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Abstract: Mutual information between the brain state and the external world state represents the6

amount of information stored in the brain that is associated with the external world. On the other7

hand, surprise of sensory input indicates the unpredictability of the current input. In other words,8

this is a measure of prediction capability, and an upper bound of surprise is known as free energy.9

According to the free-energy principle (FEP), the brain continues to minimize free energy to perceive10

the external world. For animals to survive, prediction capability is considered more important than11

just memorizing information. In this study, the fact that free energy represents a gap between the12

amount of information stored in the brain and that available for prediction is established, where the13

latter will be referred to as predictive information as an analogy with Bialek’s predictive information.14

This concept involves the FEP, the infomax principle, and the predictive information theory, and will15

be a useful measure to quantify the amount of information available for prediction.16

Keywords: the free-energy principle; internal model hypothesis; unconscious inference; infomax17

principle; predictive information; independent component analysis; principal component analysis18

1. Introduction19

Sensory perception comprises complex responses of the brain to sensory inputs. For example,20

the visual cortex can distinguish objects from their background [1], while the auditory cortex can21

recognize a certain sound in a noisy place with high sensitivity, a phenomenon known as the cocktail22

party effect [2–7]. The brain has acquired these perceptual abilities without supervision, which is23

referred to as unsupervised learning [8–10]. Unsupervised learning, or implicit learning, is defined as24

the learning that happens in the absence of a teacher or supervisor; it is achieved through adaptation25

to environments experienced in the past, which is necessary for higher brain functions. Thus, an26

understanding of the physiological mechanisms that mediate unsupervised learning is fundamental to27

augmenting our knowledge of information processing in the brain.28

One of benefits of unsupervised learning is inference, which represents the action of guessing29

unknown matters based on known facts or certain observations; i.e., it is the process of drawing30

conclusions through reasoning and estimation. While inference is thought to be an act of the conscious31

mind in the ordinary sense of the word, where consciousness often represents a state of self-awareness,32

indeed it can occur even in the unconscious mind. Hermann von Helmholtz, a 19th-century33

physicist/physiologist, realized that perception often requires inference by the unconscious mind and34

coined the word ‘unconscious inference’ [11]. According to him, conscious inference and unconscious35

inference can be distinguished based on whether conscious knowledge is involved in the process.36

For example, when an astronomer computes the positions of the stars in space or their distances37

based on the perspective images at various times and from different parts of the orbit of the earth, he38

performs conscious inference. This is because the process is “based on a conscious knowledge of the laws of39

optics”; by contrast, “in the ordinary acts of vision, this knowledge of optics is lacking” [11]. Thus, the latter40

process is performed by the unconscious mind. In spite of such a difference, there is no doubt in the41

similarity between the results of conscious and unconscious inference. Similar to conscious inference,42

unconscious inference must be crucial for cognitive processes under the unconscious mind to estimate43

the overall picture from partial observations.44

In the field of theoretical and computational neuroscience, unconscious inference has been45

translated as that people are constantly and unconsciously inferring (in terms of Bayesian inference)46
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the generative process of the external world in order to achieve perception. One hypothesis, the47

so-called internal model hypothesis [12–18], states that people reconstruct a model of the external48

world in their brain through the past experiences. This internal model helps people infer hidden causes49

and predict future inputs automatically; in other words, this inference process happens unconsciously.50

This is also known as predictive coding hypothesis [19,20]. For many years, unconscious inference51

has been mathematically modeled under the internal model hypothesis, such as by the Helmholtz52

machine [12], dynamic causal modeling [14], and Markov decision process model [16]. In the 2000s,53

Friston proposed a mathematical foundation for unconscious inference, called the free-energy principle54

(FEP) [13–16], which is a candidate unified theory of higher brain functions. According to him, this55

principle provides a unified framework for higher brain functions including perceptual learning [14],56

reinforcement learning [22], motor learning [21,22], communication [23,24], emotion, mental disorders57

[25,26], and evolution. However, the difference between the FEP and related theories, namely the58

information maximization (infomax) principle [27,28] and the predictive information theory [29,30],59

have not been established.60

In this study, the relationship between the FEP and other theories is investigated. As one of most61

simple and important examples, I focus on blind source separation (BSS), which is a task to separate62

hidden sources (or causes) from sensory inputs [31–34]. I show that BSS is a subset of the inference63

problem considered in the FEP, and demonstrate that free energy defined in the FEP represents the64

difference between the information stored in the brain (which is the measure of the infomax principle65

[27,28]) and the information available for predicting current and future sensory inputs (which is a66

measure similar to one used in the predictive information theory [29,30]).67

2. Definition of a system68

Let us suppose s ≡ (s1, . . . , sN)
T ∼ p(s) ≡ ∏i p(si) as hidden sources; x ≡ (x1, . . . , xM)T ∼69

p(x) as sensory inputs; u ≡ (u1, . . . , uN)
T ∼ p(u) as neural outputs; z ≡ (z1, . . . , zM)T ∼ p(z) as70

background noises; ε ≡ (ε1, . . . , εM)T ∼ p(ε) as prediction errors; and f ∈ RM, g ∈ RN , and h ∈ RM as71

nonlinear functions (see also Table 1). The generative process of the external world (or the environment)72

is described by a stochastic equation as73

Generative process : x = f (s) + z, (1)

and recognition and generative models of the brain are as follows:74

Recognition model : u = g(x), (2)

Generative model : x = h(u) + ε. (3)

Figure 1 illustrates the structure of the system under consideration. For the generative model, I75

define the prior distribution of u as pu(u) = ∏i pu(ui) and the likelihood function as pε(ε) =76

p∗(x|h(u)) = N [ε; 0, Πε], where p∗ indicates a statistical model and N is a Gaussian distribution.77

Moreover, suppose θ ∼ p(θ), W(∈ RN×M) ∼ p(W), and V(∈ RM×N) ∼ p(V) as parameter sets for78

f , g, and h, respectively, λ ∼ p(λ) as a hyper-parameter set for p(s) and p(z), and γ ∼ p(γ) as a79

hyper-parameter set for pu(u) and pε(ε). Note that W and V are assumed as synaptic strength matrices80

for feedforward and backward paths, respectively, while γ is assumed as a state of neuromodulators81

similarly to [13–15]. Thus, Eqs. (1)-(3) are transformed into probabilistic representations82
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Table 1. Glossary of expressions.

Expression Description

Generative process A set of stochastic equations that generate the external world dynamics
Recognition model A model in the brain that mimics the inverse of the generative process
Generative model A model in the brain that mimics the generative process

s ∈ RN Hidden sources
x ∈ RM Sensory inputs

θ A set of parameters
λ A set of hyper-parameters

ϑ ≡ {s, θ, λ} A set of hidden states of the external world
u ∈ RN Neural outputs

W ∈ RN×M, V ∈ RM×N Synaptic strength matrices
γ State of neuromodulators

ϕ ≡ {u, W, V, γ} A set of the brain internal states
z ∈ RM Background noises
ε ∈ RM Prediction errors

p(x) The true probability density of x
p(ϕ|x), p(x, ϕ), p(ϕ) True probability densities (posterior densities)
pu(u), pε(ε), pϕ(ϕ) Prior densities

p∗(x), p∗(ϕ|x), p∗(x, ϕ) Statistical models
dx ≡ ∏i dxi Finite spatial resolution of x

〈•〉p(x) ≡
∫
•p(x)dx Expectation of • over p(x)

H[p(x)] ≡ 〈− log(p(x)dx)〉p(x) Shannon entropy of p(x)dx
〈− log(p∗(x)dx)〉p(x) Cross entropy of p∗(x)dx over p(x)

DKL[p(•)||p∗(•)] ≡
〈

log p(•)
p∗(•)

〉
p(•)

KLD between p(•) and p∗(•)
I[x; ϕ] ≡ DKL[p(x, ϕ)||p(x)p(ϕ)] Mutual information between x and ϕ

S(x) ≡ log p(x)
p∗(x) Surprise

S ≡ 〈S(x)〉p(x) Surprise expectation
F(x) ≡ S(x) +DKL[p(ϕ|x)||p∗(ϕ|x)] Free energy

F ≡ 〈F(x)〉p(x) Free energy expectation

X[x; ϕ] ≡
〈

log p∗(x,ϕ)
p(x)p(ϕ)

〉
p(x,ϕ)

Predictive information between x and ϕ

s	 u	

f	 g	 h	

Genera&ve	
process	

Hidden sources	 Neural outputs	

Recogni&on	
model	

Genera&ve	
model	

Brain	Environment	

z	
Background noise	 Prediction error	

Sensory inputs	
ε	x	

Figure 1. Schematic images of a generative process of the environment (left) and recognition and
generative models of the brain (right). Note that the brain can access only the states in the right side
of the dashed line, including x (see text in Section 3). Black arrows are causal relationships, while
blue arrows are information flows of the neural network. See main text and Table 1 for meanings of
variables and functions.
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Generative process : p(s, x|θ, λ) = p(x|s, θ, λ)p(s|λ)

=
∫

δ(x− f (s; θ)− z)p(z|λ)p(s|λ)dz

= p(z = x− f |λ)p(s|λ),

(4)

Recognition model : p(x, u|W) = p(x|u, W)p(u|W)

= p(u|x, W)p(x)

= δ(u− g(x; W))p(x),

(5)

Generative model : p∗(x, u|V, γ) = p∗(x|u, V, γ)pu(u|γ)

=
∫

δ(x− h(u; V)− ε)pε(ε|γ)pu(u|γ)dε

= pε(ε = x− h|γ)pu(u|γ).

(6)

Note that δ(•) is Dirac’s delta function and p∗(x|u, V, γ) ≡ p(x|u, V, γ, m) is a statistical model given a83

model structure m. For simplification, let us define ϑ ≡ {s, θ, λ} as a set of hidden states of the external84

world and ϕ ≡ {u, W, V, γ} as a set of internal states of the brain. Accordingly, by multiplying p(θ, λ)85

to Eq. (4) and p(W, V, γ) to Eqs. (5)(6), Eqs. (4)-(6) become86

Generative process : p(x, ϑ) = p(x|ϑ)p(ϑ) = p(z = x− f )p(ϑ), (7)

Recognition model : p(x, ϕ) = p(x|ϕ)p(ϕ) = p(ε = x− h)p(ϕ), (8)

Generative model : p∗(x, ϕ) = p∗(x|ϕ)pϕ(ϕ) = pε(ε = x− h)pϕ(ϕ), (9)

where pϕ is the prior distribution for ϕ and p∗(x, ϕ) ≡ p(x, ϕ|m) is a statistical model given a model87

structure m, which is determined by the shapes of pϕ and pε. I use the expression of p∗(x, ϕ) instead88

of p(x, ϕ|m) to emphasize the difference between p(x, ϕ) and p∗(x, ϕ). While p(x, ϕ) is the true joint89

probability of (x, ϕ) (the so-called posterior distribution), p∗(x, ϕ), i.e., the product of the likelihood90

function and the prior distribution, represents a model that the brain hopes (x, ϕ) should follow.91

As shown later, the learning and perception in terms of the unconscious inference are achieved by92

minimizing the difference between p(x, ϕ) and p∗(x, ϕ).93

3. Information stored in the brain94

This section reviews the basis of information theory [35]. Information is defined as the negative95

log of probability. Let Prob(x) be the probability of given sensory inputs x. The information in the96

sensory input is given by − log Prob(x) [nat], where 1 nat = 1.4427 bits. When x takes continuous97

values, by coarse graining, − log Prob(x) is replaced with − log(p(x)dx), where p(x) is the probability98

density of x and dx ≡ ∏i dxi is the product of the finite spatial resolutions of x’s elements. The99

expectation of − log(p(x)dx) over p(x) gives the Shannon entropy (or average information) [10]. Thus,100

in this study, Shannon entropy is defined by101

H[p(x)] ≡
∫
− log(p(x)dx)p(x)dx ≡ 〈− log(p(x)dx)〉p(x) [nat]. (10)

Note that 〈•〉p(x) refers to the expectation of • over p(x), 〈•〉p(x) ≡
∫
•p(x)dx. Since dProb(x) =102

p(x)dx takes a value between 0 ≤ p(x)dx ≤ 1, H[p(x)] takes a non-negative value, H[p(x)] ≥ 0.103

Although this definition of H[p(x)] is different from the original one, because a constant − log dx has104

been added, it is useful since H[p(x)] becomes non-negative while there is no effect except sliding of105

the offset value. Note that H[p(x)] = 0 is realized if and only if p(x) is Dirac’s delta function. In the106

case of the discrete system, the change from a system where x could take two states with the same107

probability to a system where x could take only one state deterministically decreases 1 bit of entropy.108
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This means that the brain memorizes the 1-bit information; i.e., the brain state corresponds to 1 bit of109

the external world state. Whereas, in the case of the continuous system, a constraint should be added110

to avoid divergence; this will be referred to as internal energy [14]. Internal energy has the same unit111

as Shannon entropy. The information loss increases if a state goes away from the energy landscape.112

Let us consider the case where the sensory inputs are determined by the hidden states. Again,113

suppose x as sensory inputs; ϑ = {s, θ, λ} as a set of the external world hidden states, i.e., a set of114

hidden sources s, parameters θ, and hyper-parameters λ; and ϕ = {u, W, V, γ} as a set of the brain115

internal states, i.e., a set of neural outputs u, synaptic strength matrices W and V, and neuromodulators116

γ. The external world states are determined by a set of x and ϑ, (x, ϑ). Mathematically, the information117

shared between the external world states (x, ϑ) and the brain internal states ϕ is defined by mutual118

information I[(x, ϑ); ϕ], which is defined in terms of the Kullback-Leibler divergence (KLD) [10] as119

I[(x, ϑ); ϕ] ≡ DKL

[
p(x, ϑ, ϕ)||p(x, ϑ)p(ϕ)

]
≡
〈

log
p(x, ϑ, ϕ)

p(x, ϑ)p(ϕ)

〉
p(x,ϑ,ϕ)

[nat]. (11)

Note that p(x, ϑ, ϕ) is the joint probability of (x, ϑ) and ϕ, and p(x, ϑ) and p(ϕ) are their marginal120

distributions, respectively. KLD indicates the distance between two distributions; thus, I[(x, ϑ); ϕ]121

represents how different p(x, ϑ, ϕ) is from p(x, ϑ)p(ϕ). If (x, ϑ) and ϕ are independent of each other,122

I[(x, ϑ); ϕ] becomes zero as p(x, ϑ, ϕ) = p(x, ϑ)p(ϕ) holds. Otherwise, I[(x, ϑ); ϕ] takes a positive123

value because of the non-negativity of KLD [10].124

However, there is a clear requirement in practice that “information that the brain can access125

consists only of the sensory input”; i.e., the brain can access only the sensory input x. Thus, the brain126

needs to increase I[(x, ϑ); ϕ] without accessing ϑ directly, so that ϑ are referred to as hidden states.127

Accordingly, because ϑ given x is independent of ϕ given x, p(ϑ, ϕ|x) = p(ϑ|x)p(ϕ|x), I have128

I[(x, ϑ); ϕ] =

〈
log

p(ϑ|x)p(ϕ|x)p(x)
p(ϑ|x)p(x)p(ϕ)

〉
p(ϑ|x)p(ϕ|x)p(x)

=

〈
log

p(ϕ|x)
p(ϕ)

〉
p(ϕ,x)

= I[x; ϕ]. (12)

Using Shannon entropy, I[x; ϕ] becomes129

I[x; ϕ] = H[p(x)]− H[x|ϕ] [nat], (13)

where130

H[x|ϕ] ≡
〈
− log

(
p(x|ϕ)dx

)〉
p(x,ϕ)

≡ 〈H[p(ε)]〉p(ϕ) ≡
〈
− log

(
p(ε)dx

)〉
p(ε)p(ϕ)

(14)

is the conditional entropy of x given ϕ. Thus, maximization of I[(x, ϑ); ϕ] is the same meaning as131

maximization of I[x; ϕ] for the brain. As I[x; ϕ], H[p(x)], and H[x|ϕ] are non-negative, I[x; ϕ] has the132

range of 0 ≤ I[x; ϕ] ≤ H[p(x)]. Note that I[x; ϕ] = 0 occurs if and only if x and ϕ are independent133

of each other, while I[x; ϕ] = H[p(x)] occurs if and only if x is fully explained by ϕ. In this manner,134

I[x; ϕ] describes the information on the external world stored in the brain. According to the infomax135

principle, the brain maximizes I[x; ϕ] to perceive the external world [27,28]. However, I[x; ϕ] does not136

fully explain the prediction performance of the brain. For example, if neural outputs just express the137

sensory input itself (u = x), I[x; ϕ] = H[p(x)] is easily achieved, but it does not mean that the brain138

can predict input statistics. This will be considered in the next section.139

4. The free-energy principle140

If one has a statistical model determined by model structure m, the information calculated based141

on m is given by the negative log likelihood − log p(x|m), which is termed as the surprise of the142

sensory input. The surprise represents the unpredictability of the sensory input for the individual. For143
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example, a visual input such as that of a chicken flying across the sky has a high surprise value because144

this scene has never been seen, but the surprise will decrease after one learns that this can happen. The145

brain is considered to minimize the surprise in the sensory input based on the prior knowledge of the146

external world, in order to perform unconscious inference and optimize their perception [13]. To infer147

if an event is likely to happen based on the past observation, a statistical model is necessary; otherwise148

it is difficult for the brain to generalize sensory inputs [36]. As in Section 2, I express a statistical149

model as p∗(x) ≡ p(x|m) to clarify the difference from true probability density p(x). Notably, the150

cross entropy 〈− log(p∗(x)dx)〉p(x) is always larger than or equal to Shannon entropy H[p(x)] because151

of the non-negativity of KLD. Hence, in this study, I define the input surprise by152

S(x) ≡ − log p∗(x) + log p(x) [nat] (15)

and its expectation over p(x) by153

S ≡ 〈S(x)〉p(x) = DKL[p(x)||p∗(x)]

= 〈− log(p∗(x)dx)〉p(x) − H[p(x)] [nat].
(16)

This definition of S(x) is different from the original one [13] as log p(x) has been added, but it is useful154

since S ≥ 0 and S = 0 holds if and only if p∗(x) = p(x) while there is no effect except sliding of the155

offset value.156

Because x is generated by the external world generative process, consideration of the structure157

and dynamics behind the sensory input can provide accurate inference. According to the internal158

model hypothesis, animals develop the internal model in their brain to increase the accuracy and159

efficiency of inference [12–18]; thus, the brain internal states ϕ are hypothesized to mimic the hidden160

states of the external world ϑ. A problem is that − log p∗(x) = − log(
∫

p∗(x, ϕ)dϕ) is intractable for161

animals, because they have to deal with the integral of p∗(x, ϕ) placed in the logarithm function. The162

FEP hypothesizes that animals calculate an upper bound of − log p∗(x) instead that is tractable for163

them and terms this bound as free energy F(x) [13].164

F(x) ≡ S(x) +DKL[p(ϕ|x)||p∗(ϕ|x)]
= 〈− log p∗(x, ϕ) + log p(x, ϕ)〉p(ϕ|x) [nat].

(17)

Again, this definition of F(x) is different from the original one [13] as log p(x) has been added. Note165

that p(ϕ|x) is the conditional probability of the internal model in the brain, termed as the recognition166

density. Due to the non-negativity of KLD, F(x) provides an upper bound of S(x) and F(x) = S(x)167

holds if and only if p∗(ϕ|x) = p(ϕ|x). Furthermore, the expectation of F(x) over p(x) is defined by168

F ≡ 〈F(x)〉p(x) = DKL[p(x, ϕ)||p∗(x, ϕ)]

= 〈U(x, ϕ)〉p(x,ϕ) − H[p(x, ϕ)] [nat],
(18)

where U(x, ϕ) ≡ − log(p∗(x, ϕ)dxdϕ) is termed as the internal energy and H[p(x, ϕ)] ≡169

〈− log(p(x, ϕ)dxdϕ)〉p(x,ϕ) is the joint entropy of x and ϕ. F indicates the difference between the170

actual probability p(x, ϕ) and its statistical model p∗(x, ϕ). Because of the non-negativity of KLD, F is171

always larger than or equal to S(≥ 0) and F = S = 0 holds if and only if p∗(x, ϕ) = p(x, ϕ). Internal172

energy U(x, ϕ) quantifies the amplitude of the prediction error at a given moment [13]. Minimization173

of 〈U(x, ϕ)〉p(x,ϕ) is the so-called maximum a posteriori (MAP) estimation (or the maximum likelihood174

estimation if the priors are uniform distributions) [10] and provides a solution that (at least locally)175

minimizes the prediction error. Whereas, maximization of H[p(x, ϕ)] increases the independency176
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between internal states, which helps neurons to establish an efficient representation as pointed out by177

Jaynes’ max entropy principle [37,38]. This is essential for BSS [31–34] because the optimal parameters178

that minimize 〈U(x, ϕ)〉p(x,ϕ) are not always determined identically. Due to this, the MAP estimation179

alone does not always identify the generative process behind the sensory inputs. As F is the sum of180

costs for the MAP estimation and BSS, free-energy minimization is the rule to simultaneously minimize181

the prediction error and maximize the independency of the internal states.182

5. Information available for prediction183

Then, let us consider how free energy expectation F relates to mutual information I[x; ϕ].184

According to Helmholtz’s unconscious inference and the internal model hypothesis, the aim of the185

brain is to predict x, and for this purpose, the brain shifts the actual probability p(x, ϕ) = p(ε)p(ϕ)186

closer to the statistical model p∗(x, ϕ) = pε(ε)pϕ(ϕ) that the brain hopes (x, ϕ) should follow. Thus,187

the difference between these two distributions is associated with the loss of information. The amount188

of information available for the prediction can be calculated in the following manner: as H[p(x)] is189

information of the sensory input and I[x; ϕ] is information stored in the brain, H[p(x)]− I[x; ϕ] =190

〈H[p(ε)]〉p(ϕ) indicates the information loss in the recognition model (Fig. 2). By contrast, the distance191

between actual and desired (prior) distributions of internal states DKL[p(ϕ)||pϕ(ϕ)] quantifies the192

information loss for inferring internal states (i.e., blind state separation). Moreover, the distance193

between distributions of the actual reconstruction error and the prediction error under the given model194

〈DKL[p(x|ϕ)||p∗(x|ϕ)]〉p(ϕ) = 〈DKL[p(ε)||pε(ε)]〉p(ϕ) quantifies the information loss for predicting195

inputs using internal states. Therefore, by subtracting these three values from H[p(x)], I obtain a196

mutual-information-like measure representing the prediction capability,197

X[x; ϕ] ≡ H[p(x)]− 〈H[p(ε)]〉p(ϕ) −DKL[p(ϕ)||pϕ(ϕ)]− 〈DKL[p(ε)||pε(ε)]〉p(ϕ)

=

〈
log

p∗(x, ϕ)

p(x)p(ϕ)

〉
p(x,ϕ)

[nat],
(19)

which I will refer to as predictive information as an analogy with Bialek’s predictive information198

[29,30]. Their relationship is discussed in the next section. This predictive information X[x; ϕ] is199

defined by replacing p(x, ϕ) in I[x; ϕ] with p∗(x, ϕ). Thus, immediately, I obtain200

F = I[x; ϕ]− X[x; ϕ] [nat]. (20)

Hence, F represents a gap between the amount of information stored in the brain and that available for201

prediction, which is equivalent to the information loss in the generative model. It is interesting to note202

that the sum of losses in recognition and generative models H[p(x)]−X[x; ϕ] = F+ 〈H[p(ε)]〉p(ϕ) is an203

upper bounds of F because of the non-negativity of 〈H[p(ε)]〉p(ϕ) (Fig. 2). However, since 〈H[p(ε)]〉p(ϕ)204

is generally nonzero, F(x) + 〈H[p(ε)]〉p(ϕ) may not reach zero even when p(x, ϕ) = p∗(x, ϕ).205

Furthermore, X[x; ϕ] is transformed as206

X[x; ϕ] = H[p(x)]− LX − LA, (21)

where207

LX ≡ 〈− log(pε(ε)dx)〉p(ε)p(ϕ) (22)

is the so-called reconstruction error similar to that for principal component analysis (PCA) [39], while208

LA ≡ DKL[p(ϕ)||pϕ(ϕ)] (23)
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is an enhancement of Amari’s cost function for independent component analysis (ICA) [40]. PCA is209

one of the most popular dimensionality reduction methods to remove background noise and extract210

important features from sensory inputs [10,39,41], while ICA is one of BSS methods to decompose211

a mixture set of sensory inputs into independent hidden sources [32,34,40,42,43]. Theoreticians212

hypothesize that the PCA- and ICA-like learning underlies BSS in the brain [3]. Equation (21) indicates213

that X[x; ϕ] consists of the PCA- and ICA-like parts, i.e., maximization of X[x; ϕ] can perform both214

dimensionality reduction and BSS (Fig. 2). Their relationships are discussed in the next section.215

Information [nat]	

€ 

H p(x)[ ]
Shannon entropy of sensory inputs	

€ 

I x;ϕ[ ]
Information stored in the brain	

€ 

X x;ϕ[ ]
Information available for prediction	

L
o
ss

 i
n
 t

h
e
 	

re
c
o
gn

it
io

n
 m

o
de

l	
L
o
ss

 i
n
 t

h
e
 	

ge
n
e
ra

ti
ve

 m
o
de

l	€ 

H x |ϕ[ ]
p(ϕ )

= H p(ε)[ ]
p(ϕ )

€ 

F 

€ 

DKL p(ϕ) || pϕ (ϕ)[ ] = LA
€ 

DKL p(x |ϕ) || p*(x |ϕ)[ ]
p(ϕ )

= DKL p(ε ) || pε (ε)[ ]
p(ϕ )€ 
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Figure 2. Schematic of information level. Relationship between free energy, mutual information, and
predictive information is illustrated. Owing to the non-negativity of KLD, 〈− log p∗(x)〉p(x) is always
larger than or equal to 〈− log p(x)〉p(x) and F[p(ϑ), x] provides an upper bound of 〈− log p∗(x)〉p(x).

6. Comparison between the free-energy principle and related theories216

In this section, I compare the FEP with other theories and methods. As describe in the above217

sections, the aim of the infomax principle is to maximize mutual information I[x; ϕ] (Eq. (13)), while218

the aim of the FEP is to minimize free energy expectation F (Eq. (18)), and maximization of predictive219

information X[x; ϕ] (Eq. (19)) means to do both of them simultaneously. Let us see how they are220

different from each other using a simple example.221

6.1. Infomax principle222

The generative process and recognition- and generative models defined in Section 2 are assumed.223

For simplification, suppose W, V and γ follow Dirac’s delta functions; then, the goal of the infomax224

principle is simplified as maximization of mutual information between x and u,225

I[x; u] =
〈

log
p(x, u)

p(x)p(u)

〉
p(x,u)

= H[p(x)]− H[x|u] = H[p(u)]− H[u|x], (24)

where H[p(u)] = 〈− log(p(u)du)〉p(u) and H[u|x] = 〈− log(p(u|x)du)〉p(u,x). If dim(x) ≥ dim(u)226

and a linear recognition model u = g(x) = Wx with full-rank matrix W is considered, since H[u|x] = 0227

and u has an infinite range, I[x; u] = H[p(u)] monotonically increases as the variance of u increases.228

Thus, maximization of I[x; u] cannot perform either PCA or ICA. To perform PCA and ICA based229

on the infomax principle, one needs to consider mutual information between sensory inputs and230
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nonlinearly transformed neural outputs. When nonlinear neural outputs have a finite range, the231

variance of them should be maintained in the appropriate range. The infomax based PCA and ICA232

[42,43] are formulated based on this requirement. Mutual information between x and neural outputs233

transformed by an injective nonlinear function ψ(•), ψ(u) = (ψ(u1), . . . , ψ(uN))
T , is given by234

I[x; ψ(u)] =
〈

log
p(x, ψ(u))

p(x)p(ψ(u))

〉
p(x,ψ(u))

= H[p(ψ(u))]− H[ψ(u)|x], (25)

where H[p(ψ(u))] = 〈− log(p(ψ(u))du)〉p(ψ(u)) and H[ψ(u)|x] = 〈− log(p(ψ(u)|x)du)〉p(ψ(u),x).235

By the relationship of p(ψ(u)) = |∂u/∂ψ(u)|p(u) = (∏i ψ′(ui))
−1 p(u), I have H[p(ψ(u))] =236

〈− log{(∏i ψ′(ui))
−1 p(u)du}〉p(u) = H[p(u)] + 〈∑i log ψ′(ui)〉p(u). Since H[ψ(u)|x] = 0 hold, Eq.237

(25) becomes238

I[x; ψ(u)] = H[p(u)] +

〈
∑

i
log ψ′(ui)

〉
p(u)

. (26)

As I will describe in the following, maximization of Eq. (26) performs PCA and ICA.239

6.2. Principal component analysis240

Both the infomax principle and the FEP give a cost function of PCA. Suppose dim(x) > dim(u),241

V = WT , and − log ψ′(ui) = u2
i . From Eq. (24), H[p(u)] = H[p(x)] − 〈H[p(ε)]〉p(ϕ) holds.242

Since the prediction error is given by ε = x −WTu = (I −WTW)x, I have 〈H[p(ε)]〉p(ϕ) =243

〈− log{p(x)|∂x/∂ε|dx}〉p(x,ϕ) = H[p(x)] + 〈log |I −WTW|〉p(ϕ). Thus, Eq. (26) becomes244

I[x; ψ(u)] = −
〈

log |I −WTW|
〉

p(ϕ)
−
〈
|u|2

〉
p(u)

. (27)

The first term of Eq. (27) becomes the maximum if W holds WWT = I (i.e., an orthogonal matrix). To245

maximize the second term, outputs u need to be involved in a subspace spanned by the first to the Nth246

major principal components of x. Therefore, maximization of Eq. (27) performs PCA.247

PCA is also derived by minimization of LX (Eq. (22)) under the assumption that pε(ε) is a248

Gaussian distribution pε(ε) = N [ε; 0, Πε] with precision matrix Πε (the inverse of covariance matrix).249

If I suppose Πε = γ1 I + γ2(〈εεT〉p(ε))−1 with positive hyper-parameters γ1, γ2, LX becomes250

LX =

〈
γ1

2
〈εTε〉p(ε) +

γ2

2
− 1

2
log
∣∣∣γ1 I + γ2(〈εεT〉p(ε))−1

∣∣∣〉
p(ϕ)

+ const. (28)

In the special case of γ2 = 0, LX becomes a common cost function for the least square error PCA [39]251

and auto-encoder [44], and its derivative ∂LX/∂W is similar to the well-known Oja’s subspace rule for252

PCA [41]. Moreover, since 〈H[p(ε)]〉p(ϕ) = 〈log |I−WTW|〉p(ϕ)+ const. = 〈1/2 · log |〈εεT〉p(ε)|〉p(ϕ)+253

const., when the priors of W, V, and γ are flat and 1 � γ1 � γ2, free energy expectation (Eq. (18))254

approximately becomes255

F = LX − 〈H[p(ε)]〉p(ϕ) +DKL[p(u)||p0(u)]

=

〈
γ1

2
〈εTε〉p(ε) +

γ2

2
− 1

2
log
∣∣∣γ1〈εεT〉p(ε) + γ2 I

∣∣∣〉
p(ϕ)

+DKL[p(u)||p0(u)] + const.

≈
〈γ1

2
〈εTε〉p(ε) +

γ2

2

〉
p(ϕ)

+ const.

(29)

Therefore, F is approximately transformed as F ≈ LX + const.256
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6.3. Independent component analysis257

Both the infomax principle and the FEP give a cost function of ICA. Suppose that sources s1, . . . , sN258

independently follow an identical distribution p0(si). The infomax based ICA is derived from Eqs.259

(25)-(26) [42,43]. If ψ(ui) is defined to satisfy ψ′(ui) = p0(ui), negative mutual information −I[x; ψ(u)]260

becomes KLD between actual and prior distributions up to constant term,261

− I[x; ψ(u)]− log du =
〈

log p(u)− log p0(u)
〉

p(u)
= DKL[p(u)||p0(u)] ≡ LA. (30)

LA is known as Amari’s ICA cost function [40]. While both −I[x; ψ(u)] and LA provide the same262

gradient descent rule, the nonlinearly transformed neural outputs ψ(u) are required to formulate263

I[x; ψ(u)]. By contrast, LA straightforwardly represents that minimization of KLD between p(u) and264

p0(u) performs ICA similarly to the FEP. Indeed, if dim(u) = dim(x) = N, u = g(x) is an injective265

function, and the priors of W, V, and γ are flat, I obtain F = DKL[p(u)||p0(u)] = LA. Therefore, ICA is266

a subset of the inference problem considered in the FEP, and the derivation from the FEP is simpler267

while both the infomax principle and the FEP can perform ICA.268

Furthermore, when dim(x) > dim(u), minimization of F can perform both dimensionality269

reduction and BSS. When the priors of W, V, and γ are flat and γ1 � γ2, free energy expectation (Eq.270

(18)) approximately becomes271

F ≈
〈γ1

2
〈εTε〉p(ε) +

γ2

2

〉
p(ϕ)

+ LA + const. (31)

Therefore, F is approximately transformed as F ≈ LX + LA + const. and can switch the weights of272

PCA- and ICA parts by controlling γ1. Whereas, if γ has a sufficient dimension and Πε(γ) is fine273

tuned to minimize F, I get Πε = (〈εεT〉p(ε))−1 by solving ∂F/∂Πε = 0. Under this condition, since LA274

is equal to H[x|u] up to constant term, I find275

F = LA + const. (32)

Thus, F consists only of the ICA part when Πε(γ) is fine tuned.276

6.4. Predictive information277

Predictive information is a measure proposed by Bialek to quantify the average generalization278

power of sensory inputs [29,30], which is defined by279

Ip[x f uture; xpast] ≡
〈

log
p∗(x f uture, xpast)

p∗(x f uture)p(xpast)

〉
p(x f uture ,xpast)

, (33)

where x f uture and xpast indicate future and past sensory inputs, respectively. Note that p∗(x f uture, xpast)280

and p∗(x f uture) are the likelihood function (a statistical model) and the prior distribution, respectively,281

while p(xpast) and p(x f uture, xpast) are true probability distributions. If I suppose that the internal state282

ϕ represents information based on the past observation while x represents the current sensory inputs,283

Bialek’s predictive information Ip[x; ϕ] becomes284

Ip[x; ϕ] =

〈
log

p∗(x, ϕ)

p∗(x)p(ϕ)

〉
p(x,ϕ)

=

〈
log

pε(ε)pϕ(ϕ)

p∗(x)p(ϕ)

〉
p(x,ϕ)

, (34)

While this definition of Ip[x; ϕ] supposes that x exactly follows p(x) = p∗(x), it is difficult to directly285

know and mimic the exact shape of p(x) in practice. If I suppose p∗(x) can be different from p(x), I286

obtain X[x; ϕ] as a lower bound of Ip[x; ϕ],287

Ip[x; ϕ] ≥ X[x; ϕ]. (35)
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If and only if I can design p∗(x) as the exactly same shape as p(x), Ip[x; ϕ] = X[x; ϕ] holds, while288

Ip[x; ϕ] > X[x; ϕ] when p∗(x) is different from p(x) because of the non-negativity of KLD. Therefore,289

X[x; ϕ] is a generalized measure of Ip[x; ϕ].290

6.5. Simulation291

The difference between the infomax principle and the FEP is illustrated by a simple simulation292

using a linear generative model and a linear neural network (Fig. 3). For simplification, I assume293

that dynamics of u quickly converge to the optimum that minimizes F(x) compared to the change of294

s (adiabatic approximation). First, when W is randomly chosen and V is defined by V = WT , both295

H[x|ϕ] and F are scattered (black circles in Fig. 3) since neural outputs represent random mixtures296

of sources and noises. Next, when W is optimized according to either Eq. (27) or (28) under the297

condition where V = WT , neural outputs express major principal components of inputs (i.e., PCA;298

blue circles in Fig. 3). This is the case where H[x|ϕ] is minimized; thus, PCA performs the infomax299

optimization. Whereas, when W, V and Πε(γ) are optimized according to the FEP (see Eq. (32)),300

neural outputs represent independent components that match to the prior source distribution, i.e.,301

performing BSS (i.e., ICA), while minimizing the prediction error (red circles in Fig. 3). For the linear302

generative process as shown in Fig. 3, minimization of F can reliably and accurately perform both303

dimensionality reduction and BSS, because outputs become independent of each other and match304

the prior belief if and only if outputs represent true sources up to permutation and sign-flip. Since305

X[x; ϕ] consists of PCA- and ICA- cost functions (see Eq. (21)), maximization of X[x; ϕ] finds a solution306

that intermediates between solutions of the infomax principle and the FEP. Interestingly, the infomax307

optimization (i.e., PCA) provided W that makes F closer to zero than random states; i.e., the infomax308

optimization can contribute free energy minimization. Note that, in the case of the nonlinear system,309

there are many different transformations that make outputs independent of each other [45]. Hence,310

there is no guarantee that minimization of F can identify true sources of nonlinear generative models.311

In sum, the aims of the FEP, the infomax principle, and the predictive information theory are312

similar to each other; especially, when both of sources and noises follow Gaussian distributions, their313

aims become the same meaning. By contrast, the optimal synaptic weights for the FEP can be different314

from that for the infomax principle when sources follow non-Gaussian distributions. Under this315

condition, the predictive information theory finds an intermediate solution between those for the FEP316

and the infomax principle.317
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Figure 3. The difference between the infomax principle and the FEP when sources follow a
non-Gaussian distribution. Suppose s as two-dimensional hidden sources following an identical
Laplace distribution with zero mean and unit variance; x as four-dimensional sensory inputs; u
as two-dimensional neural outputs; z as four-dimensional background Gaussian noises following
N [z; 0, Πz]; θ as a 4× 2-dimensional mixing matrix; W as a 2× 4-dimensional synaptic strength matrix
for the bottom-up path; V as a 4× 2-dimensional synaptic strength matrix for the top-down path;
and the priors of W, V, and γ as flat priors. Sensory inputs were determined by x = θs + z, while
neural outputs were determined by u = Wx. The prediction error was given by ε = x−Vu and used
to calculate H[p(ε)] and LA. Horizontal and vertical axes are conditional entropy H[x|ϕ] (Eq. (14))
and free energy expectation F (Eq. (18)), respectively. Black, blue, and red circles indicate the results
when W is a random matrix, optimized for the infomax principle (i.e., PCA), and optimized for the
FEP, respectively. Simulations were conducted 100 times with randomly selected θ and Πz for each
condition. For each simulation, 108 random sample points were generated and probability distributions
were calculated by the histogram method.

7. Discussion318

In this study, the FEP is linked with the infomax principle and the predictive coding theory. It is319

more likely that the purpose of the brain is to minimize the surprise of sensory inputs to realize better320

perception rather than maximize the amount of stored information. For example, the visual input321

captured by a video camera contributes to the stored information, but it cannot be used for prediction322

directly. Whereas, the brain is capable of inference and prediction using stored information. Surprise323

expectation S(≥ 0) represents the difference between actual observation and prediction under the324

statistical model, and free energy expectation F provides its upper bound. Predictive information325

X[x; ϕ] is introduced to quantify the prediction and generalization capability of sensory inputs, which326

is defined by slightly modifying the definition in the previous studies [29,30]. Using this, F is explained327

as a gap between information stored in the brain I[x, ϕ] and that available for prediction X[x; ϕ] (Eq.328

(20)).329

Moreover, the derivation of ICA is simplified by the FEP. To perform ICA based on the infomax330

principle, one needs to tune the nonlinearity of neural outputs such that its derivative matches the331

prior distribution. By contrast, under the FEP, ICA is straightforwardly derived from KLD between the332

true probability distribution and the prior distribution of u. Especially, in the absence of background333

noise and prior knowledge on parameters and hyper-parameters, free energy expectation F (Eq. (18))334

is equivalent to surprise expectation S (Eq. (16)) and Amari’s ICA cost function LA (Eq. (30)). Thus,335

ICA is a subproblem of the FEP.336

The FEP is a useful theory from theoretical and engineering view points, since various learning337

rules can be derived from common cost function F(x) [14,15]. However, to be a physiologically338

plausible theory of the brain, the FEP needs to satisfy certain physiological requirements. There339

are two major requirements: first, physiological evidence that shows the existence of learning or340
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self-organizing processes under the FEP is required. The model structure under the FEP is consistent341

with previous biological knowledge and proposes the possible function of the cortical microcircuits342

[18]. Moreover, BSS performed by in vitro neural networks reduce free energy in the network [46],343

and the spontaneous prior activity of a visual area is known to learn the properties of natural pictures344

[47]. These results suggest the physiological plausibility of the FEP. Nevertheless, further experiments345

and consideration of information theoretical optimization under physiological constraints [48] are346

required to prove the existence of the FEP in the biological brain. Second, the update rule must be a347

biologically plausible local learning rule; i.e., synaptic strengths much be changed by signals from348

connected inputs. While the synaptic update rule for the discrete system is local [16], the current349

rule for the continuous system [14] is a non-local rule. Recently developed biologically-plausible350

three-factor learning models in which Hebbian learning is mediated by the third modulatory factor351

[49–51] may help to understand the neuronal mechanism underling unconscious inference and the352

FEP. Therefore, it is necessary to investigate how actual neural networks infer the dynamical system353

behind the sensory input. This will help develop a biologically plausible learning algorithm through354

which the actual neural network might develop the internal model in a manner consistent with the355

physiological experimental observations.356

In summary, I investigated the differences between two types of information—information stored357

in the brain and that available for prediction. It was demonstrated that free energy represents the358

gap between these two information. This result clarified the difference between the FEP and related359

theories and will utilize for understanding unconscious inference from theoretical view points.360
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