
Type of the Paper (Article) 1 

Evaluation of Analysis by Cross-Validation. 2 

Part II: Diagnostic and Optimization of Analysis Error 3 

Covariance 4 

Richard Ménard 1* and Martin Deshaies-Jacques 1 5 
1 Air Quality Research Division, Environment and Climate Change Canada; martin.deshaies-jacques@canada.ca 6 
* Correspondence: richard.menard@canada.ca; Tel.: +1-514-421-4613,  7 

2121 Transcanada Highway, Dorval, (QC), CANADA, H9P 1J3 8 

Abstract:  We present a general theory of estimation of analysis error covariances based on 9 
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of passive observation–minus-analysis residuals and show that the true analysis error variance can be 11 
estimated, without relying on the optimality assumption.  This approach is used to obtain near 12 
optimal analyses that are then used to evaluate the air quality analysis error using several different 13 
methods at active and passive observation sites.  We compare the estimates according to the method 14 
of Hollingsworth-Lönnberg, Desroziers et al., a new diagnostic we developed, and the perceived 15 
analysis error computed from the analysis scheme, to conclude that, as long as the analysis is near 16 
optimal, all estimates agree within a certain error margin.   17 

Keywords: data assimilation; statistical diagnostics of analysis residuals; estimation of analysis error, 18 
air quality model diagnostics; Desroziers et al. method; cross-validation 19 

 20 

1. Introduction 21 

At Environment and Climate Change Canada (ECCC) we have been producing hourly surface 22 
pollutants analyses covering North America [1, 2, 3] using an optimum interpolation scheme which 23 
combines the operational air quality forecast model GEM-MACH output [4] with real-time hourly 24 
observations of O3, PM2.5, PM10, NO2, and SO2 from the AirNow gateway with additional observations 25 
from Canada.  These analyses are not used to initialize the air quality model and we wish to evaluate 26 
them by cross-validation, that is by leaving out a subset of observations from the analysis to use them for 27 
verification.  Observations used to produce the analysis are called active observations while those used 28 
for verification are called passive observations.   29 

In a first part paper of this study, i.e. Ménard and Deshaies-Jacques [5], we have examined different 30 
verification metrics using either active or passive observations.  As we changed the ratio of observation 31 
error to background error variances 22 / bo σσγ = , while keeping the sum 22

bo σσ +  equal to )var( BO − , 32 
we found a minimum in )var( AO −  in the passive observation space.  In this second part paper, we 33 
formalize this result, develop the principles of estimation of the analysis error covariance by 34 
cross-validation, and apply it to estimate and optimize the analysis error covariance the our surface 35 
analyses of O3 and PM2.5. 36 

The evaluation of the analysis error covariance using its own active observations is a misleading 37 
problem unless the analysis is already optimal.  Hollingsworth and Lönnberg [6] addressed this issue 38 
for the first time where they noted that in the case of an optimal gain (i.e. optimal analysis), the statistics 39 
of observation-minus-analysis residuals AO ˆ−  are related to the analysis error by 40 

TTAOAO HAHR ˆ])ˆ)(ˆ[( −=−−E , where Â is the optimal analysis error covariance and H  and R are 41 
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the observation operator and observation error covariance respectively.  The caret (^) over A  indicates 42 
that the analysis uses an optimal gain.  In the context of spatially uncorrelated observation errors, the 43 
off-diagonal elements of ])ˆ)(ˆ[( TAOAO −−E would then give the analysis error covariance in observation 44 
space.  Hollingsworth and Lönnberg [6] argued that for most practical purposes, the negative intercept 45 
of ])ˆ)(ˆ[( TAOAO −−E  at zero distance and the prescribed observation weight should be nearly equal, 46 
and thus could be used as an assessment of optimality of an analysis.  However, in case where such 47 
agreement does not exist, an estimate of the actual analysis error is not possible.  Another method, 48 
proposed by Desroziers et al. [7], argued that the diagnostic ])ˆ)(ˆ[( TBAAO −−E  should be equal to the 49 
analysis error covariance in observation space but, again only if the gain is optimal and the innovation 50 
covariance consistency is respected [8]. 51 

Generally, a robust approach that does not require an optimal analysis is to use observations whose 52 
errors are uncorrelated with the analysis error.  With observations that have errors that are temporarily 53 
(serially) uncorrelated, an estimation of the analysis error can be made with the help of a forecast model 54 
initialized by the analysis by verifying the forecast against these observations.  This is the essential 55 
assumption used traditionally in meteorological data assimilation to assess indirectly the analysis error 56 
by comparing the resulting forecast with observations valid at the forecast time.  As forecast error 57 
grows with time, the observation-minus-forecast can be used to assess whether an analysis is better than 58 
another.  In a somewhat different method but making the same assumption, Daley [9] used the 59 
temporal (serial) correlation of the innovations to diagnose the optimality of the gain matrix.  This 60 
property was first established in the context of Kalman filter estimation theory by Kailath [10]. However, 61 
both the traditional meteorological forecast approach and the Daley method [9] are subject to 62 
limitations: they assume that the model forecast has no bias and the analysis corrections are made 63 
correctly on all the variables needed to initialize the model.  In practice, improper initialization of 64 
unobserved meteorological variables gives rise to spin-up problems or imbalances.  Furthermore with 65 
the traditional meteorological approach, compensation due to model error can occur, so that an optimal 66 
analysis does not necessarily yield an optimal forecast [11].   67 

An alternative approach introduced by Marseille et al. [12], which we will follow here, is to use 68 
passive observations to assess the analysis error.  The essential assumption of this method is that the 69 
observations have spatially uncorrelated errors, so that the observations used for verification, i.e. the 70 
passive observations, have uncorrelated errors with the analysis.  The advantage of this approach is 71 
that it doesn’t involve any model to propagate the analysis information to a later time.  Marseille et al. 72 
[12] then showed that by multiplying the Kalman gain with an appropriate scalar value, one can reduce 73 
the analysis error.  In this paper, we go further by using principles of error covariance estimation to 74 
obtain a near optimal Kalman gain.  In addition we impose the innovation covariance consistency [8] 75 
and show that all diagnostics of analysis error variance nearly agree with one another.  These include 76 
the Hollingsworth and Lönnberg [6], the Desroziers et al. [7] and new diagnostics that we will introduce. 77 

The paper is organized as follows.  First we present the theory and diagnostics of analysis error 78 
covariance in both passive and active observation spaces, as well as a geometrical representation.  In §3, 79 
we present the experimental setup on how we obtain near optimal analyses and presents the results of 80 
several diagnostics in active and passive observation spaces, and compare with the analysis error 81 
variance obtained from the optimum interpolation scheme itself.  In §4, we discuss the statistical 82 
assumptions being used, how and if they can be extended and how this formalism can be used in other 83 
applications such as the estimation of correlated observation errors with satellite observations.  Finally 84 
we draw some conclusions in §5. 85 

 86 
 87 
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is positive definite.  Except for the diagonal of eq.(13), we have not attempted in this study to conduct 158 
this complete estimation of BR, and A , but rather focused on getting a reliable estimate of the 159 
analysis error covariance A . 160 

2.3. Geometrical interpretation 161 

A geometrical illustration of some of the relationships obtained above can be made by using a 162 
Hilbert space representation of random variables of observation space.  A 2D representation for the 163 
analysis of a scalar quantity was used in Desroziers et al. [7] to illustrate their a posteriori diagnostics.  164 
We will generalize this approach to include passive observations by considering a 3D representation.   165 

As in Desroziers et al. [7] let’s consider the analysis of a scalar quantity.  Several variables are to be 166 
considered in this observation space: oy  the active observation (or measurement) of the scalar 167 
quantity, by  the background (or prior) value equivalent in observation space (i.e. bb xHy = ), ay  the 168 
analysis in observation space (i.e. aa xHy = ), and for verification cy  an independent observation (or 169 
passive observation) that is not used to compute the analysis.  Each of these quantities are random 170 
variables as they contain random errors, and any linear combination of random variables in observation 171 
space also belong to observation space.  For example, bo yy −  is the innovation (commonly denoted by 172 
O-B) and that belongs to observation space, ba yy −  is the analysis increment in observation space 173 
(commonly denoted by A-B), and ao yy −  is the analysis residual in observation space (commonly 174 
denoted by O-A).  We can also define an inner product of any random variables in observation space. 175 

21 , yy , as 176 

 [ ]))(())((:, 221121 yyyyyy EEE −−= . (14) 177 

The squared norm then represents the variance, 178 

 22 ,: yyyy σ== , (15) 179 

so the inner product has the following geometric interpretation 180 

 θcos, 2121 yyyy = , (16) 181 

where θcos  is the correlation coefficient.  Uncorrelated random variables are thus statistically 182 
orthogonal.  With this inner product, the observation space forms a Hilbert space of random variables. 183 
 Figure 1 illustrates the statistical relationship in observation space between: the active observation 184 
oy  (illustrated as O in the figure), the prior or background by  (i.e. B), the analysis ay  (i.e. A), and the 185 

independent observation cy  (i.e. cO ).  The origin T corresponds to the truth of the scalar quantity, 186 
and also corresponds to the zero of the central moment of each random variables, e.g. ][ yy E− , since 187 
each variables are assumed to be unbiased.  We also assume that the background, active and passive 188 
observations errors are uncorrelated to one another, so the three axes; oε  for the active observation 189 
error, bε  for the background error, and o

cε  for the passive observation error are orthogonal.  The 190 
plane defined by oε  and bε  axes is the space where the analysis takes place, and is called the analysis 191 
plane.  But since we define the analysis to be linear and unbiased, only linear combinations of the form 192 

boa ykyky )1( −+=  where k is a constant are allowed.  The analysis A then lies on the line (B,O).  The 193 
thick lines in Figure 1 represent the norm of the associated error.  For example, the thick line along the 194 
oε  axis depict the (active) observation standard deviation oσ , and similarly for the other axes and 195 

other random variables.  Since the active observation error is uncorrelated with the background error, 196 
the triangle OTBΔ  is a right triangle, and by Pythagoras theorem we have, 197 

222 )(,)(:)( bo
bo BOBOyy σσ +=−−=− .  This is the usual statement that the innovation variance is the 198 
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sum of background and observation error variances.  The analysis is optimum when the analysis error 199 
22|||| a

a σε =  is minimum, in which case the line )( AT, is perpendicular to line )( BO, .   200 
 201 

 202 
Figure 1. Hilbert space representation of a scalar analysis and cross-validation problem.  The 203 
arrows indicate the directions of variability of the random variables, and the plane defined by 204 
the background and observation errors bε , oε  defines the analysis plane.  The thick lines 205 
represent the norm associated with the different random variables.  T indicate the truth, O the 206 
active observation, B the background, A the analysis and Oc the passive observation.   207 
 208 
Now let’s consider the passive observation cO .  The passive observation error is perpendicular to 209 

the analysis plane, thus the triangle TAOcΔ  is a right triangle, 210 

 222 )(,)(:)( accc
ac AOAOyy σσ +=−−=− ,  (17) 211 

where 2
cσ  is the passive observation error variance.  The most important fact to stress here is that the 212 

orthogonality expressed in eq.(17) is true whether or not the analysis is optimal.  Furthermore, as the 213 
distance 2)( ac yy −  varies with the position of A  along the line )( BO, , the distance 2)( ac yy −  214 
reaches a minimum value when 2

aσ  is minimum that is when the analysis is optimal.  We thus also 215 
argue from this representation that there is always a minimum, and the minimum is unique.  Finally we 216 
note that cBTOΔ  is also a right triangle so that 222 )(,)(:)( bccc

bc BOBOyy σσ +=−−=− , which is the 217 
scalar version of eq.(9).   218 

To extend this formalism to random vectors requires to define a proper matricial inner product as 219 
briefly described in §1.2 of Caines [15].  It is important here to distinguish the stochastic metric space 220 
from the observation vector space.  In the stochastic metric space a “scalar” needs not to be a number, 221 
but only a non-random quantity invariant with respect to ][E .  Hence, we can define an Hilbert space 222 
with the following (stochastic scalar) matricial inner product 223 

),cov()])())(([(, wywwyywy =−−= TEEE .  The matrix nature of ),cov( wy  pertains to the 224 
observation vector space, but it remains a scalar with respect to the stochastic Hilbert space herein 225 
defined.  In order to obtain a true scalar ( R∈ ), one would need to define a metric on the observation 226 
space matrices as well, such as the trace.  Also to be able to compare active and passive observations, 227 
projectors need to be introduced on the observation space, implying yet another metric structure on the 228 
observation space.  We do not carry out this formalism here as it would represent a rather lengthy 229 
development which would distract us from the main purpose of this paper; this will be considered in a 230 
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future manuscript.  Finally, we remark that Hilbert space representation of random variables in infinite 231 
dimensional space (i.e. continuous space) can also be defined, see Appendix 1 of Cohn [16].   232 

2.4. Error covariance diagnostics in active observation space for optimal analysis 233 

An analysis is optimal if the analysis error ])[( aTa εεE  is minimum.  This implies that the gain 234 
matrix using the prescribed error covariances, K

~
 in eq.(1), must be identical to the gain using the true 235 

error covariances, i.e. 1)(~ −+= RHBHBHK TT  [7,8].  It is important to mention that necessary and 236 
sufficient conditions to obtain the true error covariances in observation space that is THBH  and R , 237 
are: 1 - the Kalman gain condition, trueHKKH =~

and 2- the innovation covariance consistency, 238 
RHBH
~~]))([( +=−− TTBOBOE .  For a proof see the Theorem on error covariance estimates in Ménard [8].  239 

From the optimality of the analysis (or Kalman gain) alone, we derive that 0=−− ]))(ˆ( TBOTA[E  240 
or 0=−− ])ˆ)(ˆ( TAOTA[E .  Indeed, from eq.(2), we get dRHBHR 1)()ˆ( −+=− AO , and for the analysis 241 
error in observation space we get, oTTfTTA εε 11 )()()ˆ( −− +++=− RHBHHBHHRHBHR , from which 242 
we derive the expectations above.  Using the geometrical representation in §2.3 the distance between A 243 
and T is minimum, when TAOΔ  and TABΔ  (Figure 1) are right triangles.  We should also note that for 244 
the scalar problem, the Kalman gain depends only on the ratio of observation to background error 245 
variances and thus the scalar Kalman gain is optimal if the ratio of the prescribed error variances is equal 246 
to the ratio of the true error variances. 247 

If in addition to the optimality of the analysis or Kalman gain we add the innovation covariance 248 
consistency then we get three different statistical diagnostics of the (optimal) analysis error covariance.  249 
Hollingsworth and Lönnberg [6] was the first to introduce a statistical diagnostic of analysis error in the 250 
active observation space, as 251 

 T
HL

TAOAO HAHR ˆ])ˆ)(ˆ[( −=−−E . (18) 252 

Here we use a subscript, HL to indicate that this is the Hollingsworth-Lönnberg estimate.  Eq.(18) can 253 
obtained from the covariance of )ˆ( AO−  and that, for an optimal gain matrix, 254 

RRHBHRRHAH 1)(ˆ −+−=T which derives from the usual formula, HBRHBHBHBA 1)(ˆ −+−= T .  255 
Geometrically it derives from the fact that the triange OAT ˆΔ  is a right triangle, and from the 256 
innovation covariance consistency that implies that the triangle OTBΔ is a right triangle.  Using data to 257 
construct ])ˆ)(ˆ[( TAOAO −−E , an estimated analysis error covariance obtained from eq.(19) is symmetric 258 
but could be non-positive definite as it is obtained by subtracting two positive definite matrices.  The 259 
effect of misspecification in the prescribed error covariances resulting from a lack of innovation 260 
covariance consistency will be discussed in the result section §3 and in Appendix B.  261 

Inspired from the geometrical interpretation that TABΔ  is also be a right triangle we derived the 262 
following diagnostic, 263 

 T
MDJ

T
MDJ

TTBABA HABHHAHHBH )ˆ(ˆ])ˆ)(ˆ[( −=−=−−E , (19) 264 

where MDJ stands for Ménard-Deshaies-Jacques.  This relationship is obtained by using the expression 265 
dRHBHHBH 1)()ˆ( −+=− TBA , the innovation covariance consistency and the formula for the optimal 266 

analysis error covariance HBRHBHBHBA 1)(ˆ −+−= T .  As for the HL diagnostics, the estimated error 267 
covariance obtained from this diagnostic is symmetric by construction but may not be positive definite. 268 
Another way of looking at eq.(19) is that it expresses, in observation space, the error reduction due to the 269 
use of observations. 270 

Another diagnostic of analysis error covariance was proposed by Desroziers et al. [7].  By 271 
combining )ˆ( AO −  and )ˆ( BA−  we get 272 
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 T
D

TBAAO HAH ˆ])ˆ)(ˆ[( =−−E , (20) 273 

where the subscript D denotes the Desroziers et al. estimate.  By construction, the estimated analysis 274 
error covariance is not necessarily symmetric.  A geometrical derivation is provided in Appendix A.  275 
We also provide in Appendix B a sensitivity analysis on the departure from innovation covariance 276 
consistency for each diagnostics, as well as for those in passive observation space which we we will for 277 
for our discussion. 278 

2.5. Error covariance diagnostics in passive observation space for optimal analysis 279 

We can also derive optimal analysis diagnostics in the passive observation space.  Considering the 280 
3D geometric interpretation, and in particular the tetrahedron )( BA,T,,Oc , we notice that since TABΔ  281 
is a right triangle, so is ABOcΔ , which is a projection of the triangle TABΔ  on the plane passing 282 
through Oc, O and B.  We thus have =−−+−− ])ˆ()ˆ[(])ˆ()ˆ[( T

cc
T
cc AOAOBABA EE ])()[( T

cc BOBO −−E .  283 
Combining this result with eq.(7) and using, c

T
cc

T
cc BOBO RBHH +=−− ])()[(E , we then get 284 

 T
cMDJc

T
cc

T
cc BABA HAHBHH ˆ])ˆ()ˆ[( −=−−E . (21) 285 

Note that our analysis diagnostic is the only diagnostic that is valid in both active and passive 286 
observation spaces, i.e. eq.(21) is similar to eq.(19).  The other, less direct, diagnostic for optimal 287 
analysis is simply based on eq.(7) that is  288 

 T
cccc

T
cc

L
LAOAO

c

HAHR ),(ˆ}])()[({minarg
,

γ
γ

+=−−E .  (22) 289 

These five diagnostics will be used later in the results section .   290 

3. Results with near optimal analyses 291 

3.1. Experimental setup 292 

We will just give here a short summary of the experimental setup we are using in this study.  More 293 
details can be found in the Part I paper (Ménard and Deshaies-Jacques [5]).  A series of hourly analyses 294 
of O3 and PM2.5 at 21 UTC for a period of 60 days (June 14 to August 12, 2014) were performed using an 295 
optimum interpolation scheme combining the operational air quality model GEM-MACH forecast and 296 
the real-time AirNow observations (see §2 of [5] for further details).  The analyses are made off-line so 297 
they are not used to initialize the model. As input error covariances, we use uniform observation and 298 
background error variances, with IR 2~

oσ=  and CB 2~
bσ= , where C  is an homogeneous isotropic error 299 

correlation based on a second-order autoregressive model.  The correlation length is estimated by using 300 
a maximum likelihood method using at first error variances obtained from a local 301 
Hollingworth-Lönnberg fit [7] (and only for the purpose of obtaining a first estimate of the correlation 302 
length).  We then conduct a series of analyses by changing error variance ratio 22 / bo σσγ =  while at the 303 
same time respecting the innovation variance consistency condition, )var(22 BObo −=+σσ .  This 304 
corresponds basically in minimizing the tr (trace) of eq.(7) while the trace of the innovation covariance 305 
consistency, }]))(([{][ TT BOBOtrtr −−=+ EHBHR , is respected.   306 

By leaving out 1/3rd of the observations for verification and constructing analyses with the 307 
remaining 2/3rd, we construct a cross-validation setup from which we can evaluate the diagnostic 308 

})()[({)var( T
ccc AOAOtrAO −−=− E  in passive observation space.  This constitutes our first guess 309 

experiment that we will refer to as iter 0.  No observation or model bias was applied, and the 310 
innovation mean at the station were removed prior to perform the analysis.  The statistic are first 311 
computed at the station using the 60-day members, and then was averaged over the domain so to give 312 
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the equivalent of a tr (trace).  The mean value statistic for the three subsets are then averaged.  More 313 
details can be found in §2 and beginning of §3 of Part I [5]. 314 

The red curve on Figure 2 illustrates how this diagnostic varies with γ  and exhibits a minimum.  315 
This minimum can easily be understood by referring to Figure 1: as the analysis point A  changes 316 
position along the line ),( BO  the distance AOc −  reaches a minimum, and this is what we observe in 317 
Figure 2.  318 
 319 
 320 
 321 
 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
 330 
 331 
 332 

Figure 2.  Variance of observation-minus-analysis of O3 in passive observation space. Red line, 333 
and the variance of observation-minus-model, blue line. 334 
 335 
In our next step, iter 1, we address the issue related to the spatial correlation that has not being 336 

optimized.  Our approach consist in using a variance estimator sequentially with a maximum 337 
likelihood estimation of correlation length as was done in Ménard [8].  So, to refine our estimate of 338 
model covariance in iter 1, we use the variances verifying the optimal ratio γ̂  of iter 0 and the 339 
innovation variance consistency to re-estimate by, maximum likelihood, the correlation length of C

~
.  340 

Then, in a procedure identical to iter 0 we estimate the optimal γ̂  (iter 1) , which turn out to be very 341 
close to the value obtained in iter 0.  By innovation variance consistency we thus get improved 342 
estimates for the observation and background error variances, from which we will compute a number of 343 
statistical diagnostics of the analysis error variance in the section that follows.  However, as before, we 344 
do not attempt to provide a spatial distribution of the error statistics that are still assumed uniform.  A 345 
summary of the main features of the two experiments are presented in Table 1.  The sN/

2χ  value 346 
shown in Table 1 is the 60-day mean value of )(/2 kNskχ  where )(kNs  is the total number of 347 
observations available at time kt .  We observe that there was a significant improvement from iter 0 to 348 
iter 1 in terms of sN/

2χ  but is still not equal to one.  We thus refer the analysis of iter 1 as near 349 
optimal.   350 

 351 
Table1. Input error statistics for the first experiment and optimized variance ratio experiment 352 

Experiment cL (km) 2)( BO −  22 ˆ/ˆˆ bo σσγ =
 

2ˆoσ  2ˆbσ  sN/
2χ  

O3    iter 0 124 101.25 0.22 18.3 83 2.23 

O3    iter 1 45 101.25 0.25 20.2 81 1.36 
PM2.5  iter 0 196 93.93 0.17 13.6 80.3 2.04 
PM2.5  iter 1 86 93.93 0.22 16.9 77 1.25 
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 353 
This procedure converges really fast and in practice there is no need to go beyond iter 1.  Figure 3 354 

displays iterates 0 to 4 with our estimation procedure for O3.  With one iteration update we nearly 355 
converge.  A similar procedure was used in Ménard [8], where the variance and correlation length 356 
(estimated by maximum likelihood) were estimated in sequence, which taught us that a slow and 357 
fictitious drift in estimated variances and correlation length can occur when the correlation model is not 358 
the true  359 

  360 
Figure 3.  Optimal estimates of 2

oσ , 2
bσ  and maximum likelihood estimate of correlation 361 

length cL  for the first four iterates.  Blue, is the optimal background error variance, green, the 362 
optimal observation error variance and in red the correlation length (in km, with labels on the 363 
right side of the figure). 364 
 365 

correlation. So in regard of similar considerations that may occur here, we do not extend our iteration 366 
procedure beyond the first iterate. 367 

3.2. Statistical diagnostics of analysis error variance 368 
For each of these experiments statistics related diagnostics for analysis error variance, discussed in 369 

§2, are computed and the results are presented in Table 2 for the verification made against active 370 
observations, and in Table 3 to the verification made against the passive observations. 371 
 372 

Table2. Analysis statistics against active observations 373 

Experiment Active 
)ˆvar( BA−  

Active 

s
T

MDJ Ntr /)ˆ( HAH

Active 

s
T

D Ntr /)ˆ( HAH  

Active 
)ˆvar( AO−  

Active 

s
T

HL Ntr /)ˆ( HAH  
O3    iter 0 60.29 22.69 9.61 24.33 -6.03 
O3    iter 1 67.66 13.32 13.68 11.26 8.94 
PM2.5  iter 0 62.29 17.98 7.71 16.78 -3.18 
PM2.5  iter 1 66.3 10.68 9.51 9.57 7.33 

 374 
The second, third and last column of Table 2 are tabulated estimates of the analysis error variance at 375 

the active location sites, i.e. s
T Ntr /)(HAH , obtained by three different methods.  The second column is 376 

an estimate given with our method s
T

MDJb NtrBA /)ˆ()ˆvar(2 HAH=−−σ   . The third column is the 377 
Desroziers et al. estimate of analysis error [7], eq.(20), and the last column is the estimate using the 378 
method proposed by Hollingsworth and Lönnberg [6], eq.(18).  We note that the analysis error variance 379 
estimate provided by the first two methods is fairly consistent for an updated correlation length 380 

Preprints  (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 November 2017                    doi:10.20944/preprints201711.0047.v1

Peer-reviewed version available at Atmosphere 2018, 9, 70; doi:10.3390/atmos9020070



 11 of 21 

 

estimate, i.e. iter1 (but not iter0).  We also note that p/2χ  is closer to one for iter1.  These two facts 381 
indicate that the updated correlation length (iter1) with uniform error variances is closer to the 382 
innovation covariance consistency.  The Hollingsworth and Lönnberg [6] method however, is very 383 
sensitive and negatively biased in the lack of innovation covariance consistency.   384 

Estimate of the analysis error variance at the passive observation locations, i.e. s
T
cc Ntr /)( AHH  , 385 

provided by two different methods are given by eq.(21) in column 3 and by eq.(22) in column 5 of table 386 
3.  As for the estimate at the active locations (Table 2), there is a general agreement on the analysis error 387 
estimates with the updated correlation length (iter1), although this distinction is not that clear for PM2.5.   388 

 389 
Table3. Analysis statistics against passive observations 390 

Experiment Passive 
])ˆvar[( cBA−  

Passive 

s
T
cMDJc Ntr /)ˆ( HAH

Passive 
])ˆvar[( cAO−  

Passive 
2])ˆvar[( occAO σ−−  

O3    iter 0 56.95 26.03 51.02 32.72 
O3    iter 1 52.04 28.95 48.95 28.75 
PM2.5  iter 0 62.29 22.65 38.09 24.49 
PM2.5  iter 1 66.3 24.62 38.28 21.38 

 391 
We note also that the analysis error variance at the active sites is smaller than the analysis error 392 

variance at the passive observation sites.  This involves in particular the fact that since the passive 393 
observation are away from the active observation sites, the reduction of variance at the passive 394 
observation sites is smaller than at the active observation sites.   395 

3.3. Comparison with the perceived analysis error variance 396 
We computed the analysis error covariance A  resulting from the analysis scheme, the so-called 397 

perceived analysis covariance [9], using the expression, 398 

 TT GGBBHRHBHHBBA −=+−= − ~~)~~(~~ 1 .  (23) 399 

We then compared the perceived analysis error variance with the estimated active analysis error 400 
variance from the previous subsection. 401 

 402 
Figure 4. Analysis error variance for ozone optimal analysis case O3 iter1.  Left panel is the 403 
analysis error on the model grid and on the right panel at the active observation sites.  Note 404 
that the color bar of the left and right panels are different.  The maximum of the color bar for 405 
the left panel correspond to 22

bo σσ + . 406 
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 407 
In order to calculate the perceived analysis error covariance eq.(23) we first perform a Choleski 408 

decomposition of TT LLRHBH =+ ~~
, where L  is a lower triangular matrix.  Then with a forward 409 

substitution we obtain 1−L , from which we compute TT −= LHBG
~ .  The perceived analysis error 410 

variance for the ozone optimal analysis (i.e. O3 iter1) is displayed in Figure 4 (A similar figure but for 411 
PM2.5 is given in supplementary material). We note that although the input statistics used for the 412 
analysis are uniform (i.e. uniform background and observation error variances, and homogeneous 413 
correlation model), the computed analysis error variance at the active observation location displays 414 
large variations, which is attributed to the non-uniform spatial distribution of the active observations.   415 
In Figure 5 we display a histogram of those variances for the ozone optimal analysis O3 iter1 (right 416 
panel) and for the first experiment O3 iter0 (left panel) without optimization (A similar figure is but for 417 
PM2.5 is given in supplementary material).  Note that median or mean values of variances are 418 
significantly different between the optimal and non-optimal analysis cases.  We also observe two 419 
maxima, one of which is actually due to isolated observation sites.  At those sites the analysis error 420 
variance is simply obtained by the scalar equation 222 /1/1/1 boa σσσ += .  For O3 iter1 the scalar 421 
analysis error variance gives 16.2, and for O3 iter0 we get 15.0, thus explaining the secondary maxima. 422 
  423 

 424 
Figure 5. Distribution (histogram) of the ozone analysis error variance at the active 425 
observation locations.  First analysis experiment O3 iter0 (no optimization) on the left panel, 426 
and optimal analysis case O3 iter1 on the right panel.  427 

 428 

The mean perceived analysis error variance for all experiments is presented in Table 4.  429 
Comparing these values with the estimated values of analysis error variance based on diagnostics in 430 
Table 2 we note that for both optimal experiments, O3 iter1 and PM2.5 iter1, the perceived analysis error 431 
variance roughly agrees with all analysis error variances estimated with diagnostics (Table 2).  But for 432 
the non-optimal analyses, O3 iter0 and PM2.5 iter0, there is a general disagreement between all 433 
estimated values.   434 
 435 

Table 4.  Perceived analysis error variance.  Mean over active observation sites. 436 

Experiment Perceived 

s
T

P Ntr /)( HHA

O3    iter 0 5.77 
O3    iter 1 11.60 
PM2.5  iter 0 4.37 
PM2.5  iter 1 8.21 
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Looking more closely, however, we note that the agreement in the optimal case is not perfect.  The 437 
perceived analysis error variance is about 20% lower than the best estimates s

T
MDJ Ntr /)ˆ( HAH  and 438 

s
T

D Ntr /)ˆ( HAH .  The optimal sN/
2χ  values in the “optimal” cases are slightly above one, thus 439 

indicating that some more tuning of the error statistics could be done to between reach an innovation 440 
consistency.  More on that matter will be presented in §4.5.  441 

4. Discussion on the statistical assumptions and practical applications 442 

4.1 Representativeness error with in situ observations 443 

The statistical diagnostics presented in §2 derive from the assumption that the observation errors 444 
are horizontally uncorrelated and uncorrelated with the background error.  Although this assumption 445 
is never entirely observed in reality, there are ways to work around it.  In the case of in situ 446 
observations, and assuming that any systematic error have been removed, random errors are still 447 
present, due to the difference between the observation and the model’s equivalent of the observation – 448 
called representativeness error (see Janjic et al. [18] for a review).  Representativeness error is due to 449 
unresolved scales and processes in the model and interpolation or forward observation model errors.  450 
These errors are typically roughly at the scale of the model grid [19,20], so typically a few tens of 451 
kilometers for air quality models.  This should not be confused with the representativeness of an 452 
observation, where, for example, remote stations are representative of large area (e.g. several hundreds 453 
of kilometers), whereas urban and suburban stations are at the scale of human activity in the cities, 454 
traffic and industries, etc. and are, depending on the chemical specie, of a few kilometers and less.   455 

Representativeness error of in situ measurements can be discarded altogether by simply filtering 456 
any pair of observations that are in the range of a few model grid size, both in assimilation and 457 
estimation of error statistics [1] or in pairs of passive-active observations for cross-validation [12]. Once 458 
this filtering is done, the assumption on observation errors being spatially uncorrelated and 459 
uncorrelated with the background error then applies. 460 

4.2 Correlated observation-background errors 461 

 In any case, it is interesting to show how the different diagnostics, introduced in §2, depends on the 462 
statistical assumptions of the observation error.  One way to get an understanding of the effect of these 463 
assumptions is to look at it from a geometrical point of view, using the representation introduced in §2.2.  464 
Note that the same results can be obtained analytically, but the geometrical interpretation gives a simple 465 
and appealing way of looking at the problem. 466 

Let us consider the effect on the analysis of observation error correlated with background error.  467 
The case were the observation error is uncorrelated with background error is represented in Figure 6 on 468 
the left panel and when we they are correlated on the right panel.  The observation and background 469 
error variances are kept unchanged, with the same ),( TO  length and ),( TB  length in both panels.  In 470 
the case of correlated errors the angle BTO∠  is no longer a right angle.  Yet, it is still possible to obtain 471 
an optimal analysis, Â , as a linear 472 

 473 
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  474 
Figure 6. Geometrical representation of the analysis. Left panel, for observation errors 475 
uncorrelated with the background error.  Right panel, with correlated errors.  T indicate the 476 
truth, O the observation, B the background and Â  the optimal analysis. 477 

 478 
combination of the observation and the background, on the line ),( BO , for which the distance Â to T 479 
(i.e. the analysis error variance) is minimum.  In this case, ),() ,ˆ( BOTA ⊥ .  Note that for strongly 480 
correlated errors and when 22

ob σσ > , although Â  is still on the line ),( BO , it may actually lie outside 481 
the segment ]BO,[ .  Yet, the principles and theory still hold in that case.   482 

When the observation error is uncorrelated with the background error, ),() ,( TBTO ⊥ , the 483 
triangles AOT ˆΔ  and ATB ˆΔ  are similar and it follows that 2)ˆ()ˆ)(ˆ( TABAAO −=−− , which is the 484 
Desroziers et al. [7] diagnostic for analysis error variance.  But, when the observation error is correlated 485 
with the background error (right panel of Figure 6), the triangles AOT ˆΔ  and ATB ˆΔ  are no longer 486 
similar triangles and the Desroziers et al. [7] diagnostics for analysis error does not hold (see derivation 487 
in Appendix A).  However, the HL, eq.(18), and MDJ diagnostic, eq.(19), depend only on having right 488 
triangles AOT ˆΔ  and ATB ˆΔ , and not on the orthogonality of ),( TB with ),( TO .  Therefore, the HL 489 
and MDJ diagnostics are valid with or without correlated observation-background errors.   490 

4.3 Estimation of satellite observation errors with in situ observation cross-validation 491 

 One of the important problems in satellite assimilation is the estimation of the satellite observation 492 
error, which could be addressed with a simple modification of our cross-validation procedure.  Let us 493 
assume that we have in situ observations that we assume to have uncorrelated errors between 494 
themselves (or use a filter with a minimum distance as discussed in §4.1), with the background errors 495 
and the satellite observation errors.  Yet, the satellite observation errors could be correlated with the 496 
background error.  Satellite observations could come from a multi-channel instrument with 497 
channel-correlated observation errors, as found with many instruments, and yet our validation 498 
procedure can still be used.  Let us consider that the analyses comprise of satellite and in situ 499 
observations but, for the purpose of cross-validation, we use only 2/3rd of the in situ observations in the 500 
analysis, and keep the remaining 1/3rd as passive to carry out the cross-validation procedure.  501 

The first thing to note is that the passive in situ observations have uncorrelated errors with the 502 
analysis error (the analysis is composed of satellite observations and 2/3rd of the in situ observations).  503 
We then use eq.(7) where the interpolation of the analysis is made only at the in situ active observations.  504 
Minimizing )]()[( AOAO T

c −−E  (i.e. the trace of the l.h.s.of eq.(7)) results in finding the optimal in situ 505 
observation weight.  Then, computing the analysis error covariance in the satellite observation space 506 
from the analysis scheme (either from a Hessian of a variational cost function, or with an explicit gain as 507 
in eq.(23)), i.e. T

satsat HAH ˆ  , we use the HL formulation eq.(18) to obtain the satellite observation error 508 
covariance,  509 

 sat
T
satsat

T
satsat AOAO RHAH =−−+ ])()[(ˆ e . (24) 510 
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The equation (24) has the important properties that the estimated observation error covariance is 511 
symmetric and positive definite by construction.  Then, a new analysis could be carried out to obtain a 512 
more realistic T

satsat HAH ˆ , with a resulting updated satR , and so forth until convergence. 513 

4.4 Remark on cross-validation of satellite retrievals 514 

As a last remark, it appears that cross-validation of satellite retrieval observations using a k-fold 515 
approach where the observations are used as passive observations to validate the analysis can be a 516 
difficult problem.  Retrievals from passive remote sensing at nadir generally involve a prior or 517 
climatology or a model assumption over different regions, and is thus likely to have spatially correlated 518 
errors and errors correlated with the background error.  It doesn’t mean, however, that nothing can be 519 
done in that case.  For example, for certain sensors, such as infrared sensors, it is possible to disentangle 520 
the prior from the retrieval, so that by an appropriate transformation of the measurements, observations 521 
can be practically decorrelated from the background [21,22].  However to the authors’ knowledge, such 522 
an approach have never been undertaken for visible measurements such as for NO2 or AOD’s. 523 

4.5 Lack of innovation covariance consistency and its relevance to the statistical diagnostics 524 

The error covariance diagnostics for optimal analysis, presented in §2.4 and §2.5, depends on the 525 
innovation covariance consistency, RHBH

~~]))([( +=−− TTBOBOE , and our results presented in §4 526 
have shown that the different estimates for the optimal analysis error variance are close, but do not 527 
strictly agreeing to each other.  This disagrement is related to the lack of innovation consistency as 528 
follows.  529 

Let us introduce a departure matrix Δ  from innovation covariance consistency as, 530 

 Δ+=+ − IRHBHdd 1)~~(][ TTE . (25) 531 

The trace of eq.(25), which is related to 2χ , is given by 532 

 Δ)(})~~(][{][ 12 trNtr s
TT +=+= −RHBHddEE χ . (26) 533 

We recall that in the experiment iter 1 we got sN/2χ  values of 1.36 for O3 and 1.25 for PM2.5 (see Table 534 
1), indicating that the innovation covariance consistency is deficient, although less serious than with the 535 
experiment iter 0 where values of 2 and higher have been obtained. 536 
 If we take into account the fact that there can be a difference between ][ TddE  and )~~( RHBH +T  537 
and we rederive the (active) analysis error covariance for HL, MDJ and D schemes, we get (see Appendix 538 
B) 539 
 }{}~{}~{}ˆ{}ˆ{ MDJ

TtrueT
HL trtrtrtrtr errorHBHRHAHHAH T +−+= ΔΔ  (27) 540 

 }{}ˆ{}ˆ{ MDJ
TtrueT

MDJ trtrtr errorHAHHAH −=  (28) 541 

 }{}ˆ{}ˆ{ D
TtrueT

D trtrtr errorHAHHAH −= , (29) 542 

where })~()~~)(~({}{ 1 TTT
MDJ trtr HBHRHBHHBHerror Δ−+= , })~()~~(~{}{ 1 TT

D trtr HBHRHBHRerror Δ−+= .  543 
We note that although the error terms are complex expressions, they all depend linearly on Δ .  Thus,  544 
the disagreement between the HL, MDJ and D analysis error variance estimates is due to lack of 545 
innovation covariance consistency. 546 

 547 

 548 

 549 
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5. Conclusions 550 

We show that analysis error variance can be estimated and optimized, without using a model 551 
forecast, by partitioning the original observation data set into a training set, to create the analysis, and an 552 
independent (or passive) set, used to evaluate the analysis.  This kind of evaluation by partitioning is 553 
called cross-validation.  The method derives from assuming that the observations have spatially 554 
uncorrelated errors or, minimally, that the independent (or passive) observations have uncorrelated 555 
errors with the active observation, and are uncorrelated the background error.  This leads to the 556 
important property that passive observations are uncorrelated with the analysis error and can then be 557 
used to evaluate the analysis [12].   558 

We have developed a theoretical framework and a geometric interpretation that has allowed us to 559 
derive a number of statistical estimation formulas of analysis error covariance that can be used in both 560 
passive and active observation spaces.  It is shown that by minimizing the variance of 561 
observation-minus-analysis residuals in passive observation space we actually identify the optimal 562 
analysis.  This has been done with respect to a single parameter, namely the ratio of observation to 563 
background error variances, to obtain a near optimal Kalman gain.  The optimization is also done 564 
under the constraint of the innovation covariance consistency [7,8].  This optimization could have been 565 
done with more than one error covariance parameter but this has not been attempted here.  The theory 566 
does suggest, however, that the minimum is unique.  567 

Once an optimal analysis is identified we conduct an evaluation of the analysis error covariance 568 
using several different formulas; Desroziers et al. [7], Hollingsworth Lönnberg [6], and one that we 569 
develop in this paper which works in either active or passive observation spaces.  As a way to validate 570 
the analysis error variance computed by the analysis scheme itself, the so-called perceived analysis error 571 
variance [9], we compare it with the values obtained from the different statistical diagnostics of analysis 572 
error variance.   573 

We applied this methodology to surface air quality analyses using our operational air quality 574 
model GEM-MACH and real-time surface observations of O3 and PM2.5.  Our method applied the 575 
theory in a simplified way.  First by considering the averaged observation and background error 576 
variances and finding an optimal ratio 22 / bo σσγ =  using as a constraint the trace of the innovation 577 
covariance consistency [8].  Second, using a single parameter correlation model, its correlation length, 578 
we used the maximum likelihood estimation [17] to obtain near optimal analyses.  Also we did not 579 
attempt to account for representativeness error in the observations by, for example, filtering 580 
observations that are close.  Despite all these limitations, our results show that with near optimal 581 
analyses, all estimates of analysis error variance roughly agree with each other, while disagreeing 582 
strongly when the input error statistics are not optimal.  This first check on estimating the analysis error 583 
variance gives us confidence that the method we propose is reliable and that by being more specific in 584 
the spatial distribution of error variances, background error correlation and possible thinning to remove 585 
effects of representativeness errors, we could get an even better agreement between all the diagnostic 586 
measure of analysis error variances. 587 

The methodology introduced here for estimating analysis error variances is general and not 588 
restricted to the case of surface pollutant analysis.  It would be desirable to investigate other areas of 589 
applications, such as surface analysis in meteorology and oceanography.  The method could, in 590 
principle, provide guidance for any assimilation system.  By considering the observation space 591 
subdomain [23], proper scaling, local averaging [24] , or other methods discussed in Janjic et al. [18] it 592 
may also be possible to extend this methodology to spatially varying error statistics.  Based on our 593 
verification results in Part I [5], we found that there is a dependence between model values and error 594 
variances, which we will investigate further in view of our next operational implementation of the 595 
Canadian surface air quality analysis and assimilation. 596 
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One strong limitation of the optimum interpolation scheme we are using (i.e. homogeneous 597 
isotropic error correlation and uniform error variances), which is also the case for most 3D-Var 598 
implementations, is the lack of innovation covariance consistency.  Ensemble Kalman filters seems, 599 
however, much better in that regard although they have their own issues with localization and inflation. 600 
Experiments with chemical data assimilation using an ensemble Kalman filter does gives sN/

2χ  601 
values very close to unity after simple adjustments for observation and model error variances [25].  We 602 
thus argue that ensemble methods, such as the ensemble Kalman filter, would produce analysis error 603 
variance estimates that are much more consistent between the different diagnostics.  604 

Estimates of analysis uncertainties can also be obtained by resampling techniques, such as the 605 
jackknife method and boostrapping [26].  In bootstrapping with replacement, the distribution of the 606 
analysis error is obtained by creating new analyses by replacing and duplicating observations from an 607 
existing set of observations [26].  This technique relies on the assumption that each member of the 608 
dataset is independent and identically distributed.  For surface ozone analyses where there is 609 
persistence to next day and the statistics is spatially inhomogeneous, the assumption of statistical 610 
independence may not be adequate.  The comparison of these resampling estimates of analysis 611 
uncertainties could be compared with our analysis error variance estimates to help us identify 612 
limitations and areas of improvement. 613 

Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S6: Analysis error 614 
variance for ozone optimal analysis case PM2.5 iter1.  Left panel is the analysis error on the model grid and on the 615 
right panel at the active observation sites.  Note that the color bar of the left and right panels are different.  The 616 
maximum of the color bar for the left panel correspond to 22

bo σσ + , Figure S7: Distribution (histogram) of the 617 
ozone analysis error variance at the active observation locations.  First analysis experiment PM2.5 iter0 (no 618 
optimization) on the left panel, and optimal analysis case PM2.5 iter1 on the right panel. 619 
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Appendix A – A geometrical derivation of the Desroziers et al. diagnostic 632 

Let u  and v  be two random variables of a real Hilbert space as defined in §2.3.  Two properties 633 
of Hilbert spaces are : the polarization identity 634 

 { }22

4
1, vuvuvu −−+=  (A.1) 635 

and the parallelogram identity [15] 636 

 ( )2222 2 vuvuvu +=−++ . (A.2) 637 

Combining these two equations, we get: 638 
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 Δ+Δ−
+

Δ= 22
2

1 ob
b

HLerror σσ
γ

σ . (B.4) 667 

The error analysis for the MDJ diagnostic, eq. (19) is 668 

 
,~)~~(~

~][~)]ˆ)(ˆ[(
1

MDJ
TTT

TTBABA

errorHBHRHBHHBH

HKddKH

++=

=−−
−

EE
 (B.5) 669 

where the MDerror  is given as 670 

 )~()~~(~ 1 TTT
MDJ HBHRHBHHBHerror Δ−+= . (B.6) 671 

There is only one term, and its scalar version is given as, 672 

 
γ

σ
+

Δ=
1

2
b

MDJerror . (B.7) 673 

The error analysis for the Desroziers et al. diagnostic, eq.(20) is 674 

 
,~)~~(~~

~)~~(][)~~(~~)~~(][)]ˆ)(ˆ[(
1

11

D
TTTT

TTTTTTTTBAAO

errorHBHRHBHHBHHBH

HBHRHBHddRHBHHBHHBHRHBHdd

++−=

++−+=−−
−

−− EEE
(B.8) 675 

where the Derror  is given as 676 

 )~()~~(~)~()~~(~{ 11 TTTTT
D HBHRHBHRHBHRHBHHBHIerror ΔΔ} −− +=+−= . (B.9) 677 

Again only one error term that is similar to the MDJ diagnostic, and its scalar version is given as, 678 

 
γ

σ
+

Δ=
1

2
o

Derror  . (B.10) 679 

Error analysis for the diagnostics using passive observations can also be derived.  For the passive MDJ 680 
diagnostics, eq.(21), we have similarly to (B.5), 681 

 
passiveMDJ

T
c

TT
c

T
c

T
ccc BABA

_
1 ~)~~(~

~][~])ˆ()ˆ[(

errorHBHRHBHHBH

HKddKH

++=

=−−
−

EE
 (B.11) 682 

with a single error term given as,  683 

 )~()~~(~ 1
_

T
c

TT
cpassiveMDJ HBHRHBHHBHerror Δ−+= . (B.12) 684 

To express a scalar version of this equation we need to account for the background error correlation ρ  685 
between the active observation location and the passive observation location, and thus expressed as, 686 

 
γ

σρ
+

Δ=
1

22

_
b

passiveMDJerror . (B.13) 687 

Finally, the fundamental diagnostic of cross-validation eq.(7) does not depend explicitly on the 688 
innovation covariance consistency.  However, attaining its true minimum by tunning only γ  and cL689 
as would suggest eq.(22), does introduce some innovation in-consistency, which all other optimal 690 
diagnostics eq.(18-21) has to account for. 691 
 692 
 693 
 694 
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