- 1 Supplementary material
- 2

3 Spectroscopic Evidence, Evaluation of Biological

4 Activity and Prediction of Safety Profile of Fatty

5 Hydroxamic Acids Derived from Olive Oil

6 Triacylglycerides

8	Monika Barbarić 1, Dražen Vikić-Topić 2, Željko Marinić 2, Danijela Vojta 3, Marijana Zovko
9	Končić ⁴ , Katarina Mišković Špoljarić ⁵ , Mirela Baus Lončar ⁶ and Milena Jadrijević-Mladar
10 11 12 13 14 15 16 17 18 19 20 21 22 23	 Takač ^{1,*} ¹ Department of Medicinal Chemistry, University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia; mbarbaric@pharma.hr (M.B) ² NMR Centre, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; vikic@irb.hr (D.V.T.); zmarinic@irb.hr (Ž.M.) ³ Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; dvojta@irb.hr ⁴ Department of Pharmacognosy, University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia; mzovko@pharma.hr ⁵ Department of Medicinal Chemistry, Biochemistry and Clinical Chemistry, J. J. Strossmayer University, Faculty of Medicine, Ulica Cara Hadrijana 10E, 31000 Osijek, Croatia; katarina.miskovic@mefos.hr ⁶ Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; mbaus@irb.hr * Correspondence: mjadrijevic@pharma.hr; Tel.: +385-1-4828-192; Fax: +385-1-6394-400
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	

FHAs (K	(Br pellet)	Assignment		
IR/cm ⁻¹	Raman/cm ⁻¹	-		
3600 - 2500		v O-H in CONHOH		
3285 m ¹		ν² N-H		
3001 w ³	3001 m	vas=C-H		
2952 m	2957 w	vas CH3		
2918 vs ⁴	2932 m	vasCH2		
2872 vw ⁵	2900 w	vsymCH3		
	2881 vs			
2849 vs	2847 vs	$v_{sym} CH_2$		
	2728 w			
	2719 w			
1664 s ⁶	1659 m	ν C=O (NH) (Amide I)		
1624 s	1622 vw	ν C=O (NH) (Amide II)		
1464 s		δ ⁷ C-H		
1441 m	1441 s, b	δ C-H		
1427 w		δ C-H		
1406 vw	1406 vw			
1381 w	1380 vw	δ O-H		
	1295 s	ν C-N		
1275 vw	1270 m			
1117 m	1121 w	ν C-O		
1096 m	1095 m	ν -C-C-		
1069 w	1062 m	ν -C-C-		
968 m	969 w	γ ⁸ CH2		
893 vw	890 w			
725 m		ν -CH2-CH2-CH2-CH2-		
650 w				
542 w				

37 Table S1. The list of vibrational frequencies and their assignments in FTIR (KBr) and Raman spectra38 of recorded FHAs.

39 ¹ medium

40 ² stretching (in index as for antisymmetric and sym for symmetric)

41 ³ weak

- 42 ⁴ very strong
- 43 ⁵ very weak
- 44 ⁶ strong
- 45 ⁷ bending
- 46 ⁸ rocking/wagging/twisting
- 47
- 48
- 49

50 **Table S2.** ¹³C- and ¹H-NMR spectroscopic data (data (recorded at 175 and 700 MHz, respectively;

51 CDCl₃))of fatty hydoxamic acids mixture (FHAs) consisted of oleoyl (OHA) and linoleyl

hydroxamic acid (LHA*) and theoretical^{2,3} spectral data of OHA and LHA* and literature spectral
 data of LHA.

Position	FHAs	OHA		LHA			FHAs	
1 05111011	δ_{C^1} Type	δ c ²	δ c ³	δ c ²	δ c ³	δ c ⁴	$\delta_{\text{H}}(J \text{ in Hz})$	
1	171.73, C	169.14	169.90	169.14	169.9	172.08	NHOH, 8.674, bs ⁵	
1*	//	11	11	//	//	//		
2	31.80, CH ₂	32.26	32.50				2.135, t ⁶ , ³ J _{HH} = 7.05 Hz	
2*	31.41, CH ₂			32.26	32.50	32.61	<i>''</i>	
3	25.27, CH ₂	25.08	25.60				1.621, m ⁷	
3*	25.52, CH ₂			25.08	25.60	25.34	<i>''</i>	
4	29.42, CH ₂	29.27	28.60				1.272, m	
4*	29.25, CH ₂			29.27	28.60	28.99	"	
5	29.66, CH ₂	29.51	29.00				1.272, m	
5*	29.49, CH2			29.51	29.00	29.07	"	
6	29.00, CH ₂	29.11	29.70				1.272, m	
6*	29.19, CH ₂			29.11	29.70	29.13	17	
7	29.08, CH ₂	29.23	29.90				1.272, m	
7*	29.52, CH ₂			29.60	29.90	29.54		
8	27.12, CH ₂	27.77	27.70				2.009, dt ⁸ , ³ Jнн = 12.7 Hz, ³ Jнн = 6.5 Hz	
8*	27.06, CH ₂			27.20	27.80	26.97	11	
9	129.56, CH	130.04	130.60				5.339, m	
9*	129.86, CH			130.40	130.30	129.66	17	
10	129.94, CH	130.04	130.60				5.339, m	
10*	127.78, CH			128.70	127.30	127.85	17	
11	27.12, CH ₂	27.77	27.70	26.20	25.60	25.61	2.009, dt, ³ Jнн = 12.7 Hz, ³ Jнн = 6.5 Hz	
11*	25.52, CH ₂						2.766, m	
12	29.22, CH ₂	29.23	29.90	128.70	127.30	127.91	1.272, m	
12*	130.14, CH						5.339, m	
13	29.59, CH ₂	29.40	29.70				1.272, m	
13*	127.99, CH			131.00	130.30	129.74	5.339, m	
14	29.59, CH ₂	29.38	29.70				1.272, m	
14*	27.06, CH ₂			27.70	27.80	26.99		
15	29.25, CH ₂	29.24	29.30	30.00	29.60	29.30	1.272, m	
15*	29.55, CH ₂						17	
16	31.80, CH ₂	31.80	31.90				1.272, m	
16*	31.41, CH ₂			31.75	31.90	31.48	17	
17	22.57, CH ₂	22.67	22.70				1.272, m	
17*	22.35, CH ₂			22.97	22.80	22.45	"	
18	13.99, CH ₃	14.08	14.10				0.880, t, ³ Jнн=6.91 Hz	

	18*	,"	14.05	14.10	13.26	11
55	¹ CDCl ₃					
56	² Chemical	shifts predicted by nm	nrshiftdb software packa	ge at http://1	nmrshiftdb.nmr.u	ıni-koeln.de
57	³ Chemical	shifts predicted by Ch	emDraw Ultra 11 softwa	are package		
58	⁴ Chemical	shifts of LHA recorde	d in CD3OD [24]			
59	⁵ broad sigr	nal				
60	⁶ triplet					
61	7 multiplet					
62	⁸ quartet					
63						
64						
65						
66						
67						
68						
69 70						
70 71						
/1 72						
72 73						
73 74						
75						
76						
77						
78						
79						
80						
81						
82						
83						
84						
85						
86						
8/ 00						
00 90						
09 90						
91						
92						
_						
93						
0.4						
94						

Figure S2. The ¹H-NMR spectrum of FHAs mixture recorded in CDCl₃ and chemical structures of its
 main components, *i.e.*, OHA and LHA with indicated signals for each proton groups.

Figure S4. The 2D NMR HMQC (Heteronuclear Multiple Quantum Coherence) spectrum of FHAs in the
 region of aliphatic and olefinic protons displaying correlations through one bond. (The signal at 77.0 ppm
 (13C-NMR) and 7.24 ppm (1H-NMR) belong to CDCl3 solvent).

