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Abstract: It is well known that a sequence of two non-collinear Lorentz boosts (pure Lorentz1

transformations) does not correspond to a Lorentz boost, but involves a spatial rotation, the Wigner2

or Thomas-Wigner rotation. We visualize the interrelation between this rotation and the relativity of3

distant simultaneity by moving a Born-rigid object on a closed trajectory in several steps of uniform4

proper acceleration. Born-rigidity implies that the stern of the boosted object accelerates faster than5

its bow. It is shown that at least five boost steps are required to return the object’s center to its starting6

position, if in each step the center is assumed to accelerate uniformly and for the same proper time7

duration. With these assumptions, the Thomas-Wigner rotation angle depends on a single parameter8

only. Furthermore, it is illustrated that accelerated motion implies the formation of an event horizon.9

The event horizons associated with the five boosts constitute a natural boundary to the rotated10

Born-rigid object and ensure its finite size.11

Keywords: special relativity; Thomas-Wigner rotation; visualization12

1. Introduction13

In 1926 the British physicist L. H. Thomas (1903–1992) resolved a discrepancy between observed14

line splittings of atomic spectra in an external magnetic field (Zeeman effect) and theoretical calculations15

at that time [see e.g. 41]. Thomas’ analysis [39,40] explains the observed deviations in terms of16

a special relativistic [9] effect. He recognized that a sequence of two non-collinear pure Lorentz17

transformations (boosts) cannot be expressed as one single boost. Rather, two non-collinear boosts18

correspond to a pure Lorentz transformation combined with a spatial rotation. This spatial rotation19

is known as Wigner rotation or Thomas-Wigner rotation, the corresponding rotation angle is the20

Thomas-Wigner angle [see e.g. 2,4,5,14,15,17,18,24,27,28,30,32,34,36,42–44, and references therein].21

The prevalent approach to discuss Thomas-Wigner rotations employs passive Lorentz22

transformations. An object G is simultaneously observed from N inertial reference frames, denoted by23

[1], [2], . . . , [N]. Frame [i] is related to the next frame [i + 1] by a pure Lorentz transformation, where24

1 ≤ i ≤ N − 1. Now, for given non-collinear boosts from frame [1] to frame [2] and then from [2] to [3],25

there exists a unique third boost from [3] to [4], such that G is at rest with respect to both, frame [1] and26

frame [4]. It turns out, however, that the combined transformation [1] → [2] → [3] → [4], is not the27

identity transformation, but involves a spatial rotation.28

In the present paper, following Jonsson [22], an alternative route to visualize Thomas-Wigner29

rotations using active or “physical” boosts is attempted. G is accelerated starting from zero velocity in30

frame [1], which is denoted by “laboratory frame” in the following. During its journey G performs31

several acceleration and/or deceleration manoeuvres and finally returns to its starting position. The32

visual impression of G moving through the series of acceleration phases and finally coming to rest in a33

rotated orientation (see fig. 5 below) hopefully outweigh the mathematical technicalities of the present34

approach.35

The paper is sectioned as follows. First, the general approach is described and basic assumptions36

are introduced. The second section recalls uniform accelerations of Born-rigid objects. Sequences of37

uniform, non-collinear accelerations for a given vertex point within a planar grid of vertices and the38

trajectories of its neighbouring vertices are addressed in the following section. The last two sections39

present the visualization results and discuss their implications. Appendix A examines the required40
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number of boost steps, details of the computer algebraic calculations performed in this study are given41

in appendix B.42

For simplicity length units of light-seconds, abbreviated “ls” (roughly 300,000 km) are used with43

the speed of light taken to be unity.44

2. Method45

We consider the trajectory of a square-shaped grid G consisting of M vertices. G is assumed to be46

Born-rigid, i.e. the distance between any two grid points, as observed in the momentarily comoving47

inertial frame (MCIF) [see e.g. 25, chapter 7], remains constant [3]. The grid’s central point R, which48

serves as the reference point, is uniformly accelerated for a given proper time period ∆τR. To obtain49

a closed trajectory several of these sections with constant proper acceleration, but different boost50

directions are joined together.51

In R’s MCIF the directions and magnitudes of the vertices’ proper accelerations~αi (i = 1, . . . , M)52

change discontinuously at the switchover from one boost section to the next. In the MCIF the vectors~αi53

change simultaneously; in other frames, such as the laboratory frame, the change is asynchronous and54

G, despite its Born-rigidity, appears distorted and twisted (see fig. 5 below). On the other hand, G’s55

Born-rigidity implies that it is sufficient to calculate R’s trajectory, the motion of the reference point R56

uniquely determines the trajectories of the remaining M− 1 vertices [20,29]. We note that the spacetime57

separations between individual switchover events, linking boost steps k and k + 1, are spacelike. I.e.58

these switchover events are causally disconnected and each vertex has to be “programmed” in advance59

to perform the required acceleration changes [26].60

In the following, αR and ∆τR denote the magnitude of the proper acceleration of G’s reference61

point R and the boost duration in terms of R’s proper time, respectively. To simplify the calculations62

we impose the following four conditions on all N boosts.63

1. The grid G is Born-rigid.64

2. At the beginning and after completion of the Nth boost G is at rest in frame [1] and R returns to65

its starting position.66

3. R’s proper acceleration αR and the boost’s proper duration ∆τR are the same in all N sections.67

4. All boost directions and therefore all trajectories lie within the xy-plane.68

Let the unit vector ê1 denote the direction of the first boost in frame [1]. This first boost lasts for a69

proper time ∆τR, as measured by R’s clock, when R attains the final speed vR ≡ β with respect to70

frame [1]. Frame [2] is then defined as R’s MCIF at this instant of time. The corresponding Lorentz71

matrix transforming a four-vector from frame [2] to frame [1] is72

Λ(γ, ê1) ≡

 γ , γ β êT
1

γ β ê1 , 13×3 + (γ− 1) ê1 · êT
1

 . (1)

Here, 13×3 is the 3×3 unit matrix, the superscript T denotes transposition, the Lorentz factor is73

γ ≡ 1√
1− β2

(2)

and, in turn, β =
√

γ2 − 1/γ. Similarly, frame [3] is R’s MCIF at the end of the second boost, etc. In74

general, the Lorentz transformation from frame [i] to frame [i + 1] is given by eqn. (1), with ê1 replaced75

by êi, the direction of the ith boost in frame [i].76

Assumption {3} implies that the angles between consecutive boosts (“boost angles”)77

ζi,i+1 ≡ arccos
(

êT
i · êi+1

)
(3)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2017                   doi:10.20944/preprints201711.0016.v1

Peer-reviewed version available at Symmetry 2017, 9, 292; doi:10.3390/sym9120292

http://dx.doi.org/10.20944/preprints201711.0016.v1
http://dx.doi.org/10.3390/sym9120292


3 of 22

are the only unknowns, since proper acceleration αR and boost duration ∆τR are given parameters. In78

the following the “half-angle” parametrization79

T ≡ tan
(

ζ

2

)
(4)

is used; it allows us to write expressions involving80

sin(ζ) =
2 T

1 + T2 (5)

cos(ζ) =
1− T2

1 + T2 .

as polynomials in T.81

We will find that, first, no solutions exist if the number of boosts N is four or less (see appendix A),82

second, for N = 5 the solution is unique and, third, the boost angles ζ(γ) depend solely on the selected83

value of γ = 1/
√

1− β2. Changing αR and/or ∆τR only affects the spatial and temporal scale of R’s84

trajectory (see below).85

The derivation of ζi,i+1(γ) is simplified by noting that the constraints {2}, {3} and {4} imply time86

reversal invariance. I.e. R’s trajectory from destination to start, followed backward in time, is a valid87

solution as well and therefore ζi,i+1 = ζN−i,N−i+1 for i = 1, . . . , N − 1. Thus, for N = 5 the number of88

unknowns reduces from four to two, with ζ1,2 = ζ4,5 and ζ2,3 = ζ3,4.89

3. Uniform acceleration of a Born-rigid object90

In the laboratory frame we consider the uniform acceleration of the reference point R, initially91

at rest, and assume that the acceleration phase lasts for the proper time period ∆τR. During ∆τR the92

reference point moves from location~rR(0) to location93

~rR(∆τR) = ~rR(0) +
1

αR
(cosh(αR ∆τR)− 1) êB (6)

with unit vector êB denoting the boost direction [see e.g. 19,21,27,33,36,37]. The coordinate time94

duration ∆tR corresponding to the proper time duration ∆τR is95

∆tR =
1

αR
sinh(αR ∆τR) (7)

and R attains the final speed96

vR = tanh(αR ∆τR) = β . (8)

Let G be an arbitrary vertex point of G at location~rG(0) and97

b ≡ (~rG(0)−~rR(0)) · êB (9)

the projection of the distance vector from R to G onto the boost direction êB. The vertices G and R start98

to accelerate simultaneously since G is Born-rigid (assumption {1}) and analogous to eqns. (6), (7) and99

(8) we obtain for G’s trajectory100

~rG(∆τG) = ~rG(0) +
(

1
αG

(cosh(αG ∆τG)− 1) + b
)

êB (10)

∆tG =
1

αG
sinh(αG ∆τG)

vG = tanh(αG ∆τG) .
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At the end of the first boost phase all grid points move at the same speed with respect to the laboratory101

frame; however, in the laboratory frame the boost phase does not end simultaneously for all vertices.102

Simultaneity is only observed in R’s MCIF. With vG = vR and eqn. (10) it follows103

αG ∆τG = αR ∆τR . (11)

G’s Born-rigidity implies that the spatial distance between G and R at the end of the boost phase in R’s104

MCIF is the same as their distance at the beginning of the boost phase. A brief calculation leads to105

− 1
αG

(γ− 1) + b γ +
1

αR
(γ− 1) = b (12)

which simplifies to106

αG =
1

1 + b αR
αR (13)

and with eqn. (11)107

∆τG = (1 + b αR) ∆τR (14)

provided γ 6= 1. Eqn. (13) expresses the well-known fact that the proper accelerations aboard a108

Born-rigid grid may differ from one vertex to the next. More specifically, at a location trailing the109

reference point R the acceleration exceeds αR, vertex points leading R accelerate less than αR. (In110

relativistic space travel the passengers in the bow of the spaceship suffer lower acceleration forces than111

those seated in the stern. This amenity of a more comfortable acceleration, however, is counterbalanced112

by faster ageing of the space travellers (eqn. (14)). These considerations, of course, assume Born-rigidly113

constructed space vehicles.)114

The position-dependent acceleration is well-known from the Dewan-Beran-Bell spaceship paradox115

[7,8] and [1, chapter 9]. Two spaceships, connected by a Born-rigid wire, accelerate along the direction116

separating the two. According to eqn. (13) the trailing ship has to accelerate faster than the leading117

one. Conversely, if both accelerated at the same rate in the laboratory frame, Born-rigidity could118

not be maintained and the wire connecting the two ships would eventually break. This well-known,119

but admittedly counterintuitive fact is not a paradox in the true sense of the word and discussed120

extensively in the literature [see e.g. 11–13,16,31,38].121

Eqns. (13) and (14) also imply, that αG → ∞ and ∆τG → 0, as the distance between a (trailing)122

vertex G and the reference point R approaches the critical value123

b∗ ≡ −1/αR . (15)

Clearly, a Born-rigid object cannot extend beyond this boundary, which is referred to as “event horizon”124

in the following. Section 6.2 will discuss its consequences.125

Finally, we note that eqn. (14) implies that a set of initially synchronized clocks mounted on126

a Born-rigid grid will in general fall out of synchronization once the grid is accelerated [37]. Thus,127

the switchover events, which occur simultaneous in R’s MCIF, are not simultaneous with respect to128

the time displayed by the vertex clocks. As already mentioned, the acceleration changes have to be129

“programmed” into each vertex in advance, since the switchover events are causally not connected and130

lie outside of each others’ lightcones [10].131

4. Sequence of five uniform accelerations132

The previous section discussed R’s trajectory during the first acceleration phase (eqn. (10)). Now133

we connect several of these segments to form a closed trajectory for R. Let A[k] denote R’s start event134

as observed in frame [k] and B[k], C[k], etc. correspondingly denote the “switchover” events between 1st
135
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and 2st boost, 2nd and 3rd boost, etc., respectively. In the following, bracketed superscripts indicate the136

reference frame. Frame [1], i.e. k = 1, is the laboratory frame, frame [2] is obtained from frame [1] by137

the Lorentz transformation Λ(γ,−ê1) (eqn. (1)). Generally, frame [k + 1] is calculated from frame [k]138

using the transformation matrix Λ(γ,−êk).139

It can be shown (see appendix A) that at least five boosts are needed to satisfy the four140

assumptions {1}–{4} listed in section 2. As illustrated in fig. 3 for a sequence of N = 5 boosts the141

reference point starts to accelerate at event A and returns at event F via events B, C, D and E. The142

corresponding four-position P and four-velocity V are143

P[1]
F = P[1]

A + S[1]
A→B (16)

+Λ (γ,−ê1) · S[2]
B→C

+Λ (γ,−ê1) · Λ (γ,−ê2) · S[3]
C→D

+Λ (γ,−ê1) · Λ (γ,−ê2) · Λ (γ,−ê3) · S[4]
D→E

+Λ (γ,−ê1) · Λ (γ,−ê2) · Λ (γ,−ê3) · Λ (γ,−ê4) · S[5]
E→F

and144

V [1]
F = Λ (γ,−ê1) · Λ (γ,−ê2) · Λ (γ,−ê3) (17)

·Λ (γ,−ê4) · Λ (γ,−ê5) · V [6]
F ,

respectively. Here, the four-vector145

S[1]
A→B ≡ 1

αR

(
sinh(αR ∆τR)

(cosh(αR ∆τR)− 1) ê1

)
(18)

=
1

αR

(
γ β

(γ− 1) ê1

)

describes R’s worldline from A to B (eqn. (10)); S[2]
B→C, S[3]

C→D, S[4]
D→E and S[5]

E→F are defined146

correspondingly. Assumption {2} implies that147

~P[1]
A = ~P[1]

F = ~P[6]
A = ~P[6]

F =~0 (19)

and148

V [1]
A = V [1]

F = V [6]
A = V [6]

F =

(
1
~0

)
. (20)

To simplify the expressions in eqns. (16) and (17) time reversal symmetry is invoked. It implies that149

the set of boost vectors −ê5,−ê4, . . . ,−ê1 constitutes a valid solution, provided ê1, ê2, . . . , ê5 is one and150

satisfies assumptions {1}–{4}. Thereby the number of unknowns is reduced from four to two, the angle151

between the boost vectors ê1 and ê2, and the angle between ê2 and ê3152

ζ1,2 ≡ arccos
(

êT
1 · ê2

)
= arccos

(
êT

4 · ê5

)
(21)

ζ2,3 ≡ arccos
(

êT
2 · ê3

)
= arccos

(
êT

3 · ê4

)
.

Fig. 3 illustrates the sequence of the five boosts in the laboratory frame [1]. Since the start and final153

velocities are zero, R’s motion between A and B and, likewise, between E and F is rectilinear. In154

contrast, the trajectory connecting B and E (via C and D) appears curved in frame [1]; as discussed155
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and illustrated below, the curved paths are in fact straight lines in the corresponding boost frame (see156

fig. 4).157

From eqns. (17) and (20) follows(
(T12)

2 − 2 γ− 1
)
(T23)

2 − 4 (1 + γ) T12 T23 + (T12)
2 + 4 γ2 + 2 γ− 1 = 0 (22)

with the two unknowns T12 ≡ tan(ζ1,2/2) and T23 ≡ tan(ζ2,3/2) (for details see appendix B). Eqn. (22)158

has two solutions,159

T(±)
23 =

1
−(T12)2 + 2γ + 1

(23)

×
(
− 2 T12 (γ + 1)

±
√
−(T12)4 + 8 (T12)2γ + 6 (T12)2 + 8 γ3 + 8 γ2 − 1

)
provided160

(T12)
2 − 2γ− 1 6= 0 . (24)

Assumption {2} implies that the spatial component of the event P[1]
F vanishes, i.e.161

~P[1]
F = 0 . (25)

Since all motions are restricted to the xy-plane, it suffices to consider the x- and y-components of162

eqn. (25). The y-component leads to a product of the following two expressions163

(T12)
8 (26)

+(T12)
6 4 (γ + 2)

+(T12)
4 (−2) (2 γ + 1)

(
2 γ2 + 8 γ + 9

)
+(T12)

2 (−4)
(

8 γ4 + 28 γ3 + 26 γ2 + 5 γ− 2
)

− (2 γ + 1)3
(

4 γ2 + 2 γ− 1
)

or164

(T12)
8 (γ + 3)2 (27)

+(T12)
6 (−4)

(
6 γ3 − 15 γ2 − 12 γ + 5

)
+(T12)

4 (−2)
(

24 γ4 − 44 γ3 − 55 γ2 + 26 γ + 1
)

+(T12)
2 (−4)

(
8 γ5 − 16 γ4 − 14 γ3 + 5 γ2 + 1

)
+
(

4 γ2 + γ− 1
)2

(see appendix B). The solutions of equating expression (27) to zero are disregarded since for γ = 1 it165

yields166

(T12)
8 + 4 (T12)

6 + 6 (T12)
4 + 4 (T12)

2 + 1 = 0 (28)

which has no real-valued solution for T12.167
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It turns out (see appendix B) that the x-component of eqn. (25) results in an expression containing168

two factors as well, one of which is identical to the expression (26). Thus, the roots of the polynomial (26)169

solve eqn. (25).170

The degree of the polynomial (26) in terms of (T12)
2 is four; its roots are classified according171

to the value of the discriminant ∆ (see e.g. en.wikipedia.org/wiki/Quartic_function), which for172

expression (26) evaluates to173

∆ = −524288 γ (γ− 1)3 (γ + 1)7 (4 γ4 + 28 γ3 + 193 γ2 + 234 γ + 81) . (29)

For non-trivial boost γ > 1, the discriminant is negative and the roots of the quartic polynomial consist174

of two pairs of real and complex conjugate numbers (see en.wikipedia.org/wiki/Quartic_function).175

The real-valued solutions are176

(T12)
2 = −(γ + 2) + S +

1
2

√
−4S2 − 2 p− q

S (30)

and177 (
T(b)

12

)2
= −(γ + 2) + S − 1

2

√
−4S2 − 2 p− q

S (31)

with178

p ≡ −2 (γ + 1)
(

4γ2 + 17γ + 21
)

(32)

q ≡ −16 (γ + 1)
(

γ2 − 2γ− 9
)

S ≡ 1
2
√

3

√
−2 p +Q+

∆0

Q

∆0 ≡ 16 (γ + 1)2
(

4 γ4 + 28 γ3 + 157 γ2 + 126 γ + 9
)

Q ≡ 4 3
√
Q0 + 12

√
6
√
Q0

Q0 ≡ γ (γ− 1)3 (γ + 1)7 (4 γ4 + 28 γ3 + 193 γ2 + 234 γ + 81) .

The solution from eqn. (31) turns out to be negative and thus does not produce a real-valued solution179

for T12. The remaining two roots of the polynomial (26)180

(
T(c)

12

)2
= −(γ + 2)− S +

1
2

√
−4S2 − 2 p +

q
S (33)(

T(d)
12

)2
= −(γ + 2)− S − 1

2

√
−4S2 − 2 p +

q
S

correspond to replacing S by −S in eqns. (30) and (31); they are complex-valued and therefore181

disregarded as well. The second unknown, T23, follows from eqn. (23) by choosing the positive square182

root +
√
(T12)2 and using183

T23 ≡ T(+)
23 (34)

(see eqn. (22)). For a given Lorentz factor γ the angles between the boost directions êi and êi+1 are184

ζ1,2(γ) = arccos
(

êT
1 · ê2

)
= 2 arctan

(
+
√
(T12(γ))2

)
(35)

ζ2,3(γ) = arccos
(

êT
2 · ê3

)
= 2 arctan

(
+
√
(T23(γ))2

)
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Figure 1. The angle between the boost direction vectors ê1 and ê2 in frame [1] (blue line), and the angle
between ê2 and ê3 in frame [2] (red) as a function of γ. The dotted line marks +180◦, the limit of ζ1,2

and ζ2,3 for γ→ ∞.

and, with ζ4,5 = ζ1,2 and ζ3,4 = ζ2,3, the orientation of the five boost directions êi for i = 1, . . . , 5 within185

the xy-plane are obtained.186

Fig. 1 shows numerical values of the boost angles ζ1,2(γ) and ζ2,3(γ) as a function of γ. The
angles increase from

ζ1,2(γ = 1) = 2 arctan
(√
−5 + 4

√
10
)
≈ 140.2◦

and

ζ2,3(γ = 1) = 2 arctan

(√
−5 + 4

√
10−

√
3
√
−5 + 2

√
10

−2 +
√

10

)
≈ 67.2◦

at γ = 1 to ζ1,2(γ→ ∞) = +180◦ = ζ2,3(γ→ ∞) as γ→ ∞.187

Fig. 2 depicts the orientation of the five boost directions for several values of γ. Here the first boost188

vector ê1 is taken to point along the x-axis. We note that the panels in fig. 2 do not represent a specific189

reference frame; rather, each vector êk is plotted with respect to frame [k] (k = 1, . . . , 5). The four190

panels show the changes in boost directions for increasing values of γ. Interestingly, the asymptotic191

limits ζ1,2(γ→ ∞) = +180◦ and ζ2,3(γ→ ∞) = +180◦ imply that in the relativistic limit γ→ ∞ the192

trajectory of R essentially reduces to one-dimensional motions along the x-axis. At the same time the193

Thomas-Wigner rotation angle increases to +360◦ as γ→ ∞ (see the discussion in section 6 below).194

Since the accelerated object is Born-rigid, the trajectories of all grid vertices G are uniquely195

determined once the trajectory of the reference point R is known [10,20,29]. Following the discussion in196

section 3 the position and coordinate time of an arbitrary vertex G, in the frame comoving with R at the197
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Figure 2. Boost directions for four different values of γ = 1/
√

1− β2. The boost direction in frame [1],
ê1 is assumed to point along the x-axis. In the relativistic limit γ→ ∞ (panel (4)) the angles between
êk and êk+1 approach +180◦ and the motion of the reference point R tends to be more and more
restricted along the x-axis. I.e. in the relativistic limit the object’s trajectory transitions from a two- to a
one-dimensional motion.
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Figure 3. Trajectories of reference point R for γ = 2/
√

3 ≈ 1.15 as seen from (laboratory) frame [1] and
frame [6]. The two frames are stationary with respect to each other, but rotated by a Thomas-Wigner
angle of θTW = 14.4◦.

beginning of the corresponding acceleration phase, follows from eqn. (10). The resulting trajectories198

are discussed in the next section.199

5. Visualization200

The trajectory of the reference point R in the laboratory frame for a boost speed β = 1/2,201

corresponding to γ = 2/
√

3 ≈ 1.15, is displayed in fig. 3 (black solid line). The same trajectory as it202

appears to an observer in frame [6] is marked in grey. The two frames are stationary with respect to203

other, but rotated by a Thomas-Wigner angle of about 14.4◦. In addition, dots mark the locations of the204

four switchover events B, C, D and E in the two frames. As required by assumption {2} the starting205

and final positions, corresponding to the events A and F, coincide.206

Fig. 4 shows the same trajectory as fig. 3. In addition, R’s trajectories as recorded by observers207

in the frames [2], . . . , [5] are plotted as well (solid coloured lines). Corresponding switchover events208

are connected by dashed lines. At B[2], C[3], D[4] and E[5] (and of course at the start event A[1,6]
209

and destination event F[1,6]) the reference point R slows down and/or accelerates from zero velocity210

producing a kink in the trajectory. In all other cases the tangent vectors of the trajectories, i.e. the211

velocities are continuous at the switchover points.212

With eqns. (30) and (34) all necessary ingredients to visualize the relativistic motion of a Born-rigid213

object are available. In fig. 5 the object is modelled as a square-shaped grid of 11× 11 points, arranged214

around the reference point R. The object uniformly accelerates in the xy-plane changing the boost215

direction four times by the angles ζ1,2 (as measured in frame [2]), ζ2,3 (frame [3]), ζ2,3 (frame [4])216

and finally ζ1,2 (frame [5]). The vertices’ colour code indicates the corresponding boost section. The217
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Figure 4. Trajectories of the reference point R as seen from the six reference frames [1], [2], . . . , [6].

The switchover points are marked by X[k]
i with X = A, . . . , F. Corresponding switchover points are

connected by dashed lines. The Lorentz factor is γ = 2/
√

3 ≈ 1.15.
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Figure 5. A series of grid positions as seen in the laboratory frame. The boost speed is taken to be
β = 0.7, resulting in a Thomas-Wigner rotation angle of about 33.7◦. Coordinate time is displayed
in the top right corner of each panel. The five boost phases are distinguished by colour. Evidently
switchovers between boosts do not occur simultaneously in the laboratory frame. The reference point
(marked in red) moves along its trajectory counterclockwise, whereas the grid Thomas-Wigner rotates
clockwise. For details see text.
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16 panels depict the grid positions in the laboratory frame [1] for specific values of coordinate time218

displayed in the top right.219

To improve the visual impression the magnitude of the Thomas-Wigner rotation in fig. 5 is220

enlarged by increasing the boost speed from β = 0.5, used in figs. 3 and 4, to β = 0.7 corresponding221

to γ ≈ 1.4. Despite appearance the grid G is Born-rigid, in R’s MCIF the grid maintains its original222

square shape. In the laboratory frame, however, G appears compressed, when it starts to accelerate223

or decelerate and sheared, when one part of G has not yet finished boost k, but the remaining part224

of G already has transitioned to the next boost section k + 1. This feature is clearly evident from225

panels (4), (7), (10) or (13) in fig. 5 with the occurrence of two colours indicating two boost sections226

taking effect at the same epoch of coordinate laboratory time. We note, however, that the switchover227

events occur simultaneously for all grid points in R’s MCIF. The non-uniform colouring illustrate the228

non-simultaneity of the switchovers in the laboratory frame and thereby the relationship between229

Thomas-Wigner rotations and the non-existence of absolute simultaneity.230

6. Discussion231

In this final section the Thomas-Wigner rotation angle is calculated from the known boost232

angles ζ1,2(γ) and ζ2,3(γ) (eqn. (35)). In addition, the maximum diameter of Born-rigid objects,233

Thomas-Wigner-rotated by a series of boosts, is discussed.234

6.1. Derivation of Thomas-Wigner angle235

From the preceding sections follows a straightforward calculation of the Thomas-Wigner angle236

as a function of Lorentz factor γ. Assumption {2} implies that the sequence of the five Lorentz237

transformations [6]→ [5]→ . . .→ [1] is constructed such that frame [6] is stationary with respect to238

frame [1] and their spatial origins coincide. I.e. the combined transformation reduces to an exclusively239

spatial rotation and the corresponding Lorentz matrix can be written as240

Λ (γ,−ê1) · Λ (γ,−ê2) · Λ (γ,−ê3) · Λ (γ,−ê4) · Λ (γ,−ê5) =


1 0 0 0
0 R1,1 R1,2 R1,3

0 R2,1 R2,2 R2,3

0 R3,1 R3,2 R3,3

 . (36)

Since the rotation is confined to the xy-plane, the matrix elements R3,i = 0 = Ri,3 with i = 1, 2, 3 vanish.241

The remaining elements242

R1,1(γ) = R2,2(γ) ≡ cos(θTW(γ)) (37)

R1,2(γ) = −R2,1(γ) ≡ sin(θTW(γ))

yield the Thomas-Wigner rotation angle θTW243

θ̃TW(γ) ≡ atan2(R2,1(γ), R1,1(γ)) (38)

θTW(γ) ≡
{

θ̃TW(γ) : θ̃TW(γ) ≥ 0
θ̃TW(γ) + 2 π : θ̃TW(γ) < 0

with atan2(·, ·) denoting the four-quadrant inverse tangent. Eqn. (38) ensures that angles exceeding244

+180◦ are unwrapped and mapped into the interval [0◦,+360◦] (see fig. 6).245
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With eqn. (36) the rotation matrix elements R1,1 and R2,1 are found to be (see appendix B)246

R1,1(γ) = −1 +
(γ + 1)

((T12)2 + 1)4
((T23)2 + 1)4 (39)

×
(
(T12)

4 (T23)
4 + 2 (T12)

4 (T23)
2 + (T12)

4

−4 (T12)
3 (T23)

3 γ + 4 (T12)
3 (T23)

3 − 4 (T12)
3 T23 γ

+4 (T12)
3 T23 − 2 (T12)

2 (T23)
4 γ + 4 (T12)

2 (T23)
4

+4 (T12)
2 (T23)

2 γ2 + 8 (T12)
2 (T23)

2 γ− 8 (T12)
2 (T23)

2

−4 (T12)
2 γ2 + 10 (T12)

2 γ− 4 (T12)
2

+12 T12 (T23)
3 γ− 12 T12 (T23)

3 − 16 T12 T23 γ2

+12 T12 T23 γ + 4 T12 T23 + 2 (T23)
4 γ

−(T23)
4 − 4 (T23)

2 γ2 + 6 (T23)
2 + 4 γ2 − 2 γ− 1

)2

and247

R2,1(γ) =
4 (γ− 1) (γ + 1)

((T12)2 + 1)4
((T23)2 + 1)4 (40)

×
(
(T12)

3 (T23)
2 + (T12)

3 + 3 (T12)
2 (T23)

3

−2 (T12)
2 T23 γ + (T12)

2 T23 + T12 (T23)
4

−2 T12 (T23)
2 γ− 3 T12 (T23)

2 + 2 T12 γ

−(T23)
3 + 2 T23 γ + T23

)
×
(
(T12)

4 (T23)
4 + 2 (T12)

4 (T23)
2 + (T12)

4

−4 (T12)
3 (T23)

3 γ + 4 (T12)
3 (T23)

3 − 4 (T12)
3 T23γ

+4 (T12)
3 T23 − 2 (T12)

2 (T23)
4γ + 4 (T12)

2 (T23)
4

+4 (T12)
2 (T23)

2γ2 + 8 (T12)
2 (T23)

2γ− 8 (T12)
2 (T23)

2

−4 (T12)
2 γ2 + 10 (T12)

2 γ− 4 (T12)
2

+12 T12 (T23)
3 γ− 12 T12 (T23)

3 − 16 T12 T23 γ2

+12 T12 T23 γ + 4 T12 T23 + 2 (T23)
4 γ

−(T23)
4 − 4 (T23)

2 γ2 + 6 (T23)
2 + 4γ2 − 2γ− 1

)
with T12 = T12(γ) and T23 = T23(γ) given by eqns. (30) and (34), respectively.248

The resulting angle θTW(γ) as a function of γ is plotted in fig. 6. The plot suggests that θTW →249

+360◦ as γ → ∞. As already mentioned in subsection 4 (see fig. 2) the boost angles ζ1,2 → +180◦250

and ζ2,3 → +180◦ in the relativistic limit γ → ∞. Notwithstanding that R’s trajectory reduces to251

an one-dimensional motion as γ → ∞, the grid’s Thomas-Wigner rotation angle approaches a full252

revolution of +360◦ in the laboratory frame.253

6.2. Event horizons254

As illustrated by fig. 5 the Born-rigid object G rotates in the xy-plane. Clearly, in order to preclude255

paradoxical faster-than-light translations of sufficiently distant vertices, G’s spatial extent in the x- and256

y-directions has to be bounded by a maximum distance from the reference point R on the order of257
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Figure 6. Thomas-Wigner rotation angle as a function of γ. For clarity the angle is unwrapped and
mapped to the range [0◦,+360◦].
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Figure 7. Spacetime diagram of a one-dimensional grid consisting of seven points. The grid accelerates
towards the positive x-direction. The trajectories are marked in blue/green, the mid point is taken as
the reference R and its worldline is colored in red. Dots indicate the lapse of 0.1 s in proper time. After
0.6 s have passed on R’s clock, the acceleration stops and the points move with constant speed (green
lines). Dashed and dotted lines connect simultaneous spacetime events in R’s comoving frame.

∆t/θTW [3]. As discussed in the following, this boundary is put into effect by event horizons associated258

with G’s acceleration in each of the five boosts.259

Fig. 7 exemplifies the formation of an event horizon for an accelerated object in 1 + 1 (one260

time and one space) dimensions [see e.g. 6,10,19,35]. Here, the Born-rigid object is assumed to261

be one-dimensional and to consist of seven equidistant grid points. Each point accelerates for a262

finite time period towards the positive x-direction (blue worldlines); the reference point R, marked263

in red, accelerates with αR ≡ 1 ls/s2. Contrary to the simulations discussed in fig. 5 above, for264

illustrative purposes the acceleration phase is not followed immediately by another boost. Rather,265

the object continues to move with constant speed after the accelerating force has been switched off266

(green worldlines in fig. 7). The completion of the acceleration phase is synchronous in R’s MCIF267

(dashed-dotted line) and asynchronous in the laboratory frame. Fig. 7 also illustrates that for an268

uniform acceleration the event horizon (black dot) is stationary with respect to the laboratory frame.269

In this simulation each vertex is assumed to be equipped with an ideal clock ticking at a proper270

frequency of 10 Hz, the corresponding ticks are marked by dots; the boost phase lasts for 0.6 s on R’s271

clock. The clocks of the left-most (trailing) and right-most (leading) vertex measure (proper time) boost272

durations of 0.3 s and 0.9 s, respectively. Thus, with respect to the MCIFs (dashed lines) the vertex273

clocks run at different rates (see eqn. (14)). The trailing clocks tick slower, the leading clocks faster274

than the reference clock at R. From eqns. (13) and (14) it follows that the proper time variations are275

compensated by corresponding changes in proper acceleration experienced by the seven vertices. For276
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the numerical values used in fig. 7 the accelerations of the trailing and leading vertex are 2 αR and277

2 αR/3, respectively.278

The spatial components of the inertial reference frames, comoving with R, are plotted in fig. 7 as279

well. During the acceleration-free period following the boost phase the grid moves with constant speed280

and the equal-time slices of the corresponding comoving frames (dotted lines) are oriented parallel to281

other. During the boost phase, however, the lines intersect and eqn. (10) entails that the equal-time282

slices of the comoving frames all meet in one spacetime point, the event horizon xH ≡ −1 ls (black dot283

at x = −1 ls and t = 0 s in fig. 7).284

If the accelerating grid extended to xH , the corresponding vertex would experience infinite proper285

acceleration (eqns. (13) and (14)) and its clock would not tick. Clearly, a physical object accelerating286

towards positive x (fig. 7) cannot extend beyond this boundary at xH . If the grid in fig. 7 is regarded287

as realization of an accelerating coordinate system, this frame is bounded in the spatial dimension288

and ends at the coordinate value xH . However, as soon as the grid’s acceleration stops, the event289

horizon disappears and coordinates x < xH are permissible. We note, that the event horizon in fig. 7290

is a zero-dimensional object, a point in 1 + 1-dimensional spacetime considered here. The horizon is291

frozen in time and exists only for the instant t = 0.292

Generalizing this result we find that the five boosts described in subsection 4 and depicted in293

fig. 3 induce five event horizons in various orientations. It turns out that the accelerated object G is294

bounded by these horizons in all directions within the xy-plane. They limit G’s maximum size [3] and295

thereby assure that all of its vertices obey the special relativistic speed limit [9].296

7. Conclusions297

It is well known that pure Lorentz transformations do not form a group in the mathematical sense,298

since the composition of two transformations in general is not a pure Lorentz transformation again,299

but involves the Thomas-Wigner spatial rotation. The rotation is visualized by uniformly accelerating300

a Born-rigid object, consisting of a finite number of vertices, such that the object’s reference point301

returns to its starting location. It turns out that at least five boosts are necessary, provided, first, the302

(proper time) duration and the magnitude of the proper acceleration is the same within each boost303

and, second, the object’s motion is restricted to the xy-plane. Analytic expressions are derived for the304

angles between adjacent boost directions.305

The visualization illustrates the relationship between Thomas-Wigner rotations and the relativity306

of simultaneity. The transition from one boost section to the next occurs synchronously in the MCIF307

of the object’s reference point. In the laboratory frame, however, the trailing vertices perform the308

transition to the next boost phase, which in general involves a direction change, earlier than the309

leading vertices. Thus, in this frame the accelerated object not only contracts and expands along310

its direction of propagation, but also exhibits a shearing motion during the switchover phases. The311

simulations illustrate clearly that the aggregation of these shearing contributions finally adds up to the312

Thomas-Wigner rotation.313

Accelerated motions induce event horizons, which no part of a physical, Born-rigid object may314

overstep. Thus, the object’s size is limited to a finite volume or area (if its motion is restricted to two315

spatial dimension) and Thomas-Wigner rotations by construction observe the special relativistic speed316

limit.317
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MCIF momentarily comoving inertial frame326

Appendix A Number of boosts327

We determine the smallest number of boosts that satisfies the four assumptions listed in section 2.328

Denoting the number of boosts by N, it is self-evident that N ≥ 3, since for N = 1 the requirement of329

vanishing final velocity cannot be met if vR 6= 0. And for N = 2 the requirement of vanishing final330

velocity implies collinear boost directions. With two collinear boosts, however, the reference point R331

does not move along a closed trajectory. In addition, we note, that collinear boosts imply vanishing332

Thomas-Wigner rotation [see e.g. 36].333

Appendix A.1 Three boosts334

Consider three boosts of the reference point R starting from location A and returning to location D335

via locations B and C. In the laboratory frame (frame [1]) the four-position at the destination D is given336

by337

P[1]
D = P[1]

A + S[1]
A→B (A1)

+Λ (γ,−ê1) · S[2]
B→C

+Λ (γ,−ê1) · Λ (γ,−ê2) · S[3]
C→D

and338

V [1]
D = Λ (γ,−ê1) · Λ (γ,−ê2) · Λ (γ,−ê3) · V [4]

D (A2)

is the corresponding four-velocity. For the definition of the four-vector S[1]
A→B see eqn. (18).339

Assumption {2} implies that340

~P[1]
A = ~P[1]

D = ~P[4]
A = ~P[4]

D =~0 (A3)

and341

V [1]
A = V [1]

D = V [4]
A = V [4]

D =

(
1
~0

)
. (A4)

Inserting eqn. (1) into eqn. (A2) yields342

T12 = T23 = ±
√

2 γ + 1 (A5)

(see appendix B) and, in turn, using eqn. (A3) we obtain343

~P[1]
D =

1
(γ + 1)2

 −(γ− 1)2 (2 γ + 1)2

−(γ− 1) (2γ + 1)
3
2 (3γ + 1)

0

 !
=~0 . (A6)

Its only solution for real-valued β is the trivial solution γ = 1, i.e. β = 0. Thus, there are no non-trivial344

solutions for N = 3 boosts, which are consistent with the assumptions {1}-{4}.345

Appendix A.2 Four boosts346

For a sequence of four boosts time reversal symmetry implies that R’s velocity in the laboratory347

frame vanishes at event C after the second boost, i.e. ~V
[1]
C =~0. However, stationarity in the laboratory348
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frame can only be achieved if the first two boosts A → B and B → C are collinear. In order to fulfil349

assumption {2} the third and fourth boosts have to be collinear with the first (and second) boost350

as well. As already noted, a sequence of collinear boosts, however, does not produce a non-zero351

Thomas-Wigner rotation.352

Appendix B Computer algebra calculations353

Some equations in this paper were derived using the computer algebra system “SymPy” [23].354

The corresponding “SymPy” source code files vtwr3bst.py (three boost case, see section A.1) and355

vtwr5bst.py (five boost case, see section 4) are available for download at www.gbeyerle.de/twr. These356

scripts process eqns. (A1), (A2), (16) and (17) and derive the results given in eqns. (A5), (A6), (23), (26),357

(27), (39) and (40). The following paragraphs provide a few explanatory comments.358

First, we address the case of three boosts (superscript (3B)) and the derivation of eqn. (A5). The359

corresponding boost vectors in the xy-plane ê(3B)
i with i = 1, 2, 3 are taken to be360

ê(3B)
1 ≡

(
Ca

Sa

)
=

1
1 + (T12)2

(
1− (T12)

2

2 T12

)
(A7)

ê(3B)
2 ≡

(
1
0

)

ê(3B)
3 ≡

(
Ca

−Sa

)
=

1
1 + (T12)2

(
1− (T12)

2

−2 T12

)

with361

Sa ≡ sin(ζ1,2) Ca ≡ cos(ζ1,2) (A8)

in terms of the direction angle ζ1,2 and the half-angle approximation (eqn. (5)). Here, the z-coordinate362

is omitted since the trajectory is restricted to the xy-plane and ζ2,3 = ζ1,2 from time reversal symmetry363

is being used. Inserting the corresponding Lorentz transformation matrices (eqn. (1)) into eqn. (A2)364

and selecting the time component yields365

(γ− 1)
((T12)

2 − 2 γ− 1)2

((T12)2 + 1)2 = 0 (A9)

which reduces to eqn. (A5) if the trivial solution γ = 1 is ignored.366

For five boosts (superscript (5B)) and the derivation of the expression (26) we define in analogy367

to eqn. (A7)368

ê(5B)
1 ≡

(
Cx

Sx

)
=

(
C12 C23 − S12 S23

−S12 C23 − C12 S23

)
(A10)

ê(5B)
2 ≡

(
Cy

Sy

)
=

(
C23

−S23

)
=

1
1 + (T23)2

(
1− (T23)

2

−2 T23

)

ê(5B)
3 ≡

(
1
0

)

ê(5B)
4 ≡

(
Cy

−Sy

)
=

(
C23

S23

)
=

1
1 + (T23)2

(
1− (T23)

2

2 T23

)

ê(5B)
5 ≡

(
Cx

−Sx

)
=

(
C12 C23 − S12 S23

S12 C23 + C12 S23

)
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with369

S12 ≡ sin(ζ1,2) C12 ≡ cos(ζ1,2) (A11)

S23 ≡ sin(ζ2,3) C23 ≡ cos(ζ2,3) .

The corresponding Lorentz transformation matrices are too unwieldy to reproduce them here. “SymPy”370

script vtwr5bst.py calculates these matrices and their products in terms of T12 and T23 and inserts the371

result into eqn. (17). The time component of eqn. (17) yields the equation372

γ− 1
((T12)2 + 1)2 ((T23)2 + 1)2 (A12)

×
(
(T12)

2 (T23)
2 + (T12)

2 − 4 T12 T23 γ

−4 T12 T23 − 2 (T23)
2 γ− (T23)

2 + 4 γ2 + 2 γ− 1
)2

= 0 .

We exclude the trivial solution γ = 1 and restrict ourselves to real values of T12 and T23; eqn. (A12)373

then leads to eqn. (22), a second order polynomial with respect to T23. The two solutions are given in374

eqn. (23).375

Next insert T23 = T23(T12, γ) in eqn. (16). Since its time component involves the travel time of R376

along its closed trajectory as an additional unknown and the z-coordinate vanishes by construction,377

we focus on the x- and y-components of eqn. (16). The script vtwr5bst.py shows that the result for the378

y-component of the four-vector equation ~P[6]
F = 0 can be expressed as379

−8 ((T12)
2 + 1) (γ + 1)2 X1(T12, γ) + X2(T12, γ)

√
X3(T12, γ)

((T12)2 − 2 γ− 1)6 = 0 . (A13)

Here, X1(T12, γ), X2(T12, γ) and X3(T12, γ) are polynomials in T12.380

For real T12 and γ ≥ 1 the numerator has to equate to zero. Moving the term involving the square381

root to the right hand side and squaring both sides yields382

(X1(T12, γ))2 − (X2(T12, γ))2 X3(T12, γ) = 0 . (A14)

Its evaluation (see script vtwr5bst.py) leads to the product of two polynomials (expressions (26) and383

(27)), each of which is of fourth order with respect to (T12)
2.384

Repeating the corresponding calculation for the x-component of the equation ~P[6]
F = 0 leads385

to the product of two polynomials, one of which is identical to expression (26). Thus, the roots of386

polynomial (26) constitute a solution of eqn. (19). The Thomas-Wigner angle θTW (eqn. (38)) follows387

from the Lorentz matrix relating frame [1] to frame [6] (eqn. (36)). Script vtwr5bst.py evaluates the388

matrix elements R1,1 and R2,1 in terms of T12 and T23. Again, the resulting expressions are too unwieldy389

to reproduce them here.390
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