Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2017 d0i:10.20944/preprints201711.0039.v1

1 Article
. Composite Likelihood Methods Based on Minimum
., Density Power Divergence Estimator

» Elena Castilla 1*, Nirian Martin 2, Leandro Pardo! and Konstantinos Zografos 3

s | Department of Statistics and O.R. I, Complutense University of Madrid, 28040 Madrid, Spain;

6 Ipardo@mat.ucm.es

7 2 Department of Statistics and O.R. II, Complutense University of Madrid, 28003 Madrid, Spain;
8 nirian@estad.ucm.es

° 3 Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece; kzograf@uoi.gr

1o * Correspondence: elecasti@mat.ucm.es

u  Abstract: In this paper a robust version of the Wald test statistic for composite likelihood is
12 considered by using the composite minimum density power divergence estimator instead of the
1z composite maximum likelihood estimator. This new family of test statistics will be called Wald-type
1 test statistics. The problem of testing a simple and a composite null hypothesis is considered and
s the robustness is studied on the basis of a simulation study. Previously, the composite minimum
16 density power divergence estimator is introduced and its asymptotic properties are studied.

17 Keywords: composite likelihood; maximum composite likelihood estimator; Wald test statistic;
1= composite minimum density power divergence estimator; Wald-type test statistics.

19 1. Introduction

20 It is well-known that the likelihood function is one of the most important tools in the classical
a1 inference and the resultant estimator, the maximum likelihood estimator (MLE), has nice efficient
22 properties although it has no so good robustness properties.

23 Tests based on MLE (likelihood ratio test, Wald test, Rao’s test, etc.) have, usually, good efficient
2« properties but in presence of outliers the behavior is not so good. To solve these situations many
25 robust estimators have been introduced in the statistical literature, some of them based on distance
26 measures or divergence measures. In particular, density power divergence measures introduced in [1]
2z have given good robust estimators: minimum density power divergences estimators (MDPDE) and,
2s  based on them, some robust test statistics have been considered for testing simple and composite null
20 hypotheses. Some of these tests are based on divergence measures (see [2] and [3]) and some other
30 are used to extend the classical Wald test, see [4], [5], [6] and references therein.

N The classical likelihood function requires exact specification of the probability density function
2 but in most applications the true distribution is unknown. In some cases, where the data distribution
33 is available in an analytic form, the likelihood function is still mathematically intractable due to the
s« complexity of the probability density function. There are many alternatives to the classical likelihood
ss  function; in this paper we focus on the composite likelihood. Composite likelihood is an inference
36 function derived by multiplying a collection of component likelihoods; the particular collection
sz used is a conditional determined by the context. Therefore, the composite likelihood reduces the
ss computational complexity so that it is possible to deal with large datasets and very complex models
s even when the use of standard likelihood methods is not feasible. Asymptotic normality of the
20 composite maximum likelihood estimator (CMLE) still holds with Godambe information matrix to
a1 replace the expected information in the expression of the asymptotic variance-covariance matrix. This
a2 allows the construction of composite likelihood ratio test statistics, Wald-type test statistics as well as
a3 Score-type statistics. A review of composite likelihood methods is given in [7]. We have to mention
s at this point that CMLE, as well as the respective test statistics, are seriously affected by the presence
«s of outliers in the set of available data.
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a6 The main purpose of the paper is to introduce a new robust family of estimators, namely,
a7 composite minimum density power divergence estimators (CMDPDE) as well as a new family of
ss  Wald-type test statistics based on the CMDPDE in order to get broad classes of robust estimators and
a0 test statistics.

50 In Section 2 we introduce the CMDPDE and we obtain the estimating system of equations to
s1 find it. The asymptotic distribution of the CMDPDE is obtained in Subsection 2.1. Subsection 2.2
s is devoted to the definition of a family of Wald-type test statistics, based on CMDPDE, for testing
ss  simple and composite null hypotheses. The asymptotic distribution of these Wald-type test statistics
s« is obtained as well as some asymptotic approximations to the power function. A numerical example,
ss presented previously in [8], is studied in Section 3. A simulation study based on this example is
ss also presented (Subsection 3.1), in order to study the robustness of the CMDPDE as well as the
sz performance of the Wald-type test statistics based on CMDPDE. Proofs of results are presented in
se the Appendix A.

so 2. Composite Minimum Density Power Divergence Estimator

60 We adopt here the notation by [9], regarding composite likelihood function and the respective
er CMLE. In this regard, let {f(-;0),0 € ® C RF,p > 1} be a parametric identifiable family of
2 distributions for an observation y, a realization of a random m-vector Y. In this setting, the composite
es density based on K different marginal or conditional distributions has the form

K
CLOy) =[] faf (v j € A 6)
k=1
s« and the corresponding composite log-density has the form

K

clBy) =Y wela(6y),
k=1

es  with

Ca (0y) =log fa, (v, ] € Ak 0),

es where {Ak}kK:1 is a family of random variables associated either with marginal or conditional
e distributions involving some y;, j € {1,..,m} and wy, k = 1,..,K are non-negative and known
es weights. If the weights are all equal, then they can be ignored. In this case all the statistical procedures
e produce equivalent results.

70 Let also y, ..., y,, be independent and identically distributed replications of y. We denote by

n
cl(0,yy, -, y,) = ) cl(6,y;)
i=1

= the composite log-likelihood function for the whole sample. In complete accordance with the classic
2 MLE, the CMLE, 8., is defined by

n n K
. = argmax )_ cl(6,y;) = argmax ) _ Y wila (6,y;). (1)
0c® =1 0c® i=1k=1

73 It can be also obtained by the solution of the equations

u(6,Y1, 1Y) = Op,

7z  Where
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ocl(6,y4, -y K 9la( ,y )
u(eryll --'Iyn) = # Z Z k l
i=1k=1
75 We are going to see how it is possible to get the CMLE, 8, on the basis of the Kullback-Leibler

7 divergence measure. We shall denote by g (y) the density generating the data with respective
=z distribution function denoted by G. The Kullback-Leibler divergence between the density function
7 ¢ (y) and the composite density function CL(6,y) is given by

ha(g(),CL0,0) = [ slo)log 5 sy
= /ng(y) log ¢(y) dy— /Rm 8(y) log CL(6,y)dy.
7o The term

/ 8(y)logg(y)dy

so can be removed because it does not depend on 6; hence, we can define the following estimator of 6,
a1 based on the Kullback-Leibler divergence

0k = argmeindKL(g(.) , CL(6,.))

s2 Or equivalently

Okr = argmein (— /Rm 2(y) 10gCE(6,y)dy>
= argmein (— /Rm logCE(B,y)dG(y)). ()

es  If we replace in (2) the distribution function G by the empirical distribution function G, we have

Ok = argmein (—/R logCE(B,y)dGn(y))
1 n
= argmin | —= ) cl(6,y;)
0 ni3

s« and this expression is equivalent to the expression (1). Therefore, the estimator 0k coincides with
es the CMLE. Based on the previous idea we are going to introduce, in a natural way, the composite
ss minimum density power divergence estimator (CMDPDE).

87 The CMLE, 8, obeys asymptotic normality, see [9], and in particular

o~

L _
V(B —0) = N (0,6:1(0)),
ss  where G, ( 6) denotes Godambe information matrix, defined by

G.(6) = H(6)] ' (0)H(6),

so with H(0) being the sensitivity or Hessian matrix and J(0) being the variability matrix, defined,
%0 respectively, by
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H(0) = Eo[— 5u" (6,Y)],
J(6) = Varg[u(8,Y)] = Eq[u(6,Y)u’ (8,Y)],

o1 where the superscript T denotes the transpose of a vector or a matrix.

02 The matrices H(0) and J(6) are, by definition, nonegative definite matrices but throughout this

»s paper both, H(6) and J(0), are assumed to be positive definite matrices. Since the component score

e« functions can be correlated, we have H(0) # J(0). If c/(6,y) is a true log-likelihood function then

os H(0) = J(0) = Ir(0), being Ir(0) the Fisher information matrix of the model. Using multivariate

oo version of the Cauchy-Schwarz inequality we have that the matrix G.(6) — Ir(6) is non-negative

oz definite, i.e., the full likelihood function is more efficient than any other composite likelihood function

os (cf. [10], Lemma 4A).

99 We are going now to proceed to the definition of the CMDPDE which is based on the density
wo power divergence measure, defined as follows. For two densities p and g associated with two
11 m-dimensional random variables respectively, density power divergence (DPD) between p and g was
w2 defined in [1] by

1

dg(p.q) = / {q(y)”’3 - (1 + ﬁ> q(y)Pp(y) +

1

5 p(y)t+F } dy,

w3 for B > 0, while for B = 0 it is defined by

limmydy (p,q) = dxw (p,9):

s For more details about this family of divergence measures we refer to [11].
105 In this paper we are going to consider DPD measures between the density function g (y) and the
106 composite density function CL(6,y), i.e.,

s () c06,0) = [ {econ™ - (145 ) ccon’st) + 55w fay 0

w7 for > 0, while for f = 0 we have,
M dp(8 () CL6,)) = dii (8 () CL(D,.)).

The CMDPDE, 8", is defined by

~

B .
0 =argmindp(g (.),CL(6,.)).

10 The term

/Rm g(y)'*Pdy

1o does not depend on 6 and consequently the minimization of (3) with respect to 0 is equivalent to
1 Mminimize

/Rm (cc(e,y)1+/s _ (1 + ;) cg(g,y)ﬁg(y)> dy

112 O
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1
/ CL(0y)! Py — <1 + ﬁ> /R CL(6,y)PdG(y).
us  Now, we replace the distribution function G by the empirical distribution function G, and we get
1+8 1\ 1¢ B
[ ccom) Pay— (1+2) ) cLoy)’. @
R B/ niH

114 In consequence, for a fixed value of B, the CMDPDE of 6 can be obtained by minimizing the
us expression given in (4). Or equivalently by maximizing the expression

1 & 1

— cze,zﬁ—i/ CL(0,y) dy. 5

”ﬁi; (09:)" = 75 o CLO¥) Ty ()
116 Under differentiability of the model the maximization of the function in equation (5) leads to an

uz  estimating system of equations of the form

1 pocl(8,y;) acl(0,y) 146, _
us  The system of equations (6) can be written as
1& B 4B 4., —
7 L CLOy) u(by;) — | u(0y)CLOY) Pdy = 0. @)
i=1

ue and the CMDPDE ﬁf of 0 is obtained by the solution of (7).

1o 2.1. Asymptotic Distribution of the Composite Minimum Density Power Divergence Estimator

121 Equation (7) can be written as follows

1 n
EZT/S(]/VB)ZO
i=1
122 Wlth
Y, (y.,0) = CLO,y) Pu(6,y.) — 0,y)CL(0,y) Fd
6 (v, 0) (0,y:)"u(0y;) — [, #(0y)CL(OY) T dy.

123 Therefore the CMDPDE, ﬁf’ , is an M-estimator. In this case it is well-known (cf.[12]) that the
12a asymptotic distribution of 55 is given by
3 L _ _
Vi@ —0) £ N (0. H;' (0)5(0)H;'(0)),
s  being

Kif (Y,e)}

Hyl0) =y |- o

126 and

T5(6) = Eg [¥5 (Y,0)¥5(Y,0)"] .

127 We are going to establish the expressions of Hg(8) and J4(6). In relation to Hg(0) we have
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T
Fr BCL(8.1)P " CLOy)u(0) (6 )+ CL(6,y)P 2OV

20
- / " au(aéy) cLOy) Fdy— (1+p) /]R CLOY) CLOY)u(8y) u(By)dy

12 and

Y5 (Y,0
M)] = [ cLOm a0y u(oy)dy. ®

Hg(6) = E, {— i

120 In relation to | B (6) we have,

¥p(Y,0)¥p(Y,0) = <C£(9,y)ﬂu(9,y) - /]R mu(e,y)cae,y)“ﬁdy)
(CC(B,y)ﬁu(B,y)T — /m u(B,y)TC£(e,y)1+l5dy>
= CLOYFu(y)u(0y) —CLOY) u(0y) [ u(Oy)CLO) Py
—CL(O,y) u(0y)" /]R u(By)CL(By) Py

+ (/Rm u((-),y)CL((-),y)lJrﬁdy) (/Rm u(ﬂ,y)TCE(G,y)Hﬂdy) .

130 Then

J5(0) = Eo[¥p(Y,0)¥5(Y,0)"] = [ ccoy)* uey)uoy) dy )
— /R'” CL(0,y) M u(6,y)dy /Rm u(6,y) CL(0,y) TPdy. (10)
12 Based on the previous results we have the following Theorem.
12 Theorem 1. Under some regularity conditions (cf. [13], pp.58 or [14], pp.144) we have

V(@ —0) < N (0, H;'(0)]5(0)H; () ),

s where the matrices Hg(0) and ] (0) were defined in (8) and (9), respectively.

1

w

s Remark 1. If we apply the previous theorem for 8 = 0 then we get the CMLE and the asymptotic
135 variance covariance matrix coincides with Godambe information matrix because

Hg(6) = H(6) and J5(6 ) = J(6),
136 fOI',B:O.

1wz 2.2. Wald-Type Tests Statistics Based on Composite Minimum Power Divergence Estimator

138 Wald-type test statistics based on MDPDE have been considered with excellent results in relation
130 to the robustness in different statistical problems, see for instance [4], [5] and [6].
140 Motivated by those works, we focus in this section on the definition and the study of Wald-type

11 test statistics which are defined by means of CMDPDE estimators instead of MDPDE estimators. In
w2 this context, if we are interested in testing
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Hy : 6 = 0p against Hy : 0 # 6, (11)
we can consider the family of Wald-type test statistics
—~ -1
W05 = n(8; — 00) (H,(80)]5(80)Hy (80)) (8% — 60). (12)

For B = 0 we get the classical Wald type test statistic considered in the composite likelihood methods
(see, for instance, [7]).

In the following Theorem we present the asymptotic null distribution of the family of the
Wald-type test statistics Wg’ B

Theorem 2. The asymptotic distribution of the Wald-type test statistics given in (12) is a chi-square
distribution with p degrees of freedom.

The proof of this Theorem 2 is given in the Appendix A.1.
Theorem 3. Let 6 be the true value of the parameter 0, with 0% # 6. Then it holds
v (1 (af) ~1(6%) 52 N0, 0, 0 (67),
being

1(0) = (0 00)" (H3"(60)5(00) Hy (60)) (0 0)

and

Ty (6%) = 4(6" — 60)T (5 (00)5(60)H; ' (60)) (67— 00). 13)

The proof of the Theorem is outlined in the Appendix A.2.

Remark 2. Based on the previous result we can approximate the power, B0, of the Wald-type test
statistics in 6, by

IBWS,/S(H*) = PI‘( nﬁ>7(ptx/6:6)
2
- (lf ) =167 %?—uw)o=m>

(1(8) 1) > v ("’" (e*))

) Pr(ﬁ(l(ﬂf)—l(m)) N (X;,“_Z(G*O

0= 9*>
>
‘TWOﬁ (6%) O’W()ﬁ (6%) n

e:m)
= 1-9, V”«%—um>
Ty, (07) \ m ’

where @, is a sequence of distributions functions tending uniformly to the standard normal
distribution function ®(x).
It is clear that

d0i:10.20944/preprints201711.0039.v1
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Jim g, (07) =1
wo foralla € (0,1). Therefore the Wald-type test statistics are consistent in the sense of Fraser.
161 In many practical hypothesis testing problems, the restricted parameter space ®y C © is defined
12 by a set of r restrictions of the form
g(6) =0, (14)
163 on ®, where g : RP — R" is a vector-valued function such that the p x r matrix
93’ ()
— 1
G (0) 8 (15)
1 exists and is continuous in 6 and rank(G (0)) = r; where 0, denotes the null vector of dimension r.
165 Now we are going to consider composite null hypotheses, ®y C O, in the way considered in (14)
s and our interest is in testing
Hy: 0 € ©p against Hy : 6 ¢ O (16)
1z on the basis of a random simple of size 1, Xj, ....Xj.
s Definition 4. The family of Wald-type test statistics for testing (16) is given by
T AN o AN v A N N N L O
W, =ng (80) [GT (@) H; @0)1,00)H,; (86| g (o), (17)

e where the matrices G(8), Hg (0) and J4 () were defined in (15), (8) and (9), respectively and the
1o function g in (14).

1 If we consider f = 0 then ﬁﬁ coincides with the MLE, 8, of 6 and Hgl )] B (a)Hﬁ_1 (8) with the
12 inverse of the Fisher information matrix and then we get the classical Wald test statistic considered in
w3 the composite likelihood methods.

174 In the next theorem we present the asymptotic distribution of W, g.

s Theorem 5. The asymptotic distribution of the Wald-type test statistics, given in (17), is a chi-square
we  distribution with r degrees of freedom.

177 The proof of this Theorem is presented in the Appendix A.3.
178 Consider the null hypothesis Hy : 8 € ©y C © . By Theorem 5, the null hypothesis should
7o be rejected if Wy g > x2,. The following theorem can be used to approximate the power function.

10 Assume that 0* ¢ @y is the true value of the parameter so that 6,3 n:—sgo 0*.
1s2 Theorem 6. Let 8% be the true value of the parameter, with 6% # 0. Then it holds

v (1 (80) =17 (67)) 55 N(0, 03y, (6)
12 being

P (8) = ng (6)" [GT(60)Hy" (60)]5(00)Hy (80)G(60)] g (6)

183 and
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* T *
oty @) = (%5 ) mgeorsen o0 (T ) 8)

3. Numerical Example

In this section we shall consider an example, studied previously by [8], in order to study the
robustness of CMLE. The aim of this section is to clarify the different issues which are discussed in
the previous sections.

Consider the random vector Y = (Y1,Y3,Y3,Ys)T which follows a four dimensional normal
distribution with mean vector # = (i1, o, 43, #i4) | and variance-covariance matrix

1 p 20 2
ol L (19)
20 20 1 p
20 20 p 1
i.e., we suppose that the correlation between Y; and Y; is the same as the correlation between Y3 and
Y,. Taking into account that X should be semi- positive definite, the following condition is imposed,
—% <p < % In order to avoid several problems regarding the consistency of the CMLE of the
parameter p (cf. [8]), we shall consider the composite likelihood function

CL(O,y) = fa,(0,y)fa,(6,y),

where

fa, (8,y) = fia(p1, M2, 0,91, Y2),
fa,(8,y) = faa(ps, ha, 0, Y3, Y1),

where f1; and f34 are the densities of the marginals of Y, i.e. bivariate normal distributions with mean
vectors (p1, p2)T and (i3, g)7, respectively, and common variance-covariance matrix

(1)

1
fh,h+1(Vh/ﬂh+1/P/yh/yh+1> = m exp {‘ﬁ@(yh/yhﬂ)} , he{1,3},

with densities given by

being

QWn Y1) = (Yn — 1n)* — 200y — ) Wns1 — tng1) + W1 — pnsr)? b€ {1,3}.

By 0 we are denoting the parameter vector of our model, i.e, 8 = (1, 2, 43, tha,0)T. We are going to
get the system of equations that it is necessary to solve in order to obtain the CMDPDE

0 = (7o b e i at)

The estimator éf is obtained by maximizing the expression (4) with respect to 0. Firstly we are going
to get

d0i:10.20944/preprints201711.0039.v1
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oCLOY 2 1p

]
= - f12(#1,liz,P,yLyz)ﬁHf%(Va, 1a, 0,Y3,ya)P Tl dy dyadysdy,
00
d
= 39 ( flz(m,Vz,p,y1,yz)ﬁ+1dy1dyz/ Foa(p3, s, 0,y3,y2)P dy3dy4>

203 Based on [13] (pp. 32)

_B
1— p2 2 B
/R2 Fra(u1, 12, 0,1, 2) P dyrdy, = /]RZ Fsa(p3, ta, 0, Y3, ya) P dysdys = Q(Zﬂ) P,

g+1
204 Then
-B
aCLO,y)' P 9 1y = 0 (1207 —2
@4“7%“*dy_§5A§c“ay) dy_567§ITF*Qm
205 and
1 _ 2 7ﬁ

i%&ﬂ)*z’g =0,i=1,23,4,

i (B+1)
206 While

iw(m)—zﬁ _ pem)P 2

(B+1)° (B+1)” (1-p)"
200 Now, we are going to get
1 Z aCL( 9 yl
np =
20 in order to obtain the CMDPDE, /B\f, by maximizing (4) with respect to 6.

209 We have 'y

CLO,Y)P = fra(p1, 12, 0,y1,¥2)P faa (43, 1a, 0, y3,y4) P

210 Therefore ,

aCL(0,y,)P

op1 (=2 (y1i — p1) + 20 (y2i — p2)] } Foa (13, ta, 0, Y31, yai)P

B 1
= Bfi2 (i1, ta, 0, Y11, Y21 )P {_M

2 and the expression

1 & aCL(8,y,)P

n‘B Z oup =0

212 leads to the estimator of y1, given by
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(=2 (y1i — 1) +20 (y2i — #2)]} =0.
(20)

1& _ 1
;;le(VerLP/yliry%)ﬁ 1f34(]/13,#4,p,y3i,y4i)ﬁ{—M

213 In a similar way

aCL(0,y,)P ) 1
(0,y,)" _ BFia (i1, 1o, 0, yiis yai) P! { 5+ =2 (Y2i — p2) + 20 (ai Hl)]}f34(ﬂ3,V4IP,y3iry4z‘)ﬁr
oo 2(1—p?)

aCL(0,y,)P 1 _

ALO g, _ Bfi2 (1, 12, 0,911 v2i)P {2 (=2 (yai — m3) +20 (yai — V4)]}f34(]43, Ha, 0, Y30 Yai)P
op3 2(1—p?)

and

oCL(0,y,)P 1 -

;Myz) = Bfi2(p1, 12,0, Vi Vai)P {—2 s (=2 (yai — pa) +20 (y3i — #3)]}f34(V3, Ha, 0, Y3i Yai) P!

21 Therefore the equations

1 & aCL(8,y,)P 1 & aCL(8,y,)P 1 & aCL(8,y,)*

WL 05k —0md g B LIS —0

JT) ou3

215 lead to the estimators of yy, i3 and py, which should be read as follows

1 _ 1
" Z Fr2 (s 2, 0,10 y2i) P Fa (13, pias 0, 3, yai) P {2(1102) (=2 (y2i — p2) +2p (y1i — ﬂl)]} =0,
) (21)
1 b 5 1
— 2 fra( 20,10, y20)P foa (i3, sy 0, Vi Yai) R Yi (=2 (y3i — 13) + 20 (yai —ud)] p =
i=1
(22)

26 and

1 & 1
- Y (i 2, 0,10 y2i)P foa (43, pa, 0, Y3is yai)P {2(1(72) [—2 (Yai — Ha) +20 (y3i — }l3)]} =0.
i=1

(23)
217z Now it is necessary to get
AOCLO,y)P  _ dfrali, 2, 0,1, y2i)P foa (3, a0, Y3ir Y i )P
op dp

P 9 f12(p1, M2, 0, Yris Y2i)
dp
)‘B 1 f34(143/ Wa,0,Y3i, y4l)
dp

= Bfia(1, ta, 0, y15,Y2:)P L faa(Ha, pa, 0, Y30, Yai

+Bf12(p1, 12, 0,10, Y2i)P faa (M3, pa, 0, Vi, Yai
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218 is given by

But W

1 (=) (=20 (=1
27 (1= p2) 2(1— pz)% exp {2 1-0?) {(yli — 1) =20 (y1i — 1) (i — p2) + (v2i — 142)2} }
S S S Gt NN PPN RPN - N
+2n 1) P{z(l ~ ) {(yll #1)" =20 (y1i — p1) (Y2i — p2) + (Y2i — p2) }}
(1 __22)2 ((]/11‘ — 1) =20 (y1i — p1) (y2i — p2) + (2i — y2)2) T —1p2) (y1i — 1) (yoi — ;42)1
=1 fpzflz(m,yz,p,yu,yz{) + fr2(p1, 2, 0, Y10, Y2i)

l(l _22)2 ((yli — )% =20 (y1i — 1) (y2i — p2) + (i — #2)2) + a _lpz) (v1i — 1) (y2i — P‘Z)]

1
— p?

= falp, 2,10 ¥ai) 7 _ppz [1 — 3 ((yli — 11)% =20 (i — 1) (v2i — H2) + (y2i — Hz)z)

+:) (y1i — #1) (Y2i — #2)} .

219 In a similar way %{W

is given by

1
faa(pa, 1as P, Yais Yai) 7 _ppz [1 e ((]/31’ — 13)> =20 (yai — 3) (Vai — pta) + (yai — H4)2>
1
3 (y3i — p3) (vai — #4)} -
220 Therefore,
aCL(6,y;)P
E)P %) -1 _ppz Bfrz2 (s 12, 0, Y11 y2i)P faa (13, pas 0, Y31, yai)P

{2 + {1) {(v1i — 1) (yai — p2) + (y3i — u3) (ai — pa)}

1
——— (i — 11)* =20 (yai — 1) (v2i — H2) + (v2i — 12)°
I—p
1
12 ((y&' —u3)? — 20 (y3i — p3) (yai — Ha) + (Vai — V4)2) } . (24)
221 So the equation in relation to p is given by
npi=  dp B+1 Jrn op v
222 being
aCL(8,y;)P*! 271) 2P 2
/ Oy 4, — B2 i b 25)
L (B+1)" (1-p2)"

223 and

ACL(6,y;)P
dp
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was given in (24).
Finally,

~B B B B T
ec = (V‘f,c/ :ug,c/ :ug,c’ ‘uf,c’ ﬁ?)

will be obtained as the solution of the system of equations given by (20), (21), (22), (23) and (25).
After some heavy algebraic manipulations specified in Appendix, Section A.4, the sensitivity
and variability matrices are given by

1 —p 0 0 0
o 1 0 0 0
Hg(6) = L 0 O 1 —p 0 (26)
B+DA=01) | o o —p 1 0
(0°+1)+20°
0 0 0 0 2z
and
Jp(0) = Hyp(6) — &4(6)784(6), (27)
B 208C
where Cg = (i (etrpy) and 86(6) = (0,0,0,0, gy )

3.1. Simulation Study

A simulation study, developed by using the R statistical programming environment, is presented
in order to study the behavior of the CMDPDE as well as the behavior of the Wald-type test statistics
based on them. The theoretical model studied in the previous example is considered. The parameters
in the model are

T
0= (41, 2, 13, 14, 0)
and we are interested in studying the behavior of the CMDPDE

~B N N N N T
0, = (il b ik . o)

as well as the behavior of the Wald-type test statistics for testing

Hy:p=po against Hj:p # po. (28)

Through R = 10,000 replications of the simulation experiment we compare, for different values
of B, the corresponding CMDPDE through the root of the mean square errors (RMSE), when the true
value of the parameters is 0 = (0,0,0,0,p*) and p* € {—0.1,0,0.15}. We pay special attention to
the problem of the existence of some outliers in the sample, generating a 5% of the samples with 8 =
(1,3,-2,—1,p) and g € {—0.15,0.1,0.2}, respectively. Notice that, although the case p* = 0 has been
considered, this case is less important since taking into account the way of the theoretical model under
consideration and having the case of independent observations, the composite likelihood theory is
useless. Results are presented in Table 1 and Table 2. Two points deserve our attention. The first one
is that, as expected, RMSEs for contaminated data are always greater than RMSEs for pure data and
that the RMSEs decrease when the sample size n increases. The second is that, while in pure data
RMSEs are greater for big values of 3, when working with contaminated data the CMDPDE with
medium-low values of B (B € {0.1,0.2,0.3}) present the best behavior in terms of efficiency.

For a nominal size & = 0.05, with the model under the null hypothesis given in (28), the estimated
significance levels for different Wald-type test statistics are given by

d0i:10.20944/preprints201711.0039.v1
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R
L1 (Wf,i) > X1 0.051P0)
~(B) B B 2 =1
oy (pO) = PI'(Wn > X1’005|H0) = R ,

22 with I(S) being the indicator function (with value 1if S is true and 0 otherwise). Empirical levels with
253 the same previous parameter values are presented in Table 3 (pure data) and Table 4 (5% of outliers).
25« While medium-high values of § are not recommended at all, CMLE is the best when working with
25 pure data. However the lack of robustness of CMLE test is impressive, as it can be seen in Table 4. The
26 effect of contamination in medium-low values of § is much lighter, while for medium-high values of
257 f it can return deceptively beneficial.

258 For finite sample sizes and nominal size « = 0.05, the simulated powers are obtained under H;
20 in (28), when p* € {—0.1,0,0.1}, § = 0.2 and pp = 0.15 (Table 5 and Table 6). The (simulated) power
260 for different composite Wald-type test statistics is obtained by

(p) : e L 1(Wy; > 3 ooslio ")
By (0o, 0*) = Pr(Wh > X%,0.05|H1) and By (po,0*) =" -

261 As expected, when we get closer to the null hypothesis and when decreasing the sample sizes, the
262 power decreases. With pure data the best behavior is obtained with § = 0 and with contaminated
263 data the best results are obtained for medium values of 8.

It

Table 1. RMSEs for pure data

n = 100 n = 200 n = 300
p=-01 p=0 p=015|p=-01 p=0 p=015/p=-01 p=0 p=0.15
B= 0.0958 0.0950 0.0948 | 0.0683 0.0668 0.0666 | 0.0553 0.0552 0.0551

B=01]| 0.0972 0.0961 0.0966 | 0.0693 0.0676 0.0677 | 0.0560 0.0559 0.0561
g=0.2]| 01009 0.0991 0.1007 | 0.0718 0.0697 0.0704 | 0.0581 0.0575 0.0585
g=03]| 01061 0.1034 0.1062 | 0.0754 0.0727 0.0742 | 0.0612 0.0599 0.0619
B=04| 01123 0.1087 0.1127 | 0.0797 0.0762 0.0787 | 0.0649 0.0628 0.0659
g =0.5]| 01195 0.1147 0.1200 | 0.0845 0.0803 0.0837 | 0.0691 0.0661 0.0702
g=0.6| 01274 0.1215 0.1280 | 0.0898 0.0848 0.0892 | 0.0737 0.0697 0.0748
B=0.7]| 01361 0.1291 0.1369 | 0.0955 0.0897 0.0952 | 0.0786 0.0736 0.0797
g =0.8| 0.1456 0.1374 0.1467 | 0.1015 0.0905 0.1016 | 0.0839 0.0778 0.0849

Table 2. RMSEs for contaminated data

n =100 n = 200 n = 300
p=-01 p=0 p=015|p=-01 p=0 p=015|p=—-01 p=0 p=0.15
B=0 0.1371 0.1336 0.1287 | 0.121 0.1167 0.1113 | 0.1144 0.1098 0.1047
g=01| 0.1105 0.1104 0.1081 | 0.0875 0.0874 0.0843 | 0.0778 0.0786 0.0748
g=02| 01061 0.1053 0.1047 | 0.0783 0.0777 0.0759 | 0.0660 0.0669 0.0643
g=03| 01091 0.1072 0.1083 | 0.0783 0.0766 0.0761 | 0.0646 0.0645 0.0635
g=04| 01147 0.1118 0.1146 | 0.0814 0.0788 0.0798 | 0.0668 0.0657 0.0665
g=05| 01215 0.1176 0.1220 | 0.0858 0.0823 0.0848 | 0.0703 0.0683 0.0709
B=06| 01292 0.1242 0.1302 | 0.0907 0.0864 0.0905 | 0.0744 0.0716 0.0758
g=07| 01375 0.1315 0.1391 | 0.0961 0.0911 0.0966 | 0.0790 0.0753 0.0810
B=08| 0.1465 0.1396 0.1486 | 0.1018 0.0962 0.1031 | 0.0838 0.0794 0.0863

26¢ 4. Conclusions

265 The likelihood function is the basis of the maximum likelihood method in estimation theory and
266 it also plays a key role in the development of log-likelihood ratio tests. However, it is not so tractable
267 in many cases, in practice. Maximum likelihood estimators are based on the likelihood function
26e and they can be easily obtained, however, there are cases where they do not exist or they cannot
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n =100 n =200 n = 300
o = —0.1 oo = 0 Po = 0.15 oo = —-0.1 Po = 0 Po = 0.15 oo = —-0.1 Po = 0 o0 = 0.15
=0 0.067 0.059 0.070 0.068 0.046 0.062 0.072 0.045 0.075
g=01| 0.067 0.060 0.072 0.062 0.046 0.070 0.085 0.045 0.079
g=02| 0072 0.061 0.084 0.069 0.051 0.084 0.097 0.049 0.102
=03 0.081 0.062 0.093 0.084 0.053 0.100 0.112 0.051 0.121
g=04| 0.09% 0.069 0.099 0.103 0.055 0.111 0.127 0.055 0.142
g=05| 0.105 0.071 0.111 0.118 0.056 0.122 0.149 0.051 0.155
g=06| 0122 0.083 0.129 0.131 0.062 0.136 0.167 0.051 0.165
g=07| 0135 0.088 0.141 0.139 0.063 0.146 0.181 0.055 0.177
=08 0153 0.099 0.158 0.151 0.071 0.156 0.198 0.056  0.179
Table 4. Levels for contaminated data
n =100 n =200 n =300
oo = —-0.1 oo = 0 o = 0.15 oo = —-0.1 Po = 0 pPo = 0.15 o = —0.1 Po = 0 Po = 0.15
=0 0.357 0.223 0.081 0.638 0.429 0.155 0.788 0.623 0.240
g=01] 0121 0.113 0.056 0.207 0.191 0.077 0.287 0.284  0.100
=02 0.065 0.074 0.048 0.066 0.099 0.049 0.086 0.129 0.059
B=03]| 0.057 0.067  0.071 0.057 0.066 0.059 0.065 0.077  0.073
g=04| 0.075 0.066 0.087 0.067 0.058 0.081 0.079 0.060 0.095
=05 0.09 0.062 0.107 0.080 0.061 0.110 0.105 0.051 0.128
B=0.6| 0.09 0.063 0.126 0.095 0.063 0.131 0.117 0.049 0.151
g=0.7| 0.109 0.073 0.137 0.101 0.061 0.141 0.127 0.047  0.159
=08 0125 0.083 0.147 0.109 0.061 0.149 0.141 0.049 0.171
Table 5. Powers for pure data, p* = 0.15
n =100 n =200 n = 300
00 = —0.1 00 = 0 o = 0.1 Po = —-0.1 00 = 0 00 = 0.1 00 = —-0.1 0o = 0 Po = 0.1
=0 0.945 0.603 0.141 1 0.871  0.180 1 0962  0.265
g=01 0954 0.588 0.157 1 0.863  0.207 1 096  0.299
g=02| 0952 0.557  0.158 1 0.825 0.213 1 0944 0315
=03 0941 0.510 0.153 0.999 0.783  0.213 1 0913 0.313
p=04 0925 0465 0.154 0.999 0.734 0.210 1 0.885  0.301
B=05| 0904 0424 0.159 0.996 0.677  0.202 1 0.845 0.289
g=06| 0873 0.395 0.153 0.990 0.618 0.197 0.999 0.789  0.277
g=07 0830 0.361 0.153 0.985 0.555 0.183 0.999 0.733  0.261
g=08| 0789 0.322  0.161 0.974 0499 0.179 0.997 0.678  0.246
Table 6. Powers for contaminated data, p* = 0.15
n =100 n =200 n =300
o = —0.1 o = 0 Po = 0.1 Po = —0.1 o0 = 0 o = 0.1 o = —0.1 o = 0 Po = 0.1
=0 0.424 0.090 0.029 0.746 0.141  0.030 0.919 0.246  0.037
g=01| 0716 0.222  0.041 0.954 0.397  0.029 0.994 0.569  0.037
g=02 0.838 0.333  0.071 0.989 0.555  0.075 0.999 0.744  0.096
=03 0881 0.383  0.105 0.993 0.633 0.121 0.999 0.803 0.161
g=04| 0879 0.393  0.129 0.993 0.642  0.150 0.999 0.809 0.213
B=05 0865 0.381 0.135 0.992 0.621  0.168 0.999 0.797  0.241
g=06| 03836 0.357  0.149 0.984 0583 0.174 0.998 0.769  0.252
=07 0.808 0.332  0.146 0.980 0531 0.173 0.997 0.713  0.256
g=08| 0773 0.309 0.152 0.961 0.487 0.173 0.995 0.657  0.243
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260 be obtained. In such a case, composite likelihood methods constitute an appealing methodology in
20 the area of estimation and testing of hypotheses. On the other hand, distance or divergence based
an on methods of estimation and testing have increasingly become fundamental tools in the field of
2z mathematical statistics. The work in [15] is the first, to the best of our knowledge, which links the
23 notion of composite likelihood with divergence based on methods for testing statistical hypotheses.
278 In this paper, MDPDE are introduced and they are exploited to develop Wald type test statistics
275 for testing simple or composite null hypotheses, in a composite likelihood framework. The validity
26 Of the proposed procedures is investigated by means of simulations. The simulation results point
27 out the robustness of the proposed information theoretic procedures in estimation and testing, in the
27e  composite likelihood context. There are several areas where the notions of divergence and composite
2o likelihood are crucial, including spatial statistics and time series analysis. These are areas of interest
200 and they will be maybe explored elsewhere.
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2sa  Abbreviations

285 The following abbreviations are used in this manuscript:

MLE Maximum likelihood estimator
CMLE Composite maximum likelihood estimator
286 DPD Density power divergence
MDPDE Minimum density power divergence estimator

CMDPDE Composite minimum density power divergence estimator

27 Appendix Proof of Results

208 Appendix A.1 Proof of Theorem 2

289 The result follows in a straightforward manner because of the asymptotic normality of ﬁf,
A L — _
V(@ —00) £ N (0., (00)]5(00) Hy ' (0))

200  Appendix A.2 Proof of Theorem 3

201 A first order Taylor expansion of  (8) at ﬁf around 6" gives

() 1109 = (%55"), . (00 =07) won (22 - o]

202 Now the result follows because the asymptotic distribution of (l (ﬁf) —1 (6*)) coincides with the
203 asymptotic distribution of v/n (%) oo (55 - 9*) .

oo

202 Appendix A.3 Proof of Theorem 5

205 We have

$(B) = g(00)+G(60)" (8 — o) +o, ([of ~ 60]))
= G"(60) (87— 60) +0p (| o e

s because g (6g) = 0, .
207 Therefore

N
©
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Vg (8) 55 N(0,Gp (80)" Hy" (80)]5(80)Hy " (80) G (80))

208 because

NG (ﬁf —60) 5> N(0,H," (6) 5 (60) Hy (60)).
200 Now

Wip =ng (%)T[GT(Ho)H,;lwo)Iﬁ(eo)H,;l(eo)c(eo)]‘1 g(a,;) £, 2

n—oo

o Appendix A.4 Computation of Sensitivity and Variability Matrices in the Numerical Example

3

o

301 We want to compute
Hy(0) = [ CLO)  u(0y) u(0y)dy
10) = [ Coy) u(oy) u(oy)dy
— [, ce@’ uoy)dy [ (w(0y) cLoy) dy.
302 First of all, we can see that

CLOY)P T = (fa, (8,9)fa,(6,1))" "

p+1
— 1 1 . 1 _ 1
- <2nm exp { ~y1rtgz Qv )} 2 /1= 2 exp { z(lpz)Q(y3'y4)}>

B+1
- ((27T)2(11_p2)> exp {—2([1;% [Q(y1,y2) + Q(ys,y4)]}

1 1 P(B+1)? p+1
= i (@ot=gm) @ o -t Q) + Q)
—Cp-CL3,
p * * * . *
s where Cg = (/3411)2 ((2n)2(11—p2)) and Cﬁﬂ = ccﬁ(e, y)* ~ N (p,L*), with Z* = /51?)3.
™ dlogCLj
305 While u(6,y) = W we will denote as u(6,y)" to u(6,y)" = 726 £ Then

dlogCL(B,y) 1 alogCL(B,y)Ptt 1 0dlog(Cs-CL)

u(0y) = 90 T B+1 20 T B+1 90
1 dlogCg dlogCLg\ 1 dlog Cp .
S ( 0 a8 ) B+l ( ag T 0y) > @9)

s06 Further,


http://dx.doi.org/10.20944/preprints201711.0039.v1
http://dx.doi.org/10.3390/e20010018

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2017 d0i:10.20944/preprints201711.0039.v1

18 of 20

B+1 _ ﬁ+1810g05( ,y) _/ ﬁE)CE(G,y)
oy ueydy = [ coeytt EBLmay - [ cr(oy) =y

B 1 acL(ey)Pt! B+1
= e BF1 a0 W7 /3+1ae/ CLOY)™ dy

1 9C 20pC
“prim OV GG ) TE ) o

(0,0,0,0,

307 Now

/R4 CﬁﬁJrlu(G,y)Tu(ﬂ,y)dy (31)
. 1 dlog Cg AT dlog Cg N
_/H§4(C5'C£ﬁ)(ﬁ+1)2 ( 30 +u(0,y) ) ( 50 +u(0,y) )dy
T
_ Cp / dlog Cg dlog Cg oL
(B+1)2 Jrs 00 00 p

. ..y alogC . (dlogCp\T . .
+CLy (u(8y)")" age B +C£/3< P ’3) u(0,y)" +CL5(u(6,y)") u(6,y) 1

C dlogC dlogC dlogC
G gCp gCp / / 8-p
~ g (R (M) fuceiare (L eciuton d) (5
dlogC x %
( 5) / CLzu(6,y) dy+/ CLy(u(0,y)") u(6,y) dy]
Cp T T .
- G117 KTK + / CLu(0,y)"dy K+K / CLiu(0y)" dy+/ CLy(u(8,y)" )V u(6,y) dy|,
oo where K = 5 = (0,0,0,0, 225). But

dlogC
[ ccim@y)ydy= [ (Clﬁccw,y)ﬁ“) [(ﬁ+1>u(e,y) = ﬁ] dy

_ @ [ / 4 cc(e,y)ﬁ“u(e,y)dy} - (1:; /R4 cL(0,y)’dy

1 acﬁ

300 and thus (31) can be expressed as
[, CLO.9)" ul0y) u(By)dy = - ["T“/ CLA(u(0,y)") u(6,y) dy| .
R4 7 ’ 4 (‘8+1)2 R4 ,B 7 4

310 On the other hand, it is not difficult to prove that

[, CLiwOy) ) u(0y) dy = C- [ CLO,y)(w(0.1)) u(0)dy = C-Ho(o),

su where C =diag(f+1,+1,6+1,+1,1) and ([15])
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1 —p
T 0 0 0
—p 1
=7 T 0 0 0
1 _
H®)=| 0 0 5 5% 0 (32)
0 O 1:‘;2 1_1P2 0
2(0*+1)
0 0 0 0 122
312 So
Hy(0) = — P [ Hy(0) + KTK
p(0) (5+1)z[ Ho(0) + ],
313 thiS is
1 —p O 0 0
c —-p 1 0 0 0
_ B 0 0 1 - 0
Hg(0) = 1Y (33)
P B+ 1)1 —p) 0 —p 1 0
0 0 0 2 (0*+1)+20° B2

(1-p%)(1+B)

a1 Note that, for § = 0, (33) equals to (32).

315 On the other hand, the expression of the variability matrix Jg(6) can be obtained from
a6 expressions (26) and (30) as

Jp(0) = Hap(6) — &5(6)"¢5(0). (34)
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