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Abstract: Ionizing radiation-induced bystander effects (RIBE) encompass a number of effects with
potential for a plethora of damages in adjacent non-irradiated tissue. The cascade of molecular
events is initiated in response to the exposure to ionizing radiation (IR), something that may occur
during diagnostic or therapeutic medical applications. In order to better investigate these complex
response mechanisms, we employed a unified framework integrating statistical microarray
analysis, signal normalization and translational bioinformatics functional analysis techniques. This
approach was applied to several microarray datasets from Gene Expression Omnibus (GEO)
related to RIBE. The analysis produced lists of differentially expressed genes, contrasting
bystander and irradiated samples versus sham-irradiated controls. Furthermore, comparative
molecular analysis through BioInfoMiner, which integrates advanced statistical enrichment and
prioritization methodologies, revealed discrete biological processes, at the cellular level. For
example, negative regulation of growth, cellular response to Zn2+- Cd2+, Wnt and NIK/NF-
kappaB signalling, which refine the description of the phenotypic landscape of RIBE. Our results
provide a more solid understanding of RIBE cell-specific response patterns, especially in the case
of high-LET radiations like a-particles and carbon-ions.

Keywords: Bioinformatics; lonizing radiation; Microarrays; Radiation-induced bystander effects;
Transcriptomics

1. Introduction

Over the past years, novel approaches in radiation biology and therapy have emphasized the
importance of the study of systemic phenomena that represent non-targeted [1] radiation-induced
bystander effects (RIBE) [2].

In detail, ionizing radiation (IR) damages the cellular genome directly or indirectly through the
generation of reactive oxygen and nitrogen species (ROS/RNS) [3,4]. Undoubtedly, it has been
demonstrated in various in-vitro and in-vivo studies that targeted irradiation of cytoplasm with
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alpha particles IR induces mutations in the genome of the irradiated cells [5]. In this phenomenon,
non-irradiated cells, adjacent to the irradiated cells namely bystander cells, manifest stress
responses as a result of signals derived from adjacent directly irradiated cells [6]. In addition, it has
been illustrated that RIBE are linked to distinct molecular mechanisms, such as cell growth [7],
micronuclei formation [8], cell cycle delay [7,9] and repair [5] along with transformation of non-
irradiated cells [10], inflammation and DNA damage [5]. Recently, various “omics”-technologies
(microarrays, NGS) have generated numerous transcriptomic datasets for the interrogation of the
systemic character of the above phenomena.

Exploiting this fact, we analyzed various publicly available microarray datasets in order to
reveal the crucial molecular pathways, consistently involved in RIBE biology responsible for its
different phenotypic features. We screened for common and different biological processes
characterizing directly irradiated and bystander cells for low and high-LET radiations, like a-
particles and carbons. Moreover, we demonstrated that the modularity of RIBE systemic response
elicits differentiated biological responses according to the particular type of radiation, while
operating through conserved biological circuits, exerting their effect through common differentially
expressed genes, such as IL1A, IL1B, NFKBIZ, SAT1, and TNFAIP3 in the majority of the datasets.

2. Results

2.1. Statistical inference and differential expression

In order to decipher any differential expression patterns induced by RIBE, we applied a
generic, proprietary computational workflow, to each dataset separately (see Materials and
Methods). The main statistical comparisons of interest concerned bystander vs control and
irradiated vs control samples. Firstly, the differential expression results of all datasets are illustrated
in Table 1.

Table 1. Numbers of differentially expressed genes (DE) resulted from statistical testing using False
Discovery Rate (FDR) < 0.05 and |log2 Fold Change! > 0.5. Numbers in parenthesis define the time
that had passed after the irradiation for the isolation of the RNA from cells.

Dataset GSE12435 GSE18760 GSE21059 GSE55869 GSE32091 GSE25772 GSE8993

DE 1254
(ANOVA- 1003(2h)
Bystander 53(4h) 424(0.5h) Hme- 0 0 0 796(6h)
vs Control :
series)
2399
DE 3(4h) 271(4h)
Irradiated ~ 76(4h)  481(0.5h) (AEIHOIYA_ 47(4h) 0(8h) 223(8h) 128%2}}3
vs Control e 0@6h)  1977(26h)
series)
DE 264(2h)
Common 39 339 1169 - - - 324(6h)

Briefly, in four out of seven datasets, differentially expressed (DE) genes were identified from
the comparison of Bystander vs Control samples, whereas the Irradiated vs Control comparison
resulted in plenty of DE genes for all datasets. However, the analysis of three specific datasets
(GSE55869, GSE32091, GSE25772), in which cancer and immortalized cell lines were used, didn’t
result in any DE genes regarding the comparison bystander vs control samples. Moreover, the
highest expression alteration results, regarding the aforementioned comparison, were identified in
the dataset with carbon-ion irradiation. In addition, the GSE12435, GSE18760 and GSE21059
datasets share significant similarities with respect to their experimental protocol despite the fact
that the same cell type, type of particles, dose of radiation and experimental procedure were
followed in those three datasets. An important difference regarding all datasets has to do with the
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various time points that have been used for the RNA extraction after irradiation. Thus, we
compared the resulting DE gene lists of the comparisons bystander vs control samples, in order to
investigate whether there are common genes with the same differential expression direction at
identical time points. Firstly, we compared the DE gene lists as depicted in the Venn diagram of
Figure 1, which resulted in 26 common DE genes shared by all three datasets, regarding the
comparison bystander vs control samples.

VENN DIAGRAM COMPARING RESULTING DE GENE LISTS
OF GSE12435, GSE18760 & GSE21059 DATASETS

DE Genes DE Genes
GSE12435 GSE21059
Bystander Bystander
vs control vs control

4h Time Series

DE Genes
GSE18760
Bystander
vs Control
0.5h

Figure 1. Venn diagram of DE genes lists regarding the GSE12435, GSE18760 and GSE21059 datasets
for the comparisons Bystander vs control samples. The comparison resulted in 26 common DE
genes.

Furthermore, comparing the expression values across the same time points of the
aforementioned datasets, we found that the majority of DE genes had similar values. The common
DE genes are represented in Table 2.

Table 2. The expression alterations of the 26 common DE genes. Values represent expression fold
changes of bystander vs. control cells, on Log?2 scale. Values with bold and bold/italics illustrate
similarity between same time points of different datasets.

Common DE Fold Change in Expression

Genes
Datasets GSE18760 GSE12435 GSE21059
Time Points 0.5h 4h 0.5h 1h 2h 4h 6h 24h
MT1B 2.421 1.905 2.456 0.898 1.122 1.927 1.244 1.185
MT1E 2.574 2.165 2.620 0.964 1.143 2.178 1.209 1.114
MT1H 2.380 2.001 2.424 0.982 1.076 2.028 1.186 1.205
MT1X 2.528 2.002 2.480 1.013 1.048 2.033 1.173 1.196
MT2A 1.690 1.450 1.704 0.678 0.790 1.455 0.885 0.975
PTGS2 2.615 2.401 2.769 0.842 1.036 2.259 2.616 0.323
CXCL5 1.589 2.063 1.975 0.383 0.133 1.772 2.335 1.154
MMP3 2.582 1.932 2.690 1.143 0.963 1.901 3.335 2.023
MTI1L 2.364 1.931 2.404 0.898 1.014 1.958 1.192 1.280
ARC 2.102 1.904 2.778 0.603 -0.374 1.289 1.244 0.163
TSLP 0.618 1.407 0.703 0.628 0.466 1.354 0.829 1.043
CXCL1 1.518 1.420 1.508 0.673 0.761 1.453 1.160 0.836
GPR68 0.824 1.709 0.893 0.690 0.810 1.707 2.082 1.441

MMP1 2.154 1.648 2.187 1.078 0.941 1.662 2.827 1.366
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MMP10 1.098 1.666 1.262 0.726 0.699 1.549 1.663 0.892
KYNU 1.963 1.806 2.121 1.220 0.876 1.622 1.385 1.332
SLC16A6 1.723 1.709 1.888 0.796 0.839 1.579 2431 1.493
SLC7A11 1.445 1.259 1.522 1.076 0.946 1.224 0.887 1.033
NAMPT 1.393 1.486 1.426 0.659 0.524 1.571 0.736 0.639
HSD11B1 1.509 1.500 1.620 0.718 0.607 1.442 1.491 1.074
LAMB3 1.548 1.443 1.702 0.644 0.564 1.383 1.580 1.153
PLA2G4A 1.115 1.199 1.229 0.665 0.468 1.138 0.881 0.724
C8orf4 1.277 1.486 1.353 0.734 0.586 1.432 0.780 1.036
EPHA4 -0.881 -1.109 -0.893 -0.937 -0.727 -0.704 -0.628 -0.947
ADGRG1 1.022 0.873 1.086 0.540 0.131 0.841 0.548 1.123
CCK 1.048 1.065 1.208 0.570 0.273 0.995 0.869 0.867

2.2. Functional enrichment analysis

In order to highlight common molecular mechanisms evoked by RIBE, we exploited the
functional enrichment results from three different biomedical ontologies (GO [11,12], Reactome
pathways [13,14] and MGI [15-17]), as derived by the BioInfoMiner (BIM)[18] interpretation web
platform, emphasizing in overlapping semantic terms above a certain level across transcriptomic
datasets. More specifically, we identified biological processes that were found significantly
overrepresented in at least three out of six DE lists, concerning Bystander & Irradiated samples vs
controls with a-particles IR and two out of four with carbon-ion IR (Tables 3 & 4).

Firstly, as illustrated in Table 3 for GO and in Supplementary material for MGI (Table S1) and
Reactome (Table S5), common functional terms were derived with the aid of BIM concerning the
microarray datasets with a-particles IR. Many of the observed terms are related to response to
metal ions, to inflammation response, and to protein misfolding-related processes. Additionally,
GO terms related to the regulation of Wnt signalling pathway and to non-canonical NF-kappaB
activation, have been detected.

Table 3. Common Gene Ontology (GO) terms resulting from functional enrichment analysis for bystander vs
control and irradiated vs control comparisons of datasets with a-particles irradiation. Enrichment scores are
given as a fraction value.

Datasets / Enrichments

GSE12435 GSE18760 GSE21059
Gene Bystander Irradiated
Ontology Bystander Irradiated Bystander Irradiated yTime- Time-
4h 4h 0.5h 0.5h . .
series series
cellular
response to 5/18 6/18 9/18 9/18 10/18 11/18
zinc ion
response fo 5/53 6/53 11/53 12/53 14/53 16/53
zinc ion
cellular
response to 3/15 4/15 6/15 6/15 7/15 8/15
cadmium ion
cellular
response to 5/126 8/126 15/126 16/126 23/126 29/126
metal ion
response to
inorganic 10/428 12/428 33/428 34/428 54/428 -

substance
cellular 6/146 9/146 16/146 17/146 25/146 -
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response to
inorganic
substance
response to
metal ion
protein folding - - - 17/211 34/211 54/211
cytokine-
mediated
signalling
pathway
regulation of
NF-kappaB
import into
nucleus

8/298 11/298 26/298 27/298 41/298 -

8/440 - 31/440 32/440 - -

3/44 - 7/44 7/44 - -

positive
regulation of
reactive
oxygen species
biosynthetic
process
cytokine-
mediated
signalling
pathway
regulation of

3/46 - 7/46 7/46 - -

8/440 - 31/440 32/440 - -

anatomical - - 57/934 56/934  105/934  163/934
structure
morphogenesis
extracellular
matrix 4/73 - - - 15/73 21/73
disassembly
embryonic
skeletal system - - - - 10/43 14/43
development

regulation of
protein
modification
process
response to
unfolded - - 7/45 8/45 10/45 15/45
protein
Wnt signalling
pathway,
planar cell - - 11/99 11/99 17/99 26/99
polarity
pathway

- - 79/1616 - 155/1616 279/1616

Similarly, as it is illustrated for GO (Table 4) and in the supplementary material (Table S2) for
MGI and Reactome(Table S6), common functional terms through BIM were observed for different
time-points in the case of carbon-ion IR. Among the obtained terms, there are pathways linked to


http://dx.doi.org/10.20944/preprints201711.0041.v1
http://dx.doi.org/10.3390/cancers9120160

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2017 d0i:10.20944/preprints201711.0041.v1

6 of 23

negative regulation of metabolic processes, cell migration and motility. Interestingly, a number of
functional terms specific to either a-particles or carbon-ion datasets were also derived.

Table 4. Common Gene Ontology terms resulted from functional enrichment analysis for bystander vs control
and irradiated vs control comparisons of dataset GSE8993 with carbon-ion irradiation. Enrichment scores are
given as a fraction value.

Dataset / Enrichments
GSE8993
Bystander Irradiated Bystander Irradiated
2h 2h 6h 6h

Gene
Ontology

negative
regulation of
nucleobase-
containing 112/1310
compound
metabolic
process
negative
regulation of
cellular 117/1394
biosynthetic
process
negative
regulation of
nitrogen
compound
metabolic
process
negative
regulation of
RNA 99/1178 - 79/1178 170/1178
metabolic
process
regulation of
cell migration
regulation of
epithelial cell 20/165 27/165 - 34/165
migration

84/1310 188/1310

88/1394 196/1394

119/1425 90/1425 202/1425

62/662 91/662 - 113/662

negative
regulation of - 34/206 19/206 39/206
cell migration
negative
regulation of
cellular - 39/247 22/247 44/247
component
movement
negative
regulation of - - 20/218 39/218
cell motility
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Next, we aimed to extract the instrumental, functional processes emerging from the
comparisons of bystander vs control and irradiated vs control respectively, in order to delineate the
molecular landscape of RIBE and host response upon direct irradiation. BioInfoMiner functional
enrichment analysis was performed using as input significant DE gene lists from the datasets
GSE12435 and GSE18760 for the a-particles IR and the GSE8993 for the carbon-ion IR respectively.
In addition to the enrichment analysis, we performed gene prioritization regarding the datasets
GSE12435 and GSE18760 for the a-particles IR and the GSE8993 for the carbon-ion IR.

By combining DE gene lists derived from either bystander vs control or irradiated vs control
comparisons for each of the aforementioned datasets, we derived the respective unique DE gene
lists. Then, we fused them in four consensus gene lists, two for a-particles and two for carbon-ions
respectively. Finally, we performed comparative enrichment analysis on these gene lists as shown
in Tables 5 & 6 (respectively for MGI Tables S3 & S4 and for Reactome S7 & S8).

In addition, common as well as distinct biological processes and molecular pathways between
directly irradiated and bystander cell responses + samples control were derived, in order to gain an
overview of RIBE. In the case of a-particles IR, common biological processes for both bystander
and irradiated cells included response to metal ions, unfolded protein response and activation of
the Wnt signalling pathway. On the contrary, distinct biological mechanisms included cell
chemotaxis, migration, inflammatory response and response to wounding, which were only found
in bystander DE genes, whereas biological processes such as DNA damage response, regulation of
mitotic cell cycle and apoptotic process were detected only in irradiated ones (Table 5).

Table 5. Evaluation of differences in Gene Ontology terms resulted from functional enrichment analysis of
datasets GSE12435 and GSE18760 from unique DE genes between comparisons bystander vs control and
irradiated vs control.

Unique Gene Ontology terms a-particles IR (GSE12435, GSE18760)
Bystander Irradiated
DNA damage response, signal transduction
positive regulation of vasoconstriction by p53 class mediator resulting in cell cycle
arrest
activation of cysteine-type endopeptidase
polyamine catabolic process activity involved in apoptotic signalling
pathway
o ic sionalli h .
cell chemotaxis extrinsic apoptotic 51gna ing pathway via
death domain receptors
. . negative regulation of G1/S transition of
regulation of response to external stimulus oo
mitotic cell cycle
cell migration regulation of apoptotic process
. nucleic acid phosphodiester bond
inflammatory response .
hydrolysis

regulation of defence response to virus by activation of MAPKKK activity

host
regulation of response to wounding atrioventricular valve morphogenesis
positive regulation of leukocyte migration atrial septum development
positive regulation of cell-matrix adhesion embryo development

Similarly, common mechanisms have been found in the case of carbon-ion IR between
bystander-irradiated with the most prevalent ones being, regulation of cell migration, of RNA
metabolic process and biosynthetic process. Unique biological processes of bystander cells are
related to the regulation of release of cytochrome from mitochondria, regulation of oxidative
phosphorylation, of excretion and response to oxygen levels. Lastly, cell cycle arrest, regulation of
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cell migration, of p38MAPK cascade, of TOR signalling and of extrinsic apoptotic signalling
pathway were unique molecular processes observed in irradiated cells with carbon ion IR (Table 6).

Table 6. Evaluation of differences in Gene Ontology terms resulted from functional enrichment analysis of
datasets GSE8993 from unique DE genes between comparisons bystander vs control and irradiated vs control.

Unique Gene Ontology terms carbon-ion IR (GSE8993)

Bystander Enrichment Irradiated Enrichment
positive regulation of
mitochondrial outer
memb'r'ane' 9/35 positive .regt'llat.ion 24/75
permeabilization of protein binding
involved in apoptotic
signalling pathway
positive regulation of
protein 4/8 cell cycle arrest 34/148
homooligomerization
cellular component
negative regulation of disassembly
intracellular protein 13/84 involved in 10/25
transport execution phase of
apoptosis
-, . cellular response
positive regulation of to transformin
release of cytochrome 7/28 8 16/53
. . growth factor beta
¢ from mitochondria .
stimulus
regulation of ox1.datlve 5/15 regul;litlon' of cell 123/662
phosphorylation migration
. . response to
1 f
regulation o ste.r01d 5/19 transforming 17/59
hormone secretion
growth factor beta
mitochondrial regulation of
ulati
12 10/2
mem,b rane /90 P38MAPK cascade 0/26
organization
cellular response to 14/111 regullation .Of TOR 19/70
oxygen levels signalling
positive regulation
regulation of excretion 6/25 of e'x tr1'n51c . 15/52
apoptotic signalling
pathway
multicellular regulation of cell
1 -
organismal response 9/59 g1 22/91

to stress

matrix adhesion

Finally, from all resulting DE gene lists of the datasets GSE18760, GSE12435, GSE21059 and

GSE8993 for the bystander vs control comparisons, 11 genes were common in at least 3 out of 4
datasets. These genes are presented in table 7. Some of them were also derived from BIM as pivotal
linker genes, cross-regulating diverse cellular processes. These genes can be identified as key-
players underlying the functional pattern of bystander effects. Genes like IL1A and IL1B encode
cytokines, which induce inflammatory and immune responses [19-21]. CXCL8 and CXCL2 are
genes encoding secreted proteins of the chemokine superfamily mediators of inflammatory


http://dx.doi.org/10.20944/preprints201711.0041.v1
http://dx.doi.org/10.3390/cancers9120160

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2017

do0i:10.20944/preprints201711.0041.v1

90f23

response [22,23]. FGF2 is a growth factor implicated in various biological processes such as wound
healing, tumour growth and angiogenesis [24,25]. PTGS2 is a Prostaglandin-endoperoxide synthase
involved in inflammation and mitogenesis [26,27]. TNFAIP3 is involved in immune and
inflammatory responses mediated by cytokines [28,29]. Lastly, NFKBIZ is known to play a crucial
role in modulation of inflammatory responses [30,31].

Table 7. Common DE genes resulted from all comparisons of bystander vs control of the analyzed datasets.
Expression values are presented as log2FC and values with * indicates genes suggested as linker genes by the
GO functional enrichment analysis of BioInfoMiner.

Bystander
Common a-particles Carbon ion
Genes GSE18760  GSE12435 GSE21059 GSE8993
0.5h 4h 2h 6h 2h 6h
IL1A 0.81* 1.53* 0.34 0.76 -1.27 -0.5*
IL1B 1.62* 1.85* 0.36 1.74 -1.23*  -0.54*
NFKBIZ 1.32 1.44 0.51 0.85 -1.41 -0.53
SAT1 1.16 0.91* - 0.4 0.52 0.54
TNFAIP3 1.22* 1.58* - 0.22 -1.35 -0.52
CXCL2 2.42* 2.64 0.64 1.14 -0.92 -
G0S2 1.96 2.15 0.57 1.02 -0.73 -
MT1E 2.57 2.16 1.1 1.2 -0.5 -
PTGS2 2.61* 2.4* 1.03* 2.61* -0.73* -
CXCL8 3.53* - 1.3 3.6 -1.36 -0.69
FGF2 1.29 1.31 - - - -0.53*

2.3. Rank aggregation of linker genes

In order to identify putative instrumental gene signatures of RIBE, we performed gene
prioritization using BIM with different vocabularies (GO, Reactome Pathways and MGI), regardless
of time point or IR type. From the three resulting prioritized gene lists s for each bystander vs
control dataset comparison (GSE12435, GSE18760, GSE21059 and GSE8993 for 2h and for 6h) we
performed rank aggregation, a method suitable for the optimal sorting of composite gene lists, (see
Materials & Methods 4.2) and concluded to the following 28 ranked genes (Table 8):

Table 8. Top ranked linker DE genes resulted from rank aggregation of each linker gene list vocabulary.

Ranked linker DE Genes
GO MGI Reactome Pathways
IL6 PTGS2 PSMD6
ZC3H12A BMP4 PSMA2
PTGS2 IL6 PSMA3
BCL2 LEPR PSMD14
BMP4 IL1B PSMC1
THBS1 NFE2L2 PSMC2
IL1A AHR PSMCe6
IL1B MECP2 IL1B
TNFAIP3 SGPL1 FGF2
ICAM1 PSMD12
MT2A G0S2 LOXL2

MAFA
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In the next heat map (Figure 2) the relative log2FC of each of the pivotal genes, comprising the
RIBE signature set from the above table in each comparison.

L = .

MT2A
FGF2

R -

ZC3H12A
IL1A
TNFAIP3
G0S2
IL1B

IL6

PTGS2
PSMA3
PSMC6
PSMC1
PSMA2
PSMD6

Log2FC Values

PSMC2 M2
1

LEPR 0
NFEoL2 -2
MECP2
PSMD12
PSMD14

L AHR

ICAM1
SGPL1

LOXL2

BCL2

MAFA
THBSH

BMP4

GSE8993.2h
GSE8993.6h
GSE21059.2h
GSE21059.6h
GSE21059.4h
GSE12435.4h
GSE18760.0.5h
GSE21059.0.5h

Figure 2. Heat map of the RIBE gene signature regarding the GSE12435*, GSE18760*, GSE21059* and
GSE8993* datasets for the comparisons Bystander vs control samples (GSEs with an asterisk
highlight a-particles IR whereas the one marked with the plus symbol underlines carbon-ion IR).
The relative Log2FC are represented in a ternary color format with red signifying: upregulation,
blue: down regulation and white: no alteration of gene expression regarding the controls.
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3. Discussion

In the current study, the application of an integrative workflow to seven RIBE-related
microarray datasets deposited in GEO (GSE55869 [32] , GSE32091 [33], GSE21059 [34], GSE25772
[35], GSE18760 [36], GSE12435[37], GSE8993 [38]), led to interesting findings regarding the
underlying molecular mechanisms.

Through rigorous standardized normalization and statistical selection, functional enrichment
analysis and gene prioritization based on functional mapping to various gene annotation
vocabularies (GO, MGI, Reactome), we managed to overcome confounding factors and
discrepancies resulting from major differences in the experimental design (various irradiation
doses, several cell lines and diverse types of IR). Ultimately, we identified specific conserved
molecular pathways and mechanisms concerning the responses of bystander human cells to IR.

More specifically, the highlighted molecular mechanisms include processes instrumental for
the manifestation and modulation of the inflammatory response, aberrant wound healing and
tumorigenicity, like the activation of NF-kappaB in B cells, G1/S DNA Damage Check points,
activation of matrix metalloproteinases, stabilization of p53, Wnt signalling, extracellular matrix
organization, regulation of apoptosis and non-canonical NF-kB signalling.

In regard to the GSE55869 dataset (H1299 cell line, non-small cell lung carcinoma, irradiated
with a-particles), differential expression was observed only in the case of the comparison between
irradiated vs control samples. As expected, based on the subsequent functional enrichment
analysis, this small subset is mainly linked to biological processes implicated in cell growth and
proliferation (mitotic cell cycle process, cell division, chromosome segregation and sister chromatid
cohesion). Moreover, the vast majority of genes that were annotated to the above biological
mechanisms were down-regulated, something which supports the direct cytostatic effect of IR in
cancer cell lines[39]. The difference in the extent of the response observed is probably attributed to
the priming through epigenetic reprogramming that cancer cells have undergone during their
carcinogenic evolution.

Another important observation concerns the distinct biological profile of RIBE response,
regarding the different modes of IR (particles used for the irradiation of the cells). In particular, our
results suggest different molecular mechanisms of host response to irradiation with a-particles than
to irradiation with carbon-ion, with the difference being type but also possibly dose-related. As
shown in table 8, many genes albeit found as DE in both conditions, presented a different direction
of gene expression alteration (upregulated in a-particles and down-regulated in carbon-ions). This
opposite effect is further supported by the results of the functional enrichment analysis. In the case
of a-particles, biological processes implicated in inflammatory response, wound healing, cell
proliferation and cell migration were enriched, whereas in carbon-ion mechanisms such as
regulation of cell death, response to TNF, to hypoxia, to heat and to interleukins, take the lead. The
above findings, apparently indicate that bystander cells responding to irradiation of cells with a-
particles are able to mobilize mostly survival functions, coping efficiently with the stress they
undergo, unlike bystander cells responding to carbon-ion IR, which are mostly converging to
apoptotic death.

Moreover, the gene prioritization approach performed above, enabled the inference of a small
number of candidate genes that might play a pivotal role in the manifestation of RIBE. In particular,
eleven DE genes were identified as common from the 5 “bystander” DE gene lists. From these
genes, two cytokines (IL1A, IL1B) and the cyclooxygenase-2 (PTGS2) were identified as linker genes
through BioInfoMiner, participating in a broad spectrum of diverse cellular processes, in the
majority of the datasets. These specific genes have also been reported in previous studies, to be
associated with the progression of RIBE, mainly through orchestration of immune and
inflammatory responses and crosstalk [35-37]. In parallel, the rest of the common genes such as
SAT1, TNFAIP3, CXCL2 and FGF2 were characterized as linker genes in at least one dataset. The
latter, are involved in immunoregulatory processes, polyamine metabolism [40-42], inhibition of
NEF-kappa B [43], proliferation and wound healing [44].
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In parallel, we further explored the validity of one of the aforementioned derived DE gene
lists, particularly the one formed from the union of bystander comparisons from the GSE18760,
GSE12435 and GSE8993 datasets, with a reference literature-mined gene list regarding RIBE,
proposed by the study of Nikitaki et.al [45]. From this comparison, 22 from the 74 genes were
identified as common, including mostly interleukins, chemokines and genes associated with
apoptosis (Figure 3).

Comparative Analysis of Resulting
DE Genes with Literature

Bystander Associated Union of bystander DE Genes
Genes resulted from resulted from
Literature Mining GSE18760, GSE12435, GSE8993

BAX, BCL2, CCL2, CDKN1A, CXCL10, CXCL12, CXCL5, CXCLS8,
HMGB1,ICAM1, IENE, IL15,IL1A, IL1B, IL33,IL6, MMP1, NFKB1,
NFKBIA, PTGS2,SOD2, TNF

Figure 3. Venn diagram comparing a gene list associated with bystander effects derived from
literature mining from the study of Nikitaki et.al. [45] and a union of DE genes resulted from the
statistical analysis of the GSE18760, GSE12435 and GSE8993 datasets for the comparisons Bystander
vs control samples. The comparison resulted in 22 common genes.

Finally, in order to derive a more compact and robust gene signature describing holistically the
RIBE effect, we performed functional enrichment analysis and gene prioritization exploiting
different hierarchical biological vocabularies (GO, MGI, Reactome), with the aim to identify linker
genes for diverse scopes in cellular physiology. Starting from the results of BIM gene prioritization
for different vocabularies and using them as an input to the R package RankAggreg, a final subset
of 28 pivotal genes was derived, which represent candidate key-players for RIBE. The robustness of
our methodology in this step is not limited solely to the gene expression, but through the utilization
of different biological vocabularies, to the topological properties of the semantic networks
delineated, describing the functional involvement of each gene, thus promoting robustly genes
with high regulatory impact in diverse cellular processes, representing functional proxies of their
mode of operation. This is further illustrated in Table 9.
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Table 9. Top 5 Ranked Linker Genes resulted from ranked aggregation from Linker gene lists for bystander vs
control comparisons of datasets GSE18760, GSE12435 and GSE8993. Top enriched clusters are illustrated for
each Linker gene.

Top 5
Ranked
Linker
Genes GO

IL6

ZC3H12A

PTGS2

BCL2

Enriched
Clusters

inflammatory
response,
cytokine-
mediated
signaling
pathway,
cellular
response to
oxidative
stress
negative
regulation of
cell death,
cellular
response to
oxidative
stress,
inflammatory
response,
regulation of
apoptotic
process
cellular
response to
oxidative
stress,
cellular
response to
metal ion,
cellular
response to
fluid shear
stress,
regulation of
apoptotic
process
negative
regulation of
extrinsic
apoptotic
signaling
pathway,

Top 5
Ranked
Linker

Genes MGI

PTGS2

BMP4

IL6

LEPR

Enriched
Clusters

abnormal
wound
healing,
increased
IgA level,
abnormal
IgG3 level

increased
apoptosis

increased
IgA level,
abnormal
interferon-
gamma
secretion,
abnormal
circulating
interleukin
level

increased
apoptosis,
abnormal
interferon-
gamma
secretion,

Top 5
Ranked
Linker
Genes
Reactome

Enriched
Clusters

PSMD6

Hedgehog
'on' state,
Degradation
of beta-
catenin by
the
destruction
complex,
PSMA2 Beta-catenin
independent
WNT
signaling,
PCP/CE
pathway,
Regulation
of activated
PAK-2p34
by
proteasome
mediated
degradation,
CLEC7A
(Dectin-1)
signaling,
Metabolism
of

PSMA3

polyamines

PSMD14
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response to abnormal
hypoxia circulating
interleukin
level
system
development, abnormal
positive wound
regulation of healing,
cell abnormal
BMP4 migration, IL1B macrophage PSMC1
positive physiology,
regulation of decreased
protein interleukin-6
modification secretion
process

In this direction, both GO and MCI -ranked gene lists pinpoint common genes, including IL1-
B, IL-1A, IL6 & PTGS2, with strongly established, immunoregulatory and inflammatory effects. On
the other hand, there are also some significantly altered genes traced due to the use of MGI, such as
MECP2, which is implicated in DNA methylation [46], as well as SGPL1 and GOS2 genes, mainly
related to lipid metabolism [47,48]. Moreover, the Reactome pathway database yields the most
distinct biological subset of linker genes, in comparison to GO and MGI, highlighting genes
participating in the composition of the proteasome complex/component (PSMD6, PSMA2, PSMC1
etc.). Interestingly, it has been demonstrated in previous published studies that the proteasome has
a primary role in the regulation of responses to IR [49,50], oxidative stress [51,52] and the regulation
of apoptosis [53,54]. Overall, the final consensus signature comprises genes assuring the cross-
talking through a diverse spectrum of distinct biological processes, which altogether could be
considered as hallmarks of RIBE.

4. Materials and Methods

4.1. Data acquisition

Raw data comprised various microarray datasets, obtained from the public repository Gene
Expression Omnibus. Specific microarray datasets were selected from the public repository GEO,
using the term “radiation bystander effect”. From the total 10 results with human cell lines, seven
microarray datasets related to RIBE (GSE55869 [32] , GSE32091 [33], GSE21059 [34], GSE25772 [35],
GSE18760 [36], GSE12435[37], GSE8993 [38]) have been used for the analysis. The remaining three
datasets have been excluded for reasons of inconsistency between files of sample and data
relationship format and different purpose of the experiment. Details and experimental design
information of each dataset are illustrated in the following table (table 10).

Table 10. Information about microarray datasets used in the bioinformatic analysis.

GEO
Accession GSE18760 GSE12435 GSE21059 GSE55869 GSE32091 GSE25772 GSE8993
Number
Type of a-particles RAY carbon-ion
Radiation P Y
Time of
Extraction 0.5 4 0‘5/61,2421, 4 4 4,8,26 2,6

of total
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RNA after
Irradiation
(hours)
Irradiation 1.3,0.13
0.5 1 0.1 2 ’ ’
Dose (Gy) 0.013
AG01522D
‘el FILATERT rormal
Cell Line IMR-90 primary lung fibroblasts immortalized foreskin
lung . human
] fibroblasts o .
carcinoma diploid skin
fibroblasts

In GSE12435, GSE18760 and GSE21059 a-particles were used for the irradiation of the cells with
0.5 Gray irradiation dose in IMR-90 primary lung fibroblasts cell line. For the microarray
experiment, it has been used the Agilent-014850 whole human genome microarray 4x44K, GPL6480
platform was used.

In GSE12435 the total RNA was isolated after 4 hours from the irradiation of the cells. The
dataset contains four control (sham-irradiated) biological replicates, four irradiated biological
replicates and four bystander biological replicates.

In GSE18760 the total RNA was isolated after 30 minutes from the irradiation of the cells. The
dataset contains four control (sham-irradiated) biological replicates, four irradiated biological
replicates and four bystander biological replicates.

In GSE21059 the total RNA was isolated at several time points (30 minutes, 1 hour, 2, 4, 6 and
24 hours) from the irradiation of the cells. The dataset contains four control (sham-irradiated)
biological replicates per time-point (26 samples), four irradiated biological replicates per time-point
(26 samples) and four bystander biological replicates per time point (26 samples).

In GSE55869 a-particles were used for the irradiation of the cells with 1 Gray irradiation dose
in H1299 non-small cell lung carcinoma cell line. For the microarray experiment, it was used the
Agilent-026652 Whole Human Genome Microarray 4x44K v2, GPL13497 platform. The total RNA
was isolated after 4 hours from the irradiation of the cells. The dataset contains five control (non-
sham-irradiated) biological replicates, five irradiated biological replicates, five controls of irradiated
biological replicates, five bystander biological replicates, five controls of bystander biological
replicates and also the same samples with shRAD9 cells. For this study, the samples of shRAD9
have been excluded.

In GSE3201 a-particles was for the irradiation of the cells with 0.1 Gray irradiation dose in F11-
hTERT immortalized foreskin fibroblasts cell line. For the microarray experiment, it was used the
[umina HumanWG-6 v3.0 expression bead chip, GPL6884 platform. The total RNA was isolated
after 4, 8 and 26 hours from the irradiation of the cells. The dataset contains four control (sham-
irradiated) biological replicates per time-point (12 samples), four irradiated biological replicates per
time-point (12 samples) and four bystander biological replicates per time-point (12 samples).

In GSE25772 y-rays were used for the irradiation of the cells with a dose of 2 Gy in F11-hTERT
immortalized foreskin fibroblasts cell line. For the microarray experiment, it was used the Illumina
HumanWG-6 v3.0 expression bead chip, GPL6884 platform. The total RNA was isolated after 4, 8
and 26 hours from the irradiation of the cells. The dataset contains four control (sham-irradiated)
biological replicates per time-point (12 samples), four irradiated biological replicates per time-point
(12 samples) and four bystander biological replicates per time-point (12 samples).

In GSE8993 carbon-ions were used for the broad irradiation of the cells with 1.3, 0.13 and 0.013
Gy and for micro-irradiation of the cells with 0.12 Gy in AG01522D primary normal human diploid
skin fibroblasts cell line. For the microarray experiment, Agilent-014850 whole human genome
microarray 4x44K, GPL6480 platform was used. The total RNA was isolated after 2 and 6 hours
from the irradiation of the cells. The dataset contains control (non-sham-irradiated) technical
replicates for (micro-beam) bystander and (broad-beam) irradiated (4 samples), two control (sham-
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irradiated) technical replicates for (micro-beam) bystander and (broad-beam) irradiated per time-

point (8 samples), two bystander technical replicates per time-point, per irradiation dose (12

samples) and two irradiated technical replicates per time-point, per irradiation dose (12 samples).
Additionally, different experimental approaches were performed concerning the manifestation

of the RIBE. In particular, three different experimental designs had been applied:

e  Regarding the datasets GSE12435, GSE18760, GSE55869, GSE3201 and GSE21059 a method of
inner-outer dish had been used, with the outer dish having a 6-micron Mylar strips base for the
formation of the irradiated cells and the inner dish having 38-micron Mylar (which shields the
cell from the IR) for the formation of the bystander cells [33,37].

e About the dataset GSE25772 another experimental design had been used, with the transference
of conditioned medium from the irradiated cells to the “bystander” cells [35].

e Lastly, in the dataset GSE8993 micro beam and broad beam irradiation had been used so as to
form bystander and irradiated cells respectively [38].

4.2. Computational pipeline & data analysis

For each dataset, raw data were acquired using the Bioconductor package GEOquery [55] and
a pre-processing workflow for complete microarray analysis was implemented with R [R version
3.3.2 (2016-10-31)]/Bioconductor software [56,57] (Figure 4). For background correction [58] and
quantile normalization [59], the limma [60-62] R package was used for both Agilent and Illumina
platforms. Next, a non-specific intensity filtering procedure was applied, in order to remove low-
expressed probesets in each dataset, based on probeset intensity distributions. In Illumina platform
datasets, we used a further filtering step, based on a re-annotation pipeline regarding Illumina
probe sequences quality information from the R package illuminaHumanv3.db [63]. The filtering
procedure is described in detail in limma user’s guide (section 17.4)[64]. In parallel, exploratory
analysis methodologies, such as unsupervised clustering, were applied to assess any quality
problems and also to inspect putative batch effects regarding experimental design. Finally, to
measure the global expression alteration patterns between either bystander versus control or
irradiated versus control samples, the moderated t-test (from limma R package) was applied while
batch/study information variable was included as a covariate factor in the linear model. For all
statistical comparisons (except the ANOVA tests in some specific cases), we used the same double
cutoff to obtain the DE gene lists: an absolute value of logz fold change greater than 0.5 and an
adjusted p-value less than 0.05 (FDR) [65].

Download raw data from GEO ’ Main GO functional enrichment
analysis and gene prioritization
l with BioInfoMiner
Preprocessing: Reactome & MGI functional
Background correction enrichment analysis and gene
Quantile normalization with limma prioritization with BioInfoMiner
R package *
‘ Rank aggregation of ‘linker’
— — genes with RankAggreg R
‘ Non-specific intensity filtering package

Statistical inference with limma R B
package (linear modeling-limma Sma T —==——
unpaired moderated t-test) I

Figure 4. Computational pipeline of bioinformatic analysis
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The molecular pathway and functional analysis was performed using BiolnfoMiner [18,66],
which exploits several vocabularies with hierarchical structure, such as Gene Ontology, Reactome
Pathways, MGI and HPO phenotype ontologies, in order to provide a multi-faceted, functional,
gene-level description of the phenotypes studied. The analysis comprises ranking and prioritization
of enriched biological processes and genes.

We used BiolnfoMiner as the basic tool in order to identify overrepresented functional terms,
as well as to highlight subsets of genes with pivotal role in orchestrating RIBE. Briefly,
BioInfoMiner derives a subset of the input genes, in which the genes are ranked according to their
functional association with multiple, distinct cellular processes. These subsets of genes, termed
"linker genes", are implicated as central actors in various distinct biological processes, thus
providing a holistic view of the disease under investigation. The methodology is described in
Koutsandreas et al [66]

In order to derive a gene signature characterizing RIBE, we combined different subsets of
linker genes, derived from the application of the methodology with different vocabularies. namely
GO [11,12], Reactome [13,14], and MGI [15-17]. Firstly, we performed functional enrichment
analysis and gene prioritization for every gene list of the aforementioned bystander comparisons,
resulting in five linker gene lists for GO, five for Reactome and five for MGI vocabularies. Secondly,
we performed rank aggregation of the linker gene ordered lists with the package R RankAggreg
[67], for each vocabulary resulting in three ranked linker gene lists. Finally, the union of these three
gene lists resulted in 28 unique linker genes. The Venny [68] web tool was used for the illustration
of Venn diagrams. For KEGG [69] pathway enrichment analysis we used Enrichr [70,71] and for the
illustration of the derived enriched pathways we used Pathview [72,73] (supplementary material).

5. Conclusions

Through the implementation of a robust integrative bioinformatics analysis of transcriptomic
data regarding the molecular investigation of RIBE, a consensus signature of 28 linker genes was
derived (including IL1-B, IL-1A, IL6 & PTGS2 with pivotal role), which are associated with multiple
and diverse underlying biological mechanisms. Interestingly, reverse gene expression was observed
for a specific subset of DE genes, common in both a-particles and carbon-ion IR comparisons
regarding RIBE, a finding that potentially suggests an alternate biological response mechanism
adjustable to different modes of radiation. This is further supported from the functional enrichment
results of the comparative analysis, highlighting distinct biological processes, such as induction of
inflammatory response, cell growth and healing in bystander cells of a-particles IR experiments,
whereas positive regulation of apoptotic cell death, is mainly affected in the case of carbon-ion IR.
Overall, our results provide a detailed account for the molecular mechanisms implicated in RIBE,
with potential interest in cancer therapeutics research. In this direction, our derived RIBE signature
of candidate genes could be further investigated in other independent cancer transcriptomic
datasets, in order to examine potentially interesting association patterns with cell survival and
response to irradiation.

Supplementary Materials: The following are available online, Figure S1: Bar plot of the amount of associated
genes, Figure S2: Illustrative Heatmap of the 26 common DE genes, Figure S3: Illustrative example of NF-
kappaB signaling pathway, Table S1: Common Mouse Genome Informatics (MGI) terms of a-particles IR, Table
S2: Common MGI terms of carbon-ion IR, Table S3: Evaluation of differences in MGI terms of GSE12435 and
GSE18760 datasets, Table S4: Evaluation of differences in MGI terms of GSE8993 dataset, Table S5: Common
Reactome pathways terms of a-particles IR, TableS6: Common Reactome pathways terms of carbon-ion IR,
Table S7: Evaluation of differences in Reactome pathways terms of GSE12435 and GSE18760 datasets, Table S8:
Evaluation of differences in Reactome pathways terms of dataset GSE8993.
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