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1 Abstract: We find that the standard relative entropy and the Umegaki entropy are designed for the
= purpose of inferentially updating probability and density matrices respectively. From the same set of
s inferentially guided design criteria, both of the previously stated entropies are derived in parallel.
«  This formulates a quantum maximum entropy method for the purpose of inferring density matrices
s in the absence of complete information.
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s 1. Introduction

° We design an inferential updating procedure for probability distributions and density matrices
1 such that inductive inferences may be made. The inferential updating tools found in this derivation take
1 the form of the standard and quantum relative entropy functionals, and thus we find the functionals
12 are designed for the purpose of updating probability distributions and density matrices respectively.
1z Design derivations which found the entropy to be a tool for inference originally required five design
1 criteria (DC) [1-3], this was reduced to four in [4-6], and then down to three in [7]. We reduced the
1= number of required DC down to two while also providing the first design derivation of the quantum
1 relative entropy — using the same design criteria and inferential principles in both instances.

17 The designed quantum relative entropy takes the form of Umegaki’s quantum relative entropy,
1e and thus it has the “proper asymptotic form of the relative entropy in quantum (mechanics)" [8-10].
1o Recently, [11] gave an axiomatic characterization of the quantum relative entropy that “uniquely
20 determines the quantum relative entropy". Our derivation differs from their’s, again in that we design
xn  the quantum relative entropy for a purpose, but also that our DCs are imposed on what turns out
22 to be the functional derivative of the quantum relative entropy rather than on the quantum relative
= entropy itself. The use of a quantum entropy for the purpose of inference has a large history: Jaynes
2a  [12,13] invented the notion of the quantum maximum entropy method [14], while it was perpetuated
by [15-22] and many others. However, we find the quantum relative entropy to be the suitable entropy
26 for updating density matrices, rather than the von Neumann. The relevant results of their papers may
2z be found using our quantum relative entropy with a suitable uniform prior density matrix.

26 It should be noted that because the relative entropies were reached by design, they may be
20 interpret as such, “the relative entropies are tools for updating", which means we no longer need to
30 attach an interpretation ex post facto — as a measure of disorder or amount of missing information. In
a1 this sense, the relative entropies were built for the purpose of saturating their own interpretation [4,7].
32 The remainder of the paper is organized as follows: First we will discuss some universally
33 applicable principles of inference and motivate the design of an entropy function able to rank
sa  probability distributions. This entropy function will be designed such it is consistent with inference
ss by applying a few reasonable design criteria, which are guided by the aforementioned principles of
ss inference. Using the same principles of inference and design criteria, we find the form of the quantum
sz relative entropy suitable for inference. We end with concluding remarks.
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38 Solutions for ¢ by maximizing the quantum relative entropy give insight into the Quantum Bayes’
s Rule in the sense of [23-26]. This, and a few other applications of the quantum maximum entropy
s« method, will be discussed in a future article.

a1 2. The Design of Entropic Inference

a2 Inference is the appropriate updating of probability distributions when new information is
43 received. Bayes’ rule and Jeffrey’s rule are both equipped to handle information in the form of data;
««  however, the updating of a probability distribution due to the knowledge of an expectation value was
«s realized by Jaynes [12-14] through the method of maximum entropy. The two methods for inference
s were thought to be devoid of one another until the work of [27], which showed Bayes” and Jeffrey’s
4«7 Rule to be consistent with the method of maximum entropy when the expectation values were in the
s form of data [27]. In the spirit of the derivation we will carry-on as if the maximum entropy method
2 were not known and show how it may be derived as an application of inference.

50 Given a probability distribution ¢(x) over a general set of propositions x € X, it is self evident
s1 that if new information is learned, we are entitled to assign a new probability distribution p(x) that
s=  somehow reflects this new information while also respecting our prior probability distribution ¢(x).
ss  The main question we must address is: “Given some information, to what posterior probability
sa distribution p(x) should we update our prior probability distribution ¢(x) to?", that is,

p(x) — p(x)?

ss This specifies the problem of inductive inference. Since “information” has many colloquial,
ss yet potentially conflicting, definitions, we remove potential confusion by defining information
sz operationally (x) as the rationale that causes a probability distribution to change (inspired by and
ss adapted from [7]). Directly from [7]:

59

so “Our goal is to design a method that allows a systematic search for the preferred posterior
&1 distribution. The central idea, first proposed in [4] is disarmingly simple: to select the posterior first
ez rank all candidate distributions in increasing order of preference and then pick the distribution that
es ranks the highest. Irrespective of what it is that makes one distribution preferable over another (we
s« will get to that soon enough) it is clear that any ranking according to preference must be transitive: if
es distribution p; is preferred over distribution p;, and p; is preferred over p3, then p; is preferred over
es p3. Such transitive rankings are implemented by assigning to each p(x) a real number S|p], which is
ez called the entropy of p, in such a way that if p; is preferred over py, then S[p;] > S[p>]. The selected
es distribution (one or possibly many, for there may be several equally preferred distributions) is that
es which maximizes the entropy functional."

70

7 Because we wish to update from prior distributions ¢ to posterior distributions p by ranking, the
22 entropy functional S|p, ¢|, is a real function of both ¢ and p. In the absence of new information, there
73 is no available rationale to prefer any p to the original ¢, and thereby the relative entropy should be
7 designed such that the selected posterior is equal to the prior ¢ (in the absence of new information).
s The prior information encoded in ¢(x) is valuable and we should not change it unless we are informed
76 otherwise. Due to our definition of information, and our desire for objectivity, we state the predominate
7z guiding principle for inductive inference:

7s  The Principle of Minimal Updating (PMU):

79 A probability distribution should only be updated to the extent required by the new information.
81 This simple statement provides the foundation for inference [7]. If the updating of probability
ez distributions is to be done objectively, then possibilities should not be needlessly ruled out or
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es suppressed. Being informationally stingy, that we should only update probability distributions
s« when the information requires it, pushes inductive inference toward objectivity. Thus using the PMU
es helps formulate a pragmatic (and objective) procedure for making inferences using (informationally)
ss subjective probability distributions [28].

87 This method of inference is only as universal and general as its ability to apply equally well to
ss any specific inference problem. The notion of “specificity" is the notion of statistical independence; a
e special case is only special in that it is separable from other special cases. The notion that systems may
% be “sufficiently independent” plays a central and deep-seated role in science and the idea that some
o1 things can be neglected and that not everything matters, is implemented by imposing criteria that tells
o2 us how to handle independent systems [7]. Ironically, the universally shared property by all specific
o3 inference problems is their ability to be independent of one another. Thus, a universal inference scheme
ss based on the PMU permits,

os Properties of Independence (PI):

% Subdomain Independence: When information is received about one set of propositions, it should not effect
oz 0r change the state of knowledge (probability distribution) of the other propositions (else information was also
os received about them too);

And,

% Subsystem Independence: When two systems are a-priori believed to be independent and we only receive
w0 information about one, then the state of knowledge of the other system remains unchanged.

102 The PI's are special cases of the PMU that ultimately take the form of design criteria in the design
10 derivation. The process of constraining the form of S[p, ¢] by imposing design criteria may be viewed
10s  as the process of eliminative induction, and after sufficient constraining, a single form for the entropy
15 remains. Thus, the justification behind the surviving entropy is not that it leads to demonstrably
s correct inferences, but rather, that all other candidate entropies demonstrably fail to perform as desired
w7 [7]. Rather than the design criteria instructing one how to update, they instruct in what instances one
1e  should not update. That is, rather than justifying one way to skin a cat over another, we tell you when
100 10t to skin it, which is operationally unique — namely you don’t do it — luckily enough for the cat.

1o 2.1. The Design Criteria and the Standard Relative Entropy

111 The following design criteria (DC), guided by the PMU, are imposed and formulate the standard
12 relative entropy as a tool for inference. The form of this presentation is inspired by [7].

13 DC1: Subdomain Independence

We keep the DC1 from [7] and review it below. DC1 imposes the first instance of when one should
not update — the Subdomain PI. Suppose the information to be processed does not refer to a particular
subdomain D of the space X of x’s. In the absence of new information about D the PMU insists we do
not change our minds about probabilities that are conditional on D. Thus, we design the inference
method so that ¢(x|D), the prior probability of x conditional on x € D, is not updated and therefore
the selected conditional posterior is,

P(x|D) = 9(x|D). M

us  (The notation will be as follows: we denote priors by ¢, candidate posteriors by lower case p, and the
us  selected posterior by upper case P.) We emphasize the point is not that we make the unwarranted
ue assumption that keeping ¢(x|D) unchanged is guaranteed to lead to correct inferences. It need not;
1z induction is risky. The point is, rather, that in the absence of any evidence to the contrary there is no
ue reason to change our minds and the prior information takes priority.

e DC1 Implementation:
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Consider the set of microstates x; € X’ belonging to either of two non-overlapping domains D or its
compliment D’, such that ¥ = DU D’ and @ = DN D’. For convenience let p(x;) = p;. Consider the
following constraints:

p(D)=) pi and p(D') =Y pi, @)
i€eD ieD!

such that p(D) 4+ p(D’) = 1, and the following “local” constraints to D and D’ respectively are,

(A) =Y piA; and (A') =) piAl 3)
i€D ieD!

As we are searching for the candidate distribution which maximizes S while obeying (2) and (3),
we maximize the entropy S = S|p, ¢] with respect to these expectation value constraints using the
Lagrange multiplier method,

0=5(5 = Mp(D) = T pi] = ul(4) = 1 piA]

i€eD i€eD
~N[p(D) = ¥ pil =W (A) = ¥ pii]),
icD’ icD’
and thus, the entropy is maximized when the following differential relationships hold:

6S ,

5T7i = A+uA; VieD, 4)
LR N+uA; VieD. )
opi

Equations (2)-(5), are n + 4 equations we must solve to find the four Lagrange multipliers {A, A, , 4’}
and the n probability values {p;}.

If the subdomain constraint DC1 is imposed in the most restrictive case, then it will hold in
general. The most restrictive case requires splitting X" into a set of {D;} domains such that each D;
singularly includes one microstate x;. This gives,

oS .

— = A;+p;A; ineach D;. 6)

opi
Because the entropy S = S[p1, 02, --; 91, 92, -..] is a function over the probability of each microstate’s
posterior and prior distribution, its variational derivative is also a function of said probabilities in
general,

fpsi = ¢i(01, 02, i 1, P2,.) = Ai + piA; foreach (i, D;). @)
DC1 is imposed by constraining the form of ¢;(p1, p2, ..; 91, 92, ...) = ¢i(0i; 91, 2, ...) to ensures that
changes in A; — A; + §A; have no influence over the value of p; in domain D;, through ¢;, for i #j.
If there is no new information about propositions in Dj, its distribution should remain equal to ¢;
by the PMU. We further restrict ¢; such that an arbitrary variation of ¢; — ¢; + d¢; (a change in the
prior state of knowledge of the microstate j) has no effect on p; for i # j and therefore DC1 imposes
¢i = ¢i(pi, i), as is guided by the PMU. At this point it is easy to generalize the analysis to continuous
microstates such that the indices become continuous i — x, sums become integrals, and discrete
probabilities become probability densities p; — p(x).

Remark:

do0i:10.20944/preprints201711.0023.v1
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s We are designing the entropy for the purpose of ranking posterior probability distributions (for the
s purpose of inference); however, the highest ranked distribution is found by setting the variational
1z derivative of S[p, ¢| equal to the variations of the expectation value constraints by the Lagrange
1 multiplier method,

6S

So(x) :A‘F;#iAi(x)- (8)

1o Therefore, the real quantity of interest is % rather than the specific form of S[p, ¢]. All forms of

10 S[p, ¢| that give the correct form of % are equally valid for the purpose of inference. Thus, every

11 design criteria may be made on the variational derivative of the entropy rather than the entropy itself,
152 which we do. When maximizing the entropy, for convenience, we will let,

= ¢x(p(x), 9(x)), ©)

1ss  and further use the shorthand ¢ (p, ¢) = ¢x(p(x), ¢(x)), in all cases.

1sa  DC1": In the absence of new information, our new state of knowledge p(x) is equal to the old state of knowledge
155 q)(X)

156 This is a special case of DC1, and is implemented differently than in [7]. The PMU is in principle a
157 statement about informational honestly — that is, one should not “jump to conclusions” in light of new
15 information and in the absence of new information, one should not change their state of knowledge.
1o If no new information is given, the prior probability distribution ¢(x) does not change, that is, the
10 posterior probability distribution p(x) = ¢(x) is equal to the prior probability. If we maximizing the
11 entropy without applying constraints,

=0, (10)
op(x)
162 then DC1” imposes the following condition:
S
So(x) ox(p, @) = Px(9, 9) =0, (11)

163 for all x in this case. This special case of the DC1 and the PMU turns out to be incredibly constraining
16 as we will see over the course of DC2.

16s  Comment:

166 From [7]. If the variable x is continuous, DC1 requires that when information refers to points
1z infinitely close but just outside the domain D, that it will have no influence on probabilities conditional
s on D. This may seem surprising as it may lead to updated probability distributions that are
160 discontinuous. Is this a problem? No.

170 In certain situations (e.g., physics) we might have explicit reasons to believe that conditions of
11 continuity or differentiability should be imposed and this information might be given to us in a variety
172 of ways. The crucial point, however — and this is a point that we keep and will keep reiterating — is
173 that unless such information is explicitly given we should not assume it. If the new information leads
174 to discontinuities, so be it.

17e  DC2: Subsystem Independence

177 DC2 imposes the second instance of when one should not update — the Subsystem PI. We
1s emphasize that DC2 is not a consistency requirement. The argument we deploy is not that both the prior
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170 and the new information tells us the systems are independent, in which case consistency requires that
10 it should not matter whether the systems are treated jointly or separately. Rather, DC2 refers to a
11 situation where the new information does not say whether the systems are independent or not, but
12 information is given about each subsystem. The updating is being designed so that the independence
13 reflected in the prior is maintained in the posterior by default via the PMU and the second clause of
1sa  the PI's. [7]

185 The point is not that when we have no evidence for correlations we draw the firm conclusion that
16 the systems must necessarily be independent. They could indeed have turned out to be correlated and
1z then our inferences would be wrong. Again, induction involves risk. The point is rather that if the
s joint prior reflected independence and the new evidence is silent on the matter of correlations, then the
180 prior takes precedence. As before, in this case subdomain independence, the probability distribution
10 should not be updated unless the information requires it. [7]

12 DC2 Implementation:

12 Consider a composite system, x = (x1,xp) € X = X} x &X,. Assume that all prior evidence led us
103 to believe the subsystems are independent. This belief is reflected in the prior distribution: if the
10a individual system priors are ¢1(x1) and @, (x2), then the prior for the whole system is their product
s @1(x7)@2(x2). Further suppose that new information is acquired such that ¢;(x;) would by itself be
1e updated to P; (x1) and that ¢2(x2) would be itself be updated to P, (x7). By design, the implementation
1z of DC2 constrains the entropy functional such that in this case, the joint product prior ¢;(x7)@2(x2)
1s updates to the selected product posterior P (x1)P(x2). [7]

109 The argument below is considerably simplified if we expand the space of probabilities to include
200 distributions that are not necessarily normalized. This does not represent any limitation because a
201 normalization constraint may always be applied. We consider a few special cases below:

Case 1: We receive the extremely constraining information that the posterior distribution for system 1
is completely specified to be P; (x;) while we receive no information at all about system 2. We treat
the two systems jointly. Maximize the joint entropy S{p(x1, x2), ¢(x1)¢(x2)] subject to the following
constraints on the p(x1, x2),

/de p(xl, XQ) = Pl(xl) . (12)

Notice that the probability of each x; € A} within p(x1,x2) is being constrained to P;(x1) in the
marginal. We therefore need a one Lagrange multiplier A;(x1) for each x1 € &) to tie each value of
[ dx; p(x1,x2) to Py (x1). Maximizing the entropy with respect to this constraint is,

1) {S —/dxlx\l(xl) (/dxzp(xl,xz) —Pl(xl))] =0, (13)

which requires that
A(x1) = Pxyx, (0(x1,%2), 1 (x1)92(%2)) (14)

for arbitrary variations of p(x1, x2). By design, DC2 is implemented by requiring ¢; ¢, — P; ¢, in this
case, therefore,

M(x1) = Pryx, (Pr(x1)92(x2), @1(x1) p2(x2)) - (15)

This equation must hold for all choices of x; and all choices of the prior ¢, (x2) as A1(x7) is independent
of xp. Suppose we had chosen a different prior ¢} (x2) = ¢2(x2) + d¢2(x7) that disagrees with @y (x2).
For all x; and d¢,(x7), the multiplier A1 (x;) remains unchanged as it constrains the independent
p(x1) — Pi(x1). This means that any dependence that the right hand side might potentially have had
on xp and on the prior ¢, (x;) must cancel out. This means that

Prix, (P1(x1)@2(x2), @1(x1) 2(x2)) = fuy (P1(x1), @1(x1))- (16)
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Since ¢ is arbitrary in f suppose further that we choose a constant prior set equal to one, ¢, (x2) =1,
therefore

frr (Pr(x1), 91(x1)) = ¢Pxyzy (Pr(x1) ¥ 1L, @1(x1) x 1) = x; (Pr(x1), @1(x1)) (17)

in general. This gives,
A (x1) = ¢y (Pr(x1), @1(x1)) - (18)

203 The left hand side does not depend on x;, and therefore neither does the right hand side. An argument
204 exchanging systems 1 and 2 gives a similar result.
Case 1 - Conclusion: When the system 2 is not updated the dependence on ¢, and x; drops out,

Pryxy (Pr(x1) p2(x2), 1(x1) 92(x2)) = ¢y (Pr1(x1), @1(x1))- (19)

and vice-versa when system 1 is not updated,

Prxy (@1(x1)Pa(x2), 91(x1) 92(x2)) = ¢y (P2(x2), 92(x2)) - (20)

20s As we seek the general functional form of ¢, x,, and because the x, dependence drops out of (19)
20 and the x; dependence drops out of (20) for arbitrary @1, 2 and @12 = @12, the explicit coordinate
207 dependence in ¢ consequently drops out of both such that,

(le X2 _> (P/ (21)

20s as ¢ = ¢(p(x),¢(x)) must only depend on coordinates through the probability distributions
200 themselves. (As a double check, explicit coordinate dependence was included in the following
20 computations but inevitably dropped out due to the form the functional equations and DC1’. By the
21 argument above, and for simplicity, we drop the explicit coordinate dependence in ¢ here.)

Case 2: Now consider a different special case in which the marginal posterior distributions for systems
1 and 2 are both completely specified to be P;(x1) and P;(x;) respectively. Maximize the joint entropy
Slp(x1,x2), ¢(x1)@(x2)] subject to the following constraints on the p(x1, x2),

/de p(xl,xz) = Pl (xl) and /dx1 p(xl,xz) = Pz(Xz) . (22)

213 Again, this is one constraint for each value of x; and one constraint for each value of x;, which therefore
21a require the separate multipliers 11 (x1) and pz(x2). Maximizing S with respect to these constraints is
215 then,

0 = ¢ {S f/dxlyl(xl) (/dxw(xl,xz) Pl(x1)>
— /dxzyz(xz) (/ dxy p(x1,x2) —Pz(xz))] , (23)
zus  leading to

p1(x1) + p2(x2) = ¢ (p(x1,%2), 1(x1) P2(x2)) - (24)

The updating is being designed so that ¢1 ¢, — P; P», as the independent subsystems are being updated
based on expectation values which are silent about correlations. DC2 thus imposes,

p1(x1) + p2(x2) = ¢ (Pr(x1) Pa(x2), @1(x1) @2(x2)) - (25)

Write (25) as,
p1(x1) = ¢ (Pr(x1)Pa(x2), ¢1(x1) 92(x2)) — p2(x2). (26)
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The left hand side is independent of x; so we can perform a trick similar to that we used before. Suppose
we had chosen a different constraint Pj(x;) that differs from P,(x) and a new prior ¢4 (x;) that differs
from ¢, (x;) except at the value %,. At the value %,the multiplier y; (x1) remains unchanged for all
Pj(x2), 95 (x2), and thus x;. This means that any dependence that the right hand side might potentially
have had on x; and on the choice of P>(x7), ¢5(x2) must cancel out leaving i (x1) unchanged. That is,
the Lagrange multiplier y(xp) “pushes out" these dependences such that

¢ (P1(x1)P2(x2), ¢1(x1) 92(x2)) — pa(x2) = g(P1(x1), p1(x1))- (27)

Because g(P;(x1), ¢1(x1)) is independent of arbitrary variations of P»(x;) and ¢(x;) on the LHS
above — it is satisfied equally well for all choices. The form of § = ¢(P;(x1),41(x1)) is apparent
if Py(xp) = ¢2(x2) = 1 as pp(x2) = 0 similar to Case 1 as well as DC1’. Therefore, the Lagrange
multiplier is

pi(x1) = ¢ (Pr(x1), @1(x1)) - (28)

A similar analysis can be carried out for yy(x;) leads to

H2(x2) = ¢ (P2(x2), p2(x2)) - (29)

Case 2 - Conclusion: Substituting back into (25) gives us a functional equation for ¢,

¢ (P1P2, p1902) = ¢ (P, 91) + ¢ (P2, 92) - (30)

The general solution for this functional equation is derived in the Appendix, section 5.3, and is

¢(o, ¢) = a1 In(p(x)) + a2 In(g(x)) (31)

where a1, a; are constants. The constants are fixed by using DC1". Letting p1(x1) = ¢1(x1) = @1 gives
¢(¢,¢) = 0by DCY’, and therefore,

¢(9,¢) = (a1 +a2) In(¢) =0, (32)

so we are forced to conclude a; = —ay for arbitrary ¢. Letting a1 = A = —|A| such that we are really
maximizing the entropy (although this is purely aesthetic) gives the general form of ¢ to be,

p(x)
=—|AlIn{—F=). 33
#lorg) = —lAIIn (£05) (33)
Aslong as A # 0, the value of A is arbitrary as it always can be absorbed into the Lagrange multipliers.
The general form of the entropy designed for the purpose of inference of p is found by integrating ¢,
and therefore,

p(x)
S(6(x), 9(x)) = ~|A] [ dx () (£75) = p(x)) + Clgl. (34)
The constant in p, C[¢], will always drop out when varying p. The apparent extra term (|A| [ p(x)dx)
from integration cannot be dropped while simultaneously satisfying DC1’, which requires p(x) = ¢(x)
in the absence of constraints or when there is no change to one’s information. In previous versions
where the integration term (|A| [ p(x)dx) is dropped, one obtains solutions like p(x) = ¢ l¢(x)
(independent of whether ¢(x) was previously normalized or not) in the absence of new information.
Obviously this factor can be taken care of by normalization, and in this way both forms of the entropy
are equally valid; however, this form of the entropy better adheres to the PMU through DC1". Given

do0i:10.20944/preprints201711.0023.v1


http://dx.doi.org/10.20944/preprints201711.0023.v1
http://dx.doi.org/10.3390/e19120664

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 November 2017 d0i:10.20944/preprints201711.0023.v1

9 of 23

22 that we may regularly impose normalization, we may drop the extra [ p(x)dx term and C[¢]. For
233 convenience then, (34) becomes

. x
S(6(x), p(x)) = 5" (p(x), 9(x)) = 14| [ dxp(x)in (251, )
¢(x)
=3¢ which is a special case when the normalization constraint is being applied. Given normalization is
235 applied, the same selected posterior p(x) maximizes both S(p(x), ¢(x)) and S*(p(x), ¢(x)), and the
236 star notation may be dropped.

237 Remarks:

238 It can be seen that the relative entropy is invariant under coordinate transformations. This
230 implies that a system of coordinates carry no information and it is the “character” of the probability
200 distributions that are being ranked against one another rather than the specific set of propositions or
2a1  microstates they describe.

242 The general solution to the maximum entropy procedure with respect to N linear constraints in p,
2z (A;(x)), and normalization gives a canonical-like selected posterior probability distribution,

p(x) = p(x) exp (L midi(x)). (36)

2aa  The positive constant | A| may always be absorbed into the Lagrange multipliers so we may let it equal
a5 unity without loss of generality. DC1’ is fully realized when we maximize with respect to a constraint
246 on p(x) that is already held by ¢(x), such as (x?) = [ x2p(x) which happens to have the same value
2z as [ x2¢(x), then its Lagrange multiplier is forcibly zero a; = 0 (as can be seen in (36) using (34)), in
s agreement with Jaynes. This gives the expected result p(x) = ¢(x) as there is no new information.
2e0  Our design has arrived at a refined maximum entropy method [12] as a universal probability updating
20 procedure [27].

251 3. The Design of the Quantum Relative Entropy

252 Last section we assumed that the universe of discourse (the set of relevant propositions or
a3 microstates) X' = A x B x ... was known. In quantum physics things are a bit more ambiguous
s because many probability distributions, or many experiments, can be associated to a given density
2 matrix. In this sense it helpful to think of density matrices as “placeholders" for probability distributions
26 rather than a probability distributions themselves. As any probability distribution from a given density
27 matrix, p(-) = Tr(|-)(-|0), may be ranked using the standard relative entropy, it is unclear why we
2ss ' would chose one universe of discourse over another. In lieu of this, such that one universe of discourse
260 is not given preferential treatment, we consider ranking entire density matrices against one another.
200 Probability distributions of interest may be found from the selected posterior density matrix. This
261 MoOvVes our universe of discourse from sets of propositions X — H to Hilbert space(s).

262 When the objects of study are quantum systems, we desire an objective procedure to update from
263 a prior density matrix ¢ to a posterior density matrix p. We will apply the same intuition for ranking
20 probability distributions (Section 2) and implement the PMU, P, and design criteria to the ranking
2 Of density matrices. We therefore find the quantum relative entropy S(p, ¢) to be designed for the
266 purpose of inferentially updating density matrices.

267 3.1. Designing the Quantum Relative Entropy

268 In this section we design the quantum relative entropy using the same inferentially guided design
200 Criteria as were used in the standard relative entropy.

2za  DC1: Subdomain Independence
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211 The goal is to design a function S(p, ¢) which is able to rank density matrices. This insists that
2z S(P, ) be a real scalar valued function of the posterior p, and prior ¢ density matrices, which we will
23 call the quantum relative entropy or simply the entropy. An arbitrary variation of the entropy with
272 respect to p is,

A /\

5. 9)

350, 9) 5) S0, Q)N 55 35(0, ) 5
— = =T 60). (37
- ;( 5p )U Pi Z]:( 50T )]’i (09 =Te( 30T 6)- @7
275 We wish to maximize this entropy with respect to expectation value constraints, such as, (A) = Tr(Ap)
zre on p. Using the Lagrange multiplier method to maximize the entropy with respect to (A) and

27 normalization, is setting the variation equal to zero,

5(5(p, @) — AlTe(p) — 1] — a[Te(4p) — (A)]) =0, (38)

ars - where A and a are the Lagrange multipliers for the respective constraints. Because S(g, ¢) is a real
20 Number, we inevitably require S to be real, but without imposing this directly, we find that requiring
280 08 to be real requires p, A to be Hermitian. At this point, it is simpler to allow for arbitrary variations
2e1 Of P such that,

Tr(( g' P _af- aA)&ﬁ) —0. (39)

2e2  For these arbitrary variations, the variational derivative of S must satisfy,

050, 9) _ )11 44 (40)
op
2es  at the maximum. As in the remark earlier, all forms of S which give the correct form of 55(5 %) under
2es variation are equally valid for the purpose of inference. For notational convenience we let,
05(p, ¢ o
2 = 906.0), @)

2ss  which is a matrix valued function of the posterior and prior density matrices. The form of ¢(p, ¢) is
26 already "local" in g, so we don’t need to constrain it further as we did in the original DC1.

20z DC1": In the absence of new information, the new state p is equal to the old state §.

288 Applied to the ranking of density matrices, in the absence of new information, the density matrix
200 should not change, that is, the posterior density matrix 0 = ¢ is equal to the prior density matrix.
200 Maximizing the entropy without applying any constraints gives,

=¢(0.9) = 9(¢,9) = 0. (43)

202 As in the original DC1’, if ¢ is known to obey some expectation value constraint (A), then if one goes
203 out of their way to constrain p to that expectation value with nothing else, it follows from the PMU
204 that p = @, as no information has been gained. This is not imposed directly, but can be verified later.
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205  DC2: Subsystem Independence

206 The discussion of DC2 is the same as the standard relative entropy DC2 — it is not a consistency
207 Tequirement, and the updating is designed so that the independence reflected in the prior is maintained
208 in the posterior by default via the PMU, when the information provided is silent about correlations.

200 DC2 Implementation:

300 Consider a composite system living in the Hilbert space H = H; ® H,. Assume that all prior
;1 evidence led us to believe the systems were independent. This is reflected in the prior density matrix:
s02  if the individual system priors are ¢ and ¢,, then the joint prior for the whole system is ¢; ® ¢».
s03  Further suppose that new information is acquired such that ¢; would by itself be updated to g1 and
s0a that ¢» would be itself be updated to p,. By design, the implementation of DC2 constrains the entropy
s0s functional such that in this case, the joint product prior density matrix $; ® @, updates to the product
306 posterior f1 ® P2 so that inferences about one do not affect inferences about the other.

307 The argument below is considerably simplified if we expand the space of density matrices to
s0s  include density matrices that are not necessarily normalized. This does not represent any limitation
;00 because normalization can always be easily achieved as one additional constraint. We consider a few
;10 special cases below:

Case 1: We receive the extremely constraining information that the posterior distribution for system 1
is completely specified to be p; while we receive no information about system 2 at all. We treat the two
systems jointly. Maximize the joint entropy S[12, §1 @ 2], subject to the following constraints on the
p12,

Try(012) = 1. (44)
sz Notice all of the N? elements in #; of 1, are being constrained. We therefore need a Lagrange
213  multiplier which spans H; and therefore it is a square matrix A;. This is readily seen by observing the
aa  component form expressions of the Lagrange multipliers ()11)1-]- = Ajj. Maximizing the entropy with
a5 respect to this H; independent constraint is,

0= 5(5 - Y A (Trz(ﬁl,z) - ﬁl) ) (45)

i if
;e but reexpressing this with its transpose ()A\])ij = (A]) jir gives

0= 5(5 — Try (A1 [Tra(f1,2) — ﬁl]))/ (46)

where we have relabeled A] — A, for convenience, as the name of the Lagrange multipliers are
arbitrary. For arbitrary variations of p1,, we therefore have,

M@l =¢ (1o d1® ¢2) . (47)

DC2 is implemented by requiring ¢; ® ¢2 — p1 ® @y, such that the function ¢ is designed to reflect
subsystem independence in this case; therefore, we have

Mely=¢ (1 ® 2, ¢1® ¢2). (48)

This equation must hold for all choices of the independent prior ¢, in H,. Suppose we had chosen a
different prior ¢ = @2 + d¢,. For all §¢, the LHS A; ® 1, remains unchanged. This means that any
dependence that the right hand side might potentially have had on §, must cancel out, meaning,

~

¢ (01 ® @2, 91 @ P2) = f(p1,P1) @ 12 (49)
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Since ¢ is arbitrary, suppose further that we choose a unit prior, ¢, = 1, and note that p; ® 1 and
P11 ® 1, are block diagonal in H;. Because the LHS is block diagonal in H,

P, ¢1) @1 =¢ (01 @15, ¢1012) (50)

the RHS is block diagonal in H,, and because the function ¢ is understood to be a power series
expansion in its arguments,

~ ~

for,91)@h=¢ (@l ¢p1o1) =¢ (01, ¢1)® 1o (51)
This gives,
Mely=¢(p1,¢1) @1, (52)

and therefore the 1, factors out and Ay = ¢ (91, ¢1). A similar argument exchanging systems 1 and 2
shows Ay = ¢ (9, ¢2) in this case.
Case 1 - Conclusion: The analysis leads us to conclude that when the system 2 is not updated the
dependence on ¢, also drops out,

A

¢ (01 ® @2, P1 @ P2) = ¢ (p1,91) ® 1, (53)

and similarly,
¢ (P1® P2, P1® §2) =11 @ ¢ (P2, P2) - (54)

Case 2: Now consider a different special case in which the marginal posterior distributions for systems
1 and 2 are both completely specified to be p; and p, respectively. Maximize the joint entropy,
S[P12, $1 ® P2], subject to the following constraints on the p1,,

Tro(p12) =1 and  Tri(f12) = Po2- (55)

Here each expectation value constraints the entire space H;, where p; lives. The Lagrange multipliers
must span their respective spaces, so we implement the constraint with the Lagrange multiplier
operator fi;, then,

0= 5(5 = Tr1 (i [Tr2(p12) — p1]) — Tra(fiz[Tr1 (P12) — ﬁz])). (56)
For arbitrary variations of g1, we have,
pol+1i®f=¢ (1291 ¢2) - (57)
By design, DC2 is implemented by requiring ¢1 ® ¢ — p1 ® 7 in this case; therefore, we have

mol+11 @0 =¢(p1®p2¢1®¢) . (58)

Write (58) as,
el =910, ¢1®d) 11 @f. (59)
The left hand side is independent of changes in of ¢, and ¢, in Hj as fi; “pushes out" this dependence

from ¢. Any dependence that the RHS might potentially have had on g, ¢ must cancel out, leaving
fi1 unchanged. Consequently,

A

¢ (1 ® P2, P1® §2) — 11 @ P2 = g(pr, ¢1) © 1. (60)

do0i:10.20944/preprints201711.0023.v1


http://dx.doi.org/10.20944/preprints201711.0023.v1
http://dx.doi.org/10.3390/e19120664

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 November 2017 d0i:10.20944/preprints201711.0023.v1

13 of 23

Because g(p1, ¢1) is independent of arbitrary variations of p, and ¢, on the LHS above — it is satisfied
equally well for all choices. The form of g(p1, $1) reduces to the form of f(f1, ¢1) from Case 1 when
P2 = ¢p = 1, and similarly DC1’ gives fi; = 0. Therefore, the Lagrange multiplier is

Mm@l =¢(p1, 1) ® 1. (61)
A similar analysis can be carried out for fi, leading to
L@ =11 ®¢(p2 ¢2). (62)
a2s  Case 2 - Conclusion: Substituting back into (58) gives us a functional equation for ¢,
¢(P1 @ 2, 1@ §2) = p(p1, ¢1) ® T + 11 ® p(p2, §2), (63)
s2z which is,
(01 ® P2, 1 ® §2) = ¢(p1 @ 1o, 1 @ 12) + 911 @ P2, 11 @ 2). (64)

a2 The general solution to this matrix valued functional equation is derived in the Appendix 5.5, and is,

¢(0, ¢) =AIn(p)+ B In(@), (65)
2o where tilde A isa “super-operator" having constant coefficients and twice the number of indicies as p
;0 and ¢ as discussed in the Appendix (i.e. (A ln(ﬁ)) = Ykt Aijke(log(p) )xe and similarly for B In(¢)).
o)
s DC1” imposes,

~ ~

¢(¢,¢) =A In(¢)+ B In(¢) =0, (66)
sz which is satisfied in general when ,Z: - 1;, and now,
9(p,9) =A (In(p) ~In(9)). (67)

33 We may fix the constant A by substituting our solution into the RHS of equation (63) which is equal to
:3a  the RHS of equation (64),

(A1 (In(p1) ~In(gn))) @+ 11 @ (A2 (In(p2) —In(92)))

— A1 (m(ﬁl ®1p) —In(¢1 ® iz))Jr A1 <1n(11 ®p2) —In(l1 ® 432)), (68)

2 where A 12 acts on the joint space of 1 and 2 and A 1 A » acts on single subspaces 1 or 2 respectively.
s»»  Using the log tensor product identity, In(¢; ® 15) = In(p;) ® 1,, in the RHS of equation (68) gives,

:le (11‘1((31) ® iz — 11‘1((?71) X 12) + 1212 (il & 11‘1({32) — 11 ® ln((f)z)) . (69)
a3s  Note that arbitrarily letting 0o = ¢» gives,

(A1 (In(p1) =In(gn) ) @12 = A (In(p1) @ 12— In(r) @ 12). (70)
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330 or arbitrarily letting 1 = ¢ gives,
1@ (A2 (In(p2) —In(¢2)) ) =Arz2 (L @ In(p2) — 11 @ In(g2) ). 71)

0 As A1z, A1, and A are constant tensors, inspecting the above equalities determines the form of

;a1 the tensor to be A =A 1 where A is a scalar constant and 1 is the super-operator identity over the
sz appropriate (joint) Hilbert space.
243 Because our goal is to maximize the entropy function, we let the arbitrary constant A = —|A| and

s distribute 1 identically, which gives the final functional form,

#(p,9) = —|Al(In(p) ~In(9) ). 72)
s “Integrating” ¢, gives a general form for the quantum relative entropy,
5(p,¢) = —|A|Tr(plogp — plog ¢ — p) + C[P] = —[A[Su(p, §) + |A[Tr(p) + C[g], (73)

sas  where Syy(p, ¢) is Umegaki’s form of the relative entropy, the extra |A|Tr(p) from integration is an
sar  artifact present for the preservation of DC1’, and C[¢] is a constant in the sense that it drops out under
sae  arbitrary variations of p. This entropy leads to the same inferences as Umegaki’s form of the entropy
s0  with added bonus that p = ¢ in the absence of constraints or changes in information — rather than
0 0 = e~ ¢ which would be given by maximizing Umegaki’s form of the entropy. In this sense the extra
1 |A|Tr(p) only improves the inference process as it more readily adheres to the PMU though DC1’;
2 however now because S;; > 0, we have S(g, ¢) < Tr(p) + C[@], which provides little nuisance. In the
s spirit of this derivation we will keep the Tr(p) term there, but for all practical purposes of inference, as
s« long as there is a normalization constraint, it plays no role, and we find (letting |A| = 1 and C[§] = 0),

5(0,¢) = S*(0,9) = =Su(p, ) = —Tr(plogp — plog P), (74)

s Umegaki’s form of the relative entropy. S*(p, ¢) is an equally valid entropy because, given
sss  normalization is applied, the same selected posterior p maximizes both S(p, ¢) and S*(p, ¢).

sz 3.2. Remarks

358 Due to the universality and the equal application of the PMU by using the same design criteria
sss  for both the standard and quantum case, the quantum relative entropy reduces to the standard relative
0 entropy when [p, ] = 0 or when the experiment being preformed p — p(a) = Tr(p|a) (a|) is known.
ses  The quantum relative entropy we derive has the correct asymptotic form of the standard relative
2 entropy in the sense of [8-10]. Further connections will be illustrated in a follow up article that is
se3  concerned with direct applications of the quantum relative entropy. Because two entropies are derived
ses in parallel, we expect the well known inferential results and consequences of the relative entropy to
ses have a quantum relative entropy representation.

366 Maximizing the quantum relative entropy with respect to some constraints (A;), where {A;} are
sz a set of arbitrary Hermitian operators, and normalization (1) = 1, gives the following general solution
see  for the posterior density matrix:

p = exp (zxoi + thlAi + ln(qA))) = %exp (Zoc,'Ai +1r1((;3)) = %exp (C), (75)
1 1

se  Where &; are the Lagrange multipliers of the respective constraints and normalization may be factored
s out of the exponential in general because the identity commutes universally. If ¢ « 1, it is well known
s the analysis arrives at the same expression for ¢ after normalization as it would if the von Neumann
sz entropy were used, and thus one can find expressions for thermalized quantum states p = %e*ﬁH . The
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73 remaining problem is to solve for the N Lagrange multipliers using their N associated expectation
s7a value constraints. In principle their solution is found by computing Z and using standard methods
s7s  from Statistical Mechanics,

(A) = - 1n(2) 76

v/ = aal 7

e and inverting to find a; = «;((A;)), which has a unique solution due to the joint concavity (convexity
sz depending on the sign convention) of the quantum relative entropy [8,9] when the constraints are
a7e  linear in p. The simple proof that (76) is monotonic in «, and therefore invertible, is that is that its
a0 derivative %(AZ} = (A?) — (A;)? > 0. Between the Zassenhaus formula

HA+B) _ otAytB—5IAB 5 CIBIABI+AAB)) 77)

;0 and Horn’s inequality, the solutions to (76) lack a certain calculational elegance because it is difficult to
s express the eigenvalues of C = log(¢) + Y, A; (in the exponential) in simple terms of the eigenvalues
s of the A;’s and @, in general, when the matrices do not commute. The solution requires solving the
sss  eigenvalue problem for C, such the the exponential of C may be taken and evaluated in terms of the
ses  eigenvalues of the a;A;’s and the prior density matrix ¢. A pedagogical exercise is, starting with a
sss  prior which is a mixture of spin-z up and down ¢ = a|+)(+| + b|—)(—| (a,b # 0) and maximize
ses  the quantum relative entropy with respect to the expectation of a general Hermitian operator. This
se7  example is given in the Appendix 5.6.

sss 4. Conclusions:

389 This approach emphasizes the notion that entropy is a tool for performing inference and
0 downplays counter-notional issues which arise if one interprets entropy as a measure of disorder,
51 a measure of distinguishability, or an amount of missing information [7]. Because the same design
sz criteria, guided by the PMU, are applied equally well to the design of a relative and quantum relative
303 entropy, we find that both the relative and quantum relative entropy are designed for the purpose of
»s inference. Because the quantum relative entropy is the function which fits the requirements of a tool
s0s designed for inference, we now know what it is and how to use it — formulating an inferential quantum
s maximum entropy method. A follow up article is concerned with a few interesting applications of the
307 quantum maximum entropy method, and in particular it derives the Quantum Bayes Rule.
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sz 5. Appendix:

168 The Appendix loosely follows the relevant sections in [33], and then uses the methods reviewed to
a0 solve the relevant functional equations for ¢. The last section is an example of the quantum maximum
a0 entropy method for spin.

ann 5.1. Simple functional equations

a7z From [33] pages 31-44.
473 Thm 1:
aza If Cauchy’s functional equation

flx+y) = f(x)+ f(y), (78)

ars  is satisfied for all real x, y, and if the function f(x) is (a) continuous at a point, (b) nonegative for small positive
are X', or (¢c) bounded in an interval, then,

f(x) =cx (79)

ar7  is the solution to (78) for all real x. If (78) is assumed only over all positive x, y, then under the same conditions
ars (79) holds for all positive x.

a70  Proof 1:

as0 The most natural assumption for our purposes is that f(x) is continuous at a point (which later
se1  extends to continuity all points as given by Darboux). Cauchy solved the functional equation by
sz induction. In particular equation (78) implies,

fQxi) =Y f(x), (80)
i i
«e3s and if we let each x; = x as a special case to determine f, we find

f(nx) = nf(x). (81)
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sss We may let nx = mt such that
m m
Fx) = £ty = (o). ®2)
ss  Letting lim;_,q f(t) = f(1) = ¢, gives
m m m
fE) =)= e (83)
asse and because for t = 1, x = I above, we have
f(x) =cx, (84)

sz which is the general solution of the linear functional equation. In principle ¢ can be complex. The
sss importance of Cauchy’s solution is that can be used to give general solutions to the following Cauchy
a0 equations:

flx+y) = f)f(y) (85)
fly) = f(x)+f) (86)
fly) = f)f), (87)

a0 by preforming consistent substitution until they are the same form as (78) as given by Cauchy. We will
a1 briefly discuss the first two.

a2 Thm 2:

203 The general solution of f(x +vy) = f(x)f(y) is f(x) = e* for all real or for all positive x,y that are
s cONtinuous at one point and, in addition to the exponential solution, the solution f(0) = 1and f(x) = 0 for
a5 (x > 0) are in these classes of functions.

a96 The first functional f(x +y) = f(x)f(y) is solved by first noting that it is strictly positive for real
a7 X, Y, f(x), which can be shown by considering x =y,

f(2x) = f(x)* > 0. (88)

s If there exists f(xg) = 0, then it follows that f(x) = f((x — x¢) + x¢) = 0, a trivial solution, hence why
00 the possibility of being equal to zero is excluded above. Given f(x) is nowhere zero, we are justified in
soo taking the natural logarithm In(x), due to its positivity f(x) > 0. This gives,

In(f(x +y)) = In(f(x)) + In(f(y)), (89)

sor and letting g(x) = In(f(x)) gives,

gx+y)=gx)+g), (90)

so= which is Cauchy’s linear equation, and thus has the solution g(x) = cx. Because g(x) = In(f(x)), one
sos finds in general that f(x) = e“*.

soa Thm 3:

505 If the functional equation f(xy) = f(x) + f(y) is valid for all positive x,y then its general solution is
soo  f(x) = cIn(x) given it is continuous at a point. If x = 0 (or y = 0) are valid then the general solution is
sor  f(x) = 0. Ifall real x,y are valid except O then the general solution is f(x) = cIn(|x]).
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In particular we are interested in the functional equation f(xy) = f(x) + f(y) when x,y are
positive. In this case we can again follow Cauchy and substitute x = ¢" and y = ¢ to get,

flete?) = (") + f(e"), 1)

and letting g(u) = f(e") gives g(u +v) = g(u) + g(v). Again, the solution is g(#) = cu and
therefore the general solution is f(x) = cIn(x) when we substitute for u. If x could equal 0 then
f(0) = f(x) + f(0), which has the trivial solution f(x) = 0. The general solution for x # 0, y # 0 and
x, y positive is therefore f(x) = cIn(x).

5.2. Functional equations with multiple arquments

From [33] pages 213-217. Consider the functional equation,

P(xl +y11x2 +y2/"-/ Xn +yn) = F(Xl,XZ,..., xn) + F(ylryZ/ -"/yn)/ (92)

which is a generalization of Cauchy’s linear functional equation (78) to several arguments. Letting
X =X3=..=X; =Yy =Y3=..=1Y, = 0gives

F(xl + Y1, 0,,0) = F(Xl, 0,,0) + F(yl, 0,...,0), (93)

which is the Cauchy linear functional equation having solution F(x1,0, ...,0) = c1x; where F(x1,0, ...,0)
is assumed to be continuous or at least measurable majorant. Similarly,

F(0,...,0,x,0,...,0) = crxy, (94)
and if you consider
F(x14+0,04+12,0,..,0) = F(x1,0,...,0) + F(0,12,0, ...,0) = c1x1 + 212, (95)
and as y; is arbitrary we could have let iy, = x; such that in general
F(x1,%2, . Xn) = Y_CiX;, (96)
as a general solution.

5.3. Relative entropy:

We are interested in the following functional equation,
¢p1p2, 9192) = P(o1, 1) + P (02, 92). (97)
This is an equation of the form,
F(x1y1, x22) = F(x1,x2) + F(y1,¥2), (98)

where x; = p(x1), y1 = p(x2), x2 = ¢(x1), and y» = @(x;). First assume all g and p are greater than
zero. Then, substitute: x; = ¢% and y; = e¥i and let F'(x}, x,) = F(e*1,¢*2) and so on such that

F'(x1+yh,x +y2) = F'(x1,%) + F'(y1,42), (99)
which is of the form of (92). The general solution for F is therefore

F'(x} +y1, x5 +y5) = a1(x] + 1) +ax(x5 +y3) = a1 In(x1y1) + a2 In(xpy2) = F(x1y1, X2y2)  (100)

do0i:10.20944/preprints201711.0023.v1
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s20  Which means the general solution for ¢ is,

P(p1, 1) = arln(p(x1)) +axIn(p(x1)) (101)

ss0  In such a case when ¢(x() = 0 for some value xg € X we may let ¢(xg) = € where € is as close to zero
s2 as we could possibly want — the trivial general solution ¢ = 0 is saturated by the special case when
s2 0 = @ from DC1’. Here we return to the text.

ss3 5.4, Matrix functional equations

s34 (This derivation is implied in [33] pages 347-349). First consider a Cauchy matrix functional
s3s  equation,

fX+Y) = f(X)+£(Y) (102)

sss  where X and Y are n X n square matrices. Rewriting the matrix functional equation in terms of its
s37  components gives,

fij(x11 +y11, %12 + Y12, Xnn + Youn) = fii(¥11, %12, 00 X0n) + fij (Y11, Y12, - Yn) (103)

s3s 1S now in the form of (92) and therefore the solution is,

n
fii(X11, X120 00 Xun) =Y CijorXe (104)
k=0

s fori,j =1,..,n. We find it convenient to introduce super indices, A = (i,j) and B = (¢, k) such that
se0 the component equation becomes,

fa =Y capxs. (105)
B

saa  resembles the solution for a linear transformation of a vector from [33]. In general we will be discussing
sz matrices X = X; ® X» ® ... ® Xy which stem out of the tensor products of density matrices. In this
sss  situation X can be thought of as 2N index tensor or a z x z matrix where z = [TV 1; is the product of
sas the ranks of the matrices in the tensor product or even X is a vector of length z2. In such a case we may
ses abuse the super index notation where A and B lump together the appropriate number of indices such
sss  that (105) is the form of the solution for the components in general. The matrix form of the general
sa7  solution is,

f(X) =CX, (106)

sss  Where C is a constant super-operator having components c 4.

se0 5.5, Quantum Relative entropy:

550 The functional equation is,
¢(ﬁ1 ® P2, P1 ® 432) = ¢<ﬁ1 ©1,¢1® iz) + <P(i1 ® 2,1 ® 432)- (107)

ss2 These density matrices are Hermitian, positive semi-definite, have positive eigenvalues, and are not

s equal to 0. Because every invertible matrix can be expressed as the exponential of some other matrix,
. A~ 5! . . . .

sss  we can substitute p; = ef1, and so on for all four density matrices which gives,

(p(epi ® 6’3,2,8(% ® e‘p§> = (])<epi ® 12,643’1 ® iz) + ¢(il ® eplz,il ® e‘Pé). (108)
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ssa  Now we use the following identities for Hermitian matrices,
o @ o2 = P11 +11p) (109)
sss and
P @ Ty = P12, (110)
sse  to recast the functional equation as,
4,<6p3®iz+il®p§,e¢g®iz+il®¢;) _ 4,(6,3’1@12,6@;@12) + ¢<eil®ﬁ'2,eil®‘f"2). 111)
7 Letting G(0] @ 1o, ¢) @ 15) = ¢ (eﬁll@iz,e‘pi@b) gives,
Gprolh+hepdeh+hop) =Ghol¢el)+6hephiog). 112
sss  This functional equation is of the form
G(X1+Y], X+ Y3) = G(X], X5) + G(Y{, Y3), (113)
sse  which has the general solution
G(X,¥")=A X'+ BY, (114)
seo synonymous to (96), and finally in general,
9(p,9) =AIn(p) + BIn(9). (115)
s where A, B are super-operators having constant coefficients.
se2  D.6. Spin Example
563 Consider an arbitrarily mixed prior is (in the spin-z basis for convenience) with a,b # 0,
¢ = al+)(+|+b|=) (| (116)
see and a general Hermitian matrix in the spin-1/2 Hilbert space,
cu0? = c11 + cx0x + cybx + 202 (117)
s65
— (o1 + )N+ + ez — iey) )= + (ex + )| =)+ + (e1 — )| =) (], (118)
ses having a known expectation value,
Tr(pc o) = c. (119)

sev  Maximizing the entropy with respect to this general expectation value and normalization is:

0= (55 — A[Te(p) — 1] — a(Tr(pe,o?) — c)), (120)


http://dx.doi.org/10.20944/preprints201711.0023.v1
http://dx.doi.org/10.3390/e19120664

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 November 2017

568

569

570

571

574

575

576

578

579

581

22 of 23
which after varying gives,
s 1 A .
=z exp(acy 0" +1log(9)). (121)
Letting
C = ac, 0 +log(¢) (122)
gives
p= %eé = Ut Uy = %u&u—l
e/\+ -1 3A7 -1
= — UA) (A U™+ —UA-) (AU, (123)
where A is the diagonalized matrix of C having the real eigenvalues. They are,
Ay =AZE0A, (124)
due to the quadratic formula, explicitly:
1
A =aci + 5 log(ab), (125)
and
1 a)\? 2(02 4 2
A = 3 (thcz + 1og(E)> +4a?(c3 + cf). (126)

Because A+ and a,b, cq, ¢y, cy, c; are real, JA > 0. The normalization constraint specifies the Lagrange
multiplier Z,

Ab 4 oA
1="Tr(p) = erte (127)
Z
so Z = eM + et~ = 2¢* cosh(J)). The expectation value constraint specifies the Lagrange multiplier
&,
c = Tr(pc,ot) = 9 log(Z) =c1 + tanh(é)x)ié/\ (128)
. o "’
which becomes
- tanh(&)x) 2 2 2 a
c=c+ 51 (21x(cx ey tez)te: log(g)),
or
1 2 2a(c2 + c2 + c2) + c; log(&
¢ =c1 + tanh (2\/<2zxc2+log(2)) +41x2(c§+c§)) (G tey 2)2 =10g(5) :
\/ (Zacz + 1og(g>) +4a2(c2 + 2)
(129)

This equation is monotonic in « and therefore it is uniquely specified by the value of c. Ultimately this
is a consequence from the concavity of the entropy. The proof of (129)’s monotonicity is below:

do0i:10.20944/preprints201711.0023.v1
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ss2  Proof:

583 For p to be Hermitian, C is Hermitian and A = %\ / f (a) is real. Further more, because JA is real
ssa  f(a) > 0and thus A > 0. Because f(«) is quadratic in « and positive, it may be written in vertex
585 form,

f(a) =a(a—h)*+k, (130)

sss wherea > 0,k > 0,and (I, k) are the (x,y) coordinates of the minimum of f(a). Notice that the form
ss7  Of (129) iS,

_ tanh(VF@) | 3f(a)
@) o

sss Making the change of variables &’ = a — & centers the function such that f(a’) = f(—a') is symmetric
sso about a’ = 0. We can then write,

F(a) (131)

_ tanh(% f(a))
f@)

sso where the derivative has been computed. Because f(a’) is a positive, symmetric, and monotonically

1/ /
se1  increasing on the (symmetric) half-plane (for a’ greater than or less that zero), S(a’) = fanh(z V(&) 4o

f@)

sz also positive and symmetric, but it is unclear whether or not S(«) is also monotonic in the half-plane.
sos  We may restate

F(a') x 2aa’, (132)

F(a') = S(a) x 2aa’. (133)

sos We are now in a decent position to preform the derivate test for monotonic functions:

d / . / , 0 /
E)TUF(“) = 2aS(a’) + 2an aTdS(oc)
— 25( /) 1,& + ﬂ 1*t1‘1h2(1‘/ /2+k)
= A ( azx’2+k> T vk antipvar
a(a/)z
> N(1- >
> 2a5(w)(1 azx’2+k> >0
(134)
ses because a,k, S(a'), and therefore % are all > 0. The function of interest F(a') is therefore monotonic

s for all &', and therefore it is monotonic for all «, completing the proof that there exists a unique real
so7 Lagrange multiplier « in (129).

598 Although (129) is monotonic in « it is seemingly a transcendental equation. This can be solved
seo  graphically for the given values ¢, ¢1, cx, ¢y, ¢z, i.e. given the Hermitian matrix and its expectation value
so are specified. Equation (129) and the eigenvalues take a simpler form when a = b = 1, because in this
so1 instance ¢ o« 1 and commutes universally so it may be factored out of the exponential in (121).
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