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Abstract: We find that the standard relative entropy and the Umegaki entropy are designed for the1

purpose of inferentially updating probability and density matrices respectively. From the same set of2

inferentially guided design criteria, both of the previously stated entropies are derived in parallel.3

This formulates a quantum maximum entropy method for the purpose of inferring density matrices4

in the absence of complete information.5
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1. Introduction8

We design an inferential updating procedure for probability distributions and density matrices9

such that inductive inferences may be made. The inferential updating tools found in this derivation take10

the form of the standard and quantum relative entropy functionals, and thus we find the functionals11

are designed for the purpose of updating probability distributions and density matrices respectively.12

Design derivations which found the entropy to be a tool for inference originally required five design13

criteria (DC) [1–3], this was reduced to four in [4–6], and then down to three in [7]. We reduced the14

number of required DC down to two while also providing the first design derivation of the quantum15

relative entropy – using the same design criteria and inferential principles in both instances.16

The designed quantum relative entropy takes the form of Umegaki’s quantum relative entropy,17

and thus it has the “proper asymptotic form of the relative entropy in quantum (mechanics)" [8–10].18

Recently, [11] gave an axiomatic characterization of the quantum relative entropy that “uniquely19

determines the quantum relative entropy". Our derivation differs from their’s, again in that we design20

the quantum relative entropy for a purpose, but also that our DCs are imposed on what turns out21

to be the functional derivative of the quantum relative entropy rather than on the quantum relative22

entropy itself. The use of a quantum entropy for the purpose of inference has a large history: Jaynes23

[12,13] invented the notion of the quantum maximum entropy method [14], while it was perpetuated24

by [15–22] and many others. However, we find the quantum relative entropy to be the suitable entropy25

for updating density matrices, rather than the von Neumann. The relevant results of their papers may26

be found using our quantum relative entropy with a suitable uniform prior density matrix.27

It should be noted that because the relative entropies were reached by design, they may be28

interpret as such, “the relative entropies are tools for updating", which means we no longer need to29

attach an interpretation ex post facto – as a measure of disorder or amount of missing information. In30

this sense, the relative entropies were built for the purpose of saturating their own interpretation [4,7].31

The remainder of the paper is organized as follows: First we will discuss some universally32

applicable principles of inference and motivate the design of an entropy function able to rank33

probability distributions. This entropy function will be designed such it is consistent with inference34

by applying a few reasonable design criteria, which are guided by the aforementioned principles of35

inference. Using the same principles of inference and design criteria, we find the form of the quantum36

relative entropy suitable for inference. We end with concluding remarks.37
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Solutions for ρ̂ by maximizing the quantum relative entropy give insight into the Quantum Bayes’38

Rule in the sense of [23–26]. This, and a few other applications of the quantum maximum entropy39

method, will be discussed in a future article.40

2. The Design of Entropic Inference41

Inference is the appropriate updating of probability distributions when new information is42

received. Bayes’ rule and Jeffrey’s rule are both equipped to handle information in the form of data;43

however, the updating of a probability distribution due to the knowledge of an expectation value was44

realized by Jaynes [12–14] through the method of maximum entropy. The two methods for inference45

were thought to be devoid of one another until the work of [27], which showed Bayes’ and Jeffrey’s46

Rule to be consistent with the method of maximum entropy when the expectation values were in the47

form of data [27]. In the spirit of the derivation we will carry-on as if the maximum entropy method48

were not known and show how it may be derived as an application of inference.49

Given a probability distribution ϕ(x) over a general set of propositions x ∈ X, it is self evident50

that if new information is learned, we are entitled to assign a new probability distribution ρ(x) that51

somehow reflects this new information while also respecting our prior probability distribution ϕ(x).52

The main question we must address is: “Given some information, to what posterior probability53

distribution ρ(x) should we update our prior probability distribution ϕ(x) to?", that is,54

ϕ(x) ∗−→ ρ(x)?

This specifies the problem of inductive inference. Since “information" has many colloquial,55

yet potentially conflicting, definitions, we remove potential confusion by defining information56

operationally (∗) as the rationale that causes a probability distribution to change (inspired by and57

adapted from [7]). Directly from [7]:58

59

“Our goal is to design a method that allows a systematic search for the preferred posterior60

distribution. The central idea, first proposed in [4] is disarmingly simple: to select the posterior first61

rank all candidate distributions in increasing order of preference and then pick the distribution that62

ranks the highest. Irrespective of what it is that makes one distribution preferable over another (we63

will get to that soon enough) it is clear that any ranking according to preference must be transitive: if64

distribution ρ1 is preferred over distribution ρ2, and ρ2 is preferred over ρ3, then ρ1 is preferred over65

ρ3. Such transitive rankings are implemented by assigning to each ρ(x) a real number S[ρ], which is66

called the entropy of ρ, in such a way that if ρ1 is preferred over ρ2, then S[ρ1] > S[ρ2]. The selected67

distribution (one or possibly many, for there may be several equally preferred distributions) is that68

which maximizes the entropy functional."69

70

Because we wish to update from prior distributions ϕ to posterior distributions ρ by ranking, the71

entropy functional S[ρ, ϕ], is a real function of both ϕ and ρ. In the absence of new information, there72

is no available rationale to prefer any ρ to the original ϕ, and thereby the relative entropy should be73

designed such that the selected posterior is equal to the prior ϕ (in the absence of new information).74

The prior information encoded in ϕ(x) is valuable and we should not change it unless we are informed75

otherwise. Due to our definition of information, and our desire for objectivity, we state the predominate76

guiding principle for inductive inference:77

The Principle of Minimal Updating (PMU):78

A probability distribution should only be updated to the extent required by the new information.79

80

This simple statement provides the foundation for inference [7]. If the updating of probability81

distributions is to be done objectively, then possibilities should not be needlessly ruled out or82
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suppressed. Being informationally stingy, that we should only update probability distributions83

when the information requires it, pushes inductive inference toward objectivity. Thus using the PMU84

helps formulate a pragmatic (and objective) procedure for making inferences using (informationally)85

subjective probability distributions [28].86

This method of inference is only as universal and general as its ability to apply equally well to87

any specific inference problem. The notion of “specificity" is the notion of statistical independence; a88

special case is only special in that it is separable from other special cases. The notion that systems may89

be “sufficiently independent" plays a central and deep-seated role in science and the idea that some90

things can be neglected and that not everything matters, is implemented by imposing criteria that tells91

us how to handle independent systems [7]. Ironically, the universally shared property by all specific92

inference problems is their ability to be independent of one another. Thus, a universal inference scheme93

based on the PMU permits,94

Properties of Independence (PI):95

Subdomain Independence: When information is received about one set of propositions, it should not effect96

or change the state of knowledge (probability distribution) of the other propositions (else information was also97

received about them too);98

And,

Subsystem Independence: When two systems are a-priori believed to be independent and we only receive99

information about one, then the state of knowledge of the other system remains unchanged.100

101

The PI’s are special cases of the PMU that ultimately take the form of design criteria in the design102

derivation. The process of constraining the form of S[ρ, ϕ] by imposing design criteria may be viewed103

as the process of eliminative induction, and after sufficient constraining, a single form for the entropy104

remains. Thus, the justification behind the surviving entropy is not that it leads to demonstrably105

correct inferences, but rather, that all other candidate entropies demonstrably fail to perform as desired106

[7]. Rather than the design criteria instructing one how to update, they instruct in what instances one107

should not update. That is, rather than justifying one way to skin a cat over another, we tell you when108

not to skin it, which is operationally unique – namely you don’t do it – luckily enough for the cat.109

2.1. The Design Criteria and the Standard Relative Entropy110

The following design criteria (DC), guided by the PMU, are imposed and formulate the standard111

relative entropy as a tool for inference. The form of this presentation is inspired by [7].112

DC1: Subdomain Independence113

We keep the DC1 from [7] and review it below. DC1 imposes the first instance of when one should
not update – the Subdomain PI. Suppose the information to be processed does not refer to a particular
subdomain D of the space X of x’s. In the absence of new information about D the PMU insists we do
not change our minds about probabilities that are conditional on D. Thus, we design the inference
method so that ϕ(x|D), the prior probability of x conditional on x ∈ D, is not updated and therefore
the selected conditional posterior is,

P(x|D) = ϕ(x|D). (1)

(The notation will be as follows: we denote priors by ϕ, candidate posteriors by lower case ρ, and the114

selected posterior by upper case P.) We emphasize the point is not that we make the unwarranted115

assumption that keeping ϕ(x|D) unchanged is guaranteed to lead to correct inferences. It need not;116

induction is risky. The point is, rather, that in the absence of any evidence to the contrary there is no117

reason to change our minds and the prior information takes priority.118

DC1 Implementation:119
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Consider the set of microstates xi ∈ X belonging to either of two non-overlapping domains D or its120

compliment D′, such that X = D ∪D′ and ∅ = D ∩D′. For convenience let ρ(xi) = ρi. Consider the121

following constraints:122

ρ(D) = ∑
i∈D

ρi and ρ(D′) = ∑
i∈D′

ρi, (2)

such that ρ(D) + ρ(D′) = 1, and the following “local" constraints to D and D′ respectively are,123

〈A〉 = ∑
i∈D

ρi Ai and 〈A′〉 = ∑
i∈D′

ρi A′i. (3)

As we are searching for the candidate distribution which maximizes S while obeying (2) and (3),124

we maximize the entropy S ≡ S[ρ, ϕ] with respect to these expectation value constraints using the125

Lagrange multiplier method,126

0 = δ
(

S− λ[ρ(D)− ∑
i∈D

ρi]− µ[〈A〉 − ∑
i∈D

ρi Ai]

−λ′[ρ(D′)− ∑
i∈D′

ρi]− µ′[〈A′〉 − ∑
i∈D′

ρi Ai]
)

,

and thus, the entropy is maximized when the following differential relationships hold:127

δS
δρi

= λ + µAi ∀ i ∈ D, (4)

δS
δρi

= λ′ + µ′A′i ∀ i ∈ D′. (5)

Equations (2)-(5), are n + 4 equations we must solve to find the four Lagrange multipliers {λ, λ′, µ, µ′}128

and the n probability values {ρi}.129

If the subdomain constraint DC1 is imposed in the most restrictive case, then it will hold in130

general. The most restrictive case requires splitting X into a set of {Di} domains such that each Di131

singularly includes one microstate xi. This gives,132

δS
δρi

= λi + µi Ai in each Di. (6)

Because the entropy S = S[ρ1, ρ2, ...; ϕ1, ϕ2, ...] is a function over the probability of each microstate’s133

posterior and prior distribution, its variational derivative is also a function of said probabilities in134

general,135

δS
δρi
≡ φi(ρ1, ρ2, ...; ϕ1, ϕ2, ...) = λi + µi Ai for each (i,Di). (7)

DC1 is imposed by constraining the form of φi(ρ1, ρ2, ...; ϕ1, ϕ2, ...) = φi(ρi; ϕ1, ϕ2, ...) to ensures that136

changes in Ai → Ai + δAi have no influence over the value of ρj in domain Dj, through φi, for i 6= j.137

If there is no new information about propositions in Dj, its distribution should remain equal to ϕj138

by the PMU. We further restrict φi such that an arbitrary variation of ϕj → ϕj + δϕj (a change in the139

prior state of knowledge of the microstate j) has no effect on ρi for i 6= j and therefore DC1 imposes140

φi = φi(ρi, ϕi), as is guided by the PMU. At this point it is easy to generalize the analysis to continuous141

microstates such that the indices become continuous i → x, sums become integrals, and discrete142

probabilities become probability densities ρi → ρ(x).143

Remark:144
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We are designing the entropy for the purpose of ranking posterior probability distributions (for the145

purpose of inference); however, the highest ranked distribution is found by setting the variational146

derivative of S[ρ, ϕ] equal to the variations of the expectation value constraints by the Lagrange147

multiplier method,148

δS
δρ(x)

= λ + ∑
i

µi Ai(x). (8)

Therefore, the real quantity of interest is δS
δρ(x) rather than the specific form of S[ρ, ϕ]. All forms of149

S[ρ, ϕ] that give the correct form of δS
δρ(x) are equally valid for the purpose of inference. Thus, every150

design criteria may be made on the variational derivative of the entropy rather than the entropy itself,151

which we do. When maximizing the entropy, for convenience, we will let,152

δS
δρ(x)

≡ φx(ρ(x), ϕ(x)), (9)

and further use the shorthand φx(ρ, ϕ) ≡ φx(ρ(x), ϕ(x)), in all cases.153

DC1’: In the absence of new information, our new state of knowledge ρ(x) is equal to the old state of knowledge154

ϕ(x).155

This is a special case of DC1, and is implemented differently than in [7]. The PMU is in principle a156

statement about informational honestly – that is, one should not “jump to conclusions" in light of new157

information and in the absence of new information, one should not change their state of knowledge.158

If no new information is given, the prior probability distribution ϕ(x) does not change, that is, the159

posterior probability distribution ρ(x) = ϕ(x) is equal to the prior probability. If we maximizing the160

entropy without applying constraints,161

δS
δρ(x)

= 0, (10)

then DC1’ imposes the following condition:162

δS
δρ(x)

= φx(ρ, ϕ) = φx(ϕ, ϕ) = 0, (11)

for all x in this case. This special case of the DC1 and the PMU turns out to be incredibly constraining163

as we will see over the course of DC2.164

Comment:165

From [7]. If the variable x is continuous, DC1 requires that when information refers to points166

infinitely close but just outside the domain D, that it will have no influence on probabilities conditional167

on D. This may seem surprising as it may lead to updated probability distributions that are168

discontinuous. Is this a problem? No.169

In certain situations (e.g., physics) we might have explicit reasons to believe that conditions of170

continuity or differentiability should be imposed and this information might be given to us in a variety171

of ways. The crucial point, however – and this is a point that we keep and will keep reiterating – is172

that unless such information is explicitly given we should not assume it. If the new information leads173

to discontinuities, so be it.174

175

DC2: Subsystem Independence176

DC2 imposes the second instance of when one should not update – the Subsystem PI. We177

emphasize that DC2 is not a consistency requirement. The argument we deploy is not that both the prior178
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and the new information tells us the systems are independent, in which case consistency requires that179

it should not matter whether the systems are treated jointly or separately. Rather, DC2 refers to a180

situation where the new information does not say whether the systems are independent or not, but181

information is given about each subsystem. The updating is being designed so that the independence182

reflected in the prior is maintained in the posterior by default via the PMU and the second clause of183

the PI’s. [7]184

The point is not that when we have no evidence for correlations we draw the firm conclusion that185

the systems must necessarily be independent. They could indeed have turned out to be correlated and186

then our inferences would be wrong. Again, induction involves risk. The point is rather that if the187

joint prior reflected independence and the new evidence is silent on the matter of correlations, then the188

prior takes precedence. As before, in this case subdomain independence, the probability distribution189

should not be updated unless the information requires it. [7]190

DC2 Implementation:191

Consider a composite system, x = (x1, x2) ∈ X = X1 × X2. Assume that all prior evidence led us192

to believe the subsystems are independent. This belief is reflected in the prior distribution: if the193

individual system priors are ϕ1(x1) and ϕ2(x2), then the prior for the whole system is their product194

ϕ1(x1)ϕ2(x2). Further suppose that new information is acquired such that ϕ1(x1) would by itself be195

updated to P1(x1) and that ϕ2(x2) would be itself be updated to P2(x2). By design, the implementation196

of DC2 constrains the entropy functional such that in this case, the joint product prior ϕ1(x1)ϕ2(x2)197

updates to the selected product posterior P1(x1)P2(x2). [7]198

The argument below is considerably simplified if we expand the space of probabilities to include199

distributions that are not necessarily normalized. This does not represent any limitation because a200

normalization constraint may always be applied. We consider a few special cases below:201

202

Case 1: We receive the extremely constraining information that the posterior distribution for system 1
is completely specified to be P1(x1) while we receive no information at all about system 2. We treat
the two systems jointly. Maximize the joint entropy S[ρ(x1, x2), ϕ(x1)ϕ(x2)] subject to the following
constraints on the ρ(x1, x2) , ∫

dx2 ρ(x1, x2) = P1(x1) . (12)

Notice that the probability of each x1 ∈ X1 within ρ(x1, x2) is being constrained to P1(x1) in the
marginal. We therefore need a one Lagrange multiplier λ1(x1) for each x1 ∈ X1 to tie each value of∫

dx2 ρ(x1, x2) to P1(x1). Maximizing the entropy with respect to this constraint is,

δ

[
S−

∫
dx1λ1(x1)

(∫
dx2 ρ(x1, x2)− P1(x1)

)]
= 0 , (13)

which requires that
λ1(x1) = φx1x2 (ρ(x1, x2), ϕ1(x1)ϕ2(x2)) , (14)

for arbitrary variations of ρ(x1, x2). By design, DC2 is implemented by requiring ϕ1 ϕ2 → P1 ϕ2 in this
case, therefore,

λ1(x1) = φx1x2 (P1(x1)ϕ2(x2), ϕ1(x1)ϕ2(x2)) . (15)

This equation must hold for all choices of x2 and all choices of the prior ϕ2(x2) as λ1(x1) is independent
of x2. Suppose we had chosen a different prior ϕ′2(x2) = ϕ2(x2) + δϕ2(x2) that disagrees with ϕ2(x2).
For all x2 and δϕ2(x2), the multiplier λ1(x1) remains unchanged as it constrains the independent
ρ(x1)→ P1(x1). This means that any dependence that the right hand side might potentially have had
on x2 and on the prior ϕ2(x2) must cancel out. This means that

φx1x2 (P1(x1)ϕ2(x2), ϕ1(x1)ϕ2(x2)) = fx1(P1(x1), ϕ1(x1)). (16)
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Since ϕ2 is arbitrary in f suppose further that we choose a constant prior set equal to one, ϕ2(x2) = 1,
therefore

fx1(P1(x1), ϕ1(x1)) = φx1x2 (P1(x1) ∗ 1, ϕ1(x1) ∗ 1) = φx1 (P1(x1), ϕ1(x1)) (17)

in general. This gives,
λ1(x1) = φx1 (P1(x1), ϕ1(x1)) . (18)

The left hand side does not depend on x2, and therefore neither does the right hand side. An argument203

exchanging systems 1 and 2 gives a similar result.204

Case 1 - Conclusion: When the system 2 is not updated the dependence on ϕ2 and x2 drops out,

φx1x2 (P1(x1)ϕ2(x2), ϕ1(x1)ϕ2(x2)) = φx1 (P1(x1), ϕ1(x1)) . (19)

and vice-versa when system 1 is not updated,

φx1x2 (ϕ1(x1)P2(x2), ϕ1(x1)ϕ2(x2)) = φx2 (P2(x2), ϕ2(x2)) . (20)

As we seek the general functional form of φx1x2 , and because the x2 dependence drops out of (19)205

and the x1 dependence drops out of (20) for arbitrary ϕ1, ϕ2 and ϕ12 = ϕ1 ϕ2, the explicit coordinate206

dependence in φ consequently drops out of both such that,207

φx1x2 → φ, (21)

as φ = φ(ρ(x), ϕ(x)) must only depend on coordinates through the probability distributions208

themselves. (As a double check, explicit coordinate dependence was included in the following209

computations but inevitably dropped out due to the form the functional equations and DC1’. By the210

argument above, and for simplicity, we drop the explicit coordinate dependence in φ here.)211

212

Case 2: Now consider a different special case in which the marginal posterior distributions for systems
1 and 2 are both completely specified to be P1(x1) and P2(x2) respectively. Maximize the joint entropy
S[ρ(x1, x2), ϕ(x1)ϕ(x2)] subject to the following constraints on the ρ(x1, x2) ,∫

dx2 ρ(x1, x2) = P1(x1) and
∫

dx1 ρ(x1, x2) = P2(x2) . (22)

Again, this is one constraint for each value of x1 and one constraint for each value of x2, which therefore213

require the separate multipliers µ1(x1) and µ2(x2). Maximizing S with respect to these constraints is214

then,215

0 = δ

[
S−

∫
dx1µ1(x1)

(∫
dx2 ρ(x1, x2)− P1(x1)

)
−
∫

dx2µ2(x2)

(∫
dx1 ρ(x1, x2)− P2(x2)

)]
, (23)

leading to216

µ1(x1) + µ2(x2) = φ (ρ(x1, x2), ϕ1(x1)ϕ2(x2)) . (24)

The updating is being designed so that ϕ1 ϕ2 → P1P2, as the independent subsystems are being updated
based on expectation values which are silent about correlations. DC2 thus imposes,

µ1(x1) + µ2(x2) = φ (P1(x1)P2(x2), ϕ1(x1)ϕ2(x2)) . (25)

Write (25) as,
µ1(x1) = φ (P1(x1)P2(x2), ϕ1(x1)ϕ2(x2))− µ2(x2). (26)
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The left hand side is independent of x2 so we can perform a trick similar to that we used before. Suppose
we had chosen a different constraint P′2(x2) that differs from P2(x2) and a new prior ϕ′2(x2) that differs
from ϕ2(x2) except at the value x̄2. At the value x̄2,the multiplier µ1(x1) remains unchanged for all
P′2(x2), ϕ′2(x2), and thus x2. This means that any dependence that the right hand side might potentially
have had on x2 and on the choice of P2(x2), ϕ′2(x2) must cancel out leaving µ1(x1) unchanged. That is,
the Lagrange multiplier µ(x2) “pushes out" these dependences such that

φ (P1(x1)P2(x2), ϕ1(x1)ϕ2(x2))− µ2(x2) = g(P1(x1), ϕ1(x1)). (27)

Because g(P1(x1), ϕ1(x1)) is independent of arbitrary variations of P2(x2) and ϕ2(x2) on the LHS
above – it is satisfied equally well for all choices. The form of g = φ(P1(x1), q1(x1)) is apparent
if P2(x2) = ϕ2(x2) = 1 as µ2(x2) = 0 similar to Case 1 as well as DC1’. Therefore, the Lagrange
multiplier is

µ1(x1) = φ (P1(x1), ϕ1(x1)) . (28)

A similar analysis can be carried out for µ2(x2) leads to

µ2(x2) = φ (P2(x2), ϕ2(x2)) . (29)

Case 2 - Conclusion: Substituting back into (25) gives us a functional equation for φ ,

φ (P1P2, ϕ1 ϕ2) = φ (P1, ϕ1) + φ (P2, ϕ2) . (30)

The general solution for this functional equation is derived in the Appendix, section 5.3, and is217

φ(ρ, ϕ) = a1 ln(ρ(x)) + a2 ln(ϕ(x)) (31)

where a1, a2 are constants. The constants are fixed by using DC1’. Letting ρ1(x1) = ϕ1(x1) = ϕ1 gives218

φ(ϕ, ϕ) = 0 by DC1’, and therefore,219

φ(ϕ, ϕ) = (a1 + a2) ln(ϕ) = 0, (32)

so we are forced to conclude a1 = −a2 for arbitrary ϕ. Letting a1 ≡ A = −|A| such that we are really220

maximizing the entropy (although this is purely aesthetic) gives the general form of φ to be,221

φ(ρ, ϕ) = −|A| ln
( ρ(x)

ϕ(x)

)
. (33)

As long as A 6= 0, the value of A is arbitrary as it always can be absorbed into the Lagrange multipliers.222

The general form of the entropy designed for the purpose of inference of ρ is found by integrating φ,223

and therefore,224

S(ρ(x), ϕ(x)) = −|A|
∫

dx (ρ(x) ln
( ρ(x)

ϕ(x)

)
− ρ(x)) + C[ϕ]. (34)

The constant in ρ, C[ϕ], will always drop out when varying ρ. The apparent extra term (|A|
∫

ρ(x)dx)225

from integration cannot be dropped while simultaneously satisfying DC1’, which requires ρ(x) = ϕ(x)226

in the absence of constraints or when there is no change to one’s information. In previous versions227

where the integration term (|A|
∫

ρ(x)dx) is dropped, one obtains solutions like ρ(x) = e−1 ϕ(x)228

(independent of whether ϕ(x) was previously normalized or not) in the absence of new information.229

Obviously this factor can be taken care of by normalization, and in this way both forms of the entropy230

are equally valid; however, this form of the entropy better adheres to the PMU through DC1’. Given231

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2017                   doi:10.20944/preprints201711.0023.v1

Peer-reviewed version available at Entropy 2017, 19, 664; doi:10.3390/e19120664

http://dx.doi.org/10.20944/preprints201711.0023.v1
http://dx.doi.org/10.3390/e19120664


9 of 23

that we may regularly impose normalization, we may drop the extra
∫

ρ(x)dx term and C[ϕ]. For232

convenience then, (34) becomes233

S(ρ(x), ϕ(x))→ S∗(ρ(x), ϕ(x)) = −|A|
∫

dx ρ(x) ln
( ρ(x)

ϕ(x)

)
, (35)

which is a special case when the normalization constraint is being applied. Given normalization is234

applied, the same selected posterior ρ(x) maximizes both S(ρ(x), ϕ(x)) and S∗(ρ(x), ϕ(x)), and the235

star notation may be dropped.236

Remarks:237

It can be seen that the relative entropy is invariant under coordinate transformations. This238

implies that a system of coordinates carry no information and it is the “character" of the probability239

distributions that are being ranked against one another rather than the specific set of propositions or240

microstates they describe.241

The general solution to the maximum entropy procedure with respect to N linear constraints in ρ,242

〈Ai(x)〉, and normalization gives a canonical-like selected posterior probability distribution,243

ρ(x) = ϕ(x) exp
(

∑
i

αi Ai(x)
)

. (36)

The positive constant |A|may always be absorbed into the Lagrange multipliers so we may let it equal244

unity without loss of generality. DC1’ is fully realized when we maximize with respect to a constraint245

on ρ(x) that is already held by ϕ(x), such as 〈x2〉 =
∫

x2ρ(x) which happens to have the same value246

as
∫

x2 ϕ(x), then its Lagrange multiplier is forcibly zero α1 = 0 (as can be seen in (36) using (34)), in247

agreement with Jaynes. This gives the expected result ρ(x) = ϕ(x) as there is no new information.248

Our design has arrived at a refined maximum entropy method [12] as a universal probability updating249

procedure [27].250

3. The Design of the Quantum Relative Entropy251

Last section we assumed that the universe of discourse (the set of relevant propositions or252

microstates) X = A × B × ... was known. In quantum physics things are a bit more ambiguous253

because many probability distributions, or many experiments, can be associated to a given density254

matrix. In this sense it helpful to think of density matrices as “placeholders" for probability distributions255

rather than a probability distributions themselves. As any probability distribution from a given density256

matrix, ρ(·) = Tr(|·〉〈·|ρ̂), may be ranked using the standard relative entropy, it is unclear why we257

would chose one universe of discourse over another. In lieu of this, such that one universe of discourse258

is not given preferential treatment, we consider ranking entire density matrices against one another.259

Probability distributions of interest may be found from the selected posterior density matrix. This260

moves our universe of discourse from sets of propositions X → H to Hilbert space(s).261

When the objects of study are quantum systems, we desire an objective procedure to update from262

a prior density matrix ϕ̂ to a posterior density matrix ρ̂. We will apply the same intuition for ranking263

probability distributions (Section 2) and implement the PMU, PI, and design criteria to the ranking264

of density matrices. We therefore find the quantum relative entropy S(ρ̂, ϕ̂) to be designed for the265

purpose of inferentially updating density matrices.266

3.1. Designing the Quantum Relative Entropy267

In this section we design the quantum relative entropy using the same inferentially guided design268

criteria as were used in the standard relative entropy.269

DC1: Subdomain Independence270
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The goal is to design a function S(ρ̂, ϕ̂) which is able to rank density matrices. This insists that271

S(ρ̂, ϕ̂) be a real scalar valued function of the posterior ρ̂, and prior ϕ̂ density matrices, which we will272

call the quantum relative entropy or simply the entropy. An arbitrary variation of the entropy with273

respect to ρ̂ is,274

δ S(ρ̂, ϕ̂) = ∑
ij

δS(ρ̂, ϕ̂)

δρij
δρij = ∑

ij

( δS(ρ̂, ϕ̂)

δρ̂

)
ij

δ(ρ̂)ij = ∑
ij

( δS(ρ̂, ϕ̂)

δρ̂T

)
ji

δ(ρ̂)ij = Tr
( δS(ρ̂, ϕ̂)

δρ̂T δρ̂
)

. (37)

We wish to maximize this entropy with respect to expectation value constraints, such as, 〈A〉 = Tr(Âρ̂)275

on ρ̂. Using the Lagrange multiplier method to maximize the entropy with respect to 〈A〉 and276

normalization, is setting the variation equal to zero,277

δ
(

S(ρ̂, ϕ̂)− λ[Tr(ρ̂)− 1]− α[Tr(Âρ̂)− 〈A〉]
)
= 0, (38)

where λ and α are the Lagrange multipliers for the respective constraints. Because S(ρ̂, ϕ̂) is a real278

number, we inevitably require δS to be real, but without imposing this directly, we find that requiring279

δS to be real requires ρ̂, Â to be Hermitian. At this point, it is simpler to allow for arbitrary variations280

of ρ̂ such that,281

Tr
(( δS(ρ̂, ϕ̂)

δρ̂T − λ1̂− αÂ
)

δρ̂
)
= 0. (39)

For these arbitrary variations, the variational derivative of S must satisfy,282

δS(ρ̂, ϕ̂)

δρ̂T = λ1̂ + αÂ, (40)

at the maximum. As in the remark earlier, all forms of S which give the correct form of δS(ρ̂,ϕ̂)
δρ̂T under283

variation are equally valid for the purpose of inference. For notational convenience we let,284

δS(ρ̂, ϕ̂)

δρ̂T ≡ φ(ρ̂, ϕ̂), (41)

which is a matrix valued function of the posterior and prior density matrices. The form of φ(ρ̂, ϕ̂) is285

already "local" in ρ̂, so we don’t need to constrain it further as we did in the original DC1.286

DC1’: In the absence of new information, the new state ρ̂ is equal to the old state ϕ̂.287

Applied to the ranking of density matrices, in the absence of new information, the density matrix288

ϕ̂ should not change, that is, the posterior density matrix ρ̂ = ϕ̂ is equal to the prior density matrix.289

Maximizing the entropy without applying any constraints gives,290

δS(ρ̂, ϕ̂)

δρ̂T = 0̂, (42)

and therefore DC1’ imposes the following condition in this case,291

δS(ρ̂, ϕ̂)

δρ̂T = φ(ρ̂, ϕ̂) = φ(ϕ̂, ϕ̂) = 0̂. (43)

As in the original DC1’, if ϕ̂ is known to obey some expectation value constraint 〈Â〉, then if one goes292

out of their way to constrain ρ̂ to that expectation value with nothing else, it follows from the PMU293

that ρ̂ = ϕ̂, as no information has been gained. This is not imposed directly, but can be verified later.294
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DC2: Subsystem Independence295

The discussion of DC2 is the same as the standard relative entropy DC2 – it is not a consistency296

requirement, and the updating is designed so that the independence reflected in the prior is maintained297

in the posterior by default via the PMU, when the information provided is silent about correlations.298

DC2 Implementation:299

Consider a composite system living in the Hilbert space H = H1 ⊗H2. Assume that all prior300

evidence led us to believe the systems were independent. This is reflected in the prior density matrix:301

if the individual system priors are ϕ̂1 and ϕ̂2, then the joint prior for the whole system is ϕ̂1 ⊗ ϕ̂2.302

Further suppose that new information is acquired such that ϕ̂1 would by itself be updated to ρ̂1 and303

that ϕ̂2 would be itself be updated to ρ̂2. By design, the implementation of DC2 constrains the entropy304

functional such that in this case, the joint product prior density matrix ϕ̂1 ⊗ ϕ̂2 updates to the product305

posterior ρ̂1 ⊗ ρ̂2 so that inferences about one do not affect inferences about the other.306

The argument below is considerably simplified if we expand the space of density matrices to307

include density matrices that are not necessarily normalized. This does not represent any limitation308

because normalization can always be easily achieved as one additional constraint. We consider a few309

special cases below:310

311

Case 1: We receive the extremely constraining information that the posterior distribution for system 1
is completely specified to be ρ̂1 while we receive no information about system 2 at all. We treat the two
systems jointly. Maximize the joint entropy S[ρ̂12, ϕ̂1 ⊗ ϕ̂2], subject to the following constraints on the
ρ̂12 ,

Tr2(ρ̂12) = ρ̂1. (44)

Notice all of the N2 elements in H1 of ρ̂12 are being constrained. We therefore need a Lagrange312

multiplier which spansH1 and therefore it is a square matrix λ̂1. This is readily seen by observing the313

component form expressions of the Lagrange multipliers (λ̂1)ij = λij. Maximizing the entropy with314

respect to thisH2 independent constraint is,315

0 = δ
(

S−∑
ij

λij

(
Tr2(ρ̂1,2)− ρ̂1

)
ij

)
, (45)

but reexpressing this with its transpose (λ̂1)ij = (λ̂T
1 )ji, gives316

0 = δ
(

S− Tr1(λ̂1[Tr2(ρ̂1,2)− ρ̂1])
)

, (46)

where we have relabeled λ̂T
1 → λ̂1, for convenience, as the name of the Lagrange multipliers are

arbitrary. For arbitrary variations of ρ̂12, we therefore have,

λ̂1 ⊗ 1̂2 = φ (ρ̂12, ϕ̂1 ⊗ ϕ̂2) . (47)

DC2 is implemented by requiring ϕ̂1 ⊗ ϕ̂2 → ρ̂1 ⊗ ϕ̂2, such that the function φ is designed to reflect
subsystem independence in this case; therefore, we have

λ̂1 ⊗ 1̂2 = φ (ρ̂1 ⊗ ϕ̂2, ϕ̂1 ⊗ ϕ̂2) . (48)

This equation must hold for all choices of the independent prior ϕ̂2 inH2. Suppose we had chosen a
different prior ϕ̂′2 = ϕ̂2 + δϕ̂2. For all δϕ̂2 the LHS λ̂1 ⊗ 1̂2 remains unchanged. This means that any
dependence that the right hand side might potentially have had on ϕ̂2 must cancel out, meaning,

φ (ρ̂1 ⊗ ϕ̂2, ϕ̂1 ⊗ ϕ̂2) = f (ρ̂1, ϕ̂1)⊗ 1̂2. (49)
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Since ϕ̂2 is arbitrary, suppose further that we choose a unit prior, ϕ̂2 = 1̂2 , and note that ρ̂1 ⊗ 1̂2 and317

ϕ̂1 ⊗ 1̂2 are block diagonal inH2. Because the LHS is block diagonal inH2,318

f (ρ̂1, ϕ̂1)⊗ 1̂2 = φ
(
ρ̂1 ⊗ 1̂2, ϕ̂1 ⊗ 1̂2

)
(50)

the RHS is block diagonal in H2, and because the function φ is understood to be a power series319

expansion in its arguments,320

f (ρ̂1, ϕ̂1)⊗ 1̂2 = φ
(
ρ̂1 ⊗ 1̂2, ϕ̂1 ⊗ 1̂2

)
= φ (ρ̂1, ϕ̂1)⊗ 1̂2. (51)

This gives,
λ̂1 ⊗ 1̂2 = φ (ρ̂1, ϕ̂1)⊗ 1̂2, (52)

and therefore the 1̂2 factors out and λ̂1 = φ (ρ̂1, ϕ̂1). A similar argument exchanging systems 1 and 2321

shows λ̂2 = φ (ρ̂2, ϕ̂2) in this case.322

Case 1 - Conclusion: The analysis leads us to conclude that when the system 2 is not updated the
dependence on ϕ̂2 also drops out,

φ (ρ̂1 ⊗ ϕ̂2, ϕ̂1 ⊗ ϕ̂2) = φ (ρ̂1, ϕ̂1)⊗ 1̂2, (53)

and similarly,
φ (ϕ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2) = 1̂1 ⊗ φ (ρ̂2, ϕ̂2) . (54)

Case 2: Now consider a different special case in which the marginal posterior distributions for systems
1 and 2 are both completely specified to be ρ̂1 and ρ̂2 respectively. Maximize the joint entropy,
S[ρ̂12, ϕ̂1 ⊗ ϕ̂2], subject to the following constraints on the ρ̂12 ,

Tr2(ρ̂12) = ρ̂1 and Tr1(ρ̂12) = ρ̂2. (55)

Here each expectation value constraints the entire spaceHi, where ρ̂i lives. The Lagrange multipliers323

must span their respective spaces, so we implement the constraint with the Lagrange multiplier324

operator µ̂i, then,325

0 = δ
(

S− Tr1(µ̂1[Tr2(ρ̂12)− ρ̂1])− Tr2(µ̂2[Tr1(ρ̂12)− ρ̂2])
)

. (56)

For arbitrary variations of ρ̂12, we have,

µ̂1 ⊗ 1̂2 + 1̂1 ⊗ µ̂2 = φ (ρ̂12, ϕ̂1 ⊗ ϕ̂2) . (57)

By design, DC2 is implemented by requiring ϕ̂1 ⊗ ϕ̂2 → ρ̂1 ⊗ ρ̂2 in this case; therefore, we have

µ̂1 ⊗ 1̂2 + 1̂1 ⊗ µ̂2 = φ (ρ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2) . (58)

Write (58) as,
µ̂1 ⊗ 1̂2 = φ (ρ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2)− 1̂1 ⊗ µ̂2 . (59)

The left hand side is independent of changes in of ρ̂2 and ϕ̂2 inH2 as µ̂2 “pushes out" this dependence
from φ. Any dependence that the RHS might potentially have had on ρ̂2, ϕ̂2 must cancel out, leaving
µ̂1 unchanged. Consequently,

φ (ρ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2)− 1̂1 ⊗ µ̂2 = g(ρ̂1, ϕ̂1)⊗ 1̂2. (60)
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Because g(ρ̂1, ϕ̂1) is independent of arbitrary variations of ρ̂2 and ϕ̂2 on the LHS above – it is satisfied
equally well for all choices. The form of g(ρ̂1, ϕ̂1) reduces to the form of f (ρ̂1, ϕ̂1) from Case 1 when
ρ̂2 = ϕ̂2 = 1̂2 and similarly DC1’ gives µ̂2 = 0. Therefore, the Lagrange multiplier is

µ̂1 ⊗ 1̂2 = φ(ρ̂1, ϕ̂1)⊗ 1̂2. (61)

A similar analysis can be carried out for µ̂2 leading to

1̂1 ⊗ µ̂2 = 1̂1 ⊗ φ(ρ̂2, ϕ̂2). (62)

Case 2 - Conclusion: Substituting back into (58) gives us a functional equation for φ ,326

φ(ρ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2) = φ(ρ̂1, ϕ̂1)⊗ 1̂2 + 1̂1 ⊗ φ(ρ̂2, ϕ̂2), (63)

which is,327

φ(ρ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2) = φ(ρ̂1 ⊗ 1̂2, ϕ̂1 ⊗ 1̂2) + φ(1̂1 ⊗ ρ̂2, 1̂1 ⊗ ϕ̂2). (64)

The general solution to this matrix valued functional equation is derived in the Appendix 5.5, and is,328

φ(ρ̂, ϕ̂) =
∼
A ln(ρ̂)+

∼
B ln(ϕ̂), (65)

where tilde
∼
A is a “super-operator" having constant coefficients and twice the number of indicies as ρ̂329

and ϕ̂ as discussed in the Appendix (i.e.
( ∼

A ln(ρ̂)
)

ij
= ∑k` Aijk`(log(ρ̂))k` and similarly for

∼
B ln(ϕ̂)).330

DC1’ imposes,331

φ(ϕ̂, ϕ̂) =
∼
A ln(ϕ̂)+

∼
B ln(ϕ̂) = 0̂, (66)

which is satisfied in general when
∼
A= −

∼
B , and now,332

φ(ρ̂, ϕ̂) =
∼
A
(

ln(ρ̂)− ln(ϕ̂)
)

. (67)

We may fix the constant
∼
A by substituting our solution into the RHS of equation (63) which is equal to333

the RHS of equation (64),334 ( ∼
A1

(
ln(ρ̂1)− ln(ϕ̂1)

))
⊗ 1̂2 + 1̂1 ⊗

( ∼
A2

(
ln(ρ̂2)− ln(ϕ̂2)

))
335

=
∼
A12

(
ln(ρ̂1 ⊗ 1̂2)− ln(ϕ̂1 ⊗ 1̂2)

)
+
∼
A12

(
ln(1̂1 ⊗ ρ̂2)− ln(1̂1 ⊗ ϕ̂2)

)
, (68)

where
∼
A12 acts on the joint space of 1 and 2 and

∼
A1,

∼
A2 acts on single subspaces 1 or 2 respectively.336

Using the log tensor product identity, ln(ρ̂1 ⊗ 1̂2) = ln(ρ̂1)⊗ 1̂2, in the RHS of equation (68) gives,337

=
∼
A12

(
ln(ρ̂1)⊗ 1̂2 − ln(ϕ̂1)⊗ 1̂2

)
+
∼
A12

(
1̂1 ⊗ ln(ρ̂2)− 1̂1 ⊗ ln(ϕ̂2)

)
. (69)

Note that arbitrarily letting ρ̂2 = ϕ̂2 gives,338 ( ∼
A1

(
ln(ρ̂1)− ln(ϕ̂1)

))
⊗ 1̂2 =

∼
A12

(
ln(ρ̂1)⊗ 1̂2 − ln(ϕ̂1)⊗ 1̂2

)
. (70)
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or arbitrarily letting ρ̂1 = ϕ̂1 gives,339

1̂1 ⊗
( ∼

A2

(
ln(ρ̂2)− ln(ϕ̂2)

))
=
∼
A12

(
1̂1 ⊗ ln(ρ̂2)− 1̂1 ⊗ ln(ϕ̂2)

)
. (71)

As
∼
A12,

∼
A1, and

∼
A2 are constant tensors, inspecting the above equalities determines the form of340

the tensor to be
∼
A =A

∼
1 where A is a scalar constant and

∼
1 is the super-operator identity over the341

appropriate (joint) Hilbert space.342

Because our goal is to maximize the entropy function, we let the arbitrary constant A = −|A| and343

distribute
∼
1 identically, which gives the final functional form,344

φ(ρ̂, ϕ̂) = −|A|
(

ln(ρ̂)− ln(ϕ̂)
)

. (72)

“Integrating" φ, gives a general form for the quantum relative entropy,345

S(ρ̂, ϕ̂) = −|A|Tr(ρ̂ log ρ̂− ρ̂ log ϕ̂− ρ̂) + C[ϕ̂] = −|A|SU(ρ̂, ϕ̂) + |A|Tr(ρ̂) + C[ϕ̂], (73)

where SU(ρ̂, ϕ̂) is Umegaki’s form of the relative entropy, the extra |A|Tr(ρ̂) from integration is an346

artifact present for the preservation of DC1’, and C[ϕ̂] is a constant in the sense that it drops out under347

arbitrary variations of ρ̂. This entropy leads to the same inferences as Umegaki’s form of the entropy348

with added bonus that ρ̂ = ϕ̂ in the absence of constraints or changes in information – rather than349

ρ̂ = e−1 ϕ̂ which would be given by maximizing Umegaki’s form of the entropy. In this sense the extra350

|A|Tr(ρ̂) only improves the inference process as it more readily adheres to the PMU though DC1’;351

however now because SU ≥ 0, we have S(ρ̂, ϕ̂) ≤ Tr(ρ̂) + C[ϕ̂], which provides little nuisance. In the352

spirit of this derivation we will keep the Tr(ρ̂) term there, but for all practical purposes of inference, as353

long as there is a normalization constraint, it plays no role, and we find (letting |A| = 1 and C[ϕ̂] = 0),354

S(ρ̂, ϕ̂)→ S∗(ρ̂, ϕ̂) = −SU(ρ̂, ϕ̂) = −Tr(ρ̂ log ρ̂− ρ̂ log ϕ̂), (74)

Umegaki’s form of the relative entropy. S∗(ρ̂, ϕ̂) is an equally valid entropy because, given355

normalization is applied, the same selected posterior ρ̂ maximizes both S(ρ̂, ϕ̂) and S∗(ρ̂, ϕ̂).356

3.2. Remarks357

Due to the universality and the equal application of the PMU by using the same design criteria358

for both the standard and quantum case, the quantum relative entropy reduces to the standard relative359

entropy when [ρ̂, ϕ̂] = 0 or when the experiment being preformed ρ̂→ ρ(a) = Tr(ρ̂|a〉〈a|) is known.360

The quantum relative entropy we derive has the correct asymptotic form of the standard relative361

entropy in the sense of [8–10]. Further connections will be illustrated in a follow up article that is362

concerned with direct applications of the quantum relative entropy. Because two entropies are derived363

in parallel, we expect the well known inferential results and consequences of the relative entropy to364

have a quantum relative entropy representation.365

Maximizing the quantum relative entropy with respect to some constraints 〈Âi〉, where {Âi} are366

a set of arbitrary Hermitian operators, and normalization 〈1̂〉 = 1, gives the following general solution367

for the posterior density matrix:368

ρ̂ = exp
(

α01̂ + ∑
i

αi Âi + ln(ϕ̂)
)
=

1
Z

exp
(

∑
i

αi Âi + ln(ϕ̂)
)
≡ 1

Z
exp

(
Ĉ
)

, (75)

where αi are the Lagrange multipliers of the respective constraints and normalization may be factored369

out of the exponential in general because the identity commutes universally. If ϕ̂ ∝ 1̂, it is well known370

the analysis arrives at the same expression for ρ̂ after normalization as it would if the von Neumann371

entropy were used, and thus one can find expressions for thermalized quantum states ρ̂ = 1
Z e−βĤ . The372
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remaining problem is to solve for the N Lagrange multipliers using their N associated expectation373

value constraints. In principle their solution is found by computing Z and using standard methods374

from Statistical Mechanics,375

〈Âi〉 = −
∂

∂αi
ln(Z), (76)

and inverting to find αi = αi(〈Âi〉), which has a unique solution due to the joint concavity (convexity376

depending on the sign convention) of the quantum relative entropy [8,9] when the constraints are377

linear in ρ̂. The simple proof that (76) is monotonic in α, and therefore invertible, is that is that its378

derivative ∂
∂α 〈Âi〉 = 〈Â2

i 〉 − 〈Âi〉2 ≥ 0. Between the Zassenhaus formula379

et(Â+B̂) = etÂetB̂e−
t2
2 [Â,B̂]e

t3
6 (2[B̂,[Â,B̂]]+[Â,[Â,B̂]])..., (77)

and Horn’s inequality, the solutions to (76) lack a certain calculational elegance because it is difficult to380

express the eigenvalues of Ĉ = log(ϕ̂) + ∑ αi Âi (in the exponential) in simple terms of the eigenvalues381

of the Âi’s and ϕ̂, in general, when the matrices do not commute. The solution requires solving the382

eigenvalue problem for Ĉ, such the the exponential of Ĉ may be taken and evaluated in terms of the383

eigenvalues of the αi Âi’s and the prior density matrix ϕ̂. A pedagogical exercise is, starting with a384

prior which is a mixture of spin-z up and down ϕ̂ = a|+〉〈+|+ b|−〉〈−| (a, b 6= 0) and maximize385

the quantum relative entropy with respect to the expectation of a general Hermitian operator. This386

example is given in the Appendix 5.6.387

4. Conclusions:388

This approach emphasizes the notion that entropy is a tool for performing inference and389

downplays counter-notional issues which arise if one interprets entropy as a measure of disorder,390

a measure of distinguishability, or an amount of missing information [7]. Because the same design391

criteria, guided by the PMU, are applied equally well to the design of a relative and quantum relative392

entropy, we find that both the relative and quantum relative entropy are designed for the purpose of393

inference. Because the quantum relative entropy is the function which fits the requirements of a tool394

designed for inference, we now know what it is and how to use it – formulating an inferential quantum395

maximum entropy method. A follow up article is concerned with a few interesting applications of the396

quantum maximum entropy method, and in particular it derives the Quantum Bayes Rule.397
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5. Appendix:467

The Appendix loosely follows the relevant sections in [33], and then uses the methods reviewed to468

solve the relevant functional equations for φ. The last section is an example of the quantum maximum469

entropy method for spin.470

5.1. Simple functional equations471

From [33] pages 31-44.472

Thm 1:473

If Cauchy’s functional equation474

f (x + y) = f (x) + f (y), (78)

is satisfied for all real x, y, and if the function f (x) is (a) continuous at a point, (b) nonegative for small positive475

x’s, or (c) bounded in an interval, then,476

f (x) = cx (79)

is the solution to (78) for all real x. If (78) is assumed only over all positive x, y, then under the same conditions477

(79) holds for all positive x.478

Proof 1:479

The most natural assumption for our purposes is that f (x) is continuous at a point (which later480

extends to continuity all points as given by Darboux). Cauchy solved the functional equation by481

induction. In particular equation (78) implies,482

f (∑
i

xi) = ∑
i

f (xi), (80)

and if we let each xi = x as a special case to determine f , we find483

f (nx) = n f (x). (81)
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We may let nx = mt such that484

f (x) = f (
m
n

t) =
m
n

f (t). (82)

Letting limt→1 f (t) = f (1) = c, gives485

f (
m
n
) =

m
n

f (1) =
m
n

c, (83)

and because for t = 1, x = m
n above, we have486

f (x) = cx, (84)

which is the general solution of the linear functional equation. In principle c can be complex. The487

importance of Cauchy’s solution is that can be used to give general solutions to the following Cauchy488

equations:489

f (x + y) = f (x) f (y), (85)

f (xy) = f (x) + f (y), (86)

f (xy) = f (x) f (y), (87)

by preforming consistent substitution until they are the same form as (78) as given by Cauchy. We will490

briefly discuss the first two.491

Thm 2:492

The general solution of f (x + y) = f (x) f (y) is f (x) = ecx for all real or for all positive x, y that are493

continuous at one point and, in addition to the exponential solution, the solution f (0) = 1 and f (x) = 0 for494

(x > 0) are in these classes of functions.495

The first functional f (x + y) = f (x) f (y) is solved by first noting that it is strictly positive for real496

x, y, f (x), which can be shown by considering x = y,497

f (2x) = f (x)2 > 0. (88)

If there exists f (x0) = 0, then it follows that f (x) = f ((x− x0) + x0) = 0, a trivial solution, hence why498

the possibility of being equal to zero is excluded above. Given f (x) is nowhere zero, we are justified in499

taking the natural logarithm ln(x), due to its positivity f (x) > 0. This gives,500

ln( f (x + y)) = ln( f (x)) + ln( f (y)), (89)

and letting g(x) = ln( f (x)) gives,501

g(x + y) = g(x) + g(y), (90)

which is Cauchy’s linear equation, and thus has the solution g(x) = cx. Because g(x) = ln( f (x)), one502

finds in general that f (x) = ecx.503

Thm 3:504

If the functional equation f (xy) = f (x) + f (y) is valid for all positive x, y then its general solution is505

f (x) = c ln(x) given it is continuous at a point. If x = 0 (or y = 0) are valid then the general solution is506

f (x) = 0. If all real x, y are valid except 0 then the general solution is f (x) = c ln(|x|).507
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In particular we are interested in the functional equation f (xy) = f (x) + f (y) when x, y are508

positive. In this case we can again follow Cauchy and substitute x = eu and y = ev to get,509

f (euev) = f (eu) + f (ev), (91)

and letting g(u) = f (eu) gives g(u + v) = g(u) + g(v). Again, the solution is g(u) = cu and510

therefore the general solution is f (x) = c ln(x) when we substitute for u. If x could equal 0 then511

f (0) = f (x) + f (0), which has the trivial solution f (x) = 0. The general solution for x 6= 0, y 6= 0 and512

x, y positive is therefore f (x) = c ln(x).513

5.2. Functional equations with multiple arguments514

From [33] pages 213-217. Consider the functional equation,515

F(x1 + y1, x2 + y2, ..., xn + yn) = F(x1, x2, ..., xn) + F(y1, y2, ..., yn), (92)

which is a generalization of Cauchy’s linear functional equation (78) to several arguments. Letting516

x2 = x3 = ... = xn = y2 = y3 = ... = yn = 0 gives517

F(x1 + y1, 0, ..., 0) = F(x1, 0, ..., 0) + F(y1, 0, ..., 0), (93)

which is the Cauchy linear functional equation having solution F(x1, 0, ..., 0) = c1x1 where F(x1, 0, ..., 0)518

is assumed to be continuous or at least measurable majorant. Similarly,519

F(0, ..., 0, xk, 0, ..., 0) = ckxk, (94)

and if you consider520

F(x1 + 0, 0 + y2, 0, ..., 0) = F(x1, 0, ..., 0) + F(0, y2, 0, ..., 0) = c1x1 + c2y2, (95)

and as y2 is arbitrary we could have let y2 = x2 such that in general521

F(x1, x2, ..., xn) = ∑ cixi, (96)

as a general solution.522

5.3. Relative entropy:523

We are interested in the following functional equation,524

φ(ρ1ρ2, ϕ1 ϕ2) = φ(ρ1, ϕ1) + φ(ρ2, ϕ2). (97)

This is an equation of the form,525

F(x1y1, x2y2) = F(x1, x2) + F(y1, y2), (98)

where x1 = ρ(x1), y1 = ρ(x2), x2 = ϕ(x1), and y2 = ϕ(x2). First assume all q and p are greater than526

zero. Then, substitute: xi = ex′i and yi = ey′i and let F′(x′1, x′2) = F(ex′1 , ex′2) and so on such that527

F′(x′1 + y′1, x′2 + y′2) = F′(x′1, x′2) + F′(y′1, y′2), (99)

which is of the form of (92). The general solution for F is therefore528

F′(x′1 + y′1, x′2 + y′2) = a1(x′1 + y′1) + a2(x′2 + y′2) = a1 ln(x1y1) + a2 ln(x2y2) = F(x1y1, x2y2) (100)
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which means the general solution for φ is,529

φ(ρ1, ϕ1) = a1 ln(ρ(x1)) + a2 ln(ϕ(x1)) (101)

In such a case when ϕ(x0) = 0 for some value x0 ∈ X we may let ϕ(x0) = ε where ε is as close to zero530

as we could possibly want – the trivial general solution φ = 0 is saturated by the special case when531

ρ = ϕ from DC1’. Here we return to the text.532

5.4. Matrix functional equations533

(This derivation is implied in [33] pages 347-349). First consider a Cauchy matrix functional534

equation,535

f (X̂ + Ŷ) = f (X̂) + f (Ŷ) (102)

where X̂ and Ŷ are n× n square matrices. Rewriting the matrix functional equation in terms of its536

components gives,537

fij(x11 + y11, x12 + y12, ..., xnn + ynn) = fij(x11, x12, ..., xnn) + fij(y11, y12, ..., ynn) (103)

is now in the form of (92) and therefore the solution is,538

fij(x11, x12, ..., xnn) =
n

∑
`,k=0

cij`kx`k (104)

for i, j = 1, ..., n. We find it convenient to introduce super indices, A = (i, j) and B = (`, k) such that539

the component equation becomes,540

fA = ∑
B

cABxB. (105)

resembles the solution for a linear transformation of a vector from [33]. In general we will be discussing541

matrices X̂ = X̂1 ⊗ X̂2 ⊗ ...⊗ X̂N which stem out of the tensor products of density matrices. In this542

situation X̂ can be thought of as 2N index tensor or a z× z matrix where z = ∏N
i ni is the product of543

the ranks of the matrices in the tensor product or even X̂ is a vector of length z2. In such a case we may544

abuse the super index notation where A and B lump together the appropriate number of indices such545

that (105) is the form of the solution for the components in general. The matrix form of the general546

solution is,547

f (X̂) = C̃X̂, (106)

where C̃ is a constant super-operator having components cAB.548

5.5. Quantum Relative entropy:549

The functional equation is,550

φ
(

ρ̂1 ⊗ ρ̂2, ϕ̂1 ⊗ ϕ̂2

)
= φ

(
ρ̂1 ⊗ 1̂2, ϕ̂1 ⊗ 1̂2

)
+ φ

(
1̂1 ⊗ ρ̂2, 1̂1 ⊗ ϕ̂2

)
. (107)

These density matrices are Hermitian, positive semi-definite, have positive eigenvalues, and are not551

equal to 0̂. Because every invertible matrix can be expressed as the exponential of some other matrix,552

we can substitute ρ̂1 = eρ̂′1 , and so on for all four density matrices which gives,553

φ
(

eρ̂′1 ⊗ eρ̂′2 , eϕ̂′1 ⊗ eϕ̂′2
)
= φ

(
eρ̂′1 ⊗ 1̂2, eϕ̂′1 ⊗ 1̂2

)
+ φ

(
1̂1 ⊗ eρ̂′2 , 1̂1 ⊗ eϕ̂′2

)
. (108)
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Now we use the following identities for Hermitian matrices,554

eρ̂′1 ⊗ eρ̂′2 = eρ̂′1⊗1̂2+1̂1⊗ρ̂′2 (109)

and555

eρ̂′1 ⊗ 1̂2 = eρ̂′1⊗1̂2 , (110)

to recast the functional equation as,556

φ
(

eρ̂′1⊗1̂2+1̂1⊗ρ̂′2 , eϕ̂′1⊗1̂2+1̂1⊗ϕ̂′2
)
= φ

(
eρ̂′1⊗1̂2 , eϕ̂′1⊗1̂2

)
+ φ

(
e1̂1⊗ρ̂′2 , e1̂1⊗ϕ̂′2

)
. (111)

Letting G(ρ̂′1 ⊗ 1̂2, ϕ̂′1 ⊗ 1̂2) = φ
(

eρ̂′1⊗1̂2 , eϕ̂′1⊗1̂2
)

gives,557

G(ρ̂′1 ⊗ 1̂2 + 1̂1 ⊗ ρ̂′2, ϕ̂′1 ⊗ 1̂2 + 1̂1 ⊗ ϕ̂′2) = G(ρ̂′1 ⊗ 1̂2, ϕ̂′1 ⊗ 1̂2) + G(1̂1 ⊗ ρ̂′2, 1̂1 ⊗ ϕ̂′2). (112)

This functional equation is of the form558

G(X̂′1 + Ŷ′1, X̂′2 + Ŷ′2) = G(X̂′1, X̂′2) + G(Ŷ′1, Ŷ′2), (113)

which has the general solution559

G(X̂′, Ŷ′) =
∼
A X̂′ + B̃Ŷ′, (114)

synonymous to (96), and finally in general,560

φ(ρ̂, ϕ̂) =
∼
A ln(ρ̂) + B̃ ln(ϕ̂). (115)

where
∼
A,
∼
B are super-operators having constant coefficients.561

5.6. Spin Example562

Consider an arbitrarily mixed prior is (in the spin-z basis for convenience) with a, b 6= 0,563

ϕ̂ = a|+〉〈+|+ b|−〉〈−| (116)

and a general Hermitian matrix in the spin-1/2 Hilbert space,564

cµσ̂µ = c11̂ + cxσ̂x + cyσ̂x + czσ̂z (117)
565

= (c1 + cz)|+〉〈+|+ (cx − icy)|+〉〈−|+ (cx + icy)|−〉〈+|+ (c1 − cz)|−〉〈−|, (118)

having a known expectation value,566

Tr(ρ̂cµσ̂µ) = c. (119)

Maximizing the entropy with respect to this general expectation value and normalization is:567

0 =
(

δS− λ[Tr(ρ̂)− 1]− α(Tr(ρ̂cµσ̂µ)− c)
)

, (120)
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which after varying gives,568

ρ̂ =
1
Z

exp(αcµσ̂µ + log(ϕ̂)). (121)

Letting569

Ĉ = αcµσ̂µ + log(ϕ̂) (122)

gives570

ρ̂ =
1
Z

eĈ = UeU−1ĈUU−1 =
1
Z

Ueλ̂U−1

=
eλ+

Z
U|λ+〉〈λ+|U−1 +

eλ−

Z
U|λ−〉〈λ−|U−1, (123)

where λ̂ is the diagonalized matrix of Ĉ having the real eigenvalues. They are,571

λ± = λ± δλ, (124)

due to the quadratic formula, explicitly:572

λ = αc1 +
1
2

log(ab), (125)

and573

δλ =
1
2

√(
2αcz + log(

a
b
)
)2

+ 4α2(c2
x + c2

y). (126)

Because λ± and a, b, c1, cx, cy, cz are real, δλ ≥ 0. The normalization constraint specifies the Lagrange574

multiplier Z,575

1 = Tr(ρ̂) =
eλ+ + eλ−

Z
, (127)

so Z = eλ+ + eλ− = 2eλ cosh(δλ). The expectation value constraint specifies the Lagrange multiplier576

α,577

c = Tr(ρ̂cµσµ) =
∂

∂α
log(Z) = c1 + tanh(δλ)

∂

∂α
δλ, (128)

which becomes578

c = c1 +
tanh(δλ)

2δλ

(
2α(c2

x + c2
y + c2

z) + cz log(
a
b
)
)

,

or579

c = c1 + tanh
(1

2

√(
2αcz + log(

a
b
)
)2

+ 4α2(c2
x + c2

y)
) 2α(c2

x + c2
y + c2

z) + cz log( a
b )√(

2αcz + log( a
b )
)2

+ 4α2(c2
x + c2

y)

.

(129)

This equation is monotonic in α and therefore it is uniquely specified by the value of c. Ultimately this580

is a consequence from the concavity of the entropy. The proof of (129)’s monotonicity is below:581
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Proof:582

For ρ̂ to be Hermitian, Ĉ is Hermitian and δλ = 1
2

√
f (α) is real. Further more, because δλ is real583

f (α) ≥ 0 and thus δλ ≥ 0. Because f (α) is quadratic in α and positive, it may be written in vertex584

form,585

f (α) = a(α− h)2 + k, (130)

where a > 0, k ≥ 0, and (h, k) are the (x, y) coordinates of the minimum of f (α). Notice that the form586

of (129) is,587

F(α) =
tanh( 1

2

√
f (α))√

f (α)
× ∂ f (α)

∂α
. (131)

Making the change of variables α′ = α− h centers the function such that f (α′) = f (−α′) is symmetric588

about α′ = 0. We can then write,589

F(α′) =
tanh( 1

2

√
f (α′))√

f (α′)
× 2aα′, (132)

where the derivative has been computed. Because f (α′) is a positive, symmetric, and monotonically590

increasing on the (symmetric) half-plane (for α′ greater than or less that zero), S(α′) ≡ tanh( 1
2

√
f (α′))√

f (α′)
is591

also positive and symmetric, but it is unclear whether or not S(α) is also monotonic in the half-plane.592

We may restate593

F(α′) = S(α′)× 2aα′. (133)

We are now in a decent position to preform the derivate test for monotonic functions:594

∂

∂α′
F(α′) = 2aS(α′) + 2aα′

∂

∂α′
S(α′)

= 2aS(α′)
(

1− aα′2

aα′2 + k

)
+ a

aα′2

aα′2 + k

(
1− tanh2(

1
2

√
aα′2 + k)

)

≥ 2aS(α′)
(

1− a(α′)2

aα′2 + k

)
≥ 0

(134)

because a, k, S(α′), and therefore aα′2

aα′2+k are all > 0. The function of interest F(α′) is therefore monotonic595

for all α′, and therefore it is monotonic for all α, completing the proof that there exists a unique real596

Lagrange multiplier α in (129).597

Although (129) is monotonic in α it is seemingly a transcendental equation. This can be solved598

graphically for the given values c, c1, cx, cy, cz, i.e. given the Hermitian matrix and its expectation value599

are specified. Equation (129) and the eigenvalues take a simpler form when a = b = 1
2 , because in this600

instance ϕ̂ ∝ 1̂ and commutes universally so it may be factored out of the exponential in (121).601
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