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Abstract: Experimental recordings of the collective activity of interacting spiking neurons exhibit1

random behavior and memory effects, thus the stochastic process modeling the spiking activity2

is expected to show some degree of time irreversibility. We use the thermodynamic formalism to3

build a framework, in the context of spike train statistics, to quantify the degree of irreversibility4

of any parametric maximum entropy measure under arbitrary constraints, and provide an explicit5

formula for the information entropy production of the inferred Markov maximum entropy process.6

We provide examples to illustrate our results and discuss the importance of time irreversibility for7

modeling the spike train statistics.8

Keywords: information entropy production; Discrete Markov Chains; spike train statistics; Gibbs9

measures; maximum entropy principle10

1. Introduction11

Since spike trains from experimental recordings are stochastic [1], and living systems are in12

non-equilibrium states (time irreversible) [2], a good candidate for a population coding scheme of13

living neuronal networks should be able to capture irreversibility in time [3]. Thus, quantifying the14

degree of time irreversibility of spike trains becomes an important challenge which can be approach15

using tools from the fruitful intersection between information theory and statistical mechanics. Given16

a stochastic system, the quantity that measures how far it is from its equilibrium state (in statistical17

terms) is called information entropy production (IEP)1[4].18

In this paper, we quantify the IEP of parametric maximum entropy measures of populations of19

spiking neurons under arbitrary constraints. In Schneidman et al [5] and Pillow et al [6], the authors20

used the maximum entropy principle focusing on firing rates and instantaneous pairwise interactions21

(Ising model) to describe the spike train statistics of the vertebrate retina responding to natural stimuli.22

Since then, the maximum entropy principle approach has become a standard tool to build probability23

measures in the field of spike train statistics [5–8]. Recently, several extensions of the Ising model have24

been proposed, for example, the triplet model, considering as an extra constraint, the correlation of 325

neurons firing at the same time [9], and the so-called K−pairwise model which consider K neurons26

firing at the same time bin [7] as an extra constraint. However, objections have appeared about their27

capability to predict time correlations. As discussed in [10], memory effects could have a non-negligible28

role in the spike train statistics. Nonetheless, most of the studies in this context have focused only29

on synchronous constraints and thus, modeling time-independent processes which are, by definition,30

reversible in time.31

Since it is expected that memory effects show up in populations of spiking neurons, it is natural32

to ask about the information entropy production (IEP) associated with their statistical models. The33

maximum entropy approach can be extended to include non-synchronous constraints within the34

1 We distinguish the information entropy production with others forms of entropy production used in chemistry and physics.
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framework of the thermodynamic formalism and Gibbs measures in the sense of Bowen [11] 2. This35

opens the possibility to capture the irreversible character of the underlying biological process and thus,36

to provide statistical models biologically more realistic.37

There is a vast body of theoretical work about irreversibility of stochastic processes, for38

mathematical details we refer the reader to [4]. In particular, for discrete time Markov chains,39

Gaspard [15] deduced an explicit expression for the change in entropy as the sum of a quantity40

called entropy flow plus the entropy production rate. In this paper, we follow this expression adapted41

to Markov chains associated with a finite range potential and we provide an explicit expression for the42

IEP of maximum entropy Markov chains.43

This paper is organized as follows: In section 2 we introduce the setup of discrete homogeneous44

Markov chains, and review the properties that we use further. We present an example of the explicit45

computation of IEP in an integrate-and-fire spiking neuronal network model. In section 3 we introduce46

the maximum entropy principle within the framework of the thermodynamic formalism and Gibbs47

measures, discussing the role of the arbitrary constraints. We also provide the explicit formula to48

compute the IEP solely based on the spectral properties of the transfer matrix. In section 4 we provide49

examples of relevance in the context of spike train statistics. We finish this paper with discussions50

pointing out directions for further research.51

2. Introduction52

Since spike trains from experimental recordings are stochastic [1], and living systems are in53

non-equilibrium states (time irreversible) [2], a good candidate for a population coding scheme of54

living neuronal networks should be able to capture irreversibility in time [3]. Thus, quantifying the55

degree of time irreversibility of spike trains becomes an important challenge which can be approach56

using tools from the fruitful intersection between information theory and statistical mechanics. Given57

a stochastic system, the quantity that measures how far it is from its equilibrium state (in statistical58

terms) is called information entropy production (IEP)3[4].59

In this paper, we quantify the IEP of parametric maximum entropy measures of populations of60

spiking neurons under arbitrary constraints. In Schneidman et al [5] and Pillow et al [6], the authors61

used the maximum entropy principle focusing on firing rates and instantaneous pairwise interactions62

(Ising model) to describe the spike train statistics of the vertebrate retina responding to natural stimuli.63

Since then, the maximum entropy principle approach has become a standard tool to build probability64

measures in the field of spike train statistics [5–8]. Recently, several extensions of the Ising model have65

been proposed, for example, the triplet model, considering as an extra constraint, the correlation of 366

neurons firing at the same time [9], and the so-called K−pairwise model which consider K neurons67

firing at the same time bin [7] as an extra constraint. However, objections have appeared about their68

capability to predict time correlations. As discussed in [10], memory effects could have a non-negligible69

role in the spike train statistics. Nonetheless, most of the studies in this context have focused only70

on synchronous constraints and thus, modeling time-independent processes which are, by definition,71

reversible in time.72

Since it is expected that memory effects show up in populations of spiking neurons, it is natural73

to ask about the information entropy production (IEP) associated with their statistical models. The74

maximum entropy approach can be extended to include non-synchronous constraints within the75

framework of the thermodynamic formalism and Gibbs measures in the sense of Bowen [11] 4. This76

2 The notion of the Gibbs measure extends also to processes with infinite memory [12], and have been used in the context of
spike train statistics [13,14].

3 We distinguish the information entropy production with others forms of entropy production used in chemistry and physics.
4 The notion of the Gibbs measure extends also to processes with infinite memory [12], and have been used in the context of

spike train statistics [13,14].
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opens the possibility to capture the irreversible character of the underlying biological process and thus,77

to provide statistical models biologically more realistic.78

There is a vast body of theoretical work about irreversibility of stochastic processes, for79

mathematical details we refer the reader to [4]. In particular, for discrete time Markov chains,80

Gaspard [15] deduced an explicit expression for the change in entropy as the sum of a quantity81

called entropy flow plus the entropy production rate. In this paper, we follow this expression adapted82

to Markov chains associated with a finite range potential and we provide an explicit expression for the83

IEP of maximum entropy Markov chains.84

This paper is organized as follows: In section 2 we introduce the setup of discrete homogeneous85

Markov chains, and review the properties that we use further. We present an example of the explicit86

computation of IEP in an integrate-and-fire spiking neuronal network model. In section 3 we introduce87

the maximum entropy principle within the framework of the thermodynamic formalism and Gibbs88

measures, discussing the role of the arbitrary constraints. We also provide the explicit formula to89

compute the IEP solely based on the spectral properties of the transfer matrix. In section 4 we provide90

examples of relevance in the context of spike train statistics. We finish this paper with discussions91

pointing out directions for further research.92

3. Generalities93

To set a common ground for the analysis of the IEP of spike trains, here we introduce the notations,94

and provide the basic definitions used throughout the paper.95

3.1. Notation96

We consider a finite network of N ≥ 2 neurons. Let us assume that there is a natural time
discretization such that at every time step, each neuron emits at most one spike5. We denote the
spiking-state of each neuron σn

k = 1 whenever the k-th neuron emits a spike at time n, and σn
k = 0

otherwise. The spike-state of the entire network at time n is denoted by σn :=
[

σn
k
]N

k=1, which we call
a spiking pattern. For n1 ≤ n2, we denote by σn1,n2 to an ordered concatenation of spike patterns

σn1,n2 = σn1 σn1+1 . . . σn2−1σn2 ,

that we call spike block. We call the sample of T spiking patterns a spike train, which is a spike block σ0,T .97

We consider also infinite sequences of spike patterns that we denote σ̄. We denote the set of infinite98

binary sequences of N neurons ΣN .99

Let L > 0 be an integer, we write ΣL
N = {0, 1}N×L for the set of spike blocks of N neurons and100

length L. This is the set of N × L blocks whose entries are 0’s and 1’s. We introduce a symbolic101

representation to describe the spike blocks. Consider a fixed N, then to each spike block σ0,L−1 we102

associate a unique number ` ∈ N, called block index:103

` =
N

∑
k=1

L−1

∑
n=0

2n N+k−1 σn
k . (1)

We adopt the following convention: neurons are arranged from bottom to top and time runs from104

left to right in the spike train. For fixed N and L, σ(`) is the unique spike block corresponding to the105

index `.106

5 There is a minimal amount of time called “refractory period” in which no two spikes can occur. When binning, one could go
beyond the refractory period and two spikes may occur in the same time bin. In those cases the convention is to consider
only one spike.
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3.2. Discrete-time Markov chains and spike train statistics107

Let ΣL
N be the state space of a discrete time Markov chain, and let us for the moment use the

following notation σ(n) := σn,n+L−1, for the random blocks and analogously ω(n) := ωn,n+L−1 for the
states. Consider the process {σ(n) : n ≥ 0}. If σ(n) = ω(n) we say that the process is in the state ω(n) at
time n. The transition probabilities are given as follows,

P
[
σ(n) = ω(n) | σ(n−1) = ω(n−1), . . . , σ(0) = ω(0)

]
= P

[
σ(n) = ω(n) | σ(n−1) = ω(n−1)

]
. (2)

We assume that this Markov chain is homogeneous, that is, (2) is independent of n. Consider two108

spike blocks σ0,L−1, σ̃1,L ∈ ΣL
N of length L ≥ 2. Then the transition σ(0) → σ̃(1) is allowed if they have109

the common sub-block σ1,L−1 = σ̃1,L−1.110

We consider Markov transition matrices P : ΣL
N × ΣL

N → R, whose entries are given by:111

Pσ(0),σ̃(1) :=

{
P[σ̃(1) | σ(0)] > 0 if σ(0) → σ̃(1) is allowed
0, otherwise.

(3)

Note that P has 2NL × 2NL entries, but it is a sparse matrix since each row has, at most, 2N non-zero112

entries. Observe that by construction, for any pair of states there is a path of maximum length L in113

the graph of transition probabilities going from one state to the other, therefore the Markov chain is114

irreducible.115

3.3. Detailed balance equations116

Consider a fix N and L. From the Markov property and the definition of the homogeneous
transition matrix, one has for an initial measure ν, the following Markov measure µ(ν, P)

µ[σ(0) = ω(0), σ(1) = ω(1), . . . , σ(k) = ω(k)] = ν(ω(0))Pω(0),ω(1) · · · Pω(k−1),ω(k) , (4)

for all k > 0. Here again, we used the short-hand notation σ(k) := σk,L+k−1 and ω(k) := ωk,L+k−1.117

An invariant probability measure of a Markov transition matrix P is a row vector π such that

πP = π. (5)

We recall that for ergodic Markov chains (irreducible, aperiodic and positive recurrent) the invariant118

measure is unique.119

120

Let us now consider a more general setting including non-stationary Markov chains. Let νn be the
distribution of blocks σ(`) ∈ ΣL

N at time n, then one has that the probability evolves in time as follows,

νn+1(σ(`)) = ∑
σ(`′)∈ΣL

N

νn(σ(`′))P`′ ,`.

For every σ(`) ∈ ΣL
N one may write the following relation

νn+1(σ(`))− νn(σ(`)) = ∑
σ(`′)∈ΣL

N

[
νn(σ(`′))P`′ ,` − νn(σ(`))P`,`′

]
. (6)

This last equation is related to the conditions of reversibility of a Markov chain. When stationarity
and ergodicity are assumed, the unique stationary measure of the Markov chain π is said to satisfy
detailed balance if:

π`P`,`′ = π`′P`′ ,` ∀σ(`), σ(`′) ∈ ΣL
N . (7)
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If the detailed balance equations are satisfied, then the quantity inside the parenthesis in the right-hand121

side of (6) is zero.122

3.4. Information Entropy rate and Information Entropy Production123

A well established measure of the amount of uncertainty of a probability measure ν is the124

information entropy rate, which we denote by S(ν). In the case of independent sequences of spike125

patterns (L = 1), the entropy rate is given by:126

S(ν) = − ∑
σ(`)∈Σ1

N

ν
[

σ(`)
]

log ν
[

σ(`)
]

. (8)

127

128

In the setting of ergodic stationary Markov chains taking values in the state space ΣL
N ; L ≥ 2 with

transition matrix P and unique invariant measure π, the information entropy rate associated to the
Markov measure µ(π, P) is given by:

S(µ) = − ∑
σ(`),σ(`′)∈ΣL

N

π`P`,`′ log P`,`′ , L ≥ 2, (9)

which corresponds to the Kolmogorov-Sinai entropy (KSE) [16].129

130

Here, we introduce the information entropy production as in [15]. For expository reasons, let us
consider again the non-stationary situation. The information entropy of a probability measure ν in the
state space ΣL

N at time n be given by

Sn(ν) = − ∑
σ(`)∈ΣL

N

νn(σ(`)) log νn(σ(`)).

The change of entropy rate over one time-step is defined as follows:

∆Sn := Sn+1(ν)− Sn(ν) = − ∑
σ(`)∈ΣL

N

νn+1(σ(`)) log νn+1(σ(`)) + ∑
σ(`)∈ΣL

N

νn(σ(`)) log νn(σ(`)).

Arranging terms, one has that the previous equation can be written as:

∆Sn = − ∑
σ(`),σ(`′)∈ΣL

N

νn(σ(`′))P`′ ,` log
νn+1(σ(`′))P`′ ,`

νn(σ(`))P`,`′
+

1
2 ∑

σ(`),σ(`′)∈ΣL
N

[
νn(σ(`′))P`′ ,` − νn(σ(`))P`,`′

]
log

νn(σ(`′))P`′ ,`
νn(σ(`))P`,`′

,

(10)

the first part on the r.h.s of this equation is called information entropy flow and the second information131

entropy production [15].132

Observe that in the stationary state, one has that νn = νn+1 = π, thus the change of entropy rate133

is zero, meaning that information entropy flow equal information entropy production, therefore is134

possible to attain a steady state of fixed maximum entropy, but having positive IEP. In this case we135

refer to non-equilibrium steady state (NESS).136

Here, since we are interested in the Markov chains that arise from the maximum entropy principle,
we focus on the stationary case. In this case the IEP of a Markov measure µ(π, P) is explicitly given by:

IEP(P, π) =
1
2 ∑

σ(`),σ(`′)∈ΣL
N

[
π`′P`′ ,` − π`P`,`′

]
log

π`′P`′ ,`
π`P`,`′

≥ 0, (11)
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nevertheless, we stress the fact that one can obtain the information entropy production rate also in the137

non-stationary case.138

3.5. Example: Discrete time spiking neuronal network model139

The Integrate-and-fire model is one of the most ubiquitous models to simulate and analyze the140

dynamics of spiking neuronal circuits. This model is the simplest dynamical model that captures the141

basic properties of neurons, including the temporal integration of noisy sub-threshold inputs and142

all-or-nothing spiking. At the level of networks postulates a set of equations describing the behavior143

of the interconnected neurons motivated by the microscopic picture of how the biological neuronal144

network is supposed to work.145

There exist several different versions of this model. Here we present the discrete time146

integrate-and-fire model. The model definition follows the presentation given in [17]. Neurons147

are considered as points, without spatial extension nor biophysical structure (axon, soma, dendrites).148

The dynamical system defined here is only ruled by discrete time dynamical variables.149

Denote by V(t) the membrane potential vector with entries Vi(t), whose dynamics is defined150

as follows. Fix a real variable θ > 0 called firing threshold. For a fixed discrete time t, we have two151

possibilities:152

• Either Vi(t) < θ, for all k = 1, ..., N. This corresponds to sub-threshold dynamics.153

• Or, there exists a k such that, Vk(t) ≥ θ. Corresponding to firing dynamics.154

The under-threshold dynamics is given by the following equation:155

V(t + 1) = F(V(t)) + σBB(t) (12)

where156

Fi(V(t)) = γVi(t)
(
1− Z[Vi(t)]

)
+ α

N

∑
j=1

WijZ[Vj(t)] + βIi. (13)

The function Z[x] := 1x≥θ is called the firing state of neuron x, where 1 is the indicator function. When157

Z[Vi(t)] = 1 one says that neuron i spike otherwise is silent. We extend the definition of Z to vectors:158

Z[V(t)] is the vector with components Z[Vi(t)], i = 1, ..., N. The leak rate is denoted by γ ∈ [0, 1[,159

and Wij is called the synaptic weight from the neuron j to the neuron i. The synaptic weight is said to160

be excitatory if Wij > 0 or inhibitory if Wij < 0. The components of the vector B(t) are independent161

normalized Gaussian random variables and σB is the noise amplitude parameter. The parameters162

α and β were introduced in order to control the intensity of the synaptic weights and the stimulus,163

respectively.164

With this model one obtains a set of conditional probabilities of spike patterns given the network’s165

spike history, allowing a mechanistic and causal interpretation of the origin of correlations (see [17]166

for details). Here, we consider only one time-step dependence on the past, although in the general167

approach it is possible to consider infinite memory. The conditional probabilities (transition matrix)168

are given as follows:169

P[σ | σ′] =
N

∏
i=1

[
σi ϕ

( θ − Ci(α, β, σ′)

σB

)
+ (1− σi)

(
1− ϕ

( θ − Ci(α, β, σ′)

σB

))]
, (14)

where,

Ci(α, β, σ′) = γ α
N

∑
j=1

Wijσ
′
j + βIi (15)

and
ϕ(x) =

∫ ∞

x
e
−u2

2 du. (16)
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The function C takes into account the past and the external stimuli (see [17] for details). These170

conditional (transition) probabilities define an ergodic Markov chain, specified by the biophysical171

dynamics of the spiking network. From the transition probabilities (14) and its unique steady state, we172

compute the IEP of this model using (11) for different values of the parameters α and β (see Figure 1).173

Figure 1. Plot of the average value of IEP for 500 realizations of the synaptic weight matrix for fixed α

and β in each case. We fix the following values of the parameters: N = 6, γ = 0.2, σb = 1, θ = 1, Ii =

1 ∀i ∈ {1, .., 6}. The components of the synaptic weight matrix Wij were drawn at random from a
normalized Gaussian distribution. We plot the average value of IEP for 500 realizations of the synaptic
weight matrix for fixed α and β in each case..

Figure 1 shows that for this model the IEP depends mostly on the intensity of the synaptic174

weights, while the stimulus intensity is playing a minor role. This is an indication that IEP (in the175

stationary case) is essentially a property of the spiking neuronal network. structure The IEP of this176

neuronal network model is zero only under very restricted and unrealistic biophysical circumstances:177

when all synaptic weights are identical in amplitude and with the same sign or when they are all zero,178

i.e. when neurons do not communicate among them. In the first case spikes play a symmetrical role179

with respect to time, which cancels out when computing the IEP. In the second case the associated180

stochastic process is time independent, thus reversible. Therefore, generically this biophysically181

plausible model of spiking neuronal networks, has positive IEP. This means that the spike dynamics of182

this model leads to an irreversible Markov process.183

184

4. Theoretical Framework185

In the example of the previous section, we assume known the transition probabilities i.e., the186

structure of synaptic connectivity, stimulus and all other parameters defining the spiking neuronal187

network. Unfortunately this is not always the case. Usually, one only have access to a limited amount188

of experimental spiking data, which is a sampling of a very small subset of the entire state space. This189

makes that often the empirical frequencies are bad estimations of the elements of the Markov transition190

matrix. Here, we present how to use a variational principle from the thermodynamic formalism [18]191

to obtain the unique irreversible ergodic Markov transition matrix and its invariant measure having192

maximum entropy among those consistent with the constraints provided by data. This approach193

solves the problem of the bad estimations mentioned above and enables us to compute the IEP of the194

inferred Markov process, which is our main goal.195

4.1. Inference of the maximum entropy Markov process196

The problem of estimating the Markov chain of maximum entropy constrained by the data is of197

general interest in information theory. Consists in solving a constrained maximization problem, from198
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which one builds a Markov chain. The first step is choosing (arbitrarily) a set of indicator functions199

(also called monomials) and determine from the data the empirical average of these functions. This200

fixes the constraints of the maximization problem. After that, one maximizes the information entropy201

rate, which is a concave functional in the space of Lagrange multipliers associated to the constraints,202

obtaining the unique Markov measure that better approximates the statistics among all probability203

measures that match exactly the constraints [19]. Up to our knowledge, previous approaches ignore204

how to deal with the inference of irreversible Markov processes in the maximum entropy context205

[20,21].206

4.2. Observables and Potentials207

Let us consider the space of infinite binary sequences ΣN . An observable is a function f : ΣN → R.208

We say that an observable f has range R if it depends only on R consecutive spike patterns, e.g.209

f (σ) = f (σ0,R−1). We consider here that observables do not depend explicitly on time (time-translation210

invariant observables), i.e., for any time-step n, f (σ0,R−1) = f (σn,n+R−1) whenever σ0,R−1 = σn,n+R−1.211

Examples of observables are products of the form:212

f (σ0,T) =
r

∏
u=1

σnu
ku

, (17)

where ku = 1 . . . N (neuron index) and nu = 0 . . . T (time index). These observables are called monomials213

and take values in {0, 1}. Typical choices of monomials are σn1
k1

which is 1 if neuron k1 fires at time n1214

and 0 otherwise; σn1
k1

σn2
k2

which is 1 if neuron k1 fires at time n1 and neuron k2 fires at time n2 and 0215

otherwise. For N neurons and time range R there are 2NR possible monomials. To alleviate notations,216

instead of labeling monomials by a list of pairs, as in (17), we label them by an integer index, l (the217

index is defined in the same way as the block index (1), i.e. a monomial reads ml .218

A potential is an observable that can be written as a linear combination of monomials6. A potential
of range R is written as follows:

H(σ(`)) :=
2NR

∑
l=1

hlml(σ
(`)) σ(`) ∈ ΣR

N , (18)

where the coefficients hl real numbers. Some coefficients in this series may be zero. We assume219

throughout this paper that h` < ∞7. One example of potential is the one considering as monomials the220

firing rates σi and the synchronous pairwise correlations σi σj.221

H(σ(`)) =
N

∑
i=1

hiσi +
1
2

N

∑
i,j=1

Jijσi σj σ(`)) ∈ Σ1
N

4.2.1. Additive observables of spike trains222

Let φ be the shift map φ : ΣN → ΣN , defined by φ(σ)(i) = σ(i+1). Let f be an arbitrary observable.223

We may consider the sequence { f ◦ φi(σ)} as a random variable whose statistical properties depend224

on those of the process producing the samples of σ and the regularity of the observable f .225

Given a spike train, one would like to empirically quantify properties empirical averages and226

their fluctuation properties as a function of the sampling size. Consider a spike train σ, and let n be the227

sample length. The average of the observable f of range R ≥ 1 in σ is given by,228

6 The range of the potential is the maximum over the ranges of the ml monomials considered.
7 Here we do not consider hard core potentials with forbidden configurations.
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An( f ) =
1

n− R + 1

n−R

∑
i=0

f ◦ φi(σ̄),

in particular, for observables of range 1, one has229

An( f ) =
1
n

n−1

∑
i=0

f (σi). (19)

4.3. Variational principle230

Let An( fk) = Ck be the average value of K observables for k ∈ {1, . . . , K}. As the empirical231

average of monomials is not enough to uniquely determine the spike train statistics (there are infinitely232

many probability measures sharing the same averages of monomials), we use the maximum entropy233

method to obtain the Markov measure µ that maximizes the KSE among all measures ν that match the234

expected values of all observables, i.e. ν[ fk] = Ck, for all k ∈ {1, . . . , K}. This is equivalent to solve the235

following variational problem under constraints:236

S [ µ ] = max
{
S [ ν ] : ν [ fk ] = Ck ∀ k ∈ {1, . . . , K}

}
. (20)

Since the function ν→ S [ ν ] is strictly concave, there is a unique maximizing Markov measure µ(π, P)237

given the set of values Ck. To solve this problem, we introduce the set of Lagrange multipliers hk ∈ R in238

the potentialH = ∑K
k=1 hk fk, which is a linear combination of the chosen observables. Next, we study239

the following unconstrained problem, which is a particular case of the so-called variational principle of240

the thermodynamic formalism [18]:241

P [H ] = sup
ν∈Minv

{
S [ ν ] + ν [H ]

}
= S [ µ ] + µ [H ] , (21)

242

where P [H ] is called the free energy or topological pressure,Minv is the set of invariant measures with243

respect to the shift φ and ν [H ] = ∑K
k=1 hk ν [ fk ] is the average value ofH with respect to ν.244

In this paper, we only consider potentialsH of finite range, for which there is a unique measure µ245

attaining the supremum [22] and is a Gibbs measure in the sense of Bowen.246

247

Gibbs measures in the sense of Bowen. SupposeH is a finite range potential R ≥ 2, a shift invariant248

probability measure µ is called a Gibbs measure (in the sense of Bowen) if there are constants M > 1249

and P [H] ∈ R s.t.250

M−1 ≤ µ[σ1,n]

exp(∑n−R+1
k=1 H(σk,k+R−1)− (n + R− 1)P [H])

≤ M (22)

251

It is easy to see that the classical form of Boltzmann-Gibbs distributions µ[σ] = eH(σ)/Z is a particular252

case of (22), when M = 1,H is a potential of range R = 1 and P [H] = log Z.253

4.3.1. Statistical Inference254

The functional P [H ] has the following property:255

∂P [H ]

∂hk
= µ[ fk] = Ck, ∀k ∈ {1, ..., K} (23)

256

where µ[ fk] is the the average of fk with respect to µ, which is equal to the average value of fk with257

respect to the empirical measure from the data Ck, by constraint of the maximization problem. For258

finite range potentials P(H) is a convex function of hl ’s. This ensures the uniqueness of the solution of259
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(21). Efficient algorithms exist to estimate the Lagrange multipliers for the maximum entropy problem260

with non-synchronous constraints [10].261

262

4.4. Ruelle-Perron-Frobenius transfer operator263

Consider H to be an arbitrary potential, and w a continuous function on ΣN . We introduce the264

Ruelle-Perron-Frobenius (R-P-F) transfer operator denoted by LH, and it is given by,265

LHw(σ) = ∑
σ′∈ΣN ,φ(σ′)=σ

eH(σ′)w(σ′).

266

In an analogous way, as it is done for Markov approximations of Gibbs measures [23,24], for a finite267

range potentialH, we introduce the transfer matrix LH,268

LH(`, `′) =

{
eH(σ0,L) if σ0,L ∼ σ(`) → σ(`′)

0, otherwise.
(24)

269

From the assumptionH > −∞, each allowed transition corresponds to a positive entry in the matrix270

LH.271

4.5. Maximum entropy Markov chain for finite range potentials272

The matrix (24) is primitive8 by construction, thus it satisfies the Perron-Frobenius theorem [25].273

Let ρ > 0 be its spectral radius. Because of the irreducibility of the transfer matrix, ρ is an eigenvalue274

of multiplicity 1 strictly larger in modulus than the other eigenvalues. For every σ(`) ∈ ΣL
N , let us275

denote by L` := L(σ(`)) and R` := R(σ(`)), the left and right eigenvectors of LH corresponding to the276

eigenvalue ρ. Notice that L` > 0 and R` > 0 for all σ(`) ∈ ΣL
N . Using spectral properties of the transfer277

matrix, we obtain the maximum entropy Markov transition probability matrix [22]:278

P`,`′ :=
LH(`, `′)R`′

R` ρ
, ∀σ(`), σ(`′) ∈ ΣL

N . (25)

The unique stationary probability measure π associated to P is also obtained by the spectral properties
of LH:

π` :=
L` R`

〈L, R〉 , ∀σ(`) ∈ ΣL
N . (26)

For a finite range potential H, the unique measure µ(π, P) associated to H, satisfies the variational279

principle, furthermore, the topological pressure can be explicitly computed P[H] = ln ρ.280

4.6. IEP of the inferred Markov maximum entropy process281

Consider a potential H of finite range and the state space ΣL
N . As we have seen before, using282

the maximum entropy framework one can build from the transfer matrix LH, the Markov transition283

matrix P and its invariant measure π. Furthermore, one can apply straightforwardly (25) and (26) to284

obtain a formula for the IEP based only on the spectral properties of LH. After simplifying we obtain:285

IEP(LH) = ∑
σ(`),σ(`′)∈ΣL

N

L`

〈L, R〉
LH(`, `′)R`′

ρ
log
[

L` R`′ LH(`, `′)
L`′ R` LH(`′, `)

]
(27)

8 The matrix A is primitive if there is an n ∈ N, s.t. An has only positive components
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This is a quantity of major interest in spike train statistics, as it measure the degree of time286

irreversibility of the inferred maximum entropy Markov chain. Although it is a straightforward result,287

it is quite general and of practical use, as we will see in the examples below. We can apply (25) and (26)288

to equation (7), we obtain the detailed balance condition in terms of the transfer matrix and its spectral289

properties:290

L` R`

〈L, R〉
LH(`, `′) R`′

R` s
=

L`′ R`′

〈L, R〉
LH(`′, `) R`

R`′ s
291

Simplifying we obtain:292

LH(`, `′)
LH(`′, `)

=
R` L`′

R`′ L`
(28)

4.7. Large deviations for observables of maximum entropy Markov chains293

The goal of large deviations is to compute the asymptotic probability distribution P(An( f ) = s)294

for a given finite range observable f and for s 6= E( f ). More precisely, we say that P(An( f )) satisfies a295

large deviation principle with rate I f (s) if the following limit exists,296

lim
n→∞

− 1
n

lnP
(

An( f ) = s
)
= I f (s).

In which the dominant behavior of P(An( f )) is decaying exponentially fast with the sample size n, as297

P(An( f ) = s) ≈ e−nI f (s). (29)

We define the scaled cummulant generating function (SCGF) associated to the random variable298

(observable) f denoted by λ f (k) as follows,299

λ f (k) := lim
n→∞

1
n

lnE
[
enkAn( f )

]
, k ∈ R. (30)

The n-th cumulant of the random variable f can be obtained by differentiating λ f (k) with respect to300

k, n times and evaluating the result at k = 0. The next theorem by Gärtner-Ellis theorem relates the301

SCGF and the large deviations rate function. The Gärtner-Ellis theorem relies on the differentiability of302

λ f (k), which is guaranteed for finite state Markov chains [26]. This theorem has several formulations,303

which usually require some technical definitions beforehand. Here we stated it in a simplified form,304

which is what we need for our purposes.305

306

Gärtner-Ellis theorem: If λ f (k) is differentiable, then there exist a large deviation principle for the307

average process An( f ) whose rate function I f (s) is the Legendre transform of λ f (k):308

I f (s) = max
k∈R
{ks− λ f (k)} (31)

The Gärtner-Ellis Theorem is very useful in our context, because it bypasses the direct calculation of309

P(An( f )) in (29), i.e., having λ f (k) a simple calculation leads to the rate function of f . As we will see310

in the next section λ f (k) naturally appears in the context of Maximum entropy Markov chains.311

4.8. Large deviations for the IEP312

Consider an irreducible Markov chain with transition matrix P`,`′ . We define the tilted transition313

matrix by f denoted by P̃( f )(k), whose elements for a one time step observable are:314

P̃( f )
`,`′ (k) = P`,`′ e

k f (`′) (32)
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or for a two time step observable:315

P̃( f )
`,`′ (k) = P`,`′ e

k f (`,`′) (33)

For a Markov transition matrix P inferred from the maximum entropy, the tilted transition matrix can316

be built directly from the transfer matrix and its spectral properties.317

P̃( f )
`,`′ (k) =

LH(`, `′)R`′

R` ρ
ek f (`,`′) (34)

The Markov chain structure underlying An( f ) can be used here to obtain more explicit expressions318

for λ f (k). In the case of the additive observables, if a Markov chain is homogeneous and ergodic can319

compute explicitly the SCGF as the logarithm of the maximum eigenvalue of P̃( f ):320

λ f (k) = ln(ρ(P̃( f ))) (35)

This result is valid if the state-space of the Markov chain is finite, where it can be proved furthermore321

that λ f (k) is differentiable and λ′f (0) = E( f ).322

323

Remark: The observable f does not need to belong in the set { fk}K
k=1 of chosen observables to fit the324

Markov maximum entropy process. We denote ρ(P̃( f )) the dominant eigenvalue (i.e., with largest325

magnitude) of the matrix P̃( f ), which is unique by the Perron-Frobenius theorem.326

327

We are interested in the fluctuations of the IEP. For that purpose we define the following328

observable:329

Wn({σi}n
i=1) = ln

[
P({σi}n

i=1)

P({σi}(R))

]

where {σi}(R) = σn, σn−1, . . . , σ1 is the temporal inversion of the trajectory {σi}n
i=1. It can be shown330

that for P-almost every trajectory of a stationary ergodic Markov chain (π, P):331

lim
n→∞

Wn({σi}n
i=1)

n
= IEP(π, P)

It can be shown [4] that the SCGF λW(k) associated to the observable Wn can be found as the logarithm332

of the maximum eigenvalue ρ(k) of the matrix:333

P̃(W)
`,`′ (k) = P`,`′ e

kF`,`′

where,334

F`,`′ = ln

[
π`P`,`′

π`′P`′ ,`

]
which is a matrix of positive elements.335

336

Using the Gärtner-Ellis theorem we obtain the rate function IW(s) for the IEP observable:337

IW(s) = max
k
{ks− λW(k)}

The rate function of the IEP observable has the following property:338

λW(k) = λW(−k− 1)
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339

Since λ′W(0) = IEP(π, P) the symmetry implies340

IW(s) = IW(−s)− s

4.8.1. Gallavotti-Cohen fluctuation theorem341

The Gallavotti-Cohen fluctuation theorem refers to a symmetry in the fluctuations of the IEP. Is a342

statement about the large deviations of Wn
n , which is the time-averaged entropy production rate of the343

sample trajectory {σi}n
i=1 of the Markov chain µ(π, P).344

P
[

Wn
n ≈ s

]
P
[

Wn
n ≈ −s

] � ens

This means that the positive fluctuations of Wn
n are exponentially more probable than negative345

fluctuations of equal magnitude. This is a universal ratio, i.e., no free parameters are involved346

and is experimentally observable.347

5. Examples348

In this section, we provide examples of applications of our results in the context of spike train349

statistics. We detail the transfer matrix technique to compute the maximum entropy Markov transition350

matrix and the invariant measure from a finite range potentialH. We also compute the IEP and the351

fluctuations.352

5.1. First example: Toy model353

Consider a range-2 potential with N = 2 neurons:354

H(σ0,1) = h1σ1
1 σ0

2 .

The transfer matrix (24) associated toH is in this case a 4× 4 matrix:

LH =


1 1 1 1
1 1 1 1
1 eh1 1 eh1

1 eh1 1 eh1

 .

As this matrix is primitive by construction, it satisfies the hypothesis of the Perron-Frobenius theorem.355

Its unique maximum eigenvalue is ρ = eh1 + 3. The left and right eigenvectors associated to this largest356

eigenvalue are respectively:357

L

(
0
0

)
=

2
1 + eh1

; L

(
0
1

)
= 1; L

(
1
0

)
=

2
1 + eh1

; L

(
1
1

)
= 1,

R

(
0
0

)
=

2
1 + eh1

; R

(
0
1

)
=

2
1 + eh1

; R

(
1
0

)
= 1; R

(
1
1

)
= 1.

From the spectral properties of LH we obtain the Markov transition matrix (25), which reads,

Pσ0,σ1 =
1
ρ


1 1 1+eh1

2
1+eh1

2

1 1 1+eh1
2

1+eh1
2

2
1+eh1

2eh1

1+eh1
1 eh1

2
1+eh1

2eh1

1+eh1
1 eh1

 ,
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The unique invariant measure of this irreducible Markov transition matrix is given by equation (26),
and its entries are given by,

π
( 0

0

)
=

4
ρ2 , π

( 0
1

)
=

2(ρ− 2)
ρ2 , π

( 1
0

)
=

2(ρ− 2)
ρ2 , π

( 1
1

)
=

(ρ− 2)2

ρ2 .

It is easy to check that π is invariant w.r.t. the transition matrix P, that is πP = π.358

From this example, we can verify that generically the detailed balance condition is not satisfied; for
example:

P
( 0

1

∣∣∣∣ 1
0

)
π
( 1

0

)
6= P

( 1
0

∣∣∣∣ 0
1

)
π
( 0

1

)
.

As we can see in figure 2, the maximum entropy measure for the unconstrained problem is attained at359

the uniform distribution as expected (h1 = 0, eigenvalue ρ = 4 assigning probability 1
4 to each spike360

pattern).361

Let us now consider a constrained version of this problem. Suppose we have a data set of length
T and we measure the average value of the observable f = σ1

1 σ0
2 ,

AT( f ) = 0.1

Given this restriction and using the equation (23), we obtain the following equation:

∂ log(eh1 + 3)
∂h1

= 0.1

Solving we find h1 = −1.09861. Therefore, among all the Markov chains that match exactly the362

restriction, the one that maximizes the information entropy is the one obtained by fixing h1 at the363

found value. Is easy to check that the variational principle (21) is satisfied.364

From the transition probability matrix P and the invariant measure π, we compute the KSE (9)365

and the IEP (27) as a function of the parameter h1 (see figure 2).366

Figure 2. IEP and KSE as a function of h1. This figure illustrates the unconstrained problem, the
maximum entropy measure is attained when h1 = 0 i.e., the uniform distribution, which is also the
Prigogine distribution of minimal IEP. In this example, the detailed balance condition is only satisfied
in the trivial case h1 = 0.
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Figure 3. Gallavotti-Cohen fluctuation theorem for the first example at the parameter value h1 = −1.
Left) We show the SCGF associated to W, λW(k), the derivative at zero is the IEP of the maximum
entropy Markov chain, which in this case is 0.0557. This value coincides with the minimum of the rate
function at the right side of the image.

5.2. Second example: Memoryless potentials367

Consider a finite and fix number of neurons N and a potential of range 1. This case includes
the Ising model [5], Triplets [9], K-pairwise [7] and all other memoryless potentials that has been
used in the context of maximum entropy models of spike train statistics. It represent a limit case in
the definition of the transfer matrix, where transitions between spike patterns σ → σ′; σ, σ′ ∈ Σ1

N
are considered and all transitions are allowed. In this case, the potential does not “see” the past i.e.
LH(σ, σ′) = eH(σ′). The matrix LH has a unique maximum eigenvalue:

λ = Z = ∑
σ′∈Σ1

N

eH(σ′)

and the rest of eigenvalues are equal to 0. The left and right eigenvectors corresponding to ρ are:

L(σ′) =
1
Z

, R(σ′) = eH(σ′); ∀σ′ ∈ Σ1
N .

Note that 〈L, R〉 = 1. We have therefore:

P(σ′ | σ) = P(σ′) = π(σ′) =
eH(σ′)

Z
; ∀σ, σ′ ∈ Σ1

N , (36)

In this case, the invariant measure π has the classical Boltzmann-Gibbs form. The associated Markov368

chain has no memory: successive events are independent. This last remark reflects a central weakness369

of memory-less maximum entropy models to describe neuronal dynamics.370

Taking the formula of IEP (27) we obtain:371

IEP(LH) = ∑
σ,σ′∈Σ1

N

L(σ)
〈L, R〉

eH(σ′)R(σ′)
log(Z)

(
H(σ′)−H(σ)

)
= 0.

In the case where only range 1 observables are chosen (firing rates, pairwise correlations, triplets, etc.),
the average value of these observables in a given data set is the same as the one taken from another
data set where the time indexes have been randomly shuffled or even time reversed. As this is the only
information about the process that the maximum entropy principle consider, it is not surprising that
the stochastic process associated with the maximum entropy measure is time reversible. Consider a
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data set consisting in binary patterns DO. Let g : {0, . . . , T} → {0, . . . , T} be a function that randomly
shuffles the time indexes, we call DRS the data set obtained after this transformation. Finally consider
D I , the data set with inverted time indexes,

DO = {σ0, σ1, σ2, . . . , σT−1, σT}

DRS = {σg(0), σg(1), σg(2), . . . , σg(T−1), σg(T)}
D I = {σT , σT−1, σT−2, . . . , σ1, σ0}.

Observe that in these three cases (that may correspond to very different biological experiments), the372

average value of every observable of range one is exactly the same, therefore these data sets are373

characterized by the same maximum entropy distribution.374

5.3. Third example: 1-time step Markov375

Here, we consider the 1-time step extension of the Ising model, that reads:

H(σ0,1) =
N

∑
i=1

hiσi +
1
2

N

∑
i,j=1

Jijσi σj +
N

∑
i,j=1

flijσi σ1
j . (37)

376

This is the potential considered to fit a maximum entropy distribution to spiking data from a377

mammalian parietal cortex in-vivo in [27]. It is important to notice that in [27], the authors compute378

the solution of the maximum entropy problem imposing detailed balance condition, so in their case,379

there is zero IEP by construction. Here we do not consider a particular data set, instead we investigate380

the capability of this potential to generate IEP by considering the following scenarios: We consider a381

network of N = 10 neurons, where we draw at random the coefficients hi and Jij in a range plausible382

to be the maximum entropy coefficients (or Lagrange multipliers) of an experiment of retinal ganglion383

cells exposed to natural stimuli (values of from hi and Jij as in [28]). We generate the matrix γij by384

drawing each component at random from Gaussian distributions with different means and standard385

deviations. We summarize our results in figure 3. We observe the following: Independent of hi and Jij386

and the parameters of mean and variance from which the matrix of coefficients γij is generated, if γij387

is symmetric the Markov process generated by the potential (37) is reversible in time so the IEP is zero.388

This includes the limit case when γij = 0, ∀i, j ∈ {1, . . . , N}, where we recover the Ising model. Next,389

we fix the values of hi and Jij (random values), and we generate 100 matrices γij by drawing their390

components from Gaussian distributions N (0, e2), another 100 from N (1, e2). We also generate 100391

anti-symmetric matrices γij fromN (1, e2), that we denote in figure 3 N A(1, e2). For each realization of392

γij we generate the transfer matrix and proceed as explained in section (3) to obtain the IEP in each393

case.394

Figure 3 shows that for fitted data with a maximum entropy 1-time step Markov model, the395

IEP is zero only when all the measured 1-step correlations between neurons are symmetric, which is396

very unlikely for an experimental spike train. The degree of symmetry in the matrix of γ’s play an397

important role in the IEP.398

5.4. Fourth example: Kinetic Ising model with random asymmetric interactions399

This model of spike generation is an example of a non-equilibrium system, which has been used400

in [29] to approach the question of recovering the interactions of an asymmetrically-coupled Kinetic401

Ising model, with a time-independent external field to ensure stationarity. This is a discrete-time,402

synchronously updated Markov model in Σ1
N with transition matrix is given by:403

P[σ′ | σ] =
N

∏
i=1

exp[(2σ′i − 1)θi(σ)]

2 cosh[θi(σ)]
, ∀σ, σ′ ∈ Σ1

N (38)
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Figure 4. IEP for the 1-time step Markov potential. The parameters hi and Jij are draw at random
one time and remain fixed. We draw at random the components of 100 matrices γij from a Gaussian
distribution with different values of mean and standard deviation e. We plot the average value of IEP
for each case, with the respective error bars.

θi(σ) = β hi + α
N

∑
j=1

Jij(2σi − 1) ∀σ ∈ Σ1
N . (39)

The fields hi and the couplings Jij are independent Gaussian variables and α, β ∈ R. These set404

of stationary transition probabilities characterize an ergodic Markov chain with a unique invariant405

measure. Therefore, the scene is set to compute information entropy production under different406

scenarios.407

In figure 4, for the Kinetic Ising model with random asymmetric interactions we recover the same408

structure found in figure 1 for the Integrate and Fire model, that is the the synaptic couplings are409

playing a mayor role in IEP, while the intensity of the stimulus is less relevant.410

6. Discussion411

One of the consequences of including non-synchronous constraints in the framework of the412

maximum entropy principle as constraints is that opens the possibility to broke the time-reversal413

symmetry introduced by time-independent models and thus capture the irreversible character of the414

underlying biological process, which is compulsory for a deeper understanding of the neural code and415

allows fit statistical models biologically more realistic. We have emphasized that the IEP is zero for time416

independent processes (time-reversible) derived from commonly used statistical models in this field,417

for example, Ising, K-pairwise, triplets, among others [5,28]. However, only time-dependent maximum418

entropy models induce time irreversible processes, feature highly expected from biological systems.419

While many spiking neuronal network models consider the influence of pre-synaptic neurons,420

the most popular maximum entropy models in this field ignore them. Therefore, there is a clear421

phenomenological disagreement between these two different approaches, which as we show here and422

as mentioned before (see [30]) can be corrected including non-synchronous constraints.423

When trying to explain the spike train statistics of networks of neurons using the maximum424

entropy principle, one hopes that the parameters of the potential shed light on the understanding of425

the nature of the spiking phenomena and the neural code, both clearly having a temporal structure.426

Perhaps the main message of this work is that limiting the complexity of the maximum entropy model427

using arguments of parsimony may be harmful when the underlying stochastic process generating the428

spikes is evidently time dependent.429
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Figure 5. IEP for the Kinetic Ising model with random asymmetric interactions. We consider N = 6.
The components of field vector were drawn at random from a Gaussian N (−3, 1) and the coupling
matrix Jij were drawn at random from a Gaussian N (0, 1). We plot the average value of IEP for 500
realizations of the synaptic coupling matrix for fixed α and β in each case.

However, there are two main drawbacks of our approach. The first is inherited from the maximum430

entropy method that requires stationarity in the data. The second is that is based on the transfer matrix431

technique, so it may require an important computational effort for large-scale and long memory432

neuronal networks. There is a lot of room for progress going beyond the scope of this work, one433

possibility is to quantify the IEP for different choices of non-synchronous constraints and binning sizes434

on biological spike train recordings. A more ambitious goal would be to link the IEP as a signature435

of an underlying physiological process depending on time such as adaptation or learning. IEP is a436

much broader concept which can also be measured along non-stationary trajectories, thus IEP can437

be measured for time-dependent models where transition probabilities are explicitly given or can be438

computed (for example the Generalized Linear model [31]). Previous studies in the context of spike439

train statistics have measured the dynamical entropy production in spiking neuron networks using a440

deterministic approach based on the Pesin identity (sum of positive Lyapunov exponents) [32]. There441

are relationships between the deterministic and stochastic dynamics [33], and some interpretations of442

deterministic dynamical entropy production with information loss which should be investigated in443

more detail, in particular, if these relationships bring new knowledge in the field of computational444

neuroscience.445

We have focused on spike train statistics, but our results are not restricted to this field and can be446

applied wherever Markov maximum entropy measures under constraints have to be inferred from447

data, especially for irreversible Markov chains from stochastic network theory [34], information theory448

[20], finance [21], among other disciplines.449
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