟ  (48) 

Since the numerical coefficients ߝሺܬሻ and ߟሺܬሻ vary within the same range, they can be set to be 
equal. Moreover, since ത߰ = ߰ற, and the tachyonic fields ߰௅ష  and ߰௅షற are orthogonal, the second 
equation in (48) becomes the following: ത߰ெ߰ெ ≈ ߰ற߰ (49) 
This result was expected because the Majorana theory reduces for positive frequencies to that of the 
Dirac theory if ܬ = 1/2. All other infinite components of the Majorana field are such that their 
product is zero, ensuring that the time-component of the current is only that associated to the 
bradyon. The space-components, instead, are the results of the contribution of both the bradyon and 
tachyon. Therefore, the SLT matrices ߉௃ିଵ  transform the Dirac fields ߰  and ߰ற , making them 
orthogonal. Therefore, the Majorana field may be explicitly written as the following: 

߰ெ = ۈۉ
ۇ ߰ඥ݁ఌሺଷ/ଶሻ߉ଷ/ଶିଵ߰ඥ݁ఌሺହ/ଶሻ߉ହ/ଶିଵ߰⋮ ۋی

ۊ
 (50) 

while the adjoining field is the following: ߰ெற = ቀ߰ற, −ඥ݁ఌሺଷ/ଶሻ߉ଷ/ଶିଵ߰ற, −ඥ݁ఌሺହ/ଶሻ߉ହ/ଶିଵ߰ற, … ቁ (51) 

Equation (51) shows that ൫߉௃ିଵ൯ற = ௃ିଵ߉ , i.e. the STL matrices are antisymmetric, which is 
expected since they are also antiunitary. Using the obtained results, the Majorana Lagrangian may 
be written as the following: ℒெ = ߰ற ቄ݅ ቂ∑ ௘మഄሺ಻ሻఌሺ௃ሻ ൫߉௃ିଵ൯்ߛఓ߉௃ିଵ௃ ቃ ఓ߲ − ݉଴ቅ ߰ (52) 
Equation (52) shows that the action of the infinite Majorana matrices is equivalent to that of the 
infinite sum of Dirac matrices transformed by SLT transformations: ߛெఓ = ቂ∑ ௘మഄሺ಻ሻఌሺ௃ሻ ൫߉௃ିଵ൯்ߛఓ߉௃ିଵ௃ ቃ (53) 
where the coefficient ߝሺܬሻ  represents the expansion of the bradyonic tower with discrete mass 
spectrum, while the matrices ߉௃  represent the expansion of the tachyonic counterpart with a 
continuous mass spectrum. This is a relevant result, since an infinite matrix may be easily obtained 
using only finite 4x4 well-known matrices. 
 This theoretical approach also solves the problem affecting the Majorana Hamiltonian [12]; in 
fact, in terms of creator and annihilator operators, the Hamiltonian is the following: ℋ = න ݀ଷ࢖ሺ2ߨሻଷ ෍ ሻ௦,௃ܬሺ࢖ܧ ቂ൫ܽ࢖௦൯றܽ࢖௦ + ൫࢖ݐ௦,௝൯ற࢖ݐ௦,௝ቃ = = ׬ ௗయ࢖ሺଶగሻయ ∑ ሻ௦,௃ܬሺ࢖ܧ ቂ൫ܽ࢖௦൯றܽ࢖௦ + ௃ିଵa୮ୱ߉௦൯ற࢖௃ିଵ൫ܽ߉ ቃ (54) 
where ࢖ܧሺܬሻ is the energy of the Majorana state with spin ܬ. Hamiltonian (54) is lower bound by the 
tachyonic term that, therefore, corresponds to the contribution given by the antiparticle in the Dirac 
Hamiltonian. The particle energy always remains positive and tends to zero, increasing the number 
of tachyons bound to the bradyon with ܬ = 1/2. Therefore, the Majorana particle with positive 
energy can never be superluminal because of the antitachyon that decreases the energy as the 
particle velocity approaches the speed of light, which is similar to the process that occurs in the 
Dirac theory when the antiparticle is considered. If the theory had been constructed using the 
tachyonic field with positive energy, then the Hamiltonian would never been lower bound and 
would have suffered the same troubles encountered when the quantisation of Majorana field is faced 
directly [12]. Moreover, since the energy of the bradyon is lower bound (never lower than zero), the 
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energy of the antitachyon cannot be infinite or zero. This explains why the Majorana exotic states 
are made by a bradyon particle and antitachyon particles. 
 Regarding the Majorana field, since the Lagrangian is given by the contribution of the Dirac 
field with positive energy and the tachyonic field with negative energy, the following equation can 
be obtained: ܬெఓ ሺ࢞ሻ = ത߰ெߛெఓ߰ெ = ߰஽శற ߰஽శ + ߰஽శற ఓ߰஽శߛ + ߰௅షற ߰௅ష + ߰௅షற ఓ߰௅షߛ = = ߰஽శற ߰஽శ + ߰஽శற ఓ߰஽శߛ + ௃ିଵ߰஽శற߉ ߛ     ௃ିଵ߰஽శ߉ఓߛ = 1,2,3 (55) 
The current is given by a time component and two spacelike components, of which one corresponds 
to the bradyonic aspect and the other corresponds to the tachyonic aspect. The divergences of the 
current (55) and any of its components are zero. 
 Lastly, in the Majorana field, the vacuum energy corresponds to an exotic state with infinite 
value of the spin. Therefore, the Majorana quantum vacuum may form particle-antitachyon pairs, 
and a luxon is a composite particle in the limit of infinite ܬ. The idea of luxon being a composite 
particle originates from the beginning of quantum mechanics and has been reconsidered in the last 
decades in the ambit of the high energy physics [23-24]. 
 
7 Particle-Tachyon Interaction Terms 
 In addition, there is an interaction term between a bradyon and a tachyon that responsible for 
the existence of the Majorana exotic states. Since no experimental data exists corresponding to this 
interaction, its physical nature can be determined based on the results of previous studies and some 
inherent properties of the theory. The theoretical assumptions are as follows: 

1)  The kinematic theory of Lemke on the decay of an ordinary particle predicts the emission of 
luxons [25] ߛ. 

2)  The Majorana states with spin ܬ are formed only at very high energies and, considering the 
uncertainty principle, they have very short lifetimes that are inversely proportional to the 
spin. Therefore, the interaction force is of a weak nature. 

3)  Considering an electrically charged bradyon, antitachyons forming the composite particle 
may be charged or neutral.  (the Majorana equation applies both for charged and neutral 
particles, as well as luxons). Therefore, we may assume that the tachyonic tower also has an 
electric charge (which is indicated with ݍ௧) that interacts with the electric charge of the 
bradyon. 

Thus, the interaction between bradyon and antitachyons always has an exchange component (the 
STL matrices are just the algebraic formulation of this interaction) and if the bradyon is in its 
fundamental state, the interaction has a component of electrical nature. Regarding the first 
interaction term, the following Fermi method can calculate the weak interaction [26-27]: ℒ௜௡௧.ሺ݁ܿݔℎܽ݊݃݁ሻ = ி൫ܩ ത߰௅షߛఓ߰஽శ൯ + ܿ. ܿ. = ఓ߰൯ߛ௃ିଵ߰ற߉ி൫ܩ + ܿ. ܿ. (56) 
where c.c. represents complex conjugate. Regarding the interaction between Coulomb charges and 
tachyonic charges, their respective vector potentials can be calculated by the following: ℒ௜௡௧.ሺܿℎܽ݁݃ݎሻ = ఓܣݍൣ݅ ത߰஽శߛఓ߰஽శ൧݅ൣݍ௧ܣఓ೟ ത߰௅షߛఓ߰௅ష൧ (57) 
where ܣఓ is the vector potential of the electromagnetic field and ܣఓ೟ is the potential vector of the 
tachyonic field. The latter is potentially connected to the fifth force [28], and the source transporting 
the tachyonic and electric charge always has subluminal behaviour. In addition, the potential 
generated by the tachyonic charge is not related to the propagation of the tachyonic wave [29]; 
therefore, it is consistent with the theory constructed since it is inherent to the only bradyonic tower. 
 The potential vector of the quantum electrodynamics is as follows: ܣఓ = ∑ ට ℏଶఠೖఌబ ൫ߝఓఒߙ௞ఒ݁௜࢑∙࢞ + ∗ఓఒߝ ௞ఒறߙ ݁ି௜࢑∙࢞൯௞,ఒ  (58) 

where ߝఓఒ  (λ=1,2) is the polarisation vector of photon while ߙ௞ఒ  and ߙ௞ఒற  are their creator and 
annihilator operators. The potential vector of tachyons (gauge invariant) can also have the same 
structure of (58): 
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ఓ೟ܣ = ∑ ට ℏଶఠೖ೟ఌబ ൫ߝఓఒ೟ߙ௞ఒ೟݁௜࢑∙࢞ + ∗ఓఒ೟ߝ ௞ఒ೟றߙ ݁ି௜࢑∙࢞൯௞,ఒ  (59) 

where ߱௞೟  is the frequency of the luxon mediating the tachyon-tachyon interaction, ߝఓఒ೟  is its 
polarisation vector (and therefore is a boson with spin 1), and ߙ௞ఒ೟ and ߙ௞ఒ೟ற  are their creator and 
annihilator operators. 
 Since the Majorana exotic states are formed by a half-integer spin bradyon and antitachyons 
with negative half-integer spin, in the case of a charged particle, the Lagrangian must also include a 
term describing the field of luxons mediator of the interacting force due to the charge ݍ௧ . By 
analogy with the quantum electrodynamics, this field is given by the following: ℒ௟௨௫௢௡ = − ଵସఓబ  ௧ఓజ (60)ܨఓజ೟ܨ
 where ܨఓజ೟ = ൫ ఓ߲ܣజ೟ − ߲జܣఓ೟൯ . The Lemke Lagrangian can be corrected by introducing an 
interaction term. Using the method of minimal substitution, the following is obtained: ℒ௅ష = ∑ ௘మഄሺ಻ሻఌሺ௃ሻ ቂ߉௃ିଵ߰ற ቀ݅ߛఓ൫ ఓ߲ − ఓ೟൯ቁܣ௧ݍ݅ ௃ିଵ߰߉ − ௃ିଵ߰ቃ௃߉௃ିଵ߰ற߉ሻ݉଴ܬሺߝ  (61) 
The explicit form of Lagrangian (1) is then the following: ቄ∑ ௘మഄሺ಻ሻఌሺ௃ሻ ቂ߉௃ିଵ߰ற ቀ݅ߛఓ൫ ఓ߲ − ఓ೟൯ቁܣ௧ݍ݅ ௃ିଵ߰ቃ߉ + ߰ற൫݅ߛఓ ఓ߲൯߰௃ − ݉଴߰ற߰ − ଵସఓబ ௧ఓజቅܨఓజ೟ܨ == ிܩ ቂ൫߉௃ିଵ൯்߰றߛఓ߰ቃ + ቄܩி ቂ൫߉௃ିଵ൯்߰றߛఓ߰ቃቅ∗ − ఓ߰൧ߛఓ߰றܣݍൣ ቂݍ௧ܣఓ೟൫߉௃ିଵ൯்߰றߛఓ߉௃ିଵ߰ቃ (62) 
 
8 Discussion 
 This study has shown that the Majorana equation for particle with arbitrary spin hides a 
deeper structure where the particles with increasing spin are composite systems formed by a half-
integer spin bradyon and half-integer spin antitachyons. Within the quantum field theory, these 
systems are produced by the interaction between the Dirac field with positive energies and the 
tachyonic field with negative energies. This interaction leads to a lower bound Hamiltonian 
constructed by field operators that are coherent with the spin-statistic theorem. The Majorana field 
describes these systems by an infinite sum of Dirac fields which differ in mass and the SLT matrix 
that transforms the spinor of the bradyon in its fundamental state in a tachyon spinor. This approach 
solves all troubles encountered by directly facing the quantisation of a field with infinite 
components with positive energies. 
 The interaction between the Dirac field with positive energies and the tachyonic field leads to 
interaction terms between bradyon-tachyon, tachyon-tachyon and the respective charges. In 
addition, the probability of existence of an exotic state is proportional to the relativistic factor ߚ 
and, once the energy is established, the probability decreases as spin ܬ increases [22]. This suggests 
that the exotic states are instable and that their instability increases as the number of antitachyons 
forming the states increases. Based on these argumentations, the bradyon-tachyon interaction is a 
weak nature. Furthermore, the previous section proved that this interaction is given by the 
transformation of the bradyon spinor performed by the SLT matrices. The SLT matrices depend on 
the spin value ܬ, but the explicit form of this algebraic dependence has not yet been determined. To 
do this, the numerical factor ߟሺܬሻ = ඥሺܬ + 1/2ሻଶ − 1/ሺܬ + 1/2ሻ that ranges between zero, when 
the bradyon is in its fundamental state corresponding to ܬ = 1/2 (minimum energy), and one, when 
the bradyon is in an exited state with a spin value that tends to infinite (maximum energy 
corresponding at the limit ݒ → ܿ), must be determined. Therefore, the factor ߟሺܬሻ coincides with the 
relativistic factor ߚ , and since the SLT matrices are constructed using this factor [30], their 
functional dependence becomes explicit. 
 Overall, the Majorana quantum field theory is formulated simply by Dirac gamma matrices 
and SLT matrices, both of finite dimensions, which act on a Dirac four-spinor. However, the nature 
of the bradyon-tachyon interaction and, above all, the tachyon-tachyon interaction must be 
investigated, not only for the purely quantum aspect, but also for aspects concerning their charge 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 November 2017                   doi:10.20944/preprints201711.0084.v1

http://dx.doi.org/10.20944/preprints201711.0084.v1


(not necessarily of electrical nature). This information does not directly emerge from the Majorana 
equation and goes beyond the main purpose of this study, which aims is to find an alternative way 
to quantise an infinite component field that is consistent with the laws of quantum theory. Even 
regarding the fine structure of the internal exotic states, due to the projection of the total spin about 
the z-axis, a more in-depth analysis is needed. Consequently, the investigation of these aspects will 
be postponed to a more specific study. 
 
9     Conclusion 
 The quantisation of Majorana field allows the study of new composite quantum systems 
whose stability is achieved only in extreme energy conditions where the bradyonic field interacts 
with the tachyonic field [31]. The internal structure of these exotic systems can be imagined as a 
planet (the bradyon) orbiting a system of stars (an even number of antitachyons) such that the total 
spin is ݊/2 (where ݊ is an integer number) and the mass is always real. These systems may be the 
precursors or a part of the primordial particle broth which gave rise to the topical quantum 
particles. High energy composite particles of exotic nature have already been detected in LHCb 
[32], and experimentalists are engaged in the research of similar objects that better explain the 
matter genesis (in all its forms). The results obtained in this work also show that elementary 
particles have an internal structure, at least under extreme conditions, which could be the starting 
point for explaining phenomena not yet well understood, such as the oscillation of the particle mass 
[33] or the lack of fermions with high spin values, and physicists are trying to explain these 
concepts by string theory. In this sense, the Majorana field theory could be the link between the 
quantum mechanics and the new theoretical models where elementary particles are objects with 
spatial extensions. A proof of this link is that the spin of a hadron is never greater than a certain 
multiple of the root of its energy. No simple hadronic model, such as the model that considers 
particles as composed of a set of smaller particles interacting by a force, explains these relationships 
[34]. Using the energy-momentum relation for whatever Majorana exotic state, it is easy to find that 
the total spin ܬ is given by the following: ܬ = ܧ√ ଶఊாబିாா√ா  (63) 
where ܧ  is the relativistic energy of the exotic state, ܧ଴  is the energy of the bradyon in its 
fundamental state and ߛ is the Lorentz factor. Equation (63) proves that the spin of a particle is a 
certain multiple of the root of its energy, confirming the above statement. 
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