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1 Abstract: Experimental recordings of the collective activity of interacting spiking neurons exhibit
> random behavior and memory effects, thus the stochastic process modeling the spiking activity
s is expected to show some degree of time irreversibility. We use the thermodynamic formalism to
+  build a framework, in the context of spike train statistics, to quantify the degree of irreversibility
s of any parametric maximum entropy measure under arbitrary constraints, and provide an explicit
s formula for the information entropy production of the inferred Markov maximum entropy process.
»  We provide examples to illustrate our results and discuss the importance of time irreversibility for
s modeling the spike train statistics.

o Keywords: information entropy production; Discrete Markov Chains; spike train statistics; Gibbs
10 mMeasures; maximum entropy principle

1 1. Introduction

"

12 Since spike trains from experimental recordings are stochastic [1], and living systems are in
1z non-equilibrium states (time irreversible) [2], a good candidate for a population coding scheme of
1 living neuronal networks should be able to capture irreversibility in time [3]. Thus, quantifying the
15 degree of time irreversibility of spike trains becomes an important challenge which can be approach
1e using tools from the fruitful intersection between information theory and statistical mechanics. Given
17 a stochastic system, the quantity that measures how far it is from its equilibrium state (in statistical
s terms) is called information entropy production (IEP)![4].

10 In this paper, we quantify the IEP of parametric maximum entropy measures of populations of
20 spiking neurons under arbitrary constraints. In Schneidman ef al [5] and Pillow et al [6], the authors
z used the maximum entropy principle focusing on firing rates and instantaneous pairwise interactions
22 (Ising model) to describe the spike train statistics of the vertebrate retina responding to natural stimuli.
2 Since then, the maximum entropy principle approach has become a standard tool to build probability
2« measures in the field of spike train statistics [5-8]. Recently, several extensions of the Ising model have
2 been proposed, for example, the triplet model, considering as an extra constraint, the correlation of 3
26 neurons firing at the same time [9], and the so-called K—pairwise model which consider K neurons
2z firing at the same time bin [7] as an extra constraint. However, objections have appeared about their
2s  capability to predict time correlations. As discussed in [10], memory effects could have a non-negligible
20 role in the spike train statistics. Nonetheless, most of the studies in this context have focused only
30 on synchronous constraints and thus, modeling time-independent processes which are, by definition,
a1 reversible in time.

32 Since it is expected that memory effects show up in populations of spiking neurons, it is natural
s to ask about the information entropy production (IEP) associated with their statistical models. The
s« maximum entropy approach can be extended to include non-synchronous constraints within the

1 We distinguish the information entropy production with others forms of entropy production used in chemistry and physics.
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s framework of the thermodynamic formalism and Gibbs measures in the sense of Bowen [11] 2 This
36 opens the possibility to capture the irreversible character of the underlying biological process and thus,
sz to provide statistical models biologically more realistic.

38 There is a vast body of theoretical work about irreversibility of stochastic processes, for
s mathematical details we refer the reader to [4]. In particular, for discrete time Markov chains,
20 Gaspard [15] deduced an explicit expression for the change in entropy as the sum of a quantity
a1 called entropy flow plus the entropy production rate. In this paper, we follow this expression adapted
«2 to Markov chains associated with a finite range potential and we provide an explicit expression for the
a3 IEP of maximum entropy Markov chains.

s This paper is organized as follows: In section 2 we introduce the setup of discrete homogeneous
«s  Markov chains, and review the properties that we use further. We present an example of the explicit
s computation of IEP in an integrate-and-fire spiking neuronal network model. In section 3 we introduce
«7 the maximum entropy principle within the framework of the thermodynamic formalism and Gibbs
« measures, discussing the role of the arbitrary constraints. We also provide the explicit formula to
4 compute the IEP solely based on the spectral properties of the transfer matrix. In section 4 we provide
so examples of relevance in the context of spike train statistics. We finish this paper with discussions
s1  pointing out directions for further research.

s2 2. Introduction

53 Since spike trains from experimental recordings are stochastic [1], and living systems are in
s« non-equilibrium states (time irreversible) [2], a good candidate for a population coding scheme of
ss living neuronal networks should be able to capture irreversibility in time [3]. Thus, quantifying the
ss degree of time irreversibility of spike trains becomes an important challenge which can be approach
sz using tools from the fruitful intersection between information theory and statistical mechanics. Given
ss a stochastic system, the quantity that measures how far it is from its equilibrium state (in statistical
so terms) is called information entropy production (IEP)3[4].

60 In this paper, we quantify the IEP of parametric maximum entropy measures of populations of
e1 spiking neurons under arbitrary constraints. In Schneidman ef al [5] and Pillow et al [6], the authors
ez used the maximum entropy principle focusing on firing rates and instantaneous pairwise interactions
es  (Ising model) to describe the spike train statistics of the vertebrate retina responding to natural stimuli.
e« Since then, the maximum entropy principle approach has become a standard tool to build probability
es measures in the field of spike train statistics [5-8]. Recently, several extensions of the Ising model have
es been proposed, for example, the triplet model, considering as an extra constraint, the correlation of 3
ez neurons firing at the same time [9], and the so-called K—pairwise model which consider K neurons
es firing at the same time bin [7] as an extra constraint. However, objections have appeared about their
eo capability to predict time correlations. As discussed in [10], memory effects could have a non-negligible
70 role in the spike train statistics. Nonetheless, most of the studies in this context have focused only
7 on synchronous constraints and thus, modeling time-independent processes which are, by definition,
72 reversible in time.

73 Since it is expected that memory effects show up in populations of spiking neurons, it is natural
7a  to ask about the information entropy production (IEP) associated with their statistical models. The
75 Mmaximum entropy approach can be extended to include non-synchronous constraints within the
76 framework of the thermodynamic formalism and Gibbs measures in the sense of Bowen [11] 4. This

The notion of the Gibbs measure extends also to processes with infinite memory [12], and have been used in the context of
spike train statistics [13,14].
We distinguish the information entropy production with others forms of entropy production used in chemistry and physics.
The notion of the Gibbs measure extends also to processes with infinite memory [12], and have been used in the context of
spike train statistics [13,14].
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7z opens the possibility to capture the irreversible character of the underlying biological process and thus,
7e  to provide statistical models biologically more realistic.

79 There is a vast body of theoretical work about irreversibility of stochastic processes, for
so Mmathematical details we refer the reader to [4]. In particular, for discrete time Markov chains,
a1 Gaspard [15] deduced an explicit expression for the change in entropy as the sum of a quantity
.2 called entropy flow plus the entropy production rate. In this paper, we follow this expression adapted
es to Markov chains associated with a finite range potential and we provide an explicit expression for the
sa IEP of maximum entropy Markov chains.

e This paper is organized as follows: In section 2 we introduce the setup of discrete homogeneous
es Markov chains, and review the properties that we use further. We present an example of the explicit
ez computation of IEP in an integrate-and-fire spiking neuronal network model. In section 3 we introduce
s the maximum entropy principle within the framework of the thermodynamic formalism and Gibbs
e measures, discussing the role of the arbitrary constraints. We also provide the explicit formula to
oo compute the IEP solely based on the spectral properties of the transfer matrix. In section 4 we provide
o1 examples of relevance in the context of spike train statistics. We finish this paper with discussions
2 pointing out directions for further research.

o3 3. Generalities

o4 To set a common ground for the analysis of the IEP of spike trains, here we introduce the notations,
os and provide the basic definitions used throughout the paper.

o6 3.1. Notation

We consider a finite network of N > 2 neurons. Let us assume that there is a natural time
discretization such that at every time step, each neuron emits at most one spike®>. We denote the
spiking-state of each neuron 0}’ = 1 whenever the k-th neuron emits a spike at time 1, and ¢}’ = 0
otherwise. The spike-state of the entire network at time  is denoted by ¢ := [ ¢} | ]Ic\]:l, which we call

a spiking pattern. For n1 < np, we denote by 0”12 to an ordered concatenation of spike patterns

g = gmgmtl gl

o that we call spike block. We call the sample of T spiking patterns a spike train, which is a spike block ¢*T.
ss  We consider also infinite sequences of spike patterns that we denote 7. We denote the set of infinite
9o binary sequences of N neurons Xy.

100 Let L > 0 be an integer, we write £k, = {0, 1}N*L for the set of spike blocks of N neurons and
11 length L. This is the set of N x L blocks whose entries are 0's and 1’s. We introduce a symbolic
102 representation to describe the spike blocks. Consider a fixed N, then to each spike block c%F~! we
103 associate a unique number ¢ € N, called block index:

NIl
(=YY anNtelgr 1)
k=1n=0
108 We adopt the following convention: neurons are arranged from bottom to top and time runs from

105 left to right in the spike train. For fixed N and L, o) is the unique spike block corresponding to the
106 index /.

5 There is a minimal amount of time called “refractory period” in which no two spikes can occur. When binning, one could go

beyond the refractory period and two spikes may occur in the same time bin. In those cases the convention is to consider
only one spike.
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w7 3.2. Discrete-time Markov chains and spike train statistics

Let Z% be the state space of a discrete time Markov chain, and let us for the moment use the
following notation oy, := o *+L=1 for the random blocks and analogously W) = w" =1 for the
states. Consider the process {c(,,) : n > 0}. If 0(,,) = w(,,) we say that the process is in the state w,) at
time n. The transition probabilities are given as follows,

Plo(ny = Wy | 0n-1) = @1y, -, 010) = W()] = Plo(n) = Wy | On-1) = W(n-1)]- 2)

s We assume that this Markov chain is homogeneous, that is, (2) is independent of n. Consider two
100 spike blocks 0%L~1,71E € £k of length L > 2. Then the transition () — 0(1) is allowed if they have

10 the common sub-block ¢l L—1 = glL-1,
111 We consider Markov transition matrices P : Z% X Z% — R, whose entries are given by:
Pg I P[(T(l) | (7'(0)] >0 if 0'(0) — 5(1) is allowed (3)
©71) 0, otherwise.

112 Note that P has 2NL x 2NL entries, but it is a sparse matrix since each row has, at most, 2N non-zero
us  entries. Observe that by construction, for any pair of states there is a path of maximum length L in
ua the graph of transition probabilities going from one state to the other, therefore the Markov chain is
us  irreducible.

ue  3.3. Detailed balance equations

Consider a fix N and L. From the Markov property and the definition of the homogeneous
transition matrix, one has for an initial measure v, the following Markov measure (v, P)

1lo(0) = wW(0), 01y = Wy -+, Oy = W)l = V(@(0)) Py o)+ Pogyyy oy )

k,L+k—1 k,L+k—1

ur  forall k > 0. Here again, we used the short-hand notation o(y) := ¢
An invariant probability measure of a Markov transition matrix P is a row vector 7 such that

and w() == w

P = 7. (5)

e We recall that for ergodic Markov chains (irreducible, aperiodic and positive recurrent) the invariant
119 IMeasure is unique.

Let us now consider a more general setting including non-stationary Markov chains. Let v" be the
distribution of blocks ) € £k at time n, then one has that the probability evolves in time as follows,

= Z Vn(O’(z/))P[//g.

o L
ol )EZN

il (O_(Z))

For every o¥) € £k, one may write the following relation

v e ) =@y = Y e )P = v (0) P ] ©6)

o L
ol )EZN

This last equation is related to the conditions of reversibility of a Markov chain. When stationarity
and ergodicity are assumed, the unique stationary measure of the Markov chain 7 is said to satisfy
detailed balance if:
Py = 7tuPy, Vol ) L
(Pop =1t Py Yo, 0 € Xy )
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121 If the detailed balance equations are satisfied, then the quantity inside the parenthesis in the right-hand
122 side of (6) is zero.

123 3.4. Information Entropy rate and Information Entropy Production

124 A well established measure of the amount of uncertainty of a probability measure v is the
12s  information entropy rate, which we denote by S(v). In the case of independent sequences of spike
126 patterns (L = 1), the entropy rate is given by:

Z v[a }logv{ ()] 8

cOex]

128
In the setting of ergodic stationary Markov chains taking values in the state space ;L > 2 with
transition matrix P and unique invariant measure 7, the information entropy rate associated to the
Markov measure (7, P) is given by:

S(u)=— Y. mPyplogPry, L>2, 9)
o’(é) ,(7(4‘,) 62%\]

120 Which corresponds to the Kolmogorov-Sinai entropy (KSE) [16].
130
Here, we introduce the information entropy production as in [15]. For expository reasons, let us
consider again the non-stationary situation. The information entropy of a probability measure v in the
state space L at time 1 be given by

Sav)=— Y v"(c9)logv"(c").

cOexk

The change of entropy rate over one time-step is defined as follows:

ASy = Sp1(v) = Su(v) = — Y v (D) logv (D) + Z (DY logv" (¢\).
cexk ez

Arranging terms, one has that the previous equation can be written as:

yntl ( ) )P//,é

AS,;, = — v ( (¢ ))ngglog—
! U'(Z),(T(;,) e):L ( (e) )PM’
) (10)
1 / v ((T(E ))P l
1 (A ONPy (o OVP, )] Toe LT )P
5 L V@R —v(@)Pp]log — GO

o0, exk

131 the first part on the r.h.s of this equation is called information entropy flow and the second information
132 entropy production [15].
133 Observe that in the stationary state, one has that v = v"*! = 7, thus the change of entropy rate
134 is zero, meaning that information entropy flow equal information entropy production, therefore is
135 possible to attain a steady state of fixed maximum entropy, but having positive IEP. In this case we
136 refer to non-equilibrium steady state (NESS).
Here, since we are interested in the Markov chains that arise from the maximum entropy principle,
we focus on the stationary case. In this case the IEP of a Markov measure (77, P) is explicitly given by:

1 7T Py
IEP(P,7) =~ Y.,  [mePp;— mPpp]log ==X >0, (11)
o0 0@ ext TPy
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13z nevertheless, we stress the fact that one can obtain the information entropy production rate also in the
138 hon-stationary case.

130 3.5. Example: Discrete time spiking neuronal network model

140 The Integrate-and-fire model is one of the most ubiquitous models to simulate and analyze the
11 dynamics of spiking neuronal circuits. This model is the simplest dynamical model that captures the
12 basic properties of neurons, including the temporal integration of noisy sub-threshold inputs and
13 all-or-nothing spiking. At the level of networks postulates a set of equations describing the behavior
1as  Of the interconnected neurons motivated by the microscopic picture of how the biological neuronal
s network is supposed to work.

146 There exist several different versions of this model. Here we present the discrete time
1z integrate-and-fire model. The model definition follows the presentation given in [17]. Neurons
14s  are considered as points, without spatial extension nor biophysical structure (axon, soma, dendrites).
1o The dynamical system defined here is only ruled by discrete time dynamical variables.

150 Denote by V(t) the membrane potential vector with entries V;(t), whose dynamics is defined
151 as follows. Fix a real variable 8 > 0 called firing threshold. For a fixed discrete time f, we have two
12 possibilities:

153 e Either Vj(t) < 0, forall k = 1,...,, N. This corresponds to sub-threshold dynamics.
150 e Or, there exists a k such that, Vi (t) > 6. Corresponding to firing dynamics.

15 The under-threshold dynamics is given by the following equation:

V(t+1) =F(V(t)) +opB(t) (12)
156 wWhere
N
E(V (1) =2Vi(t) (1 = Z[Vi(D)]) + & Y Wi Z[V;(£)] + BI;. (13)
j=1

157 The function Z[x] := W,y is called the firing state of neuron x, where } is the indicator function. When
1ss  Z[V;(t)] = 1 one says that neuron i spike otherwise is silent. We extend the definition of Z to vectors:
1o Z[V(t)] is the vector with components Z[V;(t)],i = 1,...,N. The leak rate is denoted by v € [0,1],
10 and W; is called the synaptic weight from the neuron j to the neuron i. The synaptic weight is said to
w1 be excitatory if W;; > 0 or inhibitory if W;; < 0. The components of the vector B(t) are independent
12 normalized Gaussian random variables and op is the noise amplitude parameter. The parameters
163« and B were introduced in order to control the intensity of the synaptic weights and the stimulus,
1ea  Trespectively.

165 With this model one obtains a set of conditional probabilities of spike patterns given the network’s
166 spike history, allowing a mechanistic and causal interpretation of the origin of correlations (see [17]
1z for details). Here, we consider only one time-step dependence on the past, although in the general
16 approach it is possible to consider infinite memory. The conditional probabilities (transition matrix)
s are given as follows:

notr |l 0—Ci(a,B,0) ‘ 0 —Ci(a,B,0)
e e
where,
N
Ci({X,‘B,O'/) = ’)/IXZW{]'O'](+‘3L' (15)
j=1
and

p(x) = /xooe%du. (16)
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170 The function C takes into account the past and the external stimuli (see [17] for details). These
1 conditional (transition) probabilities define an ergodic Markov chain, specified by the biophysical
172 dynamics of the spiking network. From the transition probabilities (14) and its unique steady state, we
173 compute the IEP of this model using (11) for different values of the parameters « and j3 (see Figure 1).

IEP

Figure 1. Plot of the average value of IEP for 500 realizations of the synaptic weight matrix for fixed a
and B in each case. We fix the following values of the parameters: N = 6,y = 02,05, = 1,0 = 1,[; =
1 Vi€ {1,.,6}. The components of the synaptic weight matrix W;; were drawn at random from a
normalized Gaussian distribution. We plot the average value of IEP for 500 realizations of the synaptic
weight matrix for fixed « and § in each case..

174 Figure 1 shows that for this model the IEP depends mostly on the intensity of the synaptic
15 weights, while the stimulus intensity is playing a minor role. This is an indication that IEP (in the
e stationary case) is essentially a property of the spiking neuronal network. structure The IEP of this
177 neuronal network model is zero only under very restricted and unrealistic biophysical circumstances:
17 when all synaptic weights are identical in amplitude and with the same sign or when they are all zero,
7o i.e. when neurons do not communicate among them. In the first case spikes play a symmetrical role
10 With respect to time, which cancels out when computing the IEP. In the second case the associated
11 stochastic process is time independent, thus reversible. Therefore, generically this biophysically
1.2 plausible model of spiking neuronal networks, has positive IEP. This means that the spike dynamics of
1e3  this model leads to an irreversible Markov process.

1ss 4. Theoretical Framework

186 In the example of the previous section, we assume known the transition probabilities i.e., the
1z structure of synaptic connectivity, stimulus and all other parameters defining the spiking neuronal
1. network. Unfortunately this is not always the case. Usually, one only have access to a limited amount
180 Of experimental spiking data, which is a sampling of a very small subset of the entire state space. This
100 makes that often the empirical frequencies are bad estimations of the elements of the Markov transition
11 matrix. Here, we present how to use a variational principle from the thermodynamic formalism [18]
102 to obtain the unique irreversible ergodic Markov transition matrix and its invariant measure having
103 maximum entropy among those consistent with the constraints provided by data. This approach
10s  solves the problem of the bad estimations mentioned above and enables us to compute the IEP of the
15 inferred Markov process, which is our main goal.

1ws  4.1. Inference of the maximum entropy Markov process

197 The problem of estimating the Markov chain of maximum entropy constrained by the data is of
108 general interest in information theory. Consists in solving a constrained maximization problem, from
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100 Which one builds a Markov chain. The first step is choosing (arbitrarily) a set of indicator functions
200 (also called monomials) and determine from the data the empirical average of these functions. This
201 fixes the constraints of the maximization problem. After that, one maximizes the information entropy
202 rate, which is a concave functional in the space of Lagrange multipliers associated to the constraints,
203 Obtaining the unique Markov measure that better approximates the statistics among all probability
20s measures that match exactly the constraints [19]. Up to our knowledge, previous approaches ignore
20s  how to deal with the inference of irreversible Markov processes in the maximum entropy context
206 [20,21].

200 4.2. Observables and Potentials

208 Let us consider the space of infinite binary sequences Xy. An observable is a function f : Xy — R.
200 We say that an observable f has range R if it depends only on R consecutive spike patterns, e.g.
20 f(0) = f(¢¥R=1). We consider here that observables do not depend explicitly on time (time-translation
2u  invariant observables), i.e., for any time-step n, f(cOR=1) = f(c""+R=1) whenever ¢¥R~1 = g +R-1,
212 Examples of observables are products of the form:

f(@*T) = ﬁ o, (17)
u=1

213 wherek, = 1...N (neuronindex)and n, =0... T (time index). These observables are called monomials
212 and take values in {0, 1}. Typical choices of monomials are (7;:11 which is 1 if neuron k; fires at time 1,
215 and 0 otherwise; (7;:11 (7;(122 which is 1 if neuron kj fires at time n; and neuron k; fires at time 7, and 0
216 otherwise. For N neurons and time range R there are 2VR possible monomials. To alleviate notations,
21z instead of labeling monomials by a list of pairs, as in (17), we label them by an integer index, [ (the
ze  index is defined in the same way as the block index (1), i.e. a monomial reads ;.

A potential is an observable that can be written as a linear combination of monomials®. A potential

of range R is written as follows:

2NR
H(D) = Y ymy(c?) o e xR, (18)
=1
210 Where the coefficients h; real numbers. Some coefficients in this series may be zero. We assume
220 throughout this paper that /iy < co’. One example of potential is the one considering as monomials the

2z firing rates 0; and the synchronous pairwise correlations 0; 0;.

N N
7‘[(0’(@) = Zhio—i"“% Z ]ijO’l'(T]‘ (T(Z)) S Z}\]
i=1 ij=1

22 4.2.1. Additive observables of spike trains

223 Let ¢ be the shift map ¢ : 2y — Zy, defined by ¢(c) ;) = 0(;41). Let f be an arbitrary observable.
222 We may consider the sequence {f o ¢'(c) } as a random variable whose statistical properties depend
225 on those of the process producing the samples of o and the regularity of the observable f.

226 Given a spike train, one would like to empirically quantify properties empirical averages and
22z their fluctuation properties as a function of the sampling size. Consider a spike train ¢, and let n be the
22 sample length. The average of the observable f of range R > 1 in ¢ is given by,

The range of the potential is the maximum over the ranges of the 7; monomials considered.

7 Here we do not consider hard core potentials with forbidden configurations.
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1 n—R .
An(f) = ZR+1 ;}foﬁbl(‘_f),
in particular, for observables of range 1, one has
=1
An(f) = igof(al)- (19)

4.3. Variational principle

Let A, (fx) = C be the average value of K observables for k € {1,...,K}. As the empirical
average of monomials is not enough to uniquely determine the spike train statistics (there are infinitely
many probability measures sharing the same averages of monomials), we use the maximum entropy
method to obtain the Markov measure y that maximizes the KSE among all measures v that match the
expected values of all observables, i.e. v[fy] = Cy, for all k € {1,...,K}. This is equivalent to solve the
following variational problem under constraints:

S[V]:max{S[v]:v[fk]:Ck Vke{l,...,K}}. (20)

Since the function v — S [v] is strictly concave, there is a unique maximizing Markov measure (7, P)
given the set of values C. To solve this problem, we introduce the set of Lagrange multipliers i, € R in
the potential H = Z,Ile h fr, which is a linear combination of the chosen observables. Next, we study
the following unconstrained problem, which is a particular case of the so-called variational principle of
the thermodynamic formalism [18]:

PHI= sup {S[v]+vIH]}=Slul+plH], @1

where P [ H ] is called the free energy or topological pressure, My, is the set of invariant measures with
respect to the shift ¢ and v [H ] = YK | Iy v [ fi. ] is the average value of H with respect to v.

In this paper, we only consider potentials H of finite range, for which there is a unique measure y
attaining the supremum [22] and is a Gibbs measure in the sense of Bowen.

Gibbs measures in the sense of Bowen. Suppose H is a finite range potential R > 2, a shift invariant
probability measure y is called a Gibbs measure (in the sense of Bowen) if there are constants M > 1
and P[H] € Rs.t.

-1 ule'"]
M AR — (n R- )P @

It is easy to see that the classical form of Boltzmann-Gibbs distributions y[o] = e*(?) / Z is a particular
case of (22), when M = 1, H is a potential of range R = 1 and P[H] = log Z.

4.3.1. Statistical Inference
The functional P [ # | has the following property:

P [H]
oy

=ulfi) =C, Vke{1,.,K} (23)

where p[f;] is the the average of f; with respect to y, which is equal to the average value of f; with
respect to the empirical measure from the data C, by constraint of the maximization problem. For
finite range potentials P(H ) is a convex function of #;’s. This ensures the uniqueness of the solution of

do0i:10.20944/preprints201711.0052.v1
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260 (21). Efficient algorithms exist to estimate the Lagrange multipliers for the maximum entropy problem
261 with non-synchronous constraints [10].

203 4.4. Ruelle-Perron-Frobenius transfer operator

268 Consider H to be an arbitrary potential, and w a continuous function on X£y. We introduce the
2es  Ruelle-Perron-Frobenius (R-P-F) transfer operator denoted by L4, and it is given by,

Lyw(o) = Y M (o).
o eXnP(o")=0

207 In an analogous way;, as it is done for Markov approximations of Gibbs measures [23,24], for a finite
26s  range potential H, we introduce the transfer matrix Ly,
H (o) if oOL ~ o0 ()
Loy, 0) = e if .0' -0 (24)
0, otherwise.

220 From the assumption H > —oo, each allowed transition corresponds to a positive entry in the matrix
271 EH .

22 4.5. Maximum entropy Markov chain for finite range potentials

273 The matrix (24) is primitive® by construction, thus it satisfies the Perron-Frobenius theorem [25].
zza Let p > 0 be its spectral radius. Because of the irreducibility of the transfer matrix, p is an eigenvalue
2 of multiplicity 1 strictly larger in modulus than the other eigenvalues. For every o(¥) € =k, let us
2re denote by Ly := L(c(*)) and R, := R(c!)), the left and right eigenvectors of L corresponding to the
27 eigenvalue p. Notice that L, > 0 and R, > 0 for all ¢{¥) € xk.. Using spectral properties of the transfer
27e  Matrix, we obtain the maximum entropy Markov transition probability matrix [22]:

L6, 0 )Ry

Vo) o) ¢ 2L 25
Rip N (25)

Pg/g/ =

The unique stationary probability measure 7t associated to P is also obtained by the spectral properties

of [’7{:
Ly Ry (6) ~ 'L
=, V Iy 26
7—[[ < L, R> 7 o S N ( )
27o  For a finite range potential 7{, the unique measure (7, P) associated to #, satisfies the variational
20 principle, furthermore, the topological pressure can be explicitly computed P[#H] = Inp.

201 4.6. IEP of the inferred Markov maximum entropy process

202 Consider a potential H of finite range and the state space X%, As we have seen before, using
23 the maximum entropy framework one can build from the transfer matrix £4,, the Markov transition
2es  matrix P and its invariant measure 7t. Furthermore, one can apply straightforwardly (25) and (26) to
2es  Obtain a formula for the IEP based only on the spectral properties of L. After simplifying we obtain:

B Lg EH(K,KI)RZ/ LZRZIE'H(E,KI)
IEP(Lw) = ), (L,R) 108 | TR, (7, 0) @7

0'(4),0'([/) GZ%]

8  The matrix A is primitive if there is an n € N, s.t. A" has only positive components
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This is a quantity of major interest in spike train statistics, as it measure the degree of time
irreversibility of the inferred maximum entropy Markov chain. Although it is a straightforward result,
it is quite general and of practical use, as we will see in the examples below. We can apply (25) and (26)
to equation (7), we obtain the detailed balance condition in terms of the transfer matrix and its spectral
properties:

LiRy Ly (6, ") Ry Ly Ry Lyy(¢',€) Ry

<L, R> RZS <L, R> Rg/S

Simplifying we obtain:

Ly (¢, 0')  RyLy
Ly(0,0)  RplLy

(28)

4.7. Large deviations for observables of maximum entropy Markov chains

The goal of large deviations is to compute the asymptotic probability distribution P(A,(f) = s)
for a given finite range observable f and for s # E(f). More precisely, we say that P(A,(f)) satisfies a
large deviation principle with rate I¢(s) if the following limit exists,

lim —%lnIP’(An(f) —5) = I;(s).

In which the dominant behavior of P(A,(f)) is decaying exponentially fast with the sample size n, as

P(An(f) =s) ~ e "), (29)

We define the scaled cummulant generating function (SCGF) associated to the random variable
(observable) f denoted by Af(k) as follows,

As(k) = lim lhE [enkAn(n] , keR (30)

n—o00 1

The n-th cumulant of the random variable f can be obtained by differentiating A (k) with respect to
k, n times and evaluating the result at k = 0. The next theorem by Gértner-Ellis theorem relates the
SCGF and the large deviations rate function. The Géartner-Ellis theorem relies on the differentiability of
Af(k), which is guaranteed for finite state Markov chains [26]. This theorem has several formulations,
which usually require some technical definitions beforehand. Here we stated it in a simplified form,
which is what we need for our purposes.

Girtner-Ellis theorem: If Af(k) is differentiable, then there exist a large deviation principle for the
average process A, (f) whose rate function I¢(s) is the Legendre transform of A (k):

T5(s) = max{ks = A(K)) @)

The Gértner-Ellis Theorem is very useful in our context, because it bypasses the direct calculation of
P(An(f)) in (29), i.e., having A¢(k) a simple calculation leads to the rate function of f. As we will see
in the next section A (k) naturally appears in the context of Maximum entropy Markov chains.

4.8. Large deviations for the IEP

Consider an irreducible Markov chain with transition matrix P, ;. We define the tilted transition
matrix by f denoted by D (f)(k), whose elements for a one time step observable are:

B (k) = Py ) (32)

do0i:10.20944/preprints201711.0052.v1
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a5 or for a two time step observable:
P‘é’fg (k) = Pg,g/e’kf(é’e ) (33)

s For a Markov transition matrix P inferred from the maximum entropy, the tilted transition matrix can
a1z be built directly from the transfer matrix and its spectral properties.

- Ly, (6, Ry /
() (k) = H(R[p)fekf(w) (34)

sis The Markov chain structure underlying A, (f) can be used here to obtain more explicit expressions
s for A¢(k). In the case of the additive observables, if a Markov chain is homogeneous and ergodic can
20 compute explicitly the SCGF as the logarithm of the maximum eigenvalue of P(/):

A¢(k) = In(p(P))) (35)

sz2 This result is valid if the state-space of the Markov chain is finite, where it can be proved furthermore
522 that A¢(k) is differentiable and A’f(O) =E(f).

22« Remark: The observable f does not need to belong in the set { f; }X_; of chosen observables to fit the
2 Markov maximum entropy process. We denote p(P\f)) the dominant eigenvalue (i.e., with largest
226 magnitude) of the matrix Pf), which is unique by the Perron-Frobenius theorem.

228 We are interested in the fluctuations of the IEP. For that purpose we define the following
:20  Observable:

Wa({o'}y) =In

P({o'}2,)
P({c}®)

50 where {0/}(R) = ¢",¢"~1, ..., ol is the temporal inversion of the trajectory {¢?}_,. It can be shown
a1 that for P-almost every trajectory of a stationary ergodic Markov chain (7, P):
W, ({c'}1
lim M = IEP(m, P)

n—00 n

sz It can be shown [4] that the SCGF Ay (k) associated to the observable W, can be found as the logarithm
3z Of the maximum eigenvalue p(k) of the matrix:

~(?//) (k) = Py peFer

L
;32 where,
TP
Fop = In [Z 24 ‘|
’ TTpr Pg/, ¢
335 which is a matrix of positive elements.
336
337 Using the Gartner-Ellis theorem we obtain the rate function Iy (s) for the IEP observable:

Iw(s) = maxiks — Aw(k)}

sss  The rate function of the IEP observable has the following property:

Aw (k) = Aw(=k—1)
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339
a0 Since A}y (0) = IEP(7, P) the symmetry implies
Iw(s) = Iw(—s) —s
s 4.8.1. Gallavotti-Cohen fluctuation theorem
342 The Gallavotti-Cohen fluctuation theorem refers to a symmetry in the fluctuations of the IEP. Is a

;a3 statement about the large deviations of %, which is the time-averaged entropy production rate of the
s sample trajectory {o'}"_; of the Markov chain y(, P).

o~
. ’ = e
P{%z—s]

a5 This means that the positive fluctuations of % are exponentially more probable than negative
s fluctuations of equal magnitude. This is a universal ratio, i.e., no free parameters are involved
sz and is experimentally observable.

sss 5. Examples

349 In this section, we provide examples of applications of our results in the context of spike train
0 statistics. We detail the transfer matrix technique to compute the maximum entropy Markov transition
51 matrix and the invariant measure from a finite range potential 7. We also compute the IEP and the
2 fluctuations.

ss3 5.1. First example: Toy model
354 Consider a range-2 potential with N = 2 neurons:
H(c"Y) = ool

The transfer matrix (24) associated to H is in this case a 4 x 4 matrix:

1 1 1 1

1 1 1 1
Lw = 1 e 1 e

1 e 1 en

=5 As this matrix is primitive by construction, it satisfies the hypothesis of the Perron-Frobenius theorem.
sss  Its unique maximum eigenvalue is p = e/ + 3. The left and right eigenvectors associated to this largest
7 eigenvalue are respectively:

0 2 0 1 2 1

L S =1L =" L =1,
0 2 0 2 1 1

R =" R o —1; R = 1.

From the spectral properties of L1, we obtain the Markov transition matrix (25), which reads,

14e 14
1 1 2 2
1+e 146
p 1 1 1 5 5
o0l = = 2 2¢M h ’
’ Y i 7 1 e
14+ 14eM
2 2¢M 1 e

1+e 1+eM
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The unique invariant measure of this irreducible Markov transition matrix is given by equation (26),
and its entries are given by,

— _ _ n\2
o) (0)=FenD () Hesd (1) R

e [tis easy to check that 77 is invariant w.r.t. the transition matrix P, that is 7P = 7.
From this example, we can verify that generically the detailed balance condition is not satisfied; for

0|1 1 1|0 0
P o) (o) (o 1 )m(1)
1 ‘ 0 ) o) 7P o1 )4 )
;5o As we can see in figure 2, the maximum entropy measure for the unconstrained problem is attained at
30 the uniform distribution as expected (h; = 0, eigenvalue p = 4 assigning probability % to each spike
e pattern).
Let us now consider a constrained version of this problem. Suppose we have a data set of length

T and we measure the average value of the observable f = o103,

example:

Ar(f) =01

Given this restriction and using the equation (23), we obtain the following equation:

dlog(e +3)

oy =01

2 Solving we find h; = —1.09861. Therefore, among all the Markov chains that match exactly the
ses  restriction, the one that maximizes the information entropy is the one obtained by fixing h; at the
sea  found value. Is easy to check that the variational principle (21) is satisfied.

365 From the transition probability matrix P and the invariant measure 77, we compute the KSE (9)
ses and the IEP (27) as a function of the parameter /1 (see figure 2).

I
1.4
— KSE
1.05 IEP
07
0.35
10 8 6 4 2 0 2 4 6 8 10

Figure 2. IEP and KSE as a function of h;. This figure illustrates the unconstrained problem, the
maximum entropy measure is attained when /1; = 0 i.e., the uniform distribution, which is also the
Prigogine distribution of minimal IEP. In this example, the detailed balance condition is only satisfied
in the trivial case h; = 0.
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A
10 0.6
/
0.8 0.5 /
Aw (k) = Aw (—k — 1) Iw(s) = Iw(-s) — s /
0.4 /
0.6 /
/
03
0.4 AN /
N\ 0.2 /
0.2 g
\\ 0.1 ///
4 2 | 2 4 z 0.1 o1 0.2 o5 5>
Figure 3. Gallavotti-Cohen fluctuation theorem for the first example at the parameter value i; = —1.

Left) We show the SCGF associated to W, Ay (k), the derivative at zero is the IEP of the maximum
entropy Markov chain, which in this case is 0.0557. This value coincides with the minimum of the rate
function at the right side of the image.

se7 5.2, Second example: Memoryless potentials

Consider a finite and fix number of neurons N and a potential of range 1. This case includes
the Ising model [5], Triplets [9], K-pairwise [7] and all other memoryless potentials that has been
used in the context of maximum entropy models of spike train statistics. It represent a limit case in
the definition of the transfer matrix, where transitions between spike patterns ¢ — ¢’; 7,0’ € Z}\,
are considered and all transitions are allowed. In this case, the potential does not “see” the past i.e.
Ly(0,0") = (7). The matrix £, has a unique maximum eigenvalue:

A=z= Y oM@

1
oeXy

and the rest of eigenvalues are equal to 0. The left and right eigenvectors corresponding to p are:

L(c') = R(¢') = M), vo' ez,

Zi
Note that (L, R) = 1. We have therefore:

P(¢’ | o) = P(c') = ni(0)) = ; Vo0 exl, (36)

ses In this case, the invariant measure 71 has the classical Boltzmann-Gibbs form. The associated Markov
ses  chain has no memory: successive events are independent. This last remark reflects a central weakness
a0 of memory-less maximum entropy models to describe neuronal dynamics.

371 Taking the formula of IEP (27) we obtain:

M) /
IEP(Ly) = Y. éj‘% log(RZ()" ><7-{,(a’)—7-[((7)):0.

oo’ en],

In the case where only range 1 observables are chosen (firing rates, pairwise correlations, triplets, etc.),
the average value of these observables in a given data set is the same as the one taken from another
data set where the time indexes have been randomly shuffled or even time reversed. As this is the only
information about the process that the maximum entropy principle consider, it is not surprising that
the stochastic process associated with the maximum entropy measure is time reversible. Consider a
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data set consisting in binary patterns D°. Let ¢ : {0,..., T} — {0,..., T} be a function that randomly
shuffles the time indexes, we call DRS the data set obtained after this transformation. Finally consider
D!, the data set with inverted time indexes,

DO = {(70, (71,(72,...,(TT_1,(7T}
DRS = {8(0) 58(1) o8 8(T-1) ;8(T)}

I T T-1 _T-2 1.0
D ={c',0c' 07 ...,0,0}

sz Observe that in these three cases (that may correspond to very different biological experiments), the
a3 average value of every observable of range one is exactly the same, therefore these data sets are
s7a  characterized by the same maximum entropy distribution.

ars 5.3. Third example: 1-time step Markov

Here, we consider the 1-time step extension of the Ising model, that reads:

N N N

1

H(™) = z 1hi0i +5 E 1]ij0ia]- + E lﬂij(Ti 7. (37)
i= ij= ij=

sz This is the potential considered to fit a maximum entropy distribution to spiking data from a
s7e - mammalian parietal cortex in-vivo in [27]. It is important to notice that in [27], the authors compute
a0 the solution of the maximum entropy problem imposing detailed balance condition, so in their case,
se0 there is zero IEP by construction. Here we do not consider a particular data set, instead we investigate
se1  the capability of this potential to generate IEP by considering the following scenarios: We consider a
2 network of N = 10 neurons, where we draw at random the coefficients h; and J;; in a range plausible
ses  to be the maximum entropy coefficients (or Lagrange multipliers) of an experiment of retinal ganglion
sss  cells exposed to natural stimuli (values of from £; and Jj; as in [28]). We generate the matrix ;; by
ses  drawing each component at random from Gaussian distributions with different means and standard
s deviations. We summarize our results in figure 3. We observe the following: Independent of /; and Jij
sz and the parameters of mean and variance from which the matrix of coefficients 7;; is generated, if 7;;
see i symmetric the Markov process generated by the potential (37) is reversible in time so the IEP is zero.
sso  This includes the limit case when Yij = 0,Vi,j € {1,...,N}, where we recover the Ising model. Next,
w0 we fix the values of ; and J;; (random values), and we generate 100 matrices 7;; by drawing their
s components from Gaussian distributions (0, ¢?), another 100 from N (1, ¢?). We also generate 100
32 anti-symmetric matrices 7;j from (1, ¢?), that we denote in figure 3 N/ A(1,€?). For each realization of
203 yjj we generate the transfer matrix and proceed as explained in section (3) to obtain the IEP in each
30 Case.

3905 Figure 3 shows that for fitted data with a maximum entropy 1-time step Markov model, the
ses IEP is zero only when all the measured 1-step correlations between neurons are symmetric, which is
sz very unlikely for an experimental spike train. The degree of symmetry in the matrix of 9’s play an
30 important role in the IEP.

300 5.4. Fourth example: Kinetic Ising model with random asymmetric interactions

400 This model of spike generation is an example of a non-equilibrium system, which has been used
201 in [29] to approach the question of recovering the interactions of an asymmetrically-coupled Kinetic
202 Ising model, with a time-independent external field to ensure stationarity. This is a discrete-time,
w3 synchronously updated Markov model in ©%; with transition matrix is given by:

/ _ N exp[(ZUl{—l)Hi((T)] /
Pl =TT oy » 77 €2 %
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EP

1.5

0.5

Figure 4. IEP for the 1-time step Markov potential. The parameters /; and Jj; are draw at random
one time and remain fixed. We draw at random the components of 100 matrices 7;; from a Gaussian
distribution with different values of mean and standard deviation e. We plot the average value of IEP
for each case, with the respective error bars.

N
91‘((7) =Bhi+ua ZL‘]‘(ZUi—l) VUEZ}\]. (39)
j=1
404 The fields h; and the couplings J;; are independent Gaussian variables and «, € R. These set

«s of stationary transition probabilities characterize an ergodic Markov chain with a unique invariant
ss measure. Therefore, the scene is set to compute information entropy production under different
407 scenarios.

a08 In figure 4, for the Kinetic Ising model with random asymmetric interactions we recover the same
as  structure found in figure 1 for the Integrate and Fire model, that is the the synaptic couplings are
a0 playing a mayor role in IEP, while the intensity of the stimulus is less relevant.

sz 6. Discussion

a12 One of the consequences of including non-synchronous constraints in the framework of the
a3 maximum entropy principle as constraints is that opens the possibility to broke the time-reversal
aa  symmetry introduced by time-independent models and thus capture the irreversible character of the
a5 underlying biological process, which is compulsory for a deeper understanding of the neural code and
as  allows fit statistical models biologically more realistic. We have emphasized that the IEP is zero for time
a7 independent processes (time-reversible) derived from commonly used statistical models in this field,
as  for example, Ising, K-pairwise, triplets, among others [5,28]. However, only time-dependent maximum
a0 entropy models induce time irreversible processes, feature highly expected from biological systems.

a20 While many spiking neuronal network models consider the influence of pre-synaptic neurons,
a2 the most popular maximum entropy models in this field ignore them. Therefore, there is a clear
a2 phenomenological disagreement between these two different approaches, which as we show here and
«2s  as mentioned before (see [30]) can be corrected including non-synchronous constraints.

a2a When trying to explain the spike train statistics of networks of neurons using the maximum
a2s entropy principle, one hopes that the parameters of the potential shed light on the understanding of
a6 the nature of the spiking phenomena and the neural code, both clearly having a temporal structure.
a2z Perhaps the main message of this work is that limiting the complexity of the maximum entropy model
«2s using arguments of parsimony may be harmful when the underlying stochastic process generating the
a0 spikes is evidently time dependent.
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IEP 4

o 1 2 3 4 5 6 7 8 9 10
«

Figure 5. IEP for the Kinetic Ising model with random asymmetric interactions. We consider N = 6.
The components of field vector were drawn at random from a Gaussian NV (—3, 1) and the coupling
matrix J;; were drawn at random from a Gaussian N(0,1). We plot the average value of IEP for 500
realizations of the synaptic coupling matrix for fixed & and  in each case.

430 However, there are two main drawbacks of our approach. The first is inherited from the maximum
a1 entropy method that requires stationarity in the data. The second is that is based on the transfer matrix
a2 technique, so it may require an important computational effort for large-scale and long memory
a3 neuronal networks. There is a lot of room for progress going beyond the scope of this work, one
a3a  possibility is to quantify the IEP for different choices of non-synchronous constraints and binning sizes
a5 on biological spike train recordings. A more ambitious goal would be to link the IEP as a signature
a6 of an underlying physiological process depending on time such as adaptation or learning. IEP is a
a3z much broader concept which can also be measured along non-stationary trajectories, thus IEP can
a3s  be measured for time-dependent models where transition probabilities are explicitly given or can be
a0 computed (for example the Generalized Linear model [31]). Previous studies in the context of spike
a0 train statistics have measured the dynamical entropy production in spiking neuron networks using a
sax  deterministic approach based on the Pesin identity (sum of positive Lyapunov exponents) [32]. There
a2 are relationships between the deterministic and stochastic dynamics [33], and some interpretations of
a3 deterministic dynamical entropy production with information loss which should be investigated in
sas  more detail, in particular, if these relationships bring new knowledge in the field of computational
a5 Neuroscience.

446 We have focused on spike train statistics, but our results are not restricted to this field and can be
a7 applied wherever Markov maximum entropy measures under constraints have to be inferred from
as  data, especially for irreversible Markov chains from stochastic network theory [34], information theory
a0 [20], finance [21], among other disciplines.
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