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Abstract: In this paper a robust version of the Wald test statistic for composite likelihood is11

considered by using the composite minimum density power divergence estimator instead of the12

composite maximum likelihood estimator. This new family of test statistics will be called Wald-type13

test statistics. The problem of testing a simple and a composite null hypothesis is considered and14

the robustness is studied on the basis of a simulation study. Previously, the composite minimum15

density power divergence estimator is introduced and its asymptotic properties are studied.16
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1. Introduction19

It is well-known that the likelihood function is one of the most important tools in the classical20

inference and the resultant estimator, the maximum likelihood estimator (MLE), has nice efficient21

properties although it has no so good robustness properties.22

Tests based on MLE (likelihood ratio test, Wald test, Rao’s test, etc.) have, usually, good efficient23

properties but in presence of outliers the behavior is not so good. To solve these situations many24

robust estimators have been introduced in the statistical literature, some of them based on distance25

measures or divergence measures. In particular, density power divergence measures introduced in [1]26

have given good robust estimators: minimum density power divergences estimators (MDPDE) and,27

based on them, some robust test statistics have been considered for testing simple and composite null28

hypotheses. Some of these tests are based on divergence measures (see [2] and [3]) and some other29

are used to extend the classical Wald test, see [4], [5], [6] and references therein.30

The classical likelihood function requires exact specification of the probability density function31

but in most applications the true distribution is unknown. In some cases, where the data distribution32

is available in an analytic form, the likelihood function is still mathematically intractable due to the33

complexity of the probability density function. There are many alternatives to the classical likelihood34

function; in this paper we focus on the composite likelihood. Composite likelihood is an inference35

function derived by multiplying a collection of component likelihoods; the particular collection36

used is a conditional determined by the context. Therefore, the composite likelihood reduces the37

computational complexity so that it is possible to deal with large datasets and very complex models38

even when the use of standard likelihood methods is not feasible. Asymptotic normality of the39

composite maximum likelihood estimator (CMLE) still holds with Godambe information matrix to40

replace the expected information in the expression of the asymptotic variance-covariance matrix. This41

allows the construction of composite likelihood ratio test statistics, Wald-type test statistics as well as42

Score-type statistics. A review of composite likelihood methods is given in [7]. We have to mention43

at this point that CMLE, as well as the respective test statistics, are seriously affected by the presence44

of outliers in the set of available data.45
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The main purpose of the paper is to introduce a new robust family of estimators, namely,46

composite minimum density power divergence estimators (CMDPDE) as well as a new family of47

Wald-type test statistics based on the CMDPDE in order to get broad classes of robust estimators and48

test statistics.49

In Section 2 we introduce the CMDPDE and we obtain the estimating system of equations to50

find it. The asymptotic distribution of the CMDPDE is obtained in Subsection 2.1. Subsection 2.251

is devoted to the definition of a family of Wald-type test statistics, based on CMDPDE, for testing52

simple and composite null hypotheses. The asymptotic distribution of these Wald-type test statistics53

is obtained as well as some asymptotic approximations to the power function. A numerical example,54

presented previously in [8], is studied in Section 3. A simulation study based on this example is55

also presented (Subsection 3.1), in order to study the robustness of the CMDPDE as well as the56

performance of the Wald-type test statistics based on CMDPDE. Proofs of results are presented in57

the Appendix A.58

2. Composite Minimum Density Power Divergence Estimator59

We adopt here the notation by [9], regarding composite likelihood function and the respective60

CMLE. In this regard, let { f (·; θ), θ ∈ Θ ⊆ Rp, p ≥ 1} be a parametric identifiable family of61

distributions for an observation y, a realization of a random m-vector Y . In this setting, the composite62

density based on K different marginal or conditional distributions has the form63

CL(θ,y) =
K

∏
k=1

f wk
Ak
(yj, j ∈ Ak; θ)

and the corresponding composite log-density has the form64

c`(θ,y ) =
K

∑
k=1

wk`Ak (θ,y),

with65

`Ak (θ,y) = log fAk (yj, j ∈ Ak; θ),

where {Ak}K
k=1 is a family of random variables associated either with marginal or conditional66

distributions involving some yj, j ∈ {1, ..., m} and wk, k = 1, ..., K are non-negative and known67

weights. If the weights are all equal, then they can be ignored. In this case all the statistical procedures68

produce equivalent results.69

Let also y1, ..., yn be independent and identically distributed replications of y. We denote by70

c`(θ,y1, ..., yn) =
n

∑
i=1

c`(θ,yi)

the composite log-likelihood function for the whole sample. In complete accordance with the classic71

MLE, the CMLE, θ̂c, is defined by72

θ̂c = arg max
θ∈Θ

n

∑
i=1

c`(θ,yi) = arg max
θ∈Θ

n

∑
i=1

K

∑
k=1

wk`Ak (θ,yi). (1)

It can be also obtained by the solution of the equations73

u(θ,y1, ...,yn) = 0p,

where74
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u(θ,y1, ...,yn) =
∂c`(θ,y1, ...,yn)

∂θ
=

n

∑
i=1

K

∑
k=1

wk
∂`Ak (θ,yi)

∂θ
.

We are going to see how it is possible to get the CMLE, θ̂c, on the basis of the Kullback-Leibler75

divergence measure. We shall denote by g (y) the density generating the data with respective76

distribution function denoted by G. The Kullback-Leibler divergence between the density function77

g (y) and the composite density function CL(θ,y) is given by78

dKL(g (.) , CL(θ, .)) =
∫
Rm

g(y) log
g(y)
CL(θ,y)

dy

=
∫
Rm

g(y) log g(y) dy−
∫
Rm

g(y) log CL(θ,y)dy.

The term79 ∫
Rm

g(y) log g(y)dy

can be removed because it does not depend on θ; hence, we can define the following estimator of θ,80

based on the Kullback-Leibler divergence81

θ̂KL = arg min
θ

dKL(g (.) , CL(θ, .))

or equivalently82

θ̂KL = arg min
θ

(
−
∫
Rm

g(y) log CL(θ, y)dy
)

= arg min
θ

(
−
∫
Rm

log CL(θ,y)dG(y)
)

. (2)

If we replace in (2) the distribution function G by the empirical distribution function Gn we have83

θ̂KL = arg min
θ

(
−
∫
Rm

log CL(θ,y)dGn(y)
)

= arg min
θ

(
− 1

n

n

∑
i=1

c`(θ,yi)

)

and this expression is equivalent to the expression (1). Therefore, the estimator θ̂KL coincides with84

the CMLE. Based on the previous idea we are going to introduce, in a natural way, the composite85

minimum density power divergence estimator (CMDPDE).86

The CMLE, θ̂c, obeys asymptotic normality, see [9], and in particular87

√
n(θ̂c − θ)

L−→
n→∞

N
(

0, G−1
∗ (θ)

)
,

where G∗(θ) denotes Godambe information matrix, defined by88

G∗(θ) = H(θ)J−1(θ)H(θ),

with H(θ) being the sensitivity or Hessian matrix and J(θ) being the variability matrix, defined,89

respectively, by90
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H(θ) = Eθ[− ∂
∂θ uT(θ,Y)],

J(θ) = Varθ[u(θ,Y)] = Eθ[u(θ,Y)uT(θ,Y)],

where the superscript T denotes the transpose of a vector or a matrix.91

The matrices H(θ) and J(θ) are, by definition, nonegative definite matrices but throughout this92

paper both, H(θ) and J(θ), are assumed to be positive definite matrices. Since the component score93

functions can be correlated, we have H(θ) 6= J(θ). If c`(θ,y) is a true log-likelihood function then94

H(θ) = J(θ) = IF(θ), being IF(θ) the Fisher information matrix of the model. Using multivariate95

version of the Cauchy-Schwarz inequality we have that the matrix G∗(θ) − IF(θ) is non-negative96

definite, i.e., the full likelihood function is more efficient than any other composite likelihood function97

(cf. [10], Lemma 4A).98

We are going now to proceed to the definition of the CMDPDE which is based on the density99

power divergence measure, defined as follows. For two densities p and q associated with two100

m-dimensional random variables respectively, density power divergence (DPD) between p and q was101

defined in [1] by102

dβ(p, q) =
∫
Rm

{
q(y)1+β −

(
1 +

1
β

)
q(y)β p(y) +

1
β

p(y)1+β

}
dy,

for β > 0, while for β = 0 it is defined by103

lim
β→0

dβ(p, q) = dKL(p, q).

For more details about this family of divergence measures we refer to [11].104

In this paper we are going to consider DPD measures between the density function g (y) and the105

composite density function CL(θ,y), i.e.,106

dβ(g (.) ,CL(θ, .)) =
∫
Rm

{
CL(θ,y)1+β −

(
1 +

1
β

)
CL(θ,y)βg(y) +

1
β

g(y)1+β

}
dy (3)

for β > 0, while for β = 0 we have,107

lim
β→0

dβ(g (.) ,CL(θ, .)) = dKL(g (.) ,CL(θ, .)).

The CMDPDE, θ̂
β
c , is defined by108

θ̂
β
c = arg min

θ ∈Θ
dβ(g (.) ,CL(θ, .)).

The term109 ∫
Rm

g(y)1+βdy

does not depend on θ and consequently the minimization of (3) with respect to θ is equivalent to110

minimize111 ∫
Rm

(
CL(θ,y)1+β −

(
1 +

1
β

)
CL(θ,y)βg(y)

)
dy

or112
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∫
Rm
CL(θ,y)1+βdy−

(
1 +

1
β

) ∫
Rm
CL(θ,y)βdG(y).

Now, we replace the distribution function G by the empirical distribution function Gn and we get113

∫
Rm
CL(θ,y)1+βdy−

(
1 +

1
β

)
1
n

n

∑
i=1
CL(θ,yi)

β. (4)

In consequence, for a fixed value of β, the CMDPDE of θ can be obtained by minimizing the114

expression given in (4). Or equivalently by maximizing the expression115

1
nβ

n

∑
i=1
CL(θ,yi)

β − 1
1 + β

∫
Rm
CL(θ,y)1+βdy. (5)

Under differentiability of the model the maximization of the function in equation (5) leads to an116

estimating system of equations of the form117

1
n

n

∑
i=1
CL(θ,yi)

β ∂c`(θ,yi)

∂θ
−
∫
Rm

∂c`(θ,y)
∂θ

CL(θ,y)1+βdy = 0. (6)

The system of equations (6) can be written as118

1
n

n

∑
i=1
CL(θ,yi)

βu(θ,yi)−
∫
Rm

u(θ,y)CL(θ,y)1+βdy = 0. (7)

and the CMDPDE θ̂
β
c of θ is obtained by the solution of (7).119

2.1. Asymptotic Distribution of the Composite Minimum Density Power Divergence Estimator120

Equation (7) can be written as follows121

1
n

n

∑
i=1

Ψβ (yi, θ) = 0

with122

Ψβ (yi, θ) = CL(θ,yi)
βu(θ,yi)−

∫
Rm

u(θ,y)CL(θ,y)1+βdy.

Therefore the CMDPDE, θ̂
β
c , is an M-estimator. In this case it is well-known (cf.[12]) that the123

asymptotic distribution of θ̂
β
c is given by124

√
n(θ̂

β
c − θ)

L−→
n→∞

N
(

0, H−1
β (θ)Jβ(θ)H−1

β (θ)
)

,

being125

Hβ(θ) = Eθ

[
−

∂Ψβ (Y , θ)

∂θT

]
and126

Jβ(θ) = Eθ

[
Ψβ (Y , θ)Ψβ (Y , θ)T

]
.

We are going to establish the expressions of Hβ(θ) and Jβ(θ). In relation to Hβ(θ) we have127
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∂Ψβ (y, θ)

∂θT = βCL(θ,y)β−1CL(θ,y)u(θ,y)Tu(θ,y )+ CL(θ,y)β ∂u(θ,y)T

∂θ

−
∫
Rm

∂u(θ,y)T

∂θ
CL(θ,y)1+βd y− (1 + β)

∫
Rm
CL(θ,y)βCL(θ,y)u(θ,y)Tu(θ,y)dy

and128

Hβ(θ) = Eθ

[
−

∂Ψβ (Y , θ)

∂θT

]
=
∫
Rm
CL(θ,y)β+1u(θ,y)Tu(θ,y)dy. (8)

In relation to Jβ(θ) we have,129

Ψβ (Y , θ)Ψβ (Y , θ)T =

(
CL(θ,y)βu(θ,y)−

∫
Rm

u(θ,y)CL(θ,y)1+βdy
)

(
CL(θ,y)βu(θ,y)T −

∫
Rm

u(θ,y)TCL(θ,y)1+βdy
)

= CL(θ,y)2βu(θ,y)u(θ,y)T − CL(θ,y)βu(θ,y)
∫
Rm

u(θ,y)TCL(θ,y)1+βdy

−CL(θ,y)βu(θ,y)T
∫
Rm

u(θ,y)CL(θ,y)1+βdy

+

(∫
Rm

u(θ,y)CL(θ,y)1+βdy
)(∫

Rm
u(θ,y)TCL(θ,y)1+βdy

)
.

Then130

Jβ(θ) = Eθ

[
Ψβ (Y , θ)Ψβ (Y , θ)T

]
=
∫
Rm
CL(θ,y)2β+1u(θ,y)u(θ,y)Tdy (9)

−
∫
Rm
CL(θ,y)β+1u(θ,y)dy

∫
Rm

u(θ,y)TCL(θ,y)1+βdy. (10)

Based on the previous results we have the following Theorem.131

Theorem 1. Under some regularity conditions (cf. [13], pp.58 or [14], pp.144) we have132

√
n(θ̂

β
c − θ)

L−→
n→∞

N
(

0, H−1
β (θ)Jβ(θ)H−1

β (θ)
)

,

where the matrices Hβ(θ) and Jβ(θ) were defined in (8) and (9), respectively.133

Remark 1. If we apply the previous theorem for β = 0 then we get the CMLE and the asymptotic134

variance covariance matrix coincides with Godambe information matrix because135

Hβ(θ ) = H(θ) and Jβ(θ ) = J(θ),

for β = 0.136

2.2. Wald-Type Tests Statistics Based on Composite Minimum Power Divergence Estimator137

Wald-type test statistics based on MDPDE have been considered with excellent results in relation138

to the robustness in different statistical problems, see for instance [4], [5] and [6].139

Motivated by those works, we focus in this section on the definition and the study of Wald-type140

test statistics which are defined by means of CMDPDE estimators instead of MDPDE estimators. In141

this context, if we are interested in testing142
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H0 : θ = θ0 against H1 : θ 6= θ0, (11)

we can consider the family of Wald-type test statistics143

W0
n,β = n(θ̂

β
c − θ0)

T
(

H−1
β (θ0)Jβ(θ0)H−1

β (θ0)
)−1

(θ̂
β
c − θ0). (12)

For β = 0 we get the classical Wald type test statistic considered in the composite likelihood methods144

(see, for instance, [7]).145

In the following Theorem we present the asymptotic null distribution of the family of the146

Wald-type test statistics W0
n,β.147

Theorem 2. The asymptotic distribution of the Wald-type test statistics given in (12) is a chi-square148

distribution with p degrees of freedom.149

The proof of this Theorem 2 is given in the Appendix A.1.150

Theorem 3. Let θ∗ be the true value of the parameter θ, with θ∗ 6= θ0. Then it holds151

√
n
(

l
(

θ̂
β
c

)
− l (θ∗)

) L−→
n→∞

N(0, σ2
W0

β
(θ∗)),

being152

l (θ) = (θ− θ0)
T
(

H−1
β (θ0)Jβ(θ0)H−1

β (θ0)
)−1

(θ− θ0)

and153

σ2
W0

β
(θ∗) = 4 (θ∗ − θ0)

T
(

H−1
β (θ0)Jβ(θ0)H−1

β (θ0)
)−1

(θ∗ − θ0) . (13)

The proof of the Theorem is outlined in the Appendix A.2.154

Remark 2. Based on the previous result we can approximate the power, βW0
n
, of the Wald-type test155

statistics in θ∗, by156

βW0
n,β

(θ∗) = Pr
(

W0
n,β > χ2

p,α/θ = θ∗
)

= Pr

(
l
(

θ̂
β
c

)
− l (θ∗) >

χ2
p,α

n
− l (θ∗)

∣∣∣∣∣ θ = θ∗
)

= Pr

(
√

n
(

l
(

θ̂
β
c

)
− l (θ∗)

)
>
√

n

(
χ2

p,α

n
− l (θ∗)

)∣∣∣∣∣ θ = θ∗
)

= Pr

√n

(
l
(

θ̂
β
c

)
− l (θ∗)

)
σW0

n,β
(θ∗)

>

√
n

σW0
n,β

(θ∗)

(
χ2

p,α

n
− l (θ∗)

)∣∣∣∣∣∣ θ = θ∗


= 1−Φn

 √
n

σW0
n,β

(θ∗)

(
χ2

p,α

n
− l (θ∗)

) ,

where Φn is a sequence of distributions functions tending uniformly to the standard normal157

distribution function Φ(x).158

It is clear that159
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lim
n→∞

βW0
n,β

(θ∗) = 1

for all α ∈ (0, 1) . Therefore the Wald-type test statistics are consistent in the sense of Fraser.160

In many practical hypothesis testing problems, the restricted parameter space Θ0 ⊂ Θ is defined161

by a set of r restrictions of the form162

g(θ) = 0r (14)

on Θ, where g : Rp → Rr is a vector-valued function such that the p× r matrix163

G (θ) =
∂gT(θ)

∂θ
(15)

exists and is continuous in θ and rank(G (θ)) = r; where 0r denotes the null vector of dimension r.164

Now we are going to consider composite null hypotheses, Θ0 ⊂ Θ, in the way considered in (14)165

and our interest is in testing166

H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0 (16)

on the basis of a random simple of size n, X1, ....Xn.167

Definition 4. The family of Wald-type test statistics for testing (16) is given by168

Wn,β = ng
(

θ̂
β
c

)T [
GT(θ̂

β
c )H−1

β (θ̂
β
c )Jβ(θ̂

β
c )H−1

β (θ̂
β
c )G(θ̂

β
c )
]−1

g
(

θ̂
β
c

)
, (17)

where the matrices G(θ), Hβ (θ) and Jβ (θ) were defined in (15), (8) and (9), respectively and the169

function g in (14).170

If we consider β = 0 then θ̂β coincides with the MLE, θ̂, of θ and H−1
β (θ̂)Jβ(θ̂)H−1

β (θ̂) with the171

inverse of the Fisher information matrix and then we get the classical Wald test statistic considered in172

the composite likelihood methods.173

In the next theorem we present the asymptotic distribution of Wn,β.174

Theorem 5. The asymptotic distribution of the Wald-type test statistics, given in (17), is a chi-square175

distribution with r degrees of freedom.176

The proof of this Theorem is presented in the Appendix A.3.177

Consider the null hypothesis H0 : θ ∈ Θ0 ⊂ Θ . By Theorem 5, the null hypothesis should178

be rejected if Wn,β ≥ χ2
r,α. The following theorem can be used to approximate the power function.179

Assume that θ∗ /∈ Θ0 is the true value of the parameter so that θ̂β
a.s.−→

n→∞
θ∗.180

Theorem 6. Let θ∗ be the true value of the parameter, with θ∗ 6= θ0. Then it holds181

√
n
(

l∗
(

θ̂
β
c

)
− l∗ (θ∗)

)
L−→

n→∞
N(0, σ2

Wβ
(θ∗))

being182

l∗ (θ) = ng (θ)T
[

GT(θ0)H−1
β (θ0)Jβ(θ0)H−1

β (θ0)G(θ0)
]−1

g (θ)

and183
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σ2
Wβ

(θ∗) =

(
∂l∗ (θ)

∂θ

)T

θ=θ∗
H−1

β (θ0)Jβ(θ0)H−1
β (θ0)

(
∂l∗ (θ)

∂θ

)
θ=θ∗

. (18)

3. Numerical Example184

In this section we shall consider an example, studied previously by [8], in order to study the185

robustness of CMLE. The aim of this section is to clarify the different issues which are discussed in186

the previous sections.187

Consider the random vector Y = (Y1, Y2, Y3, Y4)
T which follows a four dimensional normal188

distribution with mean vector µ = (µ1, µ2, µ3, µ4)
T and variance-covariance matrix189

Σ =


1 ρ 2ρ 2ρ

ρ 1 2ρ 2ρ

2ρ 2ρ 1 ρ

2ρ 2ρ ρ 1

 , (19)

i.e., we suppose that the correlation between Y1 and Y2 is the same as the correlation between Y3 and190

Y4. Taking into account that Σ should be semi- positive definite, the following condition is imposed,191

− 1
5 ≤ ρ ≤ 1

3 . In order to avoid several problems regarding the consistency of the CMLE of the192

parameter ρ (cf. [8]), we shall consider the composite likelihood function193

CL(θ, y) = fA1(θ, y) fA2(θ, y),

where194

fA1(θ, y) = f12(µ1, µ2, ρ, y1, y2),

fA2(θ, y) = f34(µ3, µ4, ρ, y3, y4),

where f12 and f34 are the densities of the marginals of Y , i.e. bivariate normal distributions with mean195

vectors (µ1, µ2)
T and (µ3, µ4)

T , respectively, and common variance-covariance matrix196 (
1 ρ

ρ 1

)
,

with densities given by197

fh,h+1(µh, µh+1, ρ, yh, yh+1) =
1

2π
√

1− ρ2
exp

{
− 1

2(1−ρ2)
Q(yh, yh+1)

}
, h ∈ {1, 3},

being198

Q(yh, yh+1) = (yh − µh)
2 − 2ρ(yh − µh)(yh+1 − µh+1) + (yh+1 − µh+1)

2, h ∈ {1, 3}.

By θ we are denoting the parameter vector of our model, i.e, θ = (µ1, µ2, µ3, µ4, ρ)T . We are going to199

get the system of equations that it is necessary to solve in order to obtain the CMDPDE200

θ̂
β
c =

(
µ̂

β
1,c, µ̂

β
2,c, µ̂

β
3,c, µ̂

β
4,c, ρ̂

β
c

)T
.

The estimator θ̂
β
c is obtained by maximizing the expression (4) with respect to θ. Firstly we are going201

to get202
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∫
R4

∂CL(θ, y)1+β

∂θ
dy =

∂

∂θ

∫
R4
CL(θ, y)1+βdy

=
∂

∂θ

∫
R4

f12(µ1, µ2, ρ, y1, y2)
β+1 f34(µ3, µ4, ρ, y3, y4)

β+1dy1dy2dy3dy4

=
∂

∂θ

(∫
R2

f12(µ1, µ2, ρ, y1, y2)
β+1dy1dy2

∫
R2

f34(µ3, µ4, ρ, y3, y4)
β+1dy3dy4

)
.

Based on [13] (pp. 32)203

∫
R2

f12(µ1, µ2, ρ, y1, y2)
β+1dy1dy2 =

∫
R2

f34(µ3, µ4, ρ, y3, y4)
β+1dy3dy4 =

(
1− ρ2)− β

2

β + 1
(2π)−β.

Then204

∫
R4

∂CL(θ, y)1+β

∂θ
d y =

∂

∂θ

∫
R4
CL(θ, y)1+βd y =

∂

∂θ

(
1− ρ2)−β

(β + 1)2 (2π)−2β

and205

∂

∂µi

(
1− ρ2)−β

(β + 1)2 (2π)−2β = 0, i = 1, 2, 3, 4,

while206

∂

∂ρ

(
1− ρ2)−β

(β + 1)2 (2π)−2β =
β(2π)−2β

(β + 1)2
2ρ

(1− ρ2)
β+1 .

Now, we are going to get207

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂θ

in order to obtain the CMDPDE, θ̂
β
c , by maximizing (4) with respect to θ.208

We have,209

CL(θ, y)β = f12(µ1, µ2, ρ, y1, y2)
β f34(µ3, µ4, ρ, y3, y4)

β.

Therefore,210

∂CL(θ, yi)
β

∂µ1
= β f12(µ1, µ2, ρ, y1i, y2i)

β−1
{
− 1

2 (1− ρ2)
[−2 (y1i − µ1) + 2ρ (y2i − µ2)]

}
f34(µ3, µ4, ρ, y3i, y4i)

β

and the expression211

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂µ1
= 0

leads to the estimator of µ1, given by212
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1
n

n

∑
i=1

f12(µ1, µ2, ρ, y1i, y2i)
β−1 f34(µ3, µ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y1i − µ1) + 2ρ (y2i − µ2)]

}
= 0.

(20)
In a similar way213

∂CL(θ, yi)
β

∂µ2
= β f12(µ1, µ2, ρ, y1i, y2i)

β−1
{
− 1

2 (1− ρ2)
[−2 (y2i − µ2) + 2ρ (y1i − µ1)]

}
f34(µ3, µ4, ρ, y3i, y4i)

β,

∂CL(θ, yi)
β

∂µ3
= β f12(µ1, µ2, ρ, y1i, y2i)

β

{
− 1

2 (1− ρ2)
[−2 (y3i − µ3) + 2ρ (y4i − µ4)]

}
f34(µ3, µ4, ρ, y3i, y4i)

β−1

and

∂CL(θ, yi)
β

∂µ4
= β f12(µ1, µ2, ρ, y1i, y2i)

β

{
− 1

2 (1− ρ2)
[−2 (y4i − µ4) + 2ρ (y3i − µ3)]

}
f34(µ3, µ4, ρ, y3i, y4i)

β−1.

Therefore the equations214

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂µ2
= 0,

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂µ3
= 0 and

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂µ4
= 0

lead to the estimators of µ2, µ3 and µ4, which should be read as follows215

1
n

n

∑
i=1

f12(µ1, µ2, ρ, y1i, y2i)
β−1 f34(µ3, µ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y2i − µ2) + 2ρ (y1i − µ1)]

}
= 0,

(21)

1
n

n

∑
i=1

f12(µ1, µ2, ρ, y1i, y2i)
β−1 f34(µ3, µ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y3i − µ3) + 2ρ (y4i − µ4)]

}
= 0

(22)
and216

1
n

n

∑
i=1

f12(µ1, µ2, ρ, y1i, y2i)
β f34(µ3, µ4, ρ, y3i, y4i)

β

{
− 1

2 (1− ρ2)
[−2 (y4i − µ4) + 2ρ (y3i − µ3)]

}
= 0.

(23)
Now it is necessary to get217

∂CL(θ, yi)
β

∂ρ
=

∂ f12(µ1, µ2, ρ, y1i, y2i)
β f34(µ3, µ4, ρ, y3i, y4i)

β

∂ρ

= β f12(µ1, µ2, ρ, y1i, y2i)
β−1 f34(µ3, µ4, ρ, y3i, y4i)

β ∂ f12(µ1, µ2, ρ, y1i, y2i)

∂ρ

+β f12(µ1, µ2, ρ, y1i, y2i)
β f34(µ3, µ4, ρ, y3i, y4i)

β−1 ∂ f34(µ3, µ4, ρ, y3i, y4i)

∂ρ
.
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But ∂ f12(µ1,µ2,ρ,y1i ,y2i)
∂ρ is given by218

1
2π

(−1)
(1− ρ2)

(−2ρ)

2 (1− ρ2)
1
2

exp
{

(−1)
2 (1− ρ2)

[
(y1i − µ1)

2 − 2ρ (y1i − µ1) (y2i − µ2) + (y2i − µ2)
2
]}

+
1

2π (1− ρ2)
1
2

exp
{

(−1)
2 (1− ρ2)

[
(y1i − µ1)

2 − 2ρ (y1i − µ1) (y2i − µ2) + (y2i − µ2)
2
]}

[
−ρ

(1− ρ2)
2

(
(y1i − µ1)

2 − 2ρ (y1i − µ1) (y2i − µ2) + (y2i − µ2)
2
)
+

1
(1− ρ2)

(y1i − µ1) (y2i − µ2)

]
=

ρ

1− ρ2 f12(µ1, µ2, ρ, y1i, y2i) + f12(µ1, µ2, ρ, y1i, y2i)[
−ρ

(1− ρ2)
2

(
(y1i − µ1)

2 − 2ρ (y1i − µ1) (y2i − µ2) + (y2i − µ2)
2
)
+

1
(1− ρ2)

(y1i − µ1) (y2i − µ2)

]

= f12(µ1, µ2, ρ, y1i, y2i)
ρ

1− ρ2

[
1− 1

1− ρ2

(
(y1i − µ1)

2 − 2ρ (y1i − µ1) (y2i − µ2) + (y2i − µ2)
2
)

+
1
ρ
(y1i − µ1) (y2i − µ2)

]
.

In a similar way ∂ f34(µ3,µ4,ρ,y3i ,y4i)
∂ρ is given by219

f34(µ3, µ4, ρ, y3i, y4i)
ρ

1− ρ2

[
1− 1

1− ρ2

(
(y3i − µ3)

2 − 2ρ (y3i − µ3) (y4i − µ4) + (y4i − µ4)
2
)

+
1
ρ
(y3i − µ3) (y4i − µ4)

]
.

Therefore,220

∂CL(θ, yi)
β

∂ρ
=

ρ

1− ρ2 β f12(µ1, µ2, ρ, y1i, y2i)
β f34(µ3, µ4, ρ, y3i, y4i)

β{
2 +

1
ρ
{(y1i − µ1) (y2i − µ2) + (y3i − µ3) (y4i − µ4)}

− 1
1− ρ2

(
(y1i − µ1)

2 − 2ρ (y1i − µ1) (y2i − µ2) + (y2i − µ2)
2
)

− 1
1− ρ2

(
(y3i − µ3)

2 − 2ρ (y3i − µ3) (y4i − µ4) + (y4i − µ4)
2
)}

. (24)

So the equation in relation to ρ is given by221

1
nβ

n

∑
i=1

∂CL(θ, yi)
β

∂ρ
− 1

β + 1

∫
Rm

∂CL(θ, yi)
β+1

∂ρ
dy = 0

being222

∫
Rm

∂CL(θ, yi)
β+1

∂θ
dy =

β(2π)−2β

(β + 1)2
2ρ

(1− ρ2)
β+1 (25)

and223

∂CL(θ, yi)
β

∂ρ
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was given in (24).224

Finally,225

θ̂
β
c =

(
µ̂

β
1,c, µ̂

β
2,c, µ̂

β
3,c, µ̂

β
4,c, ρ̂

β
c

)T

will be obtained as the solution of the system of equations given by (20), (21), (22), (23) and (25).226

After some heavy algebraic manipulations specified in Appendix, Section A.4, the sensitivity227

and variability matrices are given by228

Hβ(θ) =
Cβ

(β + 1)(1− ρ2)


1 −ρ 0 0 0
−ρ 1 0 0 0
0 0 1 −ρ 0
0 0 −ρ 1 0

0 0 0 0 2 (ρ2+1)+2ρ2β2

(1−ρ2)(1+β)

 (26)

and229

Jβ(θ) = H2β(θ)− ξβ(θ)
Tξβ(θ), (27)

where Cβ = 1
(β+1)2

(
1

(2π)2(1−ρ2)

)β
and ξβ(θ) = (0, 0, 0, 0,

2ρβCβ

(β+1)(1−ρ2)
)T .230

3.1. Simulation Study231

A simulation study, developed by using the R statistical programming environment, is presented232

in order to study the behavior of the CMDPDE as well as the behavior of the Wald-type test statistics233

based on them. The theoretical model studied in the previous example is considered. The parameters234

in the model are235

θ = (µ1, µ2, µ3, µ4, ρ)T

and we are interested in studying the behavior of the CMDPDE236

θ̂
β
c =

(
µ̂

β
1,c, µ̂

β
2,c, µ̂

β
3,c, µ̂

β
4,c, ρ̂

β
c

)T

as well as the behavior of the Wald-type test statistics for testing237

H0 : ρ = ρ0 against H1 : ρ 6= ρ0. (28)

Through R = 10, 000 replications of the simulation experiment we compare, for different values238

of β, the corresponding CMDPDE through the root of the mean square errors (RMSE), when the true239

value of the parameters is θ∗ = (0, 0, 0, 0, ρ∗) and ρ∗ ∈ {−0.1, 0, 0.15}. We pay special attention to240

the problem of the existence of some outliers in the sample, generating a 5% of the samples with θ̃ =241

(1, 3,−2,−1, ρ̃) and ρ̃ ∈ {−0.15, 0.1, 0.2}, respectively. Notice that, although the case ρ∗ = 0 has been242

considered, this case is less important since taking into account the way of the theoretical model under243

consideration and having the case of independent observations, the composite likelihood theory is244

useless. Results are presented in Table 1 and Table 2. Two points deserve our attention. The first one245

is that, as expected, RMSEs for contaminated data are always greater than RMSEs for pure data and246

that the RMSEs decrease when the sample size n increases. The second is that, while in pure data247

RMSEs are greater for big values of β, when working with contaminated data the CMDPDE with248

medium-low values of β (β ∈ {0.1, 0.2, 0.3}) present the best behavior in terms of efficiency.249

For a nominal size α = 0.05, with the model under the null hypothesis given in (28), the estimated250

significance levels for different Wald-type test statistics are given by251
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α̂
(β)
n (ρ0) = P̂r(Wβ

n > χ2
1,0.05|H0) =

R
∑

i=1
I(Wβ

n,i) > χ2
1,0.05|ρ0)

R
,

with I(S) being the indicator function (with value 1 if S is true and 0 otherwise). Empirical levels with252

the same previous parameter values are presented in Table 3 (pure data) and Table 4 (5% of outliers).253

While medium-high values of β are not recommended at all, CMLE is the best when working with254

pure data. However the lack of robustness of CMLE test is impressive, as it can be seen in Table 4. The255

effect of contamination in medium-low values of β is much lighter, while for medium-high values of256

β it can return deceptively beneficial.257

For finite sample sizes and nominal size α = 0.05, the simulated powers are obtained under H1258

in (28), when ρ∗ ∈ {−0.1, 0, 0.1}, ρ̃ = 0.2 and ρ0 = 0.15 (Table 5 and Table 6). The (simulated) power259

for different composite Wald-type test statistics is obtained by260

β
(β)
n (ρ0, ρ∗) = Pr(Wβ

n > χ2
1,0.05|H1) and β̂

(λ)
n (ρ0, ρ∗) =

R
∑

i=1
I(Wβ

n,i > χ2
1,0.05|ρ0, ρ∗)

R
.

As expected, when we get closer to the null hypothesis and when decreasing the sample sizes, the261

power decreases. With pure data the best behavior is obtained with β = 0 and with contaminated262

data the best results are obtained for medium values of β.263

Table 1. RMSEs for pure data

n = 100 n = 200 n = 300
ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.0958 0.0950 0.0948 0.0683 0.0668 0.0666 0.0553 0.0552 0.0551
β = 0.1 0.0972 0.0961 0.0966 0.0693 0.0676 0.0677 0.0560 0.0559 0.0561
β = 0.2 0.1009 0.0991 0.1007 0.0718 0.0697 0.0704 0.0581 0.0575 0.0585
β = 0.3 0.1061 0.1034 0.1062 0.0754 0.0727 0.0742 0.0612 0.0599 0.0619
β = 0.4 0.1123 0.1087 0.1127 0.0797 0.0762 0.0787 0.0649 0.0628 0.0659
β = 0.5 0.1195 0.1147 0.1200 0.0845 0.0803 0.0837 0.0691 0.0661 0.0702
β = 0.6 0.1274 0.1215 0.1280 0.0898 0.0848 0.0892 0.0737 0.0697 0.0748
β = 0.7 0.1361 0.1291 0.1369 0.0955 0.0897 0.0952 0.0786 0.0736 0.0797
β = 0.8 0.1456 0.1374 0.1467 0.1015 0.0905 0.1016 0.0839 0.0778 0.0849

Table 2. RMSEs for contaminated data

n = 100 n = 200 n = 300
ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15 ρ = −0.1 ρ = 0 ρ = 0.15

β = 0 0.1371 0.1336 0.1287 0.121 0.1167 0.1113 0.1144 0.1098 0.1047
β = 0.1 0.1105 0.1104 0.1081 0.0875 0.0874 0.0843 0.0778 0.0786 0.0748
β = 0.2 0.1061 0.1053 0.1047 0.0783 0.0777 0.0759 0.0660 0.0669 0.0643
β = 0.3 0.1091 0.1072 0.1083 0.0783 0.0766 0.0761 0.0646 0.0645 0.0635
β = 0.4 0.1147 0.1118 0.1146 0.0814 0.0788 0.0798 0.0668 0.0657 0.0665
β = 0.5 0.1215 0.1176 0.1220 0.0858 0.0823 0.0848 0.0703 0.0683 0.0709
β = 0.6 0.1292 0.1242 0.1302 0.0907 0.0864 0.0905 0.0744 0.0716 0.0758
β = 0.7 0.1375 0.1315 0.1391 0.0961 0.0911 0.0966 0.0790 0.0753 0.0810
β = 0.8 0.1465 0.1396 0.1486 0.1018 0.0962 0.1031 0.0838 0.0794 0.0863

4. Conclusions264

The likelihood function is the basis of the maximum likelihood method in estimation theory and265

it also plays a key role in the development of log-likelihood ratio tests. However, it is not so tractable266

in many cases, in practice. Maximum likelihood estimators are based on the likelihood function267

and they can be easily obtained, however, there are cases where they do not exist or they cannot268
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Table 3. Levels for pure data

n = 100 n = 200 n = 300
ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15

β = 0 0.067 0.059 0.070 0.068 0.046 0.062 0.072 0.045 0.075
β = 0.1 0.067 0.060 0.072 0.062 0.046 0.070 0.085 0.045 0.079
β = 0.2 0.072 0.061 0.084 0.069 0.051 0.084 0.097 0.049 0.102
β = 0.3 0.081 0.062 0.093 0.084 0.053 0.100 0.112 0.051 0.121
β = 0.4 0.094 0.069 0.099 0.103 0.055 0.111 0.127 0.055 0.142
β = 0.5 0.105 0.071 0.111 0.118 0.056 0.122 0.149 0.051 0.155
β = 0.6 0.122 0.083 0.129 0.131 0.062 0.136 0.167 0.051 0.165
β = 0.7 0.135 0.088 0.141 0.139 0.063 0.146 0.181 0.055 0.177
β = 0.8 0.153 0.099 0.158 0.151 0.071 0.156 0.198 0.056 0.179

Table 4. Levels for contaminated data

n = 100 n = 200 n = 300
ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.15

β = 0 0.357 0.223 0.081 0.638 0.429 0.155 0.788 0.623 0.24 0
β = 0.1 0.121 0.113 0.056 0.207 0.191 0.077 0.287 0.284 0.100
β = 0.2 0.065 0.074 0.048 0.066 0.099 0.049 0.086 0.129 0.059
β = 0.3 0.057 0.067 0.071 0.057 0.066 0.059 0.065 0.077 0.073
β = 0.4 0.075 0.066 0.087 0.067 0.058 0.081 0.079 0.060 0.095
β = 0.5 0.090 0.062 0.107 0.080 0.061 0.110 0.105 0.051 0.128
β = 0.6 0.096 0.063 0.126 0.095 0.063 0.131 0.117 0.049 0.151
β = 0.7 0.109 0.073 0.137 0.101 0.061 0.141 0.127 0.047 0.159
β = 0.8 0.125 0.083 0.147 0.109 0.061 0.149 0.141 0.049 0.171

Table 5. Powers for pure data, ρ∗ = 0.15

n = 100 n = 200 n = 300
ρ0 = −0.1 ρ0 = 0 ρ0 = 0.1 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.1 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.1

β = 0 0.945 0.603 0.141 1 0.871 0.180 1 0.962 0.265
β = 0.1 0.954 0.588 0.157 1 0.863 0.207 1 0.96 0.299
β = 0.2 0.952 0.557 0.158 1 0.825 0.213 1 0.944 0.315
β = 0.3 0.941 0.510 0.153 0.999 0.783 0.213 1 0.913 0.313
β = 0.4 0.925 0.465 0.154 0.999 0.734 0.210 1 0.885 0.301
β = 0.5 0.904 0.424 0.159 0.996 0.677 0.202 1 0.845 0.289
β = 0.6 0.873 0.395 0.153 0.990 0.618 0.197 0.999 0.789 0.277
β = 0.7 0.830 0.361 0.153 0.985 0.555 0.183 0.999 0.733 0.261
β = 0.8 0.789 0.322 0.161 0.974 0.499 0.179 0.997 0.678 0.246

Table 6. Powers for contaminated data, ρ∗ = 0.15

n = 100 n = 200 n = 300
ρ0 = −0.1 ρ0 = 0 ρ0 = 0.1 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.1 ρ0 = −0.1 ρ0 = 0 ρ0 = 0.1

β = 0 0.424 0.090 0.029 0.746 0.141 0.030 0.919 0.246 0.037
β = 0.1 0.716 0.222 0.041 0.954 0.397 0.029 0.994 0.569 0.037
β = 0.2 0.838 0.333 0.071 0.989 0.555 0.075 0.999 0.744 0.096
β = 0.3 0.881 0.383 0.105 0.993 0.633 0.121 0.999 0.803 0.161
β = 0.4 0.879 0.393 0.129 0.993 0.642 0.150 0.999 0.809 0.213
β = 0.5 0.865 0.381 0.135 0.992 0.621 0.168 0.999 0.797 0.241
β = 0.6 0.836 0.357 0.149 0.984 0.583 0.174 0.998 0.769 0.252
β = 0.7 0.808 0.332 0.146 0.980 0.531 0.173 0.997 0.713 0.256
β = 0.8 0.773 0.309 0.152 0.961 0.487 0.173 0.995 0.657 0.243
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be obtained. In such a case, composite likelihood methods constitute an appealing methodology in269

the area of estimation and testing of hypotheses. On the other hand, distance or divergence based270

on methods of estimation and testing have increasingly become fundamental tools in the field of271

mathematical statistics. The work in [15] is the first, to the best of our knowledge, which links the272

notion of composite likelihood with divergence based on methods for testing statistical hypotheses.273

In this paper, MDPDE are introduced and they are exploited to develop Wald type test statistics274

for testing simple or composite null hypotheses, in a composite likelihood framework. The validity275

of the proposed procedures is investigated by means of simulations. The simulation results point276

out the robustness of the proposed information theoretic procedures in estimation and testing, in the277

composite likelihood context. There are several areas where the notions of divergence and composite278

likelihood are crucial, including spatial statistics and time series analysis. These are areas of interest279

and they will be maybe explored elsewhere.280
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Abbreviations284

The following abbreviations are used in this manuscript:285

MLE Maximum likelihood estimator
CMLE Composite maximum likelihood estimator
DPD Density power divergence
MDPDE Minimum density power divergence estimator
CMDPDE Composite minimum density power divergence estimator

286

Appendix Proof of Results287

Appendix A.1 Proof of Theorem 2288

The result follows in a straightforward manner because of the asymptotic normality of θ̂
β
c ,289

√
n(θ̂

β
c − θ0)

L−→
n→∞

N
(

0, H−1
β (θ0)Jβ(θ0)H−1

β (θ0)
)

.

Appendix A.2 Proof of Theorem 3290

A first order Taylor expansion of l (θ) at θ̂
β
c around θ∗ gives291

l
(

θ̂
β
c

)
− l (θ∗) =

(
∂l (θ)

∂θ

)
θ=θ∗

(
θ̂

β
c − θ∗

)
+ op

(∥∥∥θ̂
β
c − θ∗

∥∥∥) .

Now the result follows because the asymptotic distribution of
(

l
(

θ̂
β
c

)
− l (θ∗)

)
coincides with the292

asymptotic distribution of
√

n
(

∂l(θ)
∂θ

)
θ=θ∗

(
θ̂

β
c − θ∗

)
.293

Appendix A.3 Proof of Theorem 5294

We have295

g(θ̂
β
c ) = g (θ0) + G(θ0)

T
(

θ̂
β
c − θ0

)
+ op

(∥∥∥θ̂
β
c − θ0

∥∥∥)
= GT(θ0)

(
θ̂

β
c − θ0

)
+ op

(∥∥∥θ̂
β
c − θ0

∥∥∥) ,

because g (θ0) = 0r .296

Therefore297
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√
ng
(

θ̂
β
c

) L−→
n−→∞

N (0, Gβ (θ0)
T H−1

β (θ0)Jβ(θ0)H−1
β (θ0)Gβ (θ0))

because298

√
n
(

θ̂
β
c − θ0

) L−→
n−→∞

N(0, H−1
β (θ0) Jβ (θ0) H−1

β (θ0)).

Now299

Wn,β = ng
(

θ̂β

)T [
GT(θ0)H−1

β (θ0)Jβ(θ0)H−1
β (θ0)G(θ0)

]−1
g
(

θ̂β

) L−→
n−→∞

χ2
r .

Appendix A.4 Computation of Sensitivity and Variability Matrices in the Numerical Example300

We want to compute301

Hβ(θ) =
∫
Rm
CL(θ,y)β+1u(θ,y)Tu(θ,y)dy

Jβ(θ) =
∫
Rm
CL(θ,y)2β+1u(θ,y)Tu(θ,y)dy

−
∫
Rm
CL(θ,y)β+1u(θ,y)dy

∫
Rm

(u(θ,y))T CL(θ,y)β+1dy.

First of all, we can see that302

CL(θ,y)β+1 =
(

fA1(θ, y) fA2(θ, y)
)β+1

=

(
1

2π
√

1− ρ2
exp

{
− 1

2(1−ρ2)
Q(y1, y2)

}
· 1

2π
√

1− ρ2
exp

{
− 1

2(1−ρ2)
Q(y3, y4)

})β+1

=

(
1

(2π)2(1− ρ2)

)β+1
exp

{
− β+1

2(1−ρ2)
[Q(y1, y2) + Q(y3, y4)]

}
=

1
(β + 1)2

(
1

(2π)2(1− ρ2)

)β (β + 1)2

(2π)2(1− ρ2)
exp

{
− β+1

2(1−ρ2)
[Q(y1, y2) + Q(y3, y4)]

}
= Cβ · CL∗β,

where Cβ = 1
(β+1)2

(
1

(2π)2(1−ρ2)

)β
and CL∗β = CLβ(θ, y)∗ ∼ N (µ, Σ∗), with Σ∗ = 1

β+1 Σ.303

304

While u(θ,y) =
∂ log CL(θ, y)

∂θ
we will denote as u(θ,y)∗ to u(θ,y)∗ =

∂ log CL∗β
∂θ

. Then305

u(θ,y) =
∂ log CL(θ, y)

∂θ
=

1
β + 1

∂ log CL(θ, y)β+1

∂θ
=

1
β + 1

∂ log(Cβ · CL∗β)
∂θ

=
1

β + 1

(
∂ log Cβ

∂θ
+

∂ log CL∗β
∂θ

)
=

1
β + 1

(
∂ log Cβ

∂θ
+ u(θ,y)∗

)
. (29)

Further,306
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∫
Rm
CL(θ,y)β+1u(θ,y)dy =

∫
Rm
CL(θ,y)β+1 ∂ log CL(θ,y)

∂θ
dy =

∫
Rm
CL(θ,y)β ∂CL(θ,y)

∂θ
dy

=
∫
Rm

1
β + 1

∂CL(θ,y)β+1

∂θ
dy =

1
β + 1

∂

∂θ

∫
Rm
CL(θ,y)β+1dy

=
1

β + 1
∂Cβ

∂θ
= (0, 0, 0, 0,

2ρβCβ

(β + 1)(1− ρ2)
)T = ξβ(θ). (30)

Now307

∫
R4
CLβ+1u(θ,y)Tu(θ,y)dy (31)

=
∫
R4
(Cβ · CL∗β)

1
(β + 1)2

(
∂ log Cβ

∂θ
+ u(θ,y)∗

)T (∂ log Cβ

∂θ
+ u(θ,y)∗

)
dy

=
Cβ

(β + 1)2

∫
R4

[(
∂ log Cβ

∂θ

)T (∂ log Cβ

∂θ

)
CL∗β

+CL∗β
(
u(θ,y)∗

)T ∂ log Cβ

∂θ
+ CL∗β

(
∂ log Cβ

∂θ

)T

u(θ,y)∗ + CL∗β(u(θ,y)∗)Tu(θ,y)∗
]

dy

=
Cβ

(β + 1)2

[(
∂ log Cβ

∂θ

)T (∂ log Cβ

∂θ

) ∫
R4
CL∗βdy +

(∫
R4
CL∗βu(θ,y)∗dy

)T (∂ log Cβ

∂θ

)

+

(
∂ log Cβ

∂θ

)T ∫
R4
CL∗βu(θ,y)∗dy +

∫
R4
CL∗β(u(θ,y)∗)Tu(θ,y)∗dy

]

=
Cβ

(β + 1)2

[
KTK +

(∫
R4
CL∗βu(θ,y)∗dy

)T
K + KT

∫
R4
CL∗βu(θ,y)∗dy +

∫
R4
CL∗β(u(θ,y)∗)Tu(θ,y)∗dy

]
,

where K =
∂ log Cβ

∂θ = (0, 0, 0, 0, 2ρ·β
1−ρ2 ). But308

∫
R4
CL∗βu(θ,y)∗dy =

∫
R4

(
1

Cβ
CL(θ,y)β+1

)[
(β + 1)u(θ,y)−

∂ log Cβ

∂θ

]
dy

=
β + 1

Cβ

[∫
R4
CL(θ,y)β+1u(θ,y)dy

]
− K

Cβ

∫
R4
CL(θ,y)β+1dy

=
1

Cβ

∂Cβ

∂θ
− K = K − K = 0,

and thus (31) can be expressed as309

∫
R4
CL(θ, y)β+1u(θ,y)Tu(θ,y)dy =

Cβ

(β + 1)2

[
KTK +

∫
R4
CL∗β(u(θ,y)∗)Tu(θ,y)∗dy

]
.

On the other hand, it is not difficult to prove that310 ∫
R4
CL∗β(u(θ,y)∗)Tu(θ,y)∗dy = C ·

∫
R4
CL(θ, y)(u(θ,y))Tu(θ,y)dy = C · H0(θ),

where C = diag(β + 1, β + 1, β + 1, β + 1, 1) and ([15])311
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H0(θ) =



1
1−ρ2

−ρ

1−ρ2 0 0 0
−ρ

1−ρ2
1

1−ρ2 0 0 0

0 0 1
1−ρ2

−ρ

1−ρ2 0

0 0 −ρ

1−ρ2
1

1−ρ2 0

0 0 0 0 2(ρ2+1)
(1−ρ2)2


. (32)

So312

Hβ(θ) =
Cβ

(β + 1)2

[
C · H0(θ) + KTK

]
,

this is313

Hβ(θ) =
Cβ

(β + 1)(1− ρ2)


1 −ρ 0 0 0
−ρ 1 0 0 0
0 0 1 −ρ 0
0 0 −ρ 1 0

0 0 0 0 2 (ρ2+1)+2ρ2β2

(1−ρ2)(1+β)

 . (33)

Note that, for β = 0, (33) equals to (32).314

On the other hand, the expression of the variability matrix Jβ(θ) can be obtained from315

expressions (26) and (30) as316

Jβ(θ) = H2β(θ)− ξβ(θ)
Tξβ(θ). (34)
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