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1 Abstract: It is well known that a sequence of two non-collinear Lorentz boosts (pure Lorentz
:  transformations) does not correspond to a Lorentz boost, but involves a spatial rotation, the Wigner
s or Thomas-Wigner rotation. We visualize the interrelation between this rotation and the relativity of
«  distant simultaneity by moving a Born-rigid object on a closed trajectory in several steps of uniform
s proper acceleration. Born-rigidity implies that the stern of the boosted object accelerates faster than
s  its bow. It is shown that at least five boost steps are required to return the object’s center to its starting
»  position, if in each step the center is assumed to accelerate uniformly and for the same proper time
e duration. With these assumptions, the Thomas-Wigner rotation angle depends on a single parameter
o only. Furthermore, it is illustrated that accelerated motion implies the formation of an event horizon.
1o The event horizons associated with the five boosts constitute a natural boundary to the rotated
u  Born-rigid object and ensure its finite size.

1= Keywords: special relativity; Thomas-Wigner rotation; visualization

s 1. Introduction

-

a In 1926 the British physicist L. H. Thomas (1903-1992) resolved a discrepancy between observed
15 line splittings of atomic spectra in an external magnetic field (Zeeman effect) and theoretical calculations
1s at that time [see e.g. 41]. Thomas’ analysis [39,40] explains the observed deviations in terms of
1z a special relativistic [9] effect. He recognized that a sequence of two non-collinear pure Lorentz
1= transformations (boosts) cannot be expressed as one single boost. Rather, two non-collinear boosts
s correspond to a pure Lorentz transformation combined with a spatial rotation. This spatial rotation
20 is known as Wigner rotation or Thomas-Wigner rotation, the corresponding rotation angle is the
a2 Thomas-Wigner angle [see e.g. 2,4,5,14,15,17,18,24,27,28,30,32,34,36,42—44, and references therein].

22 The prevalent approach to discuss Thomas-Wigner rotations employs passive Lorentz
2 transformations. An object G is simultaneously observed from N inertial reference frames, denoted by
2 [1],[2],..., [N]. Frame [i] is related to the next frame [i + 1] by a pure Lorentz transformation, where
s 1 <i <N —1. Now, for given non-collinear boosts from frame [1] to frame [2] and then from [2] to [3],
2 there exists a unique third boost from [3] to [4], such that G is at rest with respect to both, frame [1] and
2z frame [4]. It turns out, however, that the combined transformation [1] — [2] — [3] — [4], is not the
2e identity transformation, but involves a spatial rotation.

20 In the present paper, following Jonsson [22], an alternative route to visualize Thomas-Wigner
30 rotations using active or “physical” boosts is attempted. G is accelerated starting from zero velocity in
s frame [1], which is denoted by “laboratory frame” in the following. During its journey G performs
;2 several acceleration and/or deceleration manoeuvres and finally returns to its starting position. The
s visual impression of G moving through the series of acceleration phases and finally coming to rest in a

"

s« rotated orientation (see fig. 5 below) hopefully outweigh the mathematical technicalities of the present
s approach.

36 The paper is sectioned as follows. First, the general approach is described and basic assumptions
sz are introduced. The second section recalls uniform accelerations of Born-rigid objects. Sequences of
;s uniform, non-collinear accelerations for a given vertex point within a planar grid of vertices and the
3 trajectories of its neighbouring vertices are addressed in the following section. The last two sections
20 present the visualization results and discuss their implications. Appendix A examines the required
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a1 number of boost steps, details of the computer algebraic calculations performed in this study are given
a2 in appendix B.

4 For simplicity length units of light-seconds, abbreviated “ls” (roughly 300,000 km) are used with
s the speed of light taken to be unity.

s 2. Method

46 We consider the trajectory of a square-shaped grid G consisting of M vertices. G is assumed to be
4z Born-rigid, i.e. the distance between any two grid points, as observed in the momentarily comoving
«s inertial frame (MCIF) [see e.g. 25, chapter 7], remains constant [3]. The grid’s central point R, which
4 serves as the reference point, is uniformly accelerated for a given proper time period Atg. To obtain
so a closed trajectory several of these sections with constant proper acceleration, but different boost
s1  directions are joined together.

52 In R’s MCIF the directions and magnitudes of the vertices’ proper accelerations &; (i = 1,..., M)
ss change discontinuously at the switchover from one boost section to the next. In the MCIF the vectors &;
s« change simultaneously; in other frames, such as the laboratory frame, the change is asynchronous and
ss G, despite its Born-rigidity, appears distorted and twisted (see fig. 5 below). On the other hand, G’s
se Born-rigidity implies that it is sufficient to calculate R’s trajectory, the motion of the reference point R
sz uniquely determines the trajectories of the remaining M — 1 vertices [20,29]. We note that the spacetime
ss separations between individual switchover events, linking boost steps k and k + 1, are spacelike. Le.
so these switchover events are causally disconnected and each vertex has to be “programmed” in advance
so to perform the required acceleration changes [26].

o1 In the following, ag and Atg denote the magnitude of the proper acceleration of G’s reference
e2 point R and the boost duration in terms of R’s proper time, respectively. To simplify the calculations
es we impose the following four conditions on all N boosts.

ca 1. The grid G is Born-rigid.

o5 2. At the beginning and after completion of the Nth boost G is at rest in frame [1] and R returns to
o6 its starting position.

o7 3. R’s proper acceleration ag and the boost’s proper duration Aty are the same in all N sections.
o8 4. All boost directions and therefore all trajectories lie within the xy-plane.

oo Let the unit vector é; denote the direction of the first boost in frame [1]. This first boost lasts for a
70 proper time Atg, as measured by R’s clock, when R attains the final speed vg = B with respect to
72 frame [1]. Frame [2] is then defined as R’s MCIF at this instant of time. The corresponding Lorentz
72 matrix transforming a four-vector from frame [2] to frame [1] is

) v, vBél
A(')’,E]) = T . (1)
YBé1, I3+ (y—1)é-¢

73 Here, 1343 is the 3 x3 unit matrix, the superscript T denotes transposition, the Lorentz factor is

1
VIR

7o and, in turn, B = /72 — 1/7. Similarly, frame [3] is R’s MCIF at the end of the second boost, etc. In
s general, the Lorentz transformation from frame [i] to frame [i + 1] is given by eqn. (1), with é; replaced
7 by é;, the direction of the ith boost in frame [i].

77 Assumption {3} implies that the angles between consecutive boosts (“boost angles”)

@

— AT A
Ciit1 = arccos (ei '€i+1) 3)
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e are the only unknowns, since proper acceleration ag and boost duration Aty are given parameters. In
7 the following the “half-angle” parametrization

T = tan <g> 4)

s is used; it allows us to write expressions involving

@) = 1o ©
1—T2
cost) = 13

&1 as polynomialsin T.

82 We will find that, first, no solutions exist if the number of boosts N is four or less (see appendix A),
ss  second, for N = 5 the solution is unique and, third, the boost angles () depend solely on the selected
sa value of y =1/,/1— B2. Changing ag and/or Aty only affects the spatial and temporal scale of R’s
es trajectory (see below).

86 The derivation of ; ;11 (y) is simplified by noting that the constraints {2}, {3} and {4} imply time
ez reversal invariance. Le. R’s trajectory from destination to start, followed backward in time, is a valid
ss solution as well and therefore {; ;.1 = {Ny_iNn—it1 fori =1,...,N — 1. Thus, for N = 5 the number of
s unknowns reduces from four to two, with {1, = {45 and {23 = {34.

90 3. Uniform acceleration of a Born-rigid object

o1 In the laboratory frame we consider the uniform acceleration of the reference point R, initially
2 atrest, and assume that the acceleration phase lasts for the proper time period Atg. During Aty the
s reference point moves from location 7 (0) to location

Fo(AT) = ?R(O”é (cosh(ag ATg) — 1) 25 ©)

o« With unit vector ép denoting the boost direction [see e.g. 19,21,27,33,36,37]. The coordinate time
os duration Aty corresponding to the proper time duration Aty is

Atg = i sinh(th ATR) (7)
&R
96 and R attains the final speed
vg = tanh(ag ATR) = B . (8)

oz Let G be an arbitrary vertex point of G at location 7 (0) and

b= (75(0) —7r(0)) - ¢p )

s the projection of the distance vector from R to G onto the boost direction ép. The vertices G and R start
o to accelerate simultaneously since G is Born-rigid (assumption {1}) and analogous to eqns. (6), (7) and
100 (8) we obtain for G’s trajectory

7 (ATG) = 7 (0) + (leG (COSh(OCG ATG) — 1) + b) ép (10)

1
AfG = — Sil’lh(ﬂ(c ATG)
&G

vg = tanh(agAtg)
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101 At the end of the first boost phase all grid points move at the same speed with respect to the laboratory
102 frame; however, in the laboratory frame the boost phase does not end simultaneously for all vertices.
103 Simultaneity is only observed in R’s MCIF. With vg = vr and eqn. (10) it follows

DCGATG = apATR . (11)

10s  G’s Born-rigidity implies that the spatial distance between G and R at the end of the boost phase in R’s
105 MCIF is the same as their distance at the beginning of the boost phase. A brief calculation leads to

1

1
—%(7—1)+b7+g(’y—1):b (12)

16 Which simplifies to

1
- 1
e 1+bag X 13)
17 and with eqn. (11)
At = (1+Dbag) At (14)

1e  provided ¥ # 1. Eqn. (13) expresses the well-known fact that the proper accelerations aboard a
100 Born-rigid grid may differ from one vertex to the next. More specifically, at a location trailing the
1o reference point R the acceleration exceeds ag, vertex points leading R accelerate less than ag. (In
w1 relativistic space travel the passengers in the bow of the spaceship suffer lower acceleration forces than
12 those seated in the stern. This amenity of a more comfortable acceleration, however, is counterbalanced
us by faster ageing of the space travellers (eqn. (14)). These considerations, of course, assume Born-rigidly
us constructed space vehicles.)

115 The position-dependent acceleration is well-known from the Dewan-Beran-Bell spaceship paradox
us [7,8] and [1, chapter 9]. Two spaceships, connected by a Born-rigid wire, accelerate along the direction
ur separating the two. According to eqn. (13) the trailing ship has to accelerate faster than the leading
us one. Conversely, if both accelerated at the same rate in the laboratory frame, Born-rigidity could
s Not be maintained and the wire connecting the two ships would eventually break. This well-known,
120 but admittedly counterintuitive fact is not a paradox in the true sense of the word and discussed
11 extensively in the literature [see e.g. 11-13,16,31,38].

122 Eqns. (13) and (14) also imply, that g — o0 and A1z — 0, as the distance between a (trailing)
123 vertex G and the reference point R approaches the critical value

*=—-1/ag . (15)

124 Clearly, a Born-rigid object cannot extend beyond this boundary, which is referred to as “event horizon”
125 in the following. Section 6.2 will discuss its consequences.

126 Finally, we note that eqn. (14) implies that a set of initially synchronized clocks mounted on
12z a Born-rigid grid will in general fall out of synchronization once the grid is accelerated [37]. Thus,
126 the switchover events, which occur simultaneous in R’s MCIF, are not simultaneous with respect to
120 the time displayed by the vertex clocks. As already mentioned, the acceleration changes have to be
130 “programmed” into each vertex in advance, since the switchover events are causally not connected and
131 lie outside of each others’ lightcones [10].

132 4. Sequence of five uniform accelerations

133 The previous section discussed R’s trajectory during the first acceleration phase (eqn. (10)). Now
13s  'we connect several of these segments to form a closed trajectory for R. Let Al denote R’s start event
1 as observed in frame [k] and B, ClM, etc. correspondingly denote the “switchover” events between 15
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s and 25t boost, 2" and 3™ boost, etc., respectively. In the following, bracketed superscripts indicate the
137 reference frame. Frame [1], i.e. k = 1, is the laboratory frame, frame [2] is obtained from frame [1] by
1:s  the Lorentz transformation A(vy, —é;) (eqn. (1)). Generally, frame [k + 1] is calculated from frame [k]
130 using the transformation matrix A(7y, —é).

140 It can be shown (see appendix A) that at least five boosts are needed to satisfy the four
11 assumptions {1}-{4} listed in section 2. As illustrated in fig. 3 for a sequence of N = 5 boosts the
12 reference point starts to accelerate at event A and returns at event F via events B, C, D and E. The
13 corresponding four-position P and four-velocity V are

pil = plysll (16)
+A (v, —é1) - 51[32]—>c

A (7, —81) - Ay, —6) - SEL

FA(y,—81) - Ay, —&) - Ay, —65) - Spg

FA (7, —01)- A(r,—2) - Ay, —&) - Ay, —&)- SELp

1

1

14a  and

V[Fl] = A(7,—é1) A7, —é)  A(y,—¢é3) (17)
A (’Y/ _é4) - A (’YI _é5) ' V1[36] ’

s respectively. Here, the four-vector

1] _ i Sil’lh(OCR ATR)
Sa-m ((cosh(sz ATR) —1) & (18)

_ 1 o4
ar \(y—1)¢
S B

s describes R’s worldline from A to B (eqn. (10)); S][SZLC, D S][SILE and Sp . are defined
1z correspondingly. Assumption {2} implies that

A F A F (19)

us and
vil = vl = vl vl = (é) : (20)

140 To simplify the expressions in eqns. (16) and (17) time reversal symmetry is invoked. It implies that
150 the set of boost vectors —&5, —éy, ..., —&; constitutes a valid solution, provided é;, &, ..., &5 is one and
11 satisfies assumptions {1}—{4}. Thereby the number of unknowns is reduced from four to two, the angle
12 between the boost vectors é; and &, and the angle between é, and é;

{1, = arccos (élT . éz) = arccos (éz . é5) (21)
— ST 5\ _ AT 4
{23 = arccos (é; -€3) = arccos (€3 - é4

s Fig. 3 illustrates the sequence of the five boosts in the laboratory frame [1]. Since the start and final
1sa  velocities are zero, R’s motion between A and B and, likewise, between E and F is rectilinear. In
1ss  contrast, the trajectory connecting B and E (via C and D) appears curved in frame [1]; as discussed
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and illustrated below, the curved paths are in fact straight lines in the corresponding boost frame (see
fig. 4).
From eqns. (17) and (20) follows

((T12)* =29 =1) (Tw)* =4 (14+7) T2 Ts + (Ti2)* + 492 +27 -1 =0 22)

with the two unknowns Ty = tan({12/2) and Tr3 = tan({p,3/2) (for details see appendix B). Eqn. (22)
has two solutions,
+) 1

(£ _
Ty’ = Tl (23)

><(—27112 (r+1)

j:\/—(le)‘l +8(T12)?y +6(T12)* +879° +892 — 1)
provided
(Ti)? =2y —1#0 . (24)
Assumption {2} implies that the spatial component of the event PE ] vanishes, i.e.
=0 . (25)

Since all motions are restricted to the xy-plane, it suffices to consider the x- and y-components of
eqn. (25). The y-component leads to a product of the following two expressions

(Tip)® (26)
+(T12)4 (v +2)

+(T)* (-2) (27+1) (292 +87+9)

+(T12)* (

- (2')/—i-1)3 (4724—27—1)

—4) (874+28'y3+2672+5'y—2>

or

(Ti2)® (v +3)° 27)
+(Ti2)® (—4) (6 P 1592 — 129 + 5)

+(Tia)* (-2) (249" — 449> =551 +267 + 1)

+(T2)? (—4) (87" = 167" — 141> +597 +1)
2

+ (472 4y — 1)

(see appendix B). The solutions of equating expression (27) to zero are disregarded since for ¢ = 1 it
yields

(T12)® +4(T12)® + 6 (T12)* +4 (T1p)* +1=0 (28)

which has no real-valued solution for Tj,.

do0i:10.20944/preprints201711.0016.v1
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It turns out (see appendix B) that the x-component of eqn. (25) results in an expression containing
two factors as well, one of which is identical to the expression (26). Thus, the roots of the polynomial (26)
solve eqn. (25).

The degree of the polynomial (26) in terms of (Ty3)? is four; its roots are classified according
to the value of the discriminant A (see e.g. en.wikipedia.org/wiki/Quartic_function), which for
expression (26) evaluates to

A = —524288y (y—1)3 (7 +1)7 (49* +289> +1939> + 234 +81) . (29)

For non-trivial boost 7y > 1, the discriminant is negative and the roots of the quartic polynomial consist
of two pairs of real and complex conjugate numbers (see en.wikipedia.org/wiki/Quartic_function).
The real-valued solutions are

1
(Tp)? = —(’y+2)+8+2\/—452—2p—g (30)
and
(0)\? 1 2 q
(le) = —(r+2)+8—5 482 -2p- 1 (31)
with
p o= —2(v+1) (472+177+21) (32)
g = —16 (y+1) (72—27—9)
1 Ao
S = —=\/2p+Q2+ =
23 pre Q
Ay = 16 (y+1)? (474+2873+15772+1267+9)
Q = 4{/Q+12v6\Q
Q = v(y—13(+1)7 (49* +289° + 19392 + 234 +81)

The solution from eqn. (31) turns out to be negative and thus does not produce a real-valued solution
for Ty5. The remaining two roots of the polynomial (26)

2 1
(1) = —(7+2)—S+2\/—482—2P+g (33)

2 1
(9)" = —(7+2)—S—2\/—482—2p+g

correspond to replacing & by —S in eqns. (30) and (31); they are complex-valued and therefore
disregarded as well. The second unknown, T»3, follows from eqn. (23) by choosing the positive square

root ++/(T12)? and using
Ty = Ty (34)

(see eqn. (22)). For a given Lorentz factor y the angles between the boost directions é; and é; 1 are

C12(7) = arccos (élT . éz) = 2 arctan <+ (le(')/))2> (35)

S|

{23(y) = arccos (Az -é3) = 2 arctan <—|— (ng(7))2>

do0i:10.20944/preprints201711.0016.v1
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Figure 1. The angle between the boost direction vectors é; and é; in frame [1] (blue line), and the angle
between é; and &3 in frame [2] (red) as a function of 7. The dotted line marks +180°, the limit of {7 »
and (3 for y — oo.

s and, with {45 = {12 and {3 4 = {53, the orientation of the five boost directions &; fori = 1,...,5 within
s the xy-plane are obtained.
Fig. 1 shows numerical values of the boost angles {1,(7v) and {23(7) as a function of . The
angles increase from

C12(y =1) =2 arctan ( —5+4 \/10) ~ 140.2°

and

(23(y =1) =2 arctan (

V-5+4V10-vV3V-542V10)
~2++/10 '

17 aty =1tofio(y = o0) = +180° = {p3(y — 00) asy — oo.

188 Fig. 2 depicts the orientation of the five boost directions for several values of y. Here the first boost
180 vector ¢ is taken to point along the x-axis. We note that the panels in fig. 2 do not represent a specific
10 reference frame; rather, each vector é; is plotted with respect to frame [k] (k = 1,...,5). The four
11 panels show the changes in boost directions for increasing values of <. Interestingly, the asymptotic
102 limits {1 5(y — c0) = 4+180° and {p3(y — c0) = +180° imply that in the relativistic limit y — oo the
103 trajectory of R essentially reduces to one-dimensional motions along the x-axis. At the same time the
1a  Thomas-Wigner rotation angle increases to +-360° as y — oo (see the discussion in section 6 below).
195 Since the accelerated object is Born-rigid, the trajectories of all grid vertices G are uniquely
106 determined once the trajectory of the reference point R is known [10,20,29]. Following the discussion in
17 section 3 the position and coordinate time of an arbitrary vertex G, in the frame comoving with R at the
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v=1.0 v=3.0
R (1) )
0.5 €3 é 0.5
0 0
-0.5 és -0.5
-1 -1
-05 0 05 1 -05 0 05 1
v=25.0 v = 1000000.0
) (4)
0.5 0.5
0 0 o )
-0.5 -0.5
-1 -1
-05 0 05 1 -05 0 05 1

Figure 2. Boost directions for four different values of v = 1/+/1 — 2. The boost direction in frame [1],
&1 is assumed to point along the x-axis. In the relativistic limit y — oo (panel (4)) the angles between
& and é; 11 approach +180° and the motion of the reference point R tends to be more and more
restricted along the x-axis. Le. in the relativistic limit the object’s trajectory transitions from a two- to a
one-dimensional motion.
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0.25 -

0.2

0.15 A1

y [ls]

0.1 A

0.05 A

A[1]=F[1], Al61_El6] gl

-0.05 . . .
0 0.1 0.2 0.3 0.4

x [ls]

Figure 3. Trajectories of reference point R for v = 2/+/3 = 1.15 as seen from (laboratory) frame [1] and
frame [6]. The two frames are stationary with respect to each other, but rotated by a Thomas-Wigner
angle of Oy = 14.4°.

108 beginning of the corresponding acceleration phase, follows from eqgn. (10). The resulting trajectories
100 are discussed in the next section.

200 5. Visualization

201 The trajectory of the reference point R in the laboratory frame for a boost speed p = 1/2,
202 corresponding to y = 2/+/3 ~ 1.15, is displayed in fig. 3 (black solid line). The same trajectory as it
203 appears to an observer in frame [6] is marked in grey. The two frames are stationary with respect to
20 other, but rotated by a Thomas-Wigner angle of about 14.4°. In addition, dots mark the locations of the
20s four switchover events B, C, D and E in the two frames. As required by assumption {2} the starting
206 and final positions, corresponding to the events A and F, coincide.

207 Fig. 4 shows the same trajectory as fig. 3. In addition, R’s trajectories as recorded by observers
20s in the frames [2],.. ., [5] are plotted as well (solid coloured lines). Corresponding switchover events
200 are connected by dashed lines. At B[z], C[3], D4 and ED! (and of course at the start event AlL8]
210 and destination event FIV0) the reference point R slows down and/or accelerates from zero velocity
an producing a kink in the trajectory. In all other cases the tangent vectors of the trajectories, i.e. the
22 velocities are continuous at the switchover points.

213 With eqgns. (30) and (34) all necessary ingredients to visualize the relativistic motion of a Born-rigid
214 Object are available. In fig. 5 the object is modelled as a square-shaped grid of 11 x 11 points, arranged
x5 around the reference point R. The object uniformly accelerates in the xy-plane changing the boost
216 direction four times by the angles 1, (as measured in frame [2]), {»3 (frame [3]), {23 (frame [4])
iz and finally {7 5 (frame [5]). The vertices’ colour code indicates the corresponding boost section. The
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-0.5 - -
1 -

-2 -1.5 -1 -0.5 0 0.5 1 1.5
x [Is]
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Figure 4. Trajectories of the reference point R as seen from the six reference frames [1],[2],...,[6].

The switchover points are marked by Xi[k] with X = A, ..., F. Corresponding switchover points are
connected by dashed lines. The Lorentz factor is y = 2/ V3 = 1.15.
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Figure 5. A series of grid positions as seen in the laboratory frame. The boost speed is taken to be
B = 0.7, resulting in a Thomas-Wigner rotation angle of about 33.7°. Coordinate time is displayed
in the top right corner of each panel. The five boost phases are distinguished by colour. Evidently
switchovers between boosts do not occur simultaneously in the laboratory frame. The reference point
(marked in red) moves along its trajectory counterclockwise, whereas the grid Thomas-Wigner rotates
clockwise. For details see text.
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21s 16 panels depict the grid positions in the laboratory frame [1] for specific values of coordinate time
210 displayed in the top right.

220 To improve the visual impression the magnitude of the Thomas-Wigner rotation in fig. 5 is
=z enlarged by increasing the boost speed from B = 0.5, used in figs. 3 and 4, to § = 0.7 corresponding
222 to v &~ 1.4. Despite appearance the grid G is Born-rigid, in R’s MCIF the grid maintains its original
223 square shape. In the laboratory frame, however, G appears compressed, when it starts to accelerate
224 or decelerate and sheared, when one part of G has not yet finished boost k, but the remaining part
225 Of G already has transitioned to the next boost section k + 1. This feature is clearly evident from
226 panels (4), (7), (10) or (13) in fig. 5 with the occurrence of two colours indicating two boost sections
227 taking effect at the same epoch of coordinate laboratory time. We note, however, that the switchover
222 events occur simultaneously for all grid points in R’s MCIE. The non-uniform colouring illustrate the
220 non-simultaneity of the switchovers in the laboratory frame and thereby the relationship between
230 Thomas-Wigner rotations and the non-existence of absolute simultaneity.

231 6. Discussion

232 In this final section the Thomas-Wigner rotation angle is calculated from the known boost
2z angles {1,(7y) and {p3(7) (eqn. (35)). In addition, the maximum diameter of Born-rigid objects,
23 Thomas-Wigner-rotated by a series of boosts, is discussed.

235 6.1. Derivation of Thomas-Wigner angle

236 From the preceding sections follows a straightforward calculation of the Thomas-Wigner angle
23z as a function of Lorentz factor . Assumption {2} implies that the sequence of the five Lorentz
s transformations [6] — [5] — ... — [1] is constructed such that frame [6] is stationary with respect to
23e  frame [1] and their spatial origins coincide. Le. the combined transformation reduces to an exclusively
2e0 spatial rotation and the corresponding Lorentz matrix can be written as

1 0 0 0

~ ~ n n R 0 R R R
A(y,—é1)- Ay, —&) - Ay, —é3) - A(y,—és)- A(y,—é5) = 0 R; RZ R;z . (36)

0 R3n Rs2 Rss

21 Since the rotation is confined to the xy-plane, the matrix elements R3; =0 = R;3 withi =1,2,3 vanish.
222 The remaining elements

Ry1(7) = Roa(y) = cos(Orw(7)) (37)
Rip(y) = —Rpi(y) =sin(0rw (7))

2a3  yield the Thomas-Wigner rotation angle 67

Orw(y) = atan2(Ry1(7), Ry,1(7)) (38)
Orw(y) = Orw(v) =0
o) {ém%wn () <0

2aa  with atan2(-, -) denoting the four-quadrant inverse tangent. Eqn. (38) ensures that angles exceeding
s +180° are unwrapped and mapped into the interval [0°, 4-360°] (see fig. 6).
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246 With eqn. (36) the rotation matrix elements R; 1 and Rj ; are found to be (see appendix B)
+1
Ris(y) = —14——0tD (39)
(T12)? +1)" ((Ta3)? +1)
X ((Tu (Ta3)* +2(T12)* (To3)? + (Ti2)*
—4(T12)% (Tas)® v + 4 (T12)® (Tas)® — 4 (T12)® Tos v
+4 (Tip)% Tos — (le) (Tos)* v + 4 (Ti2)? (Tas)*
+4 (T12)* ( T23) 2 +8(T12)* (To3)? v — 8 (T12)? (Tn3)?
—4(T12) 2410 (Tho)?y — 4(Tpn)?
+12 Ty (Ta3)® v — 12 Typ (Taz)® — 16 Tip Toz >
+12T1p T3y +4Tin Toz + 2 (Tos)*
2
—(To3)* —4(Tu3)? 1> + 6 (Tus)* + 49> — 29 — 1)
247 and
4(y—1 +1
Ran () = (r ) (y ) (40)

((T12)? +1)* ((T23)2 + 1)*

x (<T12>3 (Toa)? + (Tr2)? + 3 (Tio)? (Tis)®
—2(T12)? Tog 7y + (T12)? Tz + Tio (Taz)*
2T (To3)?y —3Tip (T3)? +2Tpoy

—(To3)®* +2Tos v + Tza)

X ((T12)4 (Taz)* +2(Tr2)* (To3)? + (Ti2)*

—4(T12) (To3)® v + 4 (T12)? (Ta3)® — 4 (T12) Tosy
+4(Ti2)? Tps — (le)2 (To3)*y +4 (T12)? (Tas)*
+4(Ti2)* (T23)*7* + 8 (Tr2)* (T23)*y — 8 (T12)* (Ti3)?
—4(T12)* v* +10(T12)* v — 4 (Tr2)?

+12 Ty (To3)? v — 12 Tip (Tas)® — 16 Typ Toz 7
+12T1p Toz v + 4 Tip Tos + 2 (Tas)*

—(Tos)* — 4 (Ts)* 1 + 6 (To3)* + 477> — 27 — 1)

2s - with Tpp = Tip(7y) and Toz = To3(7y) given by eqns. (30) and (34), respectively.

240 The resulting angle 67y (7y) as a function of 7 is plotted in fig. 6. The plot suggests that 6y —
20 +360° as v — co. As already mentioned in subsection 4 (see fig. 2) the boost angles {1, — +180°
21 and {p3 — +180° in the relativistic limit ¥ — co. Notwithstanding that R’s trajectory reduces to
22 an one-dimensional motion as y — oo, the grid’s Thomas-Wigner rotation angle approaches a full
23 revolution of +360° in the laboratory frame.

254 0.2. Event horizons

285 As illustrated by fig. 5 the Born-rigid object G rotates in the xy-plane. Clearly, in order to preclude
e paradoxical faster-than-light translations of sufficiently distant vertices, G’s spatial extent in the x- and
=7 y-directions has to be bounded by a maximum distance from the reference point R on the order of

do0i:10.20944/preprints201711.0016.v1
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Figure 6. Thomas-Wigner rotation angle as a function of . For clarity the angle is unwrapped and
mapped to the range [0°, +360°].
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1.5

t[s]

054

Figure 7. Spacetime diagram of a one-dimensional grid consisting of seven points. The grid accelerates
towards the positive x-direction. The trajectories are marked in blue/green, the mid point is taken as
the reference R and its worldline is colored in red. Dots indicate the lapse of 0.1 s in proper time. After
0.6 s have passed on R’s clock, the acceleration stops and the points move with constant speed (green
lines). Dashed and dotted lines connect simultaneous spacetime events in R’s comoving frame.

a8 At/Or [3]. As discussed in the following, this boundary is put into effect by event horizons associated
260 with G’s acceleration in each of the five boosts.

260 Fig. 7 exemplifies the formation of an event horizon for an accelerated object in 1 + 1 (one
201 time and one space) dimensions [see e.g. 6,10,19,35]. Here, the Born-rigid object is assumed to
262 be one-dimensional and to consist of seven equidistant grid points. Each point accelerates for a
263 finite time period towards the positive x-direction (blue worldlines); the reference point R, marked
26s in red, accelerates with ax = 11s/s?. Contrary to the simulations discussed in fig. 5 above, for
2es illustrative purposes the acceleration phase is not followed immediately by another boost. Rather,
265 the object continues to move with constant speed after the accelerating force has been switched off
267 (green worldlines in fig. 7). The completion of the acceleration phase is synchronous in R’s MCIF
2s  (dashed-dotted line) and asynchronous in the laboratory frame. Fig. 7 also illustrates that for an
200 Uniform acceleration the event horizon (black dot) is stationary with respect to the laboratory frame.
270 In this simulation each vertex is assumed to be equipped with an ideal clock ticking at a proper
an frequency of 10 Hz, the corresponding ticks are marked by dots; the boost phase lasts for 0.6 s on R’s
22 clock. The clocks of the left-most (trailing) and right-most (leading) vertex measure (proper time) boost
2z durations of 0.3 s and 0.9 s, respectively. Thus, with respect to the MCIFs (dashed lines) the vertex
27a clocks run at different rates (see eqn. (14)). The trailing clocks tick slower, the leading clocks faster
zrs  than the reference clock at R. From eqns. (13) and (14) it follows that the proper time variations are
zre compensated by corresponding changes in proper acceleration experienced by the seven vertices. For
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2z the numerical values used in fig. 7 the accelerations of the trailing and leading vertex are 2ag and
ars 2aR /3, respectively.

279 The spatial components of the inertial reference frames, comoving with R, are plotted in fig. 7 as
200 well. During the acceleration-free period following the boost phase the grid moves with constant speed
2e1  and the equal-time slices of the corresponding comoving frames (dotted lines) are oriented parallel to
22 other. During the boost phase, however, the lines intersect and eqn. (10) entails that the equal-time

23 slices of the comoving frames all meet in one spacetime point, the event horizon xg = —11s (black dot
22a atx = —1lsandt = 0sinfig. 7).
205 If the accelerating grid extended to xp, the corresponding vertex would experience infinite proper

2es  acceleration (eqns. (13) and (14)) and its clock would not tick. Clearly, a physical object accelerating
2e7 towards positive x (fig. 7) cannot extend beyond this boundary at xp. If the grid in fig. 7 is regarded
2.8 as realization of an accelerating coordinate system, this frame is bounded in the spatial dimension
2e0 and ends at the coordinate value xy. However, as soon as the grid’s acceleration stops, the event
200 horizon disappears and coordinates x < xp are permissible. We note, that the event horizon in fig. 7
201 is a zero-dimensional object, a point in 1 + 1-dimensional spacetime considered here. The horizon is
202 frozen in time and exists only for the instant ¢ = 0.

203 Generalizing this result we find that the five boosts described in subsection 4 and depicted in
20 fig. 3 induce five event horizons in various orientations. It turns out that the accelerated object G is
20s  bounded by these horizons in all directions within the xy-plane. They limit G’s maximum size [3] and
206 thereby assure that all of its vertices obey the special relativistic speed limit [9].

207 7. Conclusions

208 It is well known that pure Lorentz transformations do not form a group in the mathematical sense,
200  since the composition of two transformations in general is not a pure Lorentz transformation again,
0 but involves the Thomas-Wigner spatial rotation. The rotation is visualized by uniformly accelerating
s1  a Born-rigid object, consisting of a finite number of vertices, such that the object’s reference point
;02 returns to its starting location. It turns out that at least five boosts are necessary, provided, first, the
303 (proper time) duration and the magnitude of the proper acceleration is the same within each boost
;04 and, second, the object’s motion is restricted to the xy-plane. Analytic expressions are derived for the
sos angles between adjacent boost directions.

306 The visualization illustrates the relationship between Thomas-Wigner rotations and the relativity
sz of simultaneity. The transition from one boost section to the next occurs synchronously in the MCIF
s0s  Of the object’s reference point. In the laboratory frame, however, the trailing vertices perform the
;00 transition to the next boost phase, which in general involves a direction change, earlier than the
a0 leading vertices. Thus, in this frame the accelerated object not only contracts and expands along
su  its direction of propagation, but also exhibits a shearing motion during the switchover phases. The
a2 simulations illustrate clearly that the aggregation of these shearing contributions finally adds up to the
a1z Thomas-Wigner rotation.

314 Accelerated motions induce event horizons, which no part of a physical, Born-rigid object may
ais  overstep. Thus, the object’s size is limited to a finite volume or area (if its motion is restricted to two
s1s  spatial dimension) and Thomas-Wigner rotations by construction observe the special relativistic speed
317 limit.

”
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s20 information see www.gnu.org/licenses/gpl.html . All trademarks are the property of their respective owners.

321 Supplementary Materials: An MPEG-4 video animation of the Thomas-Wigner rotation, the MATLAB source
322 code used to create fig. 5 and the “SymPy” script file discussed in appendix B are available at the URL www.
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26  MCIF momentarily comoving inertial frame
sz Appendix A Number of boosts
320 We determine the smallest number of boosts that satisfies the four assumptions listed in section 2.

220 Denoting the number of boosts by N, it is self-evident that N > 3, since for N = 1 the requirement of
:30  vanishing final velocity cannot be met if vg # 0. And for N = 2 the requirement of vanishing final
a1 velocity implies collinear boost directions. With two collinear boosts, however, the reference point R
sz does not move along a closed trajectory. In addition, we note, that collinear boosts imply vanishing
s3s Thomas-Wigner rotation [see e.g. 36].

s3a  Appendix A.1 Three boosts

335 Consider three boosts of the reference point R starting from location A and returning to location D
sss  via locations B and C. In the laboratory frame (frame [1]) the four-position at the destination D is given
337 by
o _— pll, gl
Py = Py +S\; (A1)

+A (’)// _él) : S][?,ZLC
+A (7, =) A(v,—é) - Sg]—m
338 and
Vg] = A(y,—é1) Ay, —&)  A(v,—é)- V][Sl] (A2)

(1]

3o is the corresponding four-velocity. For the definition of the four-vector S,' ., see eqn. (18).
0 Assumption {2} implies that

pl = gl — i — B —§ (A3)
a1 and

1
vl = vill - vl — (6) : (A4)

sz Inserting eqn. (1) into eqn. (A2) yields

T, = T23::|:\/2’)’+1 (A5)

sa3 (see appendix B) and, in turn, using eqn. (A3) we obtain

" . —(r=12@27+1)?
Py = TS —(y—1) (27(;r1)7 (3y+1)

1=
ol

(A6)

aas  Its only solution for real-valued B is the trivial solution y = 1, i.e. § = 0. Thus, there are no non-trivial
ss solutions for N = 3 boosts, which are consistent with the assumptions {1}-{4}.

as  Appendix A.2 Four boosts

247 For a sequence of four boosts time reversal symmetry implies that R’s velocity in the laboratory

. .ooll = . s
sas  frame vanishes at event C after the second boost, i.e. V[C] = 0. However, stationarity in the laboratory
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frame can only be achieved if the first two boosts A — B and B — C are collinear. In order to fulfil
assumption {2} the third and fourth boosts have to be collinear with the first (and second) boost
as well. As already noted, a sequence of collinear boosts, however, does not produce a non-zero
Thomas-Wigner rotation.

Appendix B Computer algebra calculations

Some equations in this paper were derived using the computer algebra system “SymPy” [23].
The corresponding “SymPy” source code files vtwr3bst.py (three boost case, see section A.1) and
vtwrbbst . py (five boost case, see section 4) are available for download at www.gbeyerle.de/twr. These
scripts process eqns. (A1), (A2), (16) and (17) and derive the results given in eqns. (A5), (A6), (23), (26),
(27), (39) and (40). The following paragraphs provide a few explanatory comments.

First, we address the case of three boosts (superscript (3B)) and the derivation of eqn. (A5). The

corresponding boost vectors in the xy-plane éi(BB) withi = 1,2,3 are taken to be

(3B) _ Cu o # 1- (T12)2
“a = <Sg> 14 (Tip)? ( 2Ty *7)
,38) _ (1
é(aB) _ Ca _ # 1- (T12)2
3 T \=s, 1+ (Ti2)* \ 2T
with
Sa =sin({12) Ca = cos((1,2) (A8)

in terms of the direction angle ; » and the half-angle approximation (eqn. (5)). Here, the z-coordinate
is omitted since the trajectory is restricted to the xy-plane and {3 = {; » from time reversal symmetry
is being used. Inserting the corresponding Lorentz transformation matrices (eqn. (1)) into eqn. (A2)
and selecting the time component yields

((Thp)> =29y —1)*

N (G (49

which reduces to eqn. (A5) if the trivial solution 7y = 1 is ignored.
For five boosts (superscript (5B)) and the derivation of the expression (26) we define in analogy

to eqn. (A7)
A(5B) Cx) [ Ci2Co3— 512523
é = = A10
! (Sx> (-512 Co3 — C12 523 (A10)
(5B)

G\ _[(Cs)_ T 1—(Tx)?
Sy —S23 14 (T3)? \ —2To3

s5B)

w
Il
/\/\/O_}/_\
~_

o — (G ) _(Csy_ 1  (1- (Tp3)?
4 —Sy S23 1+ (To3)> \ 2Tos
s58) — Co | _ (C12C—5125:
> —Sx S12 Co3 + C12 523
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se0  With

S12 = sin(l1,2) Ciz = cos(Z12) (A11)
S23 =sin({23) Ca3 = cos({2)
a0 The corresponding Lorentz transformation matrices are too unwieldy to reproduce them here. “SymPy”

sn script vtwrbbst . py calculates these matrices and their products in terms of T7, and T»3 and inserts the
sz result into eqn. (17). The time component of eqn. (17) yields the equation

.
(T2 +1)2 <<T23> 17 (A12)

X ( Ti2)* (To3)* + (T12)* — 4 Tin Toz ¥
Y-

—4Tip Tos — 2(Ta3)* vy — (To3)* + 477 +2’Y—1) =0

sz We exclude the trivial solution ¢ = 1 and restrict ourselves to real values of T1; and Tp3; eqn. (A12)
;74 then leads to eqn. (22), a second order polynomial with respect to Tp3. The two solutions are given in
srs - eqn. (23).

376 Next insert Tp3 = To3(Ti2, ) in eqn. (16). Since its time component involves the travel time of R
sz along its closed trajectory as an additional unknown and the z-coordinate vanishes by construction,
s7e  we focus on the x- and y-components of eqn. (16). The script vtwrbbst . py shows that the result for the

(6]

a9 y-component of the four-vector equation ﬁF = 0 can be expressed as

2 X1(T12,7) + X2(T12,7) v/ X3(T12,7)
((T12)? =2y —1)°

sso  Here, X1(T12,77), X2(T12,v) and X3(Thp, 7v) are polynomials in Typ.
301 For real T and y > 1 the numerator has to equate to zero. Moving the term involving the square
se2  root to the right hand side and squaring both sides yields

—8((Ti2)* +1) (v +1)

=0 . (A13)

(X1(Ti2,7))* = (X2(T12,7))* X3(Ti2,7) =0 . (A14)

;a3 Its evaluation (see script vtwrbbst . py) leads to the product of two polynomials (expressions (26) and
sss (27)), each of which is of fourth order with respect to (T12)?.

385 Repeating the corresponding calculation for the x-component of the equation 15'1[_«6] = 0 leads
;e to the product of two polynomials, one of which is identical to expression (26). Thus, the roots of
sz polynomial (26) constitute a solution of eqn. (19). The Thomas-Wigner angle 6y (eqn. (38)) follows
;s from the Lorentz matrix relating frame [1] to frame [6] (eqn. (36)). Script vtwr5bst . py evaluates the
ss0  Mmatrix elements R; 1 and Ry 1 in terms of Ty and To3. Again, the resulting expressions are too unwieldy
300 to reproduce them here.
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