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Abstract: Ionizing radiation-induced bystander effects (RIBE) encompass a number of effects with 
potential for a plethora of damages in adjacent non-irradiated tissue. The cascade of molecular 
events is initiated in response to the exposure to ionizing radiation (IR), something that may occur 
during diagnostic or therapeutic medical applications. In order to better investigate these complex 
response mechanisms, we employed a unified framework integrating statistical microarray 
analysis, signal normalization and translational bioinformatics functional analysis techniques. This 
approach was applied to several microarray datasets from Gene Expression Omnibus (GEO) 
related to RIBE. The analysis produced lists of differentially expressed genes, contrasting 
bystander and irradiated samples versus sham-irradiated controls. Furthermore, comparative 
molecular analysis through BioInfoMiner, which integrates advanced statistical enrichment and 
prioritization methodologies, revealed discrete biological processes, at the cellular level. For 
example, negative regulation of growth, cellular response to Zn2+- Cd2+, Wnt and NIK/NF-
kappaB signalling, which refine the description of the phenotypic landscape of RIBE. Our results 
provide a more solid understanding of RIBE cell-specific response patterns, especially in the case 
of high-LET radiations like α-particles and carbon-ions.  

Keywords: Bioinformatics; Ionizing radiation; Microarrays; Radiation-induced bystander effects; 
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1. Introduction 

Over the past years, novel approaches in radiation biology and therapy have emphasized the 
importance of the study of systemic phenomena that represent non-targeted [1] radiation-induced 
bystander effects (RIBE) [2].        

In detail, ionizing radiation (IR) damages the cellular genome directly or indirectly through the 
generation of reactive oxygen and nitrogen species (ROS/RNS) [3,4]. Undoubtedly, it has been 
demonstrated in various in-vitro and in-vivo studies that targeted irradiation of cytoplasm with 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 November 2017                   doi:10.20944/preprints201711.0041.v1

©  2017 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Cancers 2017, 9, 160; doi:10.3390/cancers9120160

http://dx.doi.org/10.20944/preprints201711.0041.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/cancers9120160


                 2 of 23 

alpha particles IR induces mutations in the genome of the irradiated cells [5]. In this phenomenon, 
non-irradiated cells, adjacent to the irradiated cells namely bystander cells, manifest stress 
responses as a result of signals derived from adjacent directly irradiated cells [6]. In addition, it has 
been illustrated that RIBE are linked to distinct molecular mechanisms, such as cell growth [7], 
micronuclei formation [8], cell cycle delay [7,9] and repair [5] along with transformation of non-
irradiated cells [10], inflammation and DNA damage [5]. Recently, various “omics”-technologies 
(microarrays, NGS) have generated numerous transcriptomic datasets for the interrogation of the 
systemic character of the above phenomena. 

Exploiting this fact, we analyzed various publicly available microarray datasets in order to 
reveal the crucial molecular pathways, consistently involved in RIBE biology responsible for its 
different phenotypic features. We screened for common and different biological processes 
characterizing directly irradiated and bystander cells for low and high-LET radiations, like α-
particles and carbons. Moreover, we demonstrated that the modularity of RIBE systemic response 
elicits differentiated biological responses according to the particular type of radiation, while 
operating through conserved biological circuits, exerting their effect through common differentially 
expressed genes, such as IL1A, IL1B, NFKBIZ, SAT1, and TNFAIP3 in the majority of the datasets. 

2. Results 

2.1. Statistical inference and differential expression 

In order to decipher any differential expression patterns induced by RIBE, we applied a 
generic, proprietary computational workflow, to each dataset separately (see Materials and 
Methods). The main statistical comparisons of interest concerned bystander vs control and 
irradiated vs control samples. Firstly, the differential expression results of all datasets are illustrated 
in Table 1. 

Table 1. Numbers of differentially expressed genes (DE) resulted from statistical testing using False 
Discovery Rate (FDR) < 0.05 and |log2 Fold Change| > 0.5. Numbers in parenthesis define the time 

that had passed after the irradiation for the isolation of the RNA from cells. 

Dataset GSE12435 GSE18760 GSE21059 GSE55869 GSE32091 GSE25772 GSE8993

DE 
Bystander 
vs Control 

53(4h) 424(0.5h) 

1254 
(ANOVA-

time-
series) 

0 0 0 
1003(2h)
796(6h) 

DE 
Irradiated 
vs Control 

76(4h) 481(0.5h) 

2399
(ANOVA-

time-
series) 

47(4h) 
3(4h) 
0(8h) 
0(26h) 

271(4h) 
223(8h) 

1977(26h) 

1502(2h) 
1897(6h) 

DE 
Common 39 339 1169 - - - 

264(2h)
324(6h) 

 

Briefly, in four out of seven datasets, differentially expressed (DE) genes were identified from 
the comparison of Bystander vs Control samples, whereas the Irradiated vs Control comparison 
resulted in plenty of DE genes for all datasets. However, the analysis of three specific datasets 
(GSE55869, GSE32091, GSE25772), in which cancer and immortalized cell lines were used, didn’t 
result in any DE genes regarding the comparison bystander vs control samples. Moreover, the 
highest expression alteration results, regarding the aforementioned comparison, were identified in 
the dataset with carbon-ion irradiation. In addition, the GSE12435, GSE18760 and GSE21059 
datasets share significant similarities with respect to their experimental protocol despite the fact 
that the same cell type, type of particles, dose of radiation and experimental procedure were 
followed in those three datasets. An important difference regarding all datasets has to do with the 
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various time points that have been used for the RNA extraction after irradiation. Thus, we 
compared the resulting DE gene lists of the comparisons bystander vs control samples, in order to 
investigate whether there are common genes with the same differential expression direction at 
identical time points. Firstly, we compared the DE gene lists as depicted in the Venn diagram of 
Figure 1, which resulted in 26 common DE genes shared by all three datasets, regarding the 
comparison bystander vs control samples.  

 
Figure 1. Venn diagram of DE genes lists regarding the GSE12435, GSE18760 and GSE21059 datasets 
for the comparisons Bystander vs control samples. The comparison resulted in 26 common DE 
genes. 

Furthermore, comparing the expression values across the same time points of the 
aforementioned datasets, we found that the majority of DE genes had similar values. The common 
DE genes are represented in Table 2. 

Table 2. The expression alterations of the 26 common DE genes.  Values represent expression fold 
changes of bystander vs. control cells, on Log2 scale. Values with bold and bold/italics illustrate 

similarity between same time points of different datasets. 

Common DE 
Genes Fold Change in Expression 

Datasets GSE18760 GSE12435 GSE21059
Time Points 0.5h 4h 0.5h 1h 2h 4h 6h 24h

MT1B 2.421 1.905 2.456 0.898 1.122 1.927 1.244 1.185
MT1E 2.574 2.165 2.620 0.964 1.143 2.178 1.209 1.114 
MT1H 2.380 2.001 2.424 0.982 1.076 2.028 1.186 1.205
MT1X 2.528 2.002 2.480 1.013 1.048 2.033 1.173 1.196
MT2A 1.690 1.450 1.704 0.678 0.790 1.455 0.885 0.975 
PTGS2 2.615 2.401 2.769 0.842 1.036 2.259 2.616 0.323
CXCL5 1.589 2.063 1.975 0.383 0.133 1.772 2.335 1.154 
MMP3 2.582 1.932 2.690 1.143 0.963 1.901 3.335 2.023 
MT1L 2.364 1.931 2.404 0.898 1.014 1.958 1.192 1.280
ARC 2.102 1.904 2.778 0.603 -0.374 1.289 1.244 0.163 
TSLP 0.618 1.407 0.703 0.628 0.466 1.354 0.829 1.043

CXCL1 1.518 1.420 1.508 0.673 0.761 1.453 1.160 0.836 
GPR68 0.824 1.709 0.893 0.690 0.810 1.707 2.082 1.441 
MMP1 2.154 1.648 2.187 1.078 0.941 1.662 2.827 1.366
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MMP10 1.098 1.666 1.262 0.726 0.699 1.549 1.663 0.892
KYNU 1.963 1.806 2.121 1.220 0.876 1.622 1.385 1.332 

SLC16A6 1.723 1.709 1.888 0.796 0.839 1.579 2.431 1.493 
SLC7A11 1.445 1.259 1.522 1.076 0.946 1.224 0.887 1.033
NAMPT 1.393 1.486 1.426 0.659 0.524 1.571 0.736 0.639

HSD11B1 1.509 1.500 1.620 0.718 0.607 1.442 1.491 1.074
LAMB3 1.548 1.443 1.702 0.644 0.564 1.383 1.580 1.153 

PLA2G4A 1.115 1.199 1.229 0.665 0.468 1.138 0.881 0.724 
C8orf4 1.277 1.486 1.353 0.734 0.586 1.432 0.780 1.036
EPHA4 -0.881 -1.109 -0.893 -0.937 -0.727 -0.704 -0.628 -0.947

ADGRG1 1.022 0.873 1.086 0.540 0.131 0.841 0.548 1.123
CCK 1.048 1.065 1.208 0.570 0.273 0.995 0.869 0.867 

 

2.2. Functional enrichment analysis 

In order to highlight common molecular mechanisms evoked by RIBE, we exploited the 
functional enrichment results from three different biomedical ontologies (GO [11,12], Reactome 
pathways [13,14] and MGI [15–17]), as derived by the BioInfoMiner (BIM)[18] interpretation web 
platform, emphasizing in overlapping semantic terms above a certain level across transcriptomic 
datasets. More specifically, we identified biological processes that were found significantly 
overrepresented in at least three out of six DE lists, concerning Bystander & Irradiated samples vs 
controls with a-particles IR and two out of four with carbon-ion IR (Tables 3 & 4). 

Firstly, as illustrated in Table 3 for GO and in Supplementary material for MGI (Table S1) and 
Reactome (Table S5), common functional terms were derived with the aid of BIM concerning the 
microarray datasets with α-particles IR. Many of the observed terms are related to response to 
metal ions, to inflammation response, and to protein misfolding-related processes. Additionally, 
GO terms related to the regulation of Wnt signalling pathway and to non-canonical NF-kappaB 
activation, have been detected. 
Table 3. Common Gene Ontology (GO) terms resulting from functional enrichment analysis for bystander vs 
control and irradiated vs control comparisons of datasets with a-particles irradiation. Enrichment scores are 

given as a fraction value. 

Gene 
Ontology 

Datasets / Enrichments
GSE12435 GSE18760 GSE21059 

Bystander 
4h 

Irradiated 
4h 

Bystander 
0.5h 

Irradiated 
0.5h 

Bystander 
Time-
series 

Irradiated 
Time-
series 

cellular 
response to 

zinc ion 
5/18 6/18 9/18 9/18 10/18 11/18 

response to 
zinc ion 5/53 6/53 11/53 12/53 14/53 16/53 

cellular 
response to 

cadmium ion 
3/15 4/15 6/15 6/15 7/15 8/15 

cellular 
response to 
metal ion 

5/126 8/126 15/126 16/126 23/126 29/126 

response to 
inorganic 
substance 

10/428 12/428 33/428 34/428 54/428 - 

cellular 6/146 9/146 16/146 17/146 25/146 - 
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response to 
inorganic 
substance 

response to 
metal ion 8/298 11/298 26/298 27/298 41/298 - 

protein folding - - - 17/211 34/211 54/211 
cytokine-
mediated 
signalling 
pathway 

8/440 - 31/440 32/440 - - 

regulation of 
NF-kappaB 
import into 

nucleus 

3/44 - 7/44 7/44 - - 

positive 
regulation of 

reactive 
oxygen species 

biosynthetic 
process 

3/46 - 7/46 7/46 - - 

cytokine-
mediated 
signalling 
pathway 

8/440 - 31/440 32/440 - - 

regulation of 
anatomical 
structure 

morphogenesis 

- - 57/934 56/934 105/934 163/934 

extracellular 
matrix 

disassembly 
4/73 - - - 15/73 21/73 

embryonic 
skeletal system 
development 

- - - - 10/43 14/43 

regulation of 
protein 

modification 
process 

- - 79/1616 - 155/1616 279/1616 

response to 
unfolded 
protein 

- - 7/45 8/45 10/45 15/45 

Wnt signalling 
pathway, 

planar cell 
polarity 
pathway 

- - 11/99 11/99 17/99 26/99 

 

Similarly, as it is illustrated for GO (Table 4) and in the supplementary material (Table S2) for 
MGI and Reactome(Table S6), common functional terms through BIM were observed for different 
time-points in the case of carbon-ion IR. Among the obtained terms, there are pathways linked to 
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negative regulation of metabolic processes, cell migration and motility. Interestingly, a number of 
functional terms specific to either α-particles or carbon-ion datasets were also derived. 

 
Table 4. Common Gene Ontology terms resulted from functional enrichment analysis for bystander vs control 
and irradiated vs control comparisons of dataset GSE8993 with carbon-ion irradiation. Enrichment scores are 

given as a fraction value. 

 
Gene 

Ontology 

Dataset / Enrichments
GSE8993

Bystander 
2h 

Irradiated 
2h 

Bystander 
6h 

Irradiated 
6h 

negative 
regulation of 
nucleobase-
containing 
compound 
metabolic 

process 

112/1310 - 84/1310 188/1310 

negative 
regulation of 

cellular 
biosynthetic 

process 

117/1394 - 88/1394 196/1394 

negative 
regulation of 

nitrogen 
compound 
metabolic 

process 

119/1425 - 90/1425 202/1425 

negative 
regulation of 

RNA 
metabolic 

process 

99/1178 - 79/1178 170/1178 

regulation of 
cell migration 

62/662 91/662 - 113/662 

regulation of 
epithelial cell 

migration 
20/165 27/165 - 34/165 

negative 
regulation of 
cell migration 

- 34/206 19/206 39/206 

negative 
regulation of 

cellular 
component 
movement 

- 39/247 22/247 44/247 

negative 
regulation of 
cell motility 

- - 20/218 39/218 
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Next, we aimed to extract the instrumental, functional processes emerging from the 
comparisons of bystander vs control and irradiated vs control respectively, in order to delineate the 
molecular landscape of RIBE and host response upon direct irradiation. BioInfoMiner functional 
enrichment analysis was performed using as input significant DE gene lists from the datasets 
GSE12435 and GSE18760 for the α-particles IR and the GSE8993 for the carbon-ion IR respectively. 
In addition to the enrichment analysis, we performed gene prioritization regarding the datasets 
GSE12435 and GSE18760 for the α-particles IR and the GSE8993 for the carbon-ion IR.  

By combining DE gene lists derived from either bystander vs control or irradiated vs control 
comparisons for each of the aforementioned datasets, we derived the respective unique DE gene 
lists. Then, we fused them in four consensus gene lists, two for α-particles and two for carbon-ions 
respectively. Finally, we performed comparative enrichment analysis on these gene lists as shown 
in Tables 5 & 6 (respectively for MGI Tables S3 & S4 and for Reactome S7 & S8). 

In addition, common as well as distinct biological processes and molecular pathways between 
directly irradiated and bystander cell responses + samples control were derived, in order to gain an 
overview of RIBE.  In the case of α-particles IR, common biological processes for both bystander 
and irradiated cells included response to metal ions, unfolded protein response and activation of 
the Wnt signalling pathway. On the contrary, distinct biological mechanisms included cell 
chemotaxis, migration, inflammatory response and response to wounding, which were only found 
in bystander DE genes, whereas biological processes such as DNA damage response, regulation of 
mitotic cell cycle and apoptotic process were detected only in irradiated ones (Table 5).  

 

Table 5. Evaluation of differences in Gene Ontology terms resulted from functional enrichment analysis of 
datasets GSE12435 and GSE18760 from unique DE genes between comparisons bystander vs control and 

irradiated vs control. 

Unique Gene Ontology terms a-particles IR (GSE12435, GSE18760) 
Bystander Irradiated

positive regulation of vasoconstriction 
DNA damage response, signal transduction 
by p53 class mediator resulting in cell cycle 

arrest 

polyamine catabolic process 
activation of cysteine-type endopeptidase 
activity involved in apoptotic signalling 

pathway 

cell chemotaxis extrinsic apoptotic signalling pathway via 
death domain receptors 

regulation of response to external stimulus negative regulation of G1/S transition of 
mitotic cell cycle 

cell migration regulation of apoptotic process 

inflammatory response nucleic acid phosphodiester bond 
hydrolysis 

regulation of defence response to virus by 
host 

activation of MAPKKK activity 

regulation of response to wounding atrioventricular valve morphogenesis 
positive regulation of leukocyte migration atrial septum development 
positive regulation of cell-matrix adhesion embryo development 

 

Similarly, common mechanisms have been found in the case of carbon-ion IR between 
bystander-irradiated with the most prevalent ones being, regulation of cell migration, of RNA 
metabolic process and biosynthetic process. Unique biological processes of bystander cells are 
related to the regulation of release of cytochrome from mitochondria, regulation of oxidative 
phosphorylation, of excretion and response to oxygen levels. Lastly, cell cycle arrest, regulation of 
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cell migration, of p38MAPK cascade, of TOR signalling and of extrinsic apoptotic signalling 
pathway were unique molecular processes observed in irradiated cells with carbon ion IR (Table 6). 

 

Table 6. Evaluation of differences in Gene Ontology terms resulted from functional enrichment analysis of 
datasets GSE8993 from unique DE genes between comparisons bystander vs control and irradiated vs control. 

Unique Gene Ontology terms carbon-ion IR (GSE8993)
Bystander Enrichment Irradiated Enrichment 

positive regulation of 
mitochondrial outer 

membrane 
permeabilization 

involved in apoptotic 
signalling pathway 

9/35 positive regulation 
of protein binding 

24/75 

positive regulation of 
protein 

homooligomerization 
4/8 cell cycle arrest 34/148 

negative regulation of 
intracellular protein 

transport 
13/84 

cellular component 
disassembly 
involved in 

execution phase of 
apoptosis 

10/25 

positive regulation of 
release of cytochrome 
c from mitochondria 

7/28 

cellular response 
to transforming 

growth factor beta 
stimulus 

16/53 

regulation of oxidative 
phosphorylation 5/15 regulation of cell 

migration 123/662 

 
regulation of steroid 
hormone secretion 

 

5/19 
response to 

transforming 
growth factor beta

17/59 

mitochondrial 
membrane 

organization 
12/90 

regulation of 
p38MAPK cascade 

10/26 

cellular response to 
oxygen levels 14/111 

regulation of TOR 
signalling 19/70 

regulation of excretion 6/25 

positive regulation 
of extrinsic 

apoptotic signalling 
pathway 

15/52 

multicellular 
organismal response 

to stress 
9/59 regulation of cell-

matrix adhesion 
22/91 

 

Finally, from all resulting DE gene lists of the datasets GSE18760, GSE12435, GSE21059 and 
GSE8993 for the bystander vs control comparisons, 11 genes were common in at least 3 out of 4 
datasets. These genes are presented in table 7. Some of them were also derived from BIM as pivotal 
linker genes, cross-regulating diverse cellular processes. These genes can be identified as key-
players underlying the functional pattern of bystander effects. Genes like IL1A and IL1B encode 
cytokines, which induce inflammatory and immune responses [19–21]. CXCL8 and CXCL2 are 
genes encoding secreted proteins of the chemokine superfamily mediators of inflammatory 
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response [22,23]. FGF2 is a growth factor implicated in various biological processes such as wound 
healing, tumour growth and angiogenesis [24,25]. PTGS2 is a Prostaglandin-endoperoxide synthase 
involved in inflammation and mitogenesis [26,27]. TNFAIP3 is involved in immune and 
inflammatory responses mediated by cytokines [28,29]. Lastly, NFKBIZ is known to play a crucial 
role in modulation of inflammatory responses [30,31]. 

 

Table 7. Common DE genes resulted from all comparisons of bystander vs control of the analyzed datasets. 
Expression values are presented as log2FC and values with * indicates genes suggested as linker genes by the 

GO functional enrichment analysis of BioInfoMiner. 

Common 
Genes 

 Bystander  
a-particles Carbon ion 

GSE18760 
0.5h 

GSE12435 
4h 

GSE21059
2h          6h 

GSE8993 
2h            6h 

IL1A 0.81* 1.53* 0.34 0.76 -1.27 -0.5* 
IL1B 1.62* 1.85* 0.36 1.74 -1.23* -0.54* 

NFKBIZ 1.32 1.44 0.51 0.85 -1.41 -0.53 
SAT1 1.16 0.91* - 0.4 0.52 0.54 

TNFAIP3 1.22* 1.58* - 0.22 -1.35 -0.52 
CXCL2 2.42* 2.64 0.64 1.14 -0.92 - 
G0S2 1.96 2.15 0.57 1.02 -0.73 - 
MT1E 2.57 2.16 1.1 1.2 -0.5 - 
PTGS2 2.61* 2.4* 1.03* 2.61* -0.73* - 
CXCL8 3.53* - 1.3 3.6 -1.36 -0.69 
FGF2 1.29 1.31 - - - -0.53* 

 

2.3. Rank aggregation of linker genes 

In order to identify putative instrumental gene signatures of RIBE, we performed gene 
prioritization using BIM with different vocabularies (GO, Reactome Pathways and MGI), regardless 
of time point or IR type. From the three resulting prioritized gene lists s for each bystander vs 
control  dataset comparison (GSE12435, GSE18760, GSE21059 and GSE8993 for 2h and for 6h) we 
performed rank aggregation, a method suitable for the optimal sorting of composite gene lists, (see 
Materials & Methods 4.2) and concluded to the following 28 ranked genes (Table 8): 

Table 8. Top ranked linker DE genes resulted from rank aggregation of each linker gene list vocabulary. 

Ranked linker DE Genes
GO MGI Reactome Pathways 
IL6 PTGS2 PSMD6 

ZC3H12A BMP4 PSMA2 
PTGS2 IL6 PSMA3 
BCL2 LEPR PSMD14 
BMP4 IL1B PSMC1 
THBS1 NFE2L2 PSMC2 
IL1A AHR PSMC6 
IL1B MECP2 IL1B

TNFAIP3 SGPL1 FGF2 
ICAM1 

G0S2 
PSMD12 

MT2A 
LOXL2 
MAFA 
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In the next heat map (Figure 2) the relative log2FC of each of the pivotal genes, comprising the 
RIBE signature set from the above table in each comparison. 

 
Figure 2. Heat map of the RIBE gene signature regarding the GSE12435*, GSE18760*, GSE21059* and 
GSE8993+ datasets for the comparisons Bystander vs control samples (GSEs with an asterisk 
highlight a-particles IR whereas the one marked with the plus symbol underlines carbon-ion IR). 
The relative Log2FC are represented in a ternary color format with red signifying: upregulation, 
blue: down regulation and white: no alteration of gene expression regarding the controls. 
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3. Discussion 

In the current study, the application of an integrative workflow to seven RIBE-related 
microarray datasets deposited in GEO (GSE55869 [32] , GSE32091 [33], GSE21059 [34], GSE25772 
[35], GSE18760 [36], GSE12435[37], GSE8993 [38]), led to interesting findings regarding the 
underlying molecular mechanisms.  

Through rigorous standardized normalization and statistical selection, functional enrichment 
analysis and gene prioritization based on functional mapping to various gene annotation 
vocabularies (GO, MGI, Reactome), we managed to overcome confounding factors and 
discrepancies resulting from major differences in the experimental design (various irradiation 
doses, several cell lines and diverse types of IR). Ultimately, we identified specific conserved 
molecular pathways and mechanisms concerning the responses of bystander human cells to IR.  

More specifically, the highlighted molecular mechanisms include processes instrumental for 
the manifestation and modulation of the inflammatory response, aberrant wound healing and 
tumorigenicity, like the activation of NF-kappaB in B cells, G1/S DNA Damage Check points, 
activation of matrix metalloproteinases, stabilization of p53, Wnt signalling, extracellular matrix 
organization, regulation of apoptosis and non-canonical NF-kB signalling.  

In regard to the GSE55869 dataset (H1299 cell line, non-small cell lung carcinoma, irradiated 
with α-particles), differential expression was observed only in the case of the comparison between 
irradiated vs control samples. As expected, based on the subsequent functional enrichment 
analysis, this small subset is mainly linked to biological processes implicated in cell growth and 
proliferation (mitotic cell cycle process, cell division, chromosome segregation and sister chromatid 
cohesion). Moreover, the vast majority of  genes that were annotated to the above biological 
mechanisms were down-regulated, something which supports the direct cytostatic effect of IR in 
cancer cell lines[39]. The difference in the extent of the response observed is probably attributed to 
the priming through epigenetic reprogramming that cancer cells have undergone during their 
carcinogenic evolution. 

Another important observation concerns the distinct biological profile of RIBE response, 
regarding the different modes of IR (particles used for the irradiation of the cells). In particular, our 
results suggest different molecular mechanisms of host response to irradiation with α-particles than 
to irradiation with carbon-ion, with the difference being type but also possibly dose-related. As 
shown in table 8, many genes albeit found as DE in both conditions, presented a different direction 
of gene expression alteration (upregulated in α-particles and down-regulated in carbon-ions). This 
opposite effect is further supported by the results of the functional enrichment analysis. In the case 
of α-particles, biological processes implicated in inflammatory response, wound healing, cell 
proliferation and cell migration were enriched, whereas  in carbon-ion  mechanisms such as  
regulation of cell death, response to TNF, to hypoxia, to heat and to interleukins, take the lead. The 
above findings, apparently indicate that bystander cells responding to irradiation of cells with α-
particles are able to mobilize mostly survival functions, coping efficiently with the stress they 
undergo, unlike bystander cells responding to carbon-ion IR, which are mostly converging to 
apoptotic death.   

Moreover, the gene prioritization approach performed above, enabled the inference of a small 
number of candidate genes that might play a pivotal role in the manifestation of RIBE. In particular, 
eleven DE genes were identified as common from the 5 “bystander” DE gene lists. From these 
genes, two cytokines (IL1A, IL1B) and the cyclooxygenase-2 (PTGS2) were identified as linker genes 
through BioInfoMiner, participating in a broad spectrum of diverse cellular processes, in the 
majority of the datasets. These specific genes have also been reported in previous studies, to be 
associated with the progression of RIBE, mainly through orchestration of immune and 
inflammatory responses and crosstalk [35–37]. In parallel, the rest of the common genes such as 
SAT1, TNFAIP3, CXCL2 and FGF2 were characterized as linker genes in at least one dataset. The 
latter, are involved in immunoregulatory processes, polyamine metabolism [40–42], inhibition of 
NF-kappa B [43], proliferation and wound healing [44]. 
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In parallel, we further explored the validity of one of the aforementioned derived DE gene 
lists, particularly the one formed from the union of bystander comparisons from the GSE18760, 
GSE12435 and GSE8993 datasets, with a reference literature-mined gene list regarding RIBE, 
proposed by the study of Nikitaki et.al [45]. From this comparison, 22 from the 74 genes were 
identified as common, including mostly interleukins, chemokines and genes associated with 
apoptosis (Figure 3). 

 
Figure 3. Venn diagram comparing a gene list associated with bystander effects derived from 
literature mining from the study of Nikitaki et.al. [45] and a union of DE genes resulted from the 
statistical analysis of the GSE18760, GSE12435 and GSE8993 datasets for the comparisons Bystander 
vs control samples. The comparison resulted in 22 common genes. 

Finally, in order to derive a more compact and robust gene signature describing holistically the 
RIBE effect, we performed functional enrichment analysis and gene prioritization exploiting 
different hierarchical biological vocabularies (GO, MGI, Reactome), with the aim to identify linker 
genes for diverse scopes in cellular physiology. Starting from the results of BIM gene prioritization 
for different vocabularies and using them as an input to the R package RankAggreg, a final subset 
of 28 pivotal genes was derived, which represent candidate key-players for RIBE. The robustness of 
our methodology in this step is not limited solely to the gene expression, but through the utilization 
of different biological vocabularies,  to the topological properties of the semantic networks 
delineated, describing the functional involvement of each gene, thus promoting robustly  genes 
with high regulatory impact in diverse cellular processes, representing  functional proxies of their 
mode of operation. This is further illustrated in Table 9.  
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Table 9. Top 5 Ranked Linker Genes resulted from ranked aggregation from Linker gene lists for bystander vs 
control comparisons of datasets GSE18760, GSE12435 and GSE8993. Top enriched clusters are illustrated for 

each Linker gene. 

 

Top 5 
Ranked 
Linker 

Genes GO 

Enriched 
Clusters 

Top 5 
Ranked 
Linker 

Genes MGI 

Enriched 
Clusters 

Top 5 
Ranked 
Linker 
Genes 

Reactome 

Enriched 
Clusters 

IL6 

inflammatory 
response, 
cytokine-
mediated 
signaling 
pathway, 
cellular 

response to 
oxidative 

stress 

PTGS2 

abnormal 
wound 
healing, 

increased 
IgA level, 
abnormal 
IgG3 level 

PSMD6 

Hedgehog 
'on' state, 

Degradation 
of beta-

catenin by 
the 

destruction 
complex, 

Beta-catenin 
independent 

WNT 
signaling, 
PCP/CE 

pathway, 
Regulation 
of activated 
PAK-2p34 

by 
proteasome 
mediated 

degradation, 
CLEC7A 
(Dectin-1) 
signaling, 

Metabolism 
of 

polyamines 

ZC3H12A 

negative 
regulation of 

cell death, 
cellular 

response to 
oxidative 

stress, 
inflammatory 

response, 
regulation of 

apoptotic 
process 

BMP4 
increased 
apoptosis PSMA2 

PTGS2 

cellular 
response to 
oxidative 

stress, 
cellular 

response to 
metal ion, 

cellular 
response to 
fluid shear 

stress, 
regulation of 

apoptotic 
process 

IL6 

increased 
IgA level, 
abnormal 
interferon-

gamma 
secretion, 
abnormal 
circulating 
interleukin 

level 

PSMA3 

BCL2 

negative 
regulation of 

extrinsic 
apoptotic 
signaling 
pathway, 

LEPR 

increased 
apoptosis, 
abnormal 
interferon-

gamma 
secretion, 

PSMD14 
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response to 
hypoxia 

abnormal 
circulating 
interleukin 

level 

BMP4 

system 
development, 

positive 
regulation of 

cell 
migration, 

positive 
regulation of 

protein 
modification 

process 

IL1B 

abnormal 
wound 
healing, 

abnormal 
macrophage 
physiology, 
decreased 

interleukin-6 
secretion 

PSMC1 

 

In this direction, both GO and MGI -ranked gene lists pinpoint common genes, including IL1-
B, IL-1A, IL6 & PTGS2, with strongly established, immunoregulatory and inflammatory effects. On 
the other hand, there are also some significantly altered genes traced due to the use of MGI, such as 
MECP2, which is implicated in DNA methylation [46], as well as SGPL1 and GOS2 genes, mainly 
related to lipid metabolism [47,48]. Moreover, the Reactome pathway database yields the most 
distinct biological subset of linker genes, in comparison to GO and MGI, highlighting genes 
participating in the composition of the proteasome complex/component (PSMD6, PSMA2, PSMC1 
etc.). Interestingly, it has been demonstrated in previous published studies that the proteasome has 
a primary role in the regulation of responses to IR [49,50], oxidative stress [51,52] and the regulation 
of apoptosis [53,54]. Overall, the final consensus signature comprises genes assuring the cross-
talking through a diverse spectrum of distinct biological processes, which altogether could be 
considered as hallmarks of RIBE. 

4. Materials and Methods  

4.1. Data acquisition 

Raw data comprised various microarray datasets, obtained from the public repository Gene 
Expression Omnibus. Specific microarray datasets were selected from the public repository GEO, 
using the term “radiation bystander effect”. From the total 10 results with human cell lines, seven 
microarray datasets related to RIBE (GSE55869 [32] , GSE32091 [33], GSE21059 [34], GSE25772 [35], 
GSE18760 [36], GSE12435[37], GSE8993 [38]) have been used for the analysis. The remaining three 
datasets have been excluded for reasons of inconsistency between files of sample and data 
relationship format and different purpose of the experiment. Details and experimental design 
information of each dataset are illustrated in the following table (table 10). 
 

Table 10. Information about microarray datasets used in the bioinformatic analysis. 

GEO 
Accession 
Number 

GSE18760 GSE12435 GSE21059 GSE55869 GSE32091 GSE25772 GSE8993 

Type of 
Radiation α-particles γ-RAY carbon-ion 

Time of 
Extraction 

of total 
0.5 4 

0.5, 1, 2, 4, 
6, 24 4 4, 8, 26 2, 6 
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RNA after 
Irradiation 

(hours) 
Irradiation 
Dose (Gy) 0.5 1 0.1 2 

1.3, 0.13, 
0.013 

Cell Line IMR-90 primary lung fibroblasts 

H1299 non-
small cell 

lung 
carcinoma 

F11-hTERT 
immortalized foreskin 

fibroblasts 

AG01522D 
primary 
normal 
human 

diploid skin 
fibroblasts 

 

In GSE12435, GSE18760 and GSE21059 a-particles were used for the irradiation of the cells with 
0.5 Gray irradiation dose in IMR-90 primary lung fibroblasts cell line. For the microarray 
experiment, it has been used the Agilent-014850 whole human genome microarray 4x44K, GPL6480 
platform was used.  

In GSE12435 the total RNA was isolated after 4 hours from the irradiation of the cells. The 
dataset contains four control (sham-irradiated) biological replicates, four irradiated biological 
replicates and four bystander biological replicates. 

In GSE18760 the total RNA was isolated after 30 minutes from the irradiation of the cells. The 
dataset contains four control (sham-irradiated) biological replicates, four irradiated biological 
replicates and four bystander biological replicates. 

In GSE21059 the total RNA was isolated at several time points (30 minutes, 1 hour, 2, 4, 6 and 
24 hours) from the irradiation of the cells. The dataset contains four control (sham-irradiated) 
biological replicates per time-point (26 samples), four irradiated biological replicates per time-point 
(26 samples) and four bystander biological replicates per time point (26 samples). 

In GSE55869 a-particles were used for the irradiation of the cells with 1 Gray irradiation dose 
in H1299 non-small cell lung carcinoma cell line. For the microarray experiment, it was used the 
Agilent-026652 Whole Human Genome Microarray 4x44K v2, GPL13497 platform. The total RNA 
was isolated after 4 hours from the irradiation of the cells. The dataset contains five control (non-
sham-irradiated) biological replicates, five irradiated biological replicates, five controls of irradiated 
biological replicates, five bystander biological replicates, five controls of bystander biological 
replicates and also the same samples with shRAD9 cells. For this study, the samples of shRAD9 
have been excluded. 

In GSE3201 a-particles was for the irradiation of the cells with 0.1 Gray irradiation dose in F11-
hTERT immortalized foreskin fibroblasts cell line. For the microarray experiment, it was used the 
Illumina HumanWG-6 v3.0 expression bead chip, GPL6884 platform. The total RNA was isolated 
after 4, 8 and 26 hours from the irradiation of the cells. The dataset contains four control (sham-
irradiated) biological replicates per time-point (12 samples), four irradiated biological replicates per 
time-point (12 samples) and four bystander biological replicates per time-point (12 samples). 

In GSE25772 γ-rays were used for the irradiation of the cells with a dose of 2 Gy in F11-hTERT 
immortalized foreskin fibroblasts cell line. For the microarray experiment, it was used the Illumina 
HumanWG-6 v3.0 expression bead chip, GPL6884 platform. The total RNA was isolated after 4, 8 
and 26 hours from the irradiation of the cells. The dataset contains four control (sham-irradiated) 
biological replicates per time-point (12 samples), four irradiated biological replicates per time-point 
(12 samples) and four bystander biological replicates per time-point (12 samples). 

In GSE8993 carbon-ions were used for the broad irradiation of the cells with 1.3, 0.13 and 0.013 
Gy and for micro-irradiation of the cells with 0.12 Gy in AG01522D primary normal human diploid 
skin fibroblasts cell line. For the microarray experiment, Agilent-014850 whole human genome 
microarray 4x44K, GPL6480 platform was used. The total RNA was isolated after 2 and 6 hours 
from the irradiation of the cells. The dataset contains control (non-sham-irradiated) technical 
replicates for (micro-beam) bystander and (broad-beam) irradiated (4 samples), two control (sham-
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irradiated) technical replicates for (micro-beam) bystander and (broad-beam) irradiated per time-
point (8 samples), two bystander technical replicates per time-point, per irradiation dose (12 
samples) and two irradiated technical replicates per time-point, per irradiation dose (12 samples). 

Additionally, different experimental approaches were performed concerning the manifestation 
of the RIBE. In particular, three different experimental designs had been applied:  
• Regarding the datasets GSE12435, GSE18760, GSE55869, GSE3201  and GSE21059 a method of 

inner-outer dish had been used, with the outer dish having a 6-micron Mylar strips base for the 
formation of the irradiated cells and the inner dish having 38-micron Mylar (which shields the 
cell from the IR) for the formation of the bystander cells [33,37]. 

• About the dataset GSE25772 another experimental design had been used, with the transference 
of conditioned medium from the irradiated cells to the “bystander” cells [35].  

• Lastly, in the dataset GSE8993 micro beam and broad beam irradiation had been used so as to 
form bystander and irradiated cells respectively [38]. 

4.2. Computational pipeline & data analysis 

For each dataset, raw data were acquired using the Bioconductor package GEOquery [55] and 
a pre-processing workflow for complete microarray analysis was implemented with R [R version 
3.3.2 (2016-10-31)]/Bioconductor software [56,57] (Figure 4). For background correction [58] and 
quantile normalization [59], the limma [60–62] R package was used for both Agilent and Illumina 
platforms. Next, a non-specific intensity filtering procedure was applied, in order to remove low-
expressed probesets in each dataset, based on probeset intensity distributions. In Illumina platform 
datasets, we used a further filtering step, based on a re-annotation pipeline regarding Illumina 
probe sequences quality information from the R package illuminaHumanv3.db [63]. The filtering 
procedure is described in detail in limma user’s guide (section 17.4)[64]. In parallel, exploratory 
analysis methodologies, such as unsupervised clustering, were applied to assess any quality 
problems and also to inspect putative batch effects regarding experimental design. Finally, to 
measure the global expression alteration patterns between either bystander versus control or 
irradiated versus control samples, the moderated t-test (from limma R package) was applied while 
batch/study information variable was included as a covariate factor in the linear model. For all 
statistical comparisons (except the ANOVA tests in some specific cases), we used the same double 
cutoff to obtain the DE gene lists: an absolute value of log2 fold change greater than 0.5 and an 
adjusted p-value less than 0.05 (FDR) [65]. 

 
Figure 4. Computational pipeline of bioinformatic analysis 
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The molecular pathway and functional analysis was performed using BioInfoMiner [18,66], 
which exploits several vocabularies with hierarchical structure, such as Gene Ontology, Reactome 
Pathways, MGI and HPO phenotype ontologies, in order to provide a multi-faceted, functional, 
gene-level description of the phenotypes studied. The analysis comprises ranking and prioritization 
of enriched biological processes and genes. 

We used BioInfoMiner as the basic tool in order to identify overrepresented functional terms, 
as well as to highlight subsets of genes with pivotal role in orchestrating RIBE. Briefly, 
BioInfoMiner derives a subset of the input genes, in which the genes are ranked according to their 
functional association with multiple, distinct cellular processes. These subsets of genes, termed 
"linker genes", are implicated as central actors in various distinct biological processes, thus 
providing a holistic view of the disease under investigation. The methodology is described in 
Koutsandreas et al [66] 

In order to derive a gene signature characterizing RIBE, we combined different subsets of 
linker genes, derived from the application of the methodology with different vocabularies. namely 
GO [11,12], Reactome [13,14], and MGI [15–17]. Firstly, we performed functional enrichment 
analysis and gene prioritization for every gene list of the aforementioned bystander comparisons, 
resulting in five linker gene lists for GO, five for Reactome and five for MGI vocabularies. Secondly, 
we performed rank aggregation of the linker gene ordered lists with the package R RankAggreg 
[67], for each vocabulary resulting in three ranked linker gene lists. Finally, the union of these three 
gene lists resulted in 28 unique linker genes. The Venny [68] web tool was used for the illustration 
of Venn diagrams. For KEGG [69] pathway enrichment analysis we used Enrichr [70,71] and for the 
illustration of the derived enriched pathways we used Pathview [72,73] (supplementary material). 

5. Conclusions 

Through the implementation of a robust integrative bioinformatics analysis of transcriptomic 
data regarding the molecular investigation of RIBE, a consensus signature of 28 linker genes was 
derived (including IL1-B, IL-1A, IL6 & PTGS2 with pivotal role), which are associated with multiple 
and diverse underlying biological mechanisms. Interestingly, reverse gene expression was observed 
for a specific subset of DE genes, common in both α-particles and carbon-ion IR comparisons 
regarding RIBE, a finding that potentially suggests an alternate biological response mechanism 
adjustable to different modes of radiation. This is further supported from the functional enrichment 
results of the comparative analysis, highlighting distinct biological processes, such as induction of 
inflammatory response, cell growth and healing in bystander cells of α-particles IR experiments, 
whereas positive regulation of apoptotic cell death, is mainly affected in the case of carbon-ion IR. 
Overall, our results provide a detailed account for the molecular mechanisms implicated in RIBE, 
with potential interest in cancer therapeutics research. In this direction, our derived RIBE signature 
of candidate genes could be further investigated in other independent cancer transcriptomic 
datasets, in order to examine potentially interesting association patterns with cell survival and 
response to irradiation. 

Supplementary Materials: The following are available online, Figure S1: Bar plot of the amount of associated 
genes, Figure S2: Illustrative Heatmap of the 26 common DE genes, Figure S3: Illustrative example of NF-
kappaB signaling pathway, Table S1: Common Mouse Genome Informatics (MGI) terms of a-particles IR, Table 
S2: Common MGI terms of carbon-ion IR, Table S3: Evaluation of differences in MGI terms of GSE12435 and 
GSE18760 datasets, Table S4: Evaluation of differences in MGI terms of GSE8993 dataset, Table S5: Common 
Reactome pathways terms of a-particles IR, TableS6: Common Reactome pathways terms of carbon-ion IR, 
Table S7: Evaluation of differences in Reactome pathways terms of GSE12435 and GSE18760 datasets, Table S8: 
Evaluation of differences in Reactome pathways terms of dataset GSE8993. 
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