

1 Article

2 Analysis of the Shear Behavior of Stubby Y-Type 3 Perfobond Rib Shear Connectors for Composite 4 Frame Structure

5 Sang-Hyo Kim ¹, Oneil Han ^{1*}, Kun-Soo Kim ¹, Do-Hoon Lee ¹ and Jun-Seung Park ²6 ¹ School of Civil & Environmental Engineering, Yonsei University, Yonsei-Ro 50, Seodaemun-Gu, Seoul
7 03722, Republic of Korea; sanghyo@yonsei.ac.kr; kun-soo_kim@yonsei.ac.kr; dohoonlee@yonsei.ac.kr;
8 junseungpark@yonsei.ac.kr

9 * Correspondence: oneilhan86@gmail.com; Tel.: +82-2-2123-7491; Fax: +82-2-363-5097

10 **Abstract:** Shear connectors are used in steel beam–concrete slabs of composite frame and bridge
11 structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear
12 connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse
13 rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the
14 composite frames of building structures. We performed push-out tests of stubby Y-type perfobond
15 rib shear connectors for composite frames. These shear connectors have relatively small ribs than
16 conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby
17 shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results
18 indicate that these shear connectors have suitable shear strength and ductility for application in
19 composite frame structures. The shear strengths obtained using D13 and D16 were not significantly
20 different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the
21 shear connectors with D13.

22 **Keywords:** stubby Y-type perfobond rib shear connectors; composite frame structure; shear
23 strength, ductility, push-out test

24

25 1. Introduction

26 Steel–concrete composite structural systems with shear connectors have excellent structural
27 performance and economic feasibility and have been employed in various fields for decades. In
28 particular, beam–slab composite systems have been widely used in building and bridge structures.
29 The shear strength of shear connectors in beam–slab composite systems is designed by considering
30 the design shear force. Shear stiffness determines the degree of shear connection, and ductility
31 prevents brittle failure of the shear connectors. The behaviors of composite beams with shear
32 connectors have been investigated by numerous researchers. Kim and Jeong [1] conducted an
33 experimental study to verify the ultimate behavior of a composite deck system with steel sheets and
34 perfobond rib shear connectors. They performed beam and push-out tests of the shear connectors
35 and composite beams and verified the load-carrying capacity. Qureshi et al. [2] developed a three-
36 dimensional nonlinear numerical model for a composite beam with profiled sheeting and stud shear
37 connectors, and used the model to obtain the shear strength, relative slip, and failure modes.
38 Vasdravellis and Uy [3] performed an experimental and numerical study on the shear capacity and
39 moment–shear interaction of composite beams. In their study, the shear connection degree of the
40 composite beam reduced the available shear strength. Shariati et al. [4] conducted push-out tests of
41 channel and angle shear connectors in high-strength concrete to compare their shear strengths.
42 Lasheen et al. [5] compared the behavior of lightweight and normal weight concretes in eight
43 composite beams with channel shear connectors.

44 Shear connectors are used in steel beam–concrete slabs of composite frame and bridge structures
45 to transfer shear force according to design loads. Studies on composite structures were first

46 conducted in the 1920s. Caughey [6] stressed on the need for shear connectors that can resist
47 horizontal shear force. The stud shear connector, which is commonly utilized in steel-concrete
48 composite systems, was studied for many years. In 1956, Viest [7] performed a static load test by
49 using a stud connector to propose an equation for shear strength and modified this equation in the
50 1960s [8]. Subsequently, the shear strength of stud shear connectors was studied by considering
51 various variables such as the cross-section, height, and tensile strength of the stud as well as the elastic
52 modulus and compressive strength of the concrete [9–11]. Large stud shear connectors greater than
53 22 mm in diameter have also been studied [12–14]. At a German design company, Leonhardt and
54 Zellner [15] developed a new type of a shear connector, the perfobond rib shear connector, to solve
55 the fatigue problem of stud shear connectors. Oguejiofor and Hosain [16–18] compared the behaviors
56 of the perfobond rib shear and stud connectors by analyzing the differences in their failure modes in
57 the push-out and beam tests. They then proposed an equation for evaluating the strength of the
58 perfobond rib shear connector by considering the tensile strength of concrete, amount of transverse
59 rebar, and location of holes. Valente and Cruz [19] conducted experimental analysis to compare shear
60 behaviors of various connector types. Vianna et al. [20–22] conducted a push-out test and numerical
61 analysis on the T-type shear connector in a composite beam girder. Lorenc et al. [23,24] performed an
62 experimental study and a numerical analysis on composite dowels with puzzle-like shapes.
63 Papastergiou et al. [25] proposed a new type of shear connector using friction and bond effects and
64 identified its behavior through experimental analysis. The Y-type perfobond shear connector
65 developed based on various types of shear connectors has outstanding shear resistance and ductility
66 [26] and exhibits good structural performance under the cyclic design load of bridges [27]. To predict
67 the shear strength of Y-type perfobond shear connectors, Kim et al. [28–30] conducted push-out tests,
68 beam tests, and numerical analysis and proposed shear resistance formulas by considering design
69 variables.

70 In building structures, the shear force exerted on the composite frame by design loads is smaller
71 than that in composite bridges. The existing Y-type perfobond rib shear connectors [26–30] are
72 designed for the girder slabs of composite bridges. Therefore, the rib and transverse rebars of the
73 conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of
74 building structures. To use Y-type perfobond rib shear connectors in composite frame structures,
75 various design factors, such as the compressive strength of concrete, height of the slab, and diameter
76 of the transverse rebar, must be considered. To this end, this study proposes the stubby Y-type
77 perfobond rib shear connectors for composite frames and experimentally examines their shear
78 strength and ductility through push-out tests. All dimensions of the specimens are determined
79 considering the concrete slab, and then the shear resistance, ductility, and fracture mode are
80 confirmed at the shear connection area.

81 2. Push-Out Tests of Stubby Y-Type Perfobond Rib Shear Connectors

82 2.1. Test Specimens

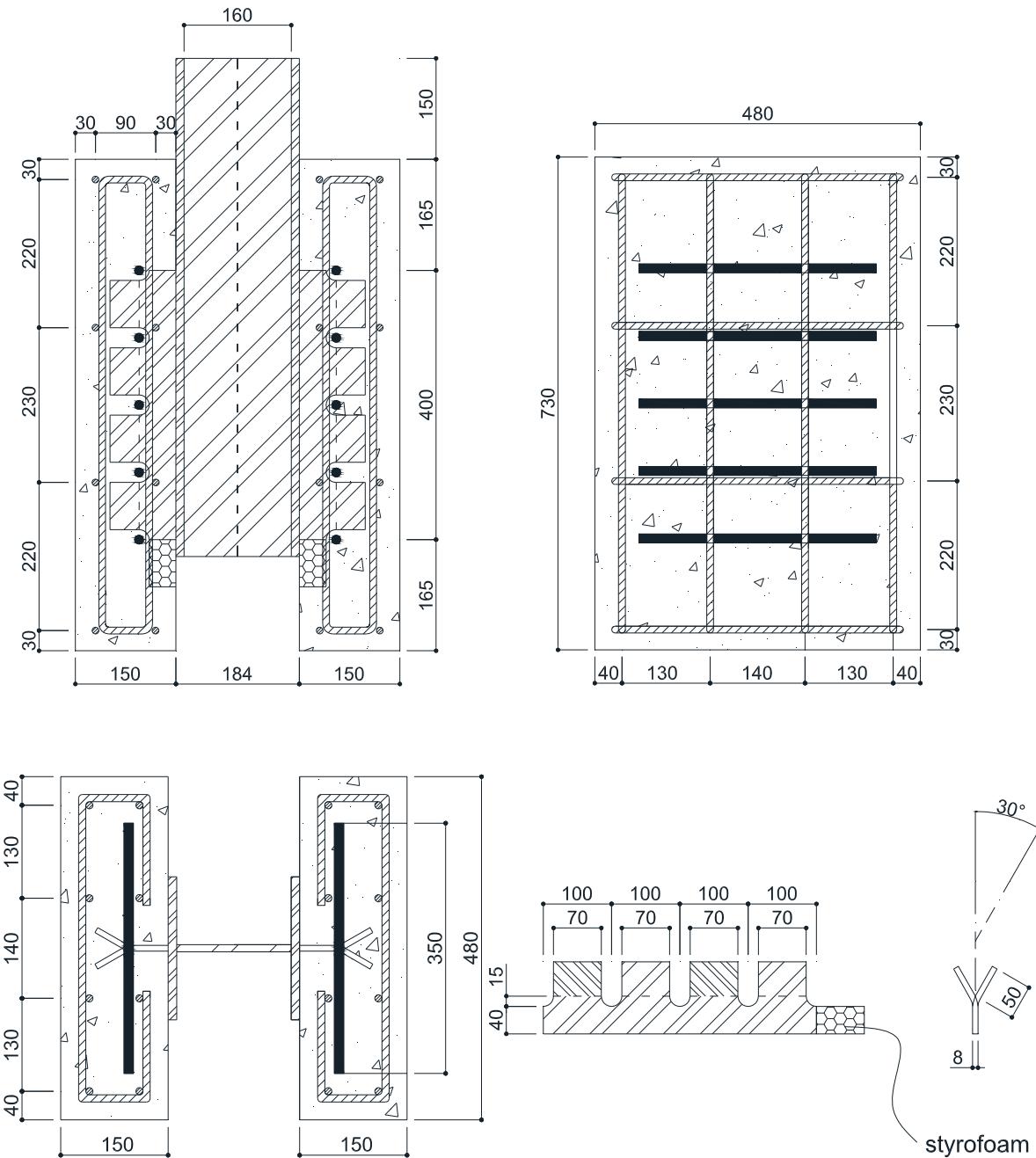
83 The push-out test specimens were manufactured according to the direct shear specimen
84 standard suggested in the Eurocode-4 guidelines [31]. The main design variables are the width and
85 height of the rib and the diameters of the dowel hole and transverse rebar. As the shear force
86 recommended for a building structure is smaller than that of a bridge structure, a smaller sized Y-
87 type perfobond rib shear connector compared to the existing connector was suggested by Kim et al
88 [26]. The shear connector had a Y-shaped angle of 60°, rib height of 50 mm, width of 70 mm, thickness
89 of 8 mm, hole diameter of 30 mm, and transverse rebar diameter of 13 mm (D13) or 16 mm (D16). The
90 shear connector specimens were classified into two types, SY-D13-M and SY-D16-M, based on the
91 transverse rebar diameters. The concrete block of the specimens was determined to have 150 mm
92 thickness, 480 mm width, and 730 mm length. The slab of the push-out specimens was designed by
93 considering the concrete thickness generally used for building structures. Hence, concrete with a
94 designed compressive strength of 27 MPa was utilized. Twelve concrete cylindrical specimens and
95 six push-out test specimens were cured through the steam curing method. Each group contained

96 three cylindrical test specimens and was tested at curing periods of 21 and 28 days and on the test
 97 day. Table 1 presents the compressive test results for the concrete specimens. The tensile strength
 98 tests of structural steel for the stubby Y-type perfobond ribs were conducted using the push-out test
 99 specimens. Table 2 gives the results of the tensile strength tests. A rib height of 50 mm was designed
 100 by considering a concrete slab height of 150 mm, which is generally used for building structures. A
 101 rib width of 70 mm was designed by considering a spacing distance of 100 mm between the transverse
 102 rebars. Grease was applied to the rib before pouring concrete to eliminate the adhesive force caused
 103 by the chemical bonding between the concrete and rib. A 70-mm-long styrofoam was installed at the
 104 bottom end in the opposite direction of the applied load of the rib to prevent concrete bearing
 105 resistance in all parts except on the Y-shape and dowel hole. Figure 1 shows the dimensions of the
 106 push-out test specimens used for testing the stubby Y-type perfobond rib shear connectors, and Table
 107 3 lists the specifications of the stubby shear connectors.

108 **Table 1.** Results of concrete compressive strength test.

Curing time	Compressive strength	
21 days	25.97 MPa	
	26.33 MPa	27.17 MPa
	29.22 MPa	
28 days	28.27 MPa	
	29.83 MPa	28.96 MPa
	28.78 MPa	
Before push-out test	30.08 MPa	
	28.94 MPa	29.29 MPa
	28.84 MPa	

109

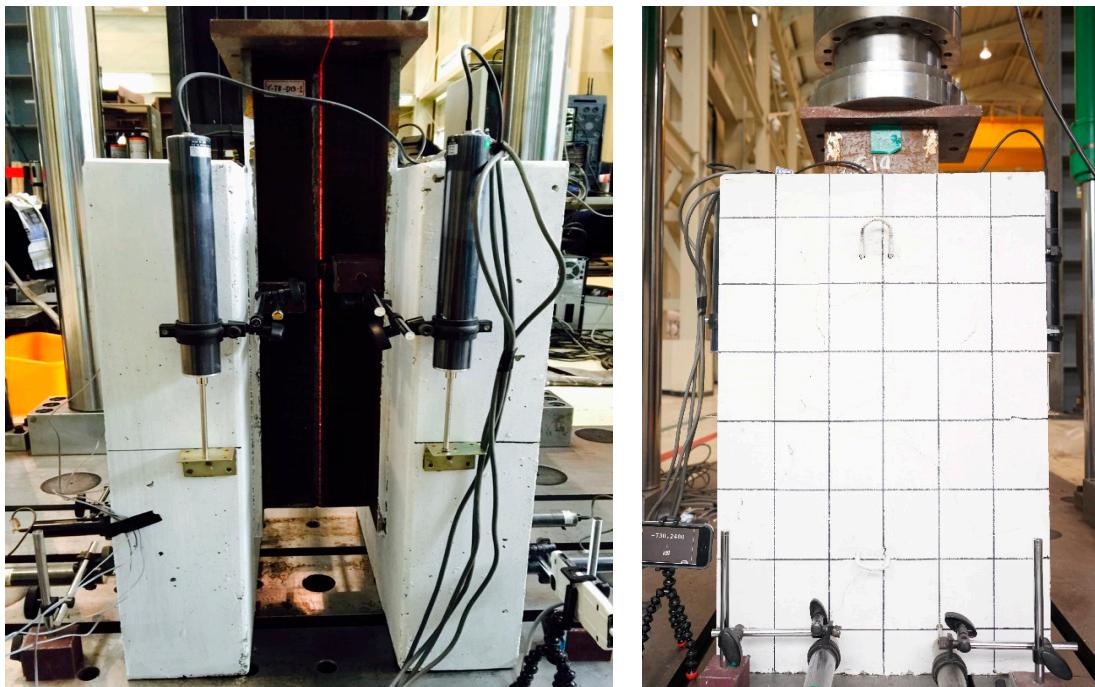

110 **Table 2.** Results of structural steel tensile strength test.

Specimen	Yield strength	Tensile strength	Elongation	Young's modulus
S-1	318.48 MPa	422.43 MPa	39 %	209 GPa
S-2	338.36 MPa	430.84 MPa	41 %	209 GPa
S-3	332.35 MPa	430.75 MPa	41 %	209 GPa
S-4	340.73 MPa	440.48 MPa	40 %	209 GPa
Average	332.48 MPa	431.12 MPa	41 %	209 GPa

111

112 **Table 3.** Specifications of the stubby Y-type perfobond rib connectors.

Y-shaped angle	Rib thickness	Rib height	Rib width	Hole diameter	Transverse rebar
SY-D13- M1/M2/M3					D13
60°	8 mm	50 mm	50 mm	30 mm	D16



113 **Figure 1.** Dimensions of push-out test specimen (unit: mm).

114 **2.2. Test procedure**

115 The push-out test of the stubby Y-type perfobond rib shear connectors was conducted using a
 116 1,000 kN universal testing machine. The relative displacement between the concrete and steel was
 117 measured using four linear variable differential transducers (LVDTs) attached to L-shaped aluminum
 118 angles. The LVDTs were installed 365 mm below the top of the concrete slab. Grid lines were drawn
 119 on the concrete surface of all the specimens, and a high-resolution camera was used to record the
 120 cracks. A monotonic load was applied in the displacement control mode, and the load rate was set to
 121 0.02 mm/s to prevent failure within 15 min, according to Eurocode-4 [31]. Figure 2 shows the setup
 122 of the push-out test, which was stopped when the load decreased to less than 80% of the ultimate
 123 load. To confirm the deformation of the transverse rebars and stubby ribs for each load step in SY-
 124 D13-M1 and SY-D16-M1, the push-out tests were terminated at displacements where the load was
 125 80% of the shear strength. For SY-D13-M2 and SY-D16-M2, the tests were terminated at displacements

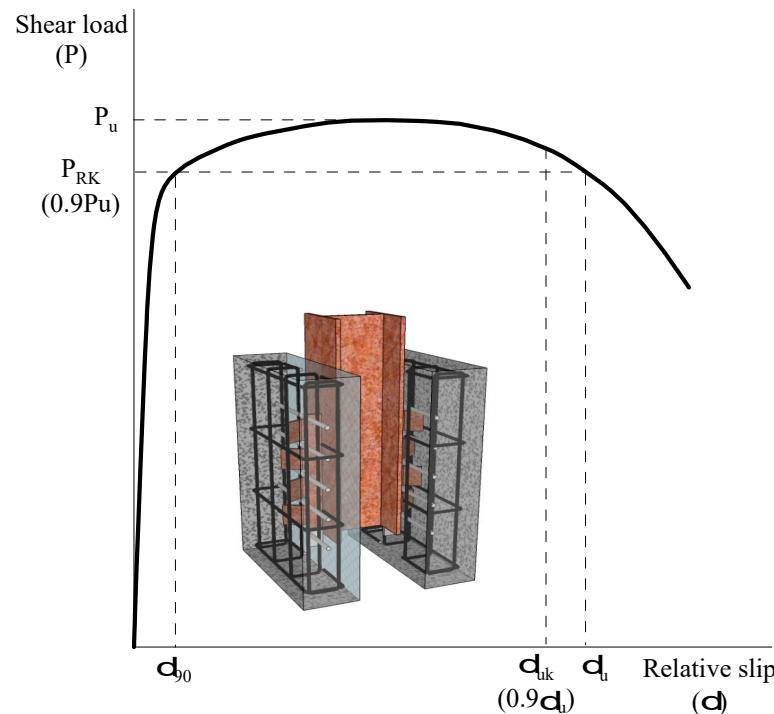
126 where the stiffness was recovered. To confirm sufficient deformation of the transverse rebar and rib
 127 in SY-D13-M3 and SY-D16-M3, the load was applied until the point at which the displacement was
 128 25 mm. After the push-out tests, the concrete blocks of the specimen were crushed to confirm the
 129 deformation of the transverse rebars and stubby Y-type perfobond ribs.

130 **Figure 2.** Push-out test setup.

131 **3. Shear Strength and Ductility of Stubby Y-Type Perfobond Rib Shear Connectors**

132 The objective in this test was to analyze the change in the shear force according to the diameter
 133 of the transverse rebar for which the dimensions of the stubby Y-type perfobond rib shear connectors
 134 were fixed. To compare the shear strength and ductility based on push-out tests, the shear strength
 135 (P_u), characteristic resistance (P_{rk}), initial relative slip (δ_{90}), characteristic slip capacity (δ_{uk}), and slip
 136 capacity (δ_u) were defined as shown in Figure 3 [26]. Eurocode-4 [31] defines a shear connector as
 137 ductile if $\delta_{uk} > 6$ mm. In addition, Kim et al. [26] suggested using the ratio of the slip capacity and
 138 initial relative slip (δ_u/δ_{90}) to estimate the ductility in the inelastic behavior region of a shear connector
 139 by considering initial stiffness. Moreover, Kim et al. [29] proposed Eq. (1) to predict the shear strength
 140 of a Y-type perfobond rib shear connector. Table 5 compares the tested and predicted shear strengths
 141 of SY-D13-M and SY-D16-M.

$$Q = 3.372 \cdot \left(\frac{d}{2} + 2h \right) t \cdot f_{ck} + 1.213 \cdot r \cdot A_{tr} \cdot f_y + 1.9 \cdot n \cdot \pi \cdot \left(\frac{d}{2} \right)^2 \cdot \sqrt{f_{ck}} + 0.757 \cdot m \cdot h \cdot s \cdot \sqrt{f_{ck}}, \quad (1)$$


142 where Q represents the shear resistance (kN), d is the diameter of the dowel hole (mm), h is the
 143 individual rib height (mm), t is the rib thickness (mm), f_{ck} is the compressive strength of the
 144 concrete (MPa), r is the number of transverse rebars, A_{tr} is the cross-sectional area of the transverse
 145 rebar (mm^2), f_y is the yield strength of the transverse rebar (MPa), n is the number of dowel holes,
 146 m is the number of dowel areas formed between the ribs bent in a Y-shape, and s is the net distance
 147 between the ribs bent in the same direction (mm).

148 Figure 4 and Table 4 present the push-out test results. In the cases of SY-D13-M1/M2/M3, the
 149 shear strengths obtained were 925.2, 904.4, and 898.7 kN, respectively, and the average shear strength
 150 was 897.3 kN. The ductilities calculated according to Eurocode-4 [31] and the evaluation formula
 151 (δ_u/δ_{90}) suggested by Kim et al. [26] were 6.53 and 4.50 mm, respectively. In the cases of SY-D16-
 152 M1/M2/M3, the shear strengths obtained were 904.1, 907.7, and 939.7 kN, respectively, with an

153 average of 912.17 kN. Moreover, the ductilities calculated according to Eurocode-4 [31] and the
 154 evaluation formula (δ_u/δ_{90}) suggested by Kim et al. [26] were 10.08 and 6.22 mm, respectively.

155 The difference between the shear strengths of SY-D13-M and SY-D16-M was 14.9 kN, with SY-
 156 D16-M exhibiting 1.7% higher shear strength. Based on the above results, the effect of the change in
 157 shear strength due to the rebar sizes of D13 and D16 is not much. However, the load reduction is
 158 greater for SY-D13-M than for SY-D16-M, both of which satisfied the ductility standard for shear
 159 connectors defined by Eurocode-4 [31]. The δ_{uk} of SY-D13-M was 6.53 mm, which slightly exceeds the
 160 ductility standard suggested by Eurocode-4 [31], while that of SY-D16-M was 10.08 mm, which
 161 significantly exceeds the same standard. When evaluating ductility based on the initial stiffness, δ_u ,
 162 δ_{90} , and δ_u/δ_{90} of SY-D13-M were 7.76 mm, 1.59 mm, and 4.82, respectively, while those of SY-D16-M
 163 were 11.12 mm, 1.79 mm, and 6.21 mm, respectively. The difference between the δ_{90} values of SY-
 164 D13-M and SY-D16-M was 0.02 mm (11% for δ_{90} of SY-D16-M), and the difference between their δ_u
 165 values was 36.45 mm (31% for δ_u of SY-D16-M). That is, higher diameter transverse rebars show more
 166 ductile behavior after yield strength than the initial shear behavior. Based on both ductility evaluation
 167 methods, the shear connectors with large-diameter rebars are preferable in terms of ductility.

168 The shear strengths of SY-D13-M and SY-D16-M predicted using the equation in [26] were 803.5
 169 and 1,082.6 kN, and the experimental results were 894.6 and 907.4 kN, respectively. In the case of SY-
 170 D13-M, the average shear strength estimated in the push-out tests was 1.1 times the shear strength
 171 estimated using the equation. Moreover, the average shear strength of SY-D16-M in the push-out
 172 tests was 0.84 times the shear strength estimated using the equation. In other words, the measured
 173 shear strength of SY-D13-M was greater than the predicted shear strength, while that of SY-D16-M
 174 was lower than the predicted shear strength. As the difference between the measured and predicted
 175 strengths was approximately 13%, the shear strength equation for Y-type perfobond rib shear
 176 connectors can also be applied to stubby Y-type perfobond rib shear connectors. However, the
 177 influence of the transverse rebar was found to be overestimated.

178

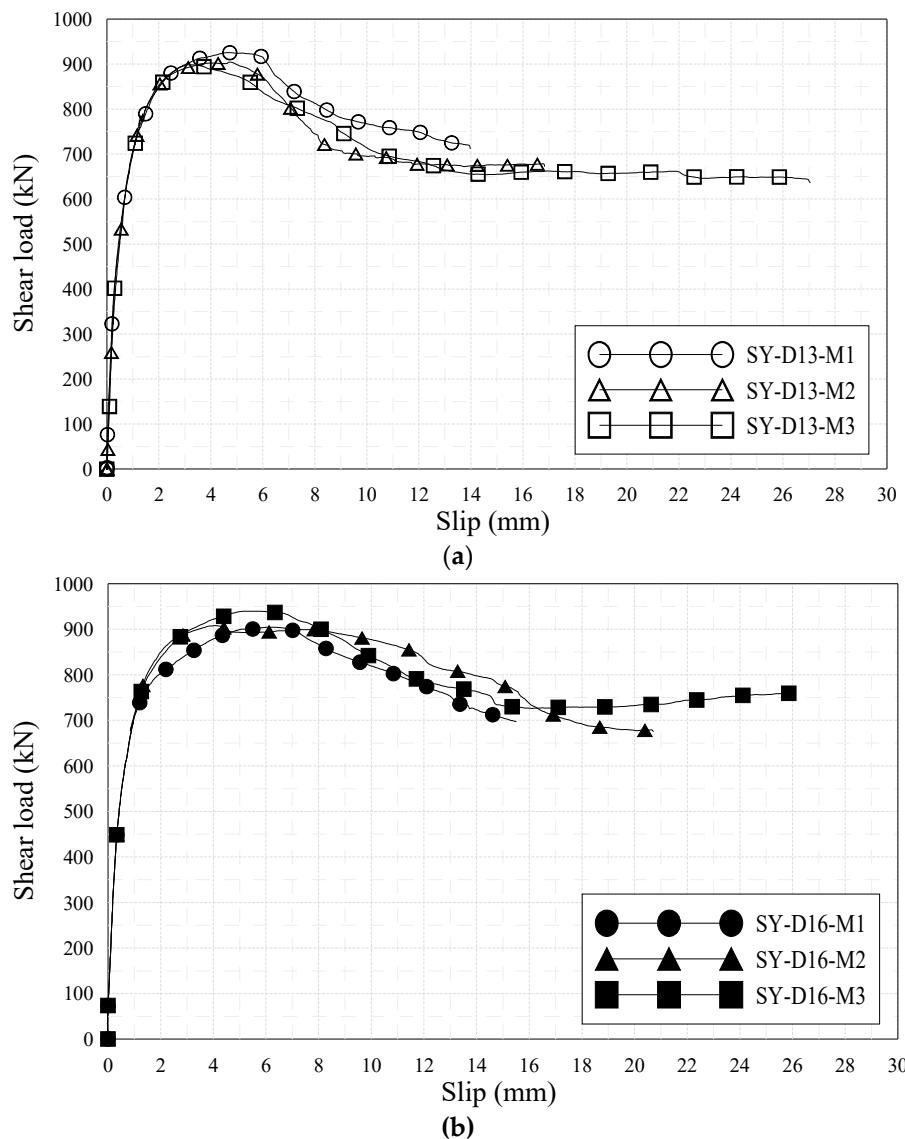

179

Figure 3. Determination of shear capacity and relative slip.

180

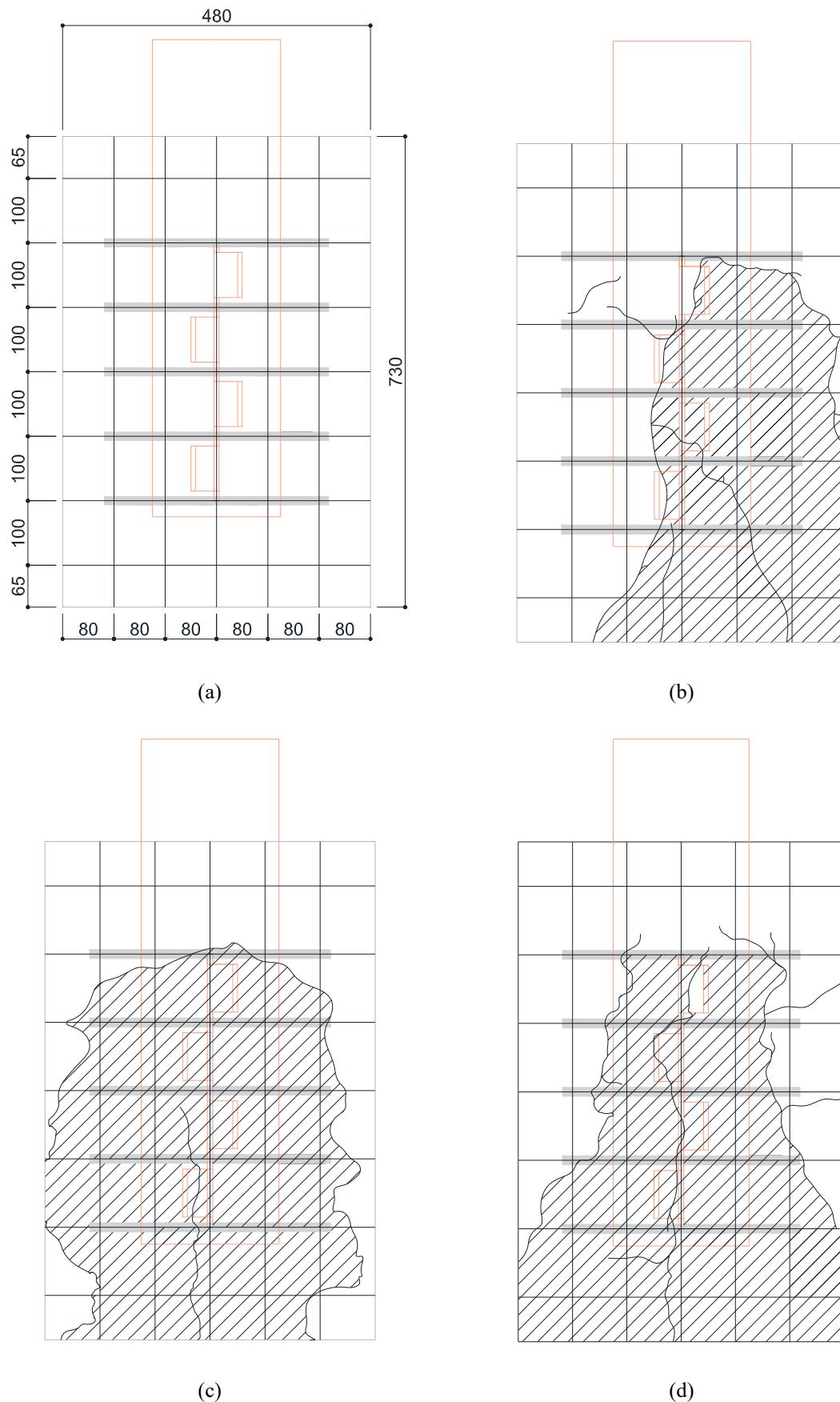
181 **Table 4.** Push-out test results.

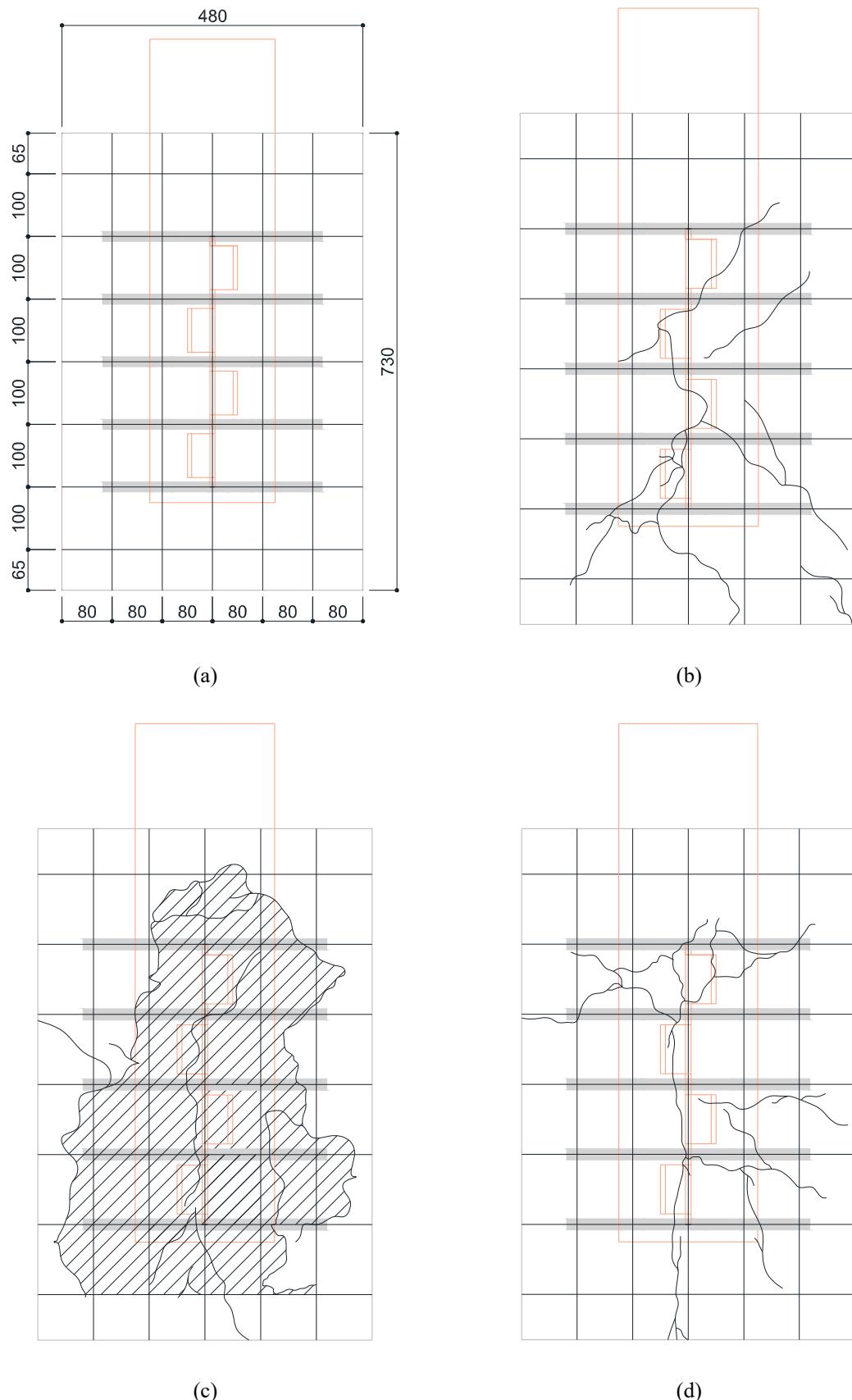
	Specimen	P_u (kN)	δ_{uk} (mm)	δ_u (mm)	δ_{90} (mm)	δ_u/δ_{90}
SY- D13	M1	925.2	6.61	7.34	1.82	4.03
	M2	904.4	6.20	6.89	1.60	4.31
	M3	898.7	5.85	6.50	1.66	3.92
	Average	894.6	6.90	7.67	1.59	4.82
Strength predicted using equation [26]		803.5				
SY- D16	M1	904.1	9.55	10.61	2.24	4.74
	M2	907.7	11.20	12.44	1.63	7.63
	M3	939.7	8.78	9.75	2.12	4.64
	Average	907.4	10.01	11.12	1.79	6.21
Strength predicted using equation [26]		1,082.6				

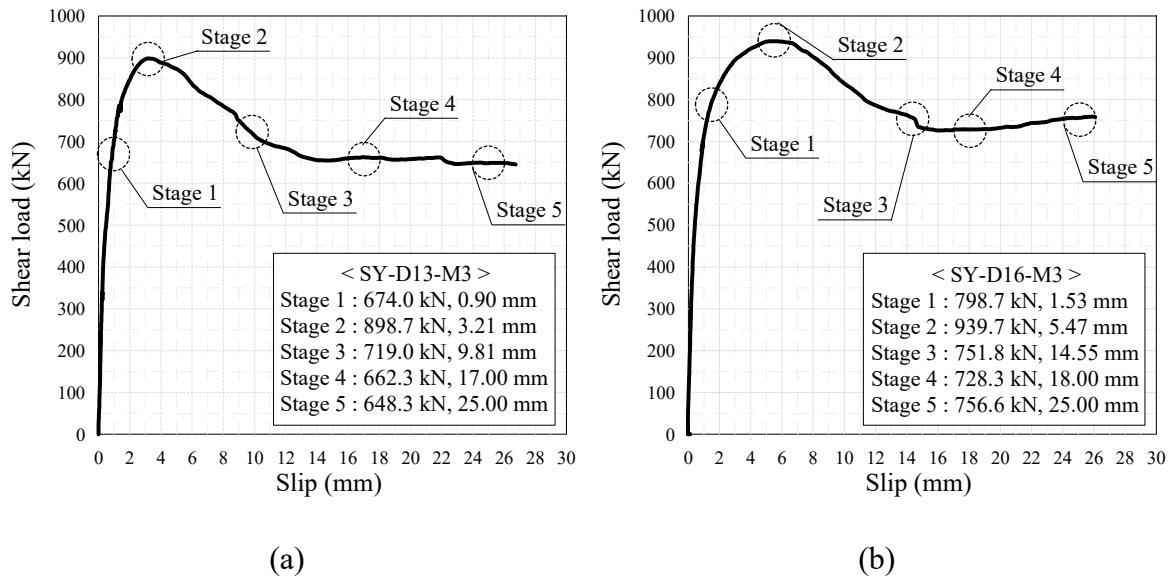
182 **Figure 4.** Load-slip relationships: (a) SY-D13-M; (b) SY-D16-M.

184 **4. Failure of Stubby Y-Type Perfobond Rib Shear Connectors**185 *4.1. Concrete Crack Patterns and Failure of Stubby Y-Type Perfobond Rib Shear Connectors*

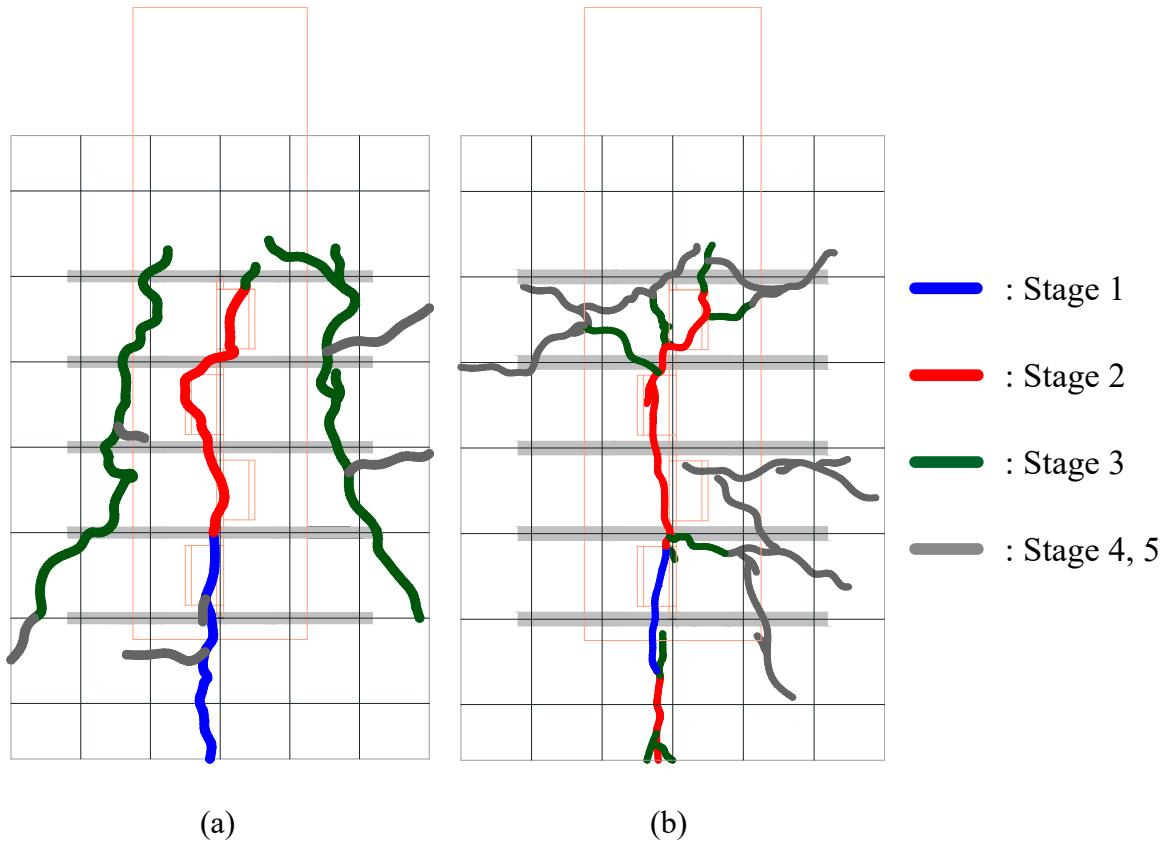
186 As mentioned earlier, the crack occurrence and propagation on concrete surfaces were recorded
 187 using a high-resolution camera. The crack patterns of SY-D13-M and SY-D16-M after the push-out
 188 tests are shown in Figures 5 and 6, respectively. Both specimens exhibited similar crack patterns. In
 189 SY-D13-M and SY-D16-M2, the pry-out failure of concrete occurred as shown in the shaded areas of
 190 Figures 5 and 6. However, SY-D16-M1 and SY-D16-M3 were destroyed because of the splitting failure
 191 of the concrete slab. To gradationally confirm the crack distribution, the crack distributions of SY-
 192 D13-M3 and SY-D16-M3 with the largest deformation were divided into the following five stages
 193 (Figure 7):


- 194 • Stage 1: Occurrence of initial cracks (SY-D13-M3: 75% P_u ; SY-D16-M3: 85% P_u)
- 195 • Stage 2: Shear strength (P_u)
- 196 • Stage 3: 80% shear strength
- 197 • Stage 4: Stiffness recovery (SY-D13-M3: $\delta = 17$ mm; SY-D16-M3: $\delta = 18$ mm)
- 198 • Stage 5: Ultimate limit state ($\delta = 25$ mm)


199 Figure 8 and Table 6 show the crack distribution in each stage. In the case of SY-D13-M3 (Figure
 200 8), the crack in stage 1 initiated as a splitting crack from the bottom end of the cut rib and progressed
 201 upward in the specimen. In stage 2, the splitting crack progressed in the vertical direction, along the
 202 center of the rib. In stage 3, additional splitting cracks occurred toward both the sides of the rib, and
 203 further progressed in the vertical direction. Stages 4 and 5 displayed the occurrences of even more
 204 cracks from the cracks developed in the previous stages in the lateral direction along the outer
 205 perimeter of the concrete slab. Finally, failure of concrete occurred as pry-out failure near the upper
 206 rib. In the case of SY-D16-M3, stage 1 initiated as a splitting crack from the bottom end of the rib, as
 207 in SY-D13-M3. In stage 2, the crack progressed in the vertical direction along the center, and in stage
 208 3, this crack progressed in the horizontal direction along the section arranged with the transverse
 209 rebar. In stages 4 and 5, these horizontal cracks progressed further and a new horizontal crack
 210 occurred. Unlike in the case of SY-D13-M3, the failure in SY-D16-M3 was not a pry-out failure but a
 211 splitting failure of the concrete slab.


212 Both SY-D13-M3 and SY-D16-M3 exhibited initial cracks along the vertical direction from the
 213 bottom end of the rib in stages 1 and 2. However, from stage 3, they exhibited different behaviors.
 214 SY-D13-M3 exhibited a crack in the vertical direction that continued from approximately the center
 215 of the rib, while SY-D16-M3 exhibited a crack that progressed along the horizontal direction from the
 216 direction in which the transverse rebar was arranged. Finally, SY-D13-M3 showed a pry-out failure
 217 of concrete, while SY-D16-M3 showed a splitting failure of concrete. It was assumed that in the case
 218 of SY-D13-M3, which has a relatively small transverse rebar cross-section, the pry-out failure resulted
 219 from local damage of the concrete near the rib. In the case of SY-D16-M3, the deformation of the
 220 transverse rebar was relatively small and the load was evenly dispersed over the entire concrete slab
 221 owing to its relatively large cross-section. Therefore, a horizontal crack occurred around the
 222 transverse rebar, leading to a splitting failure.

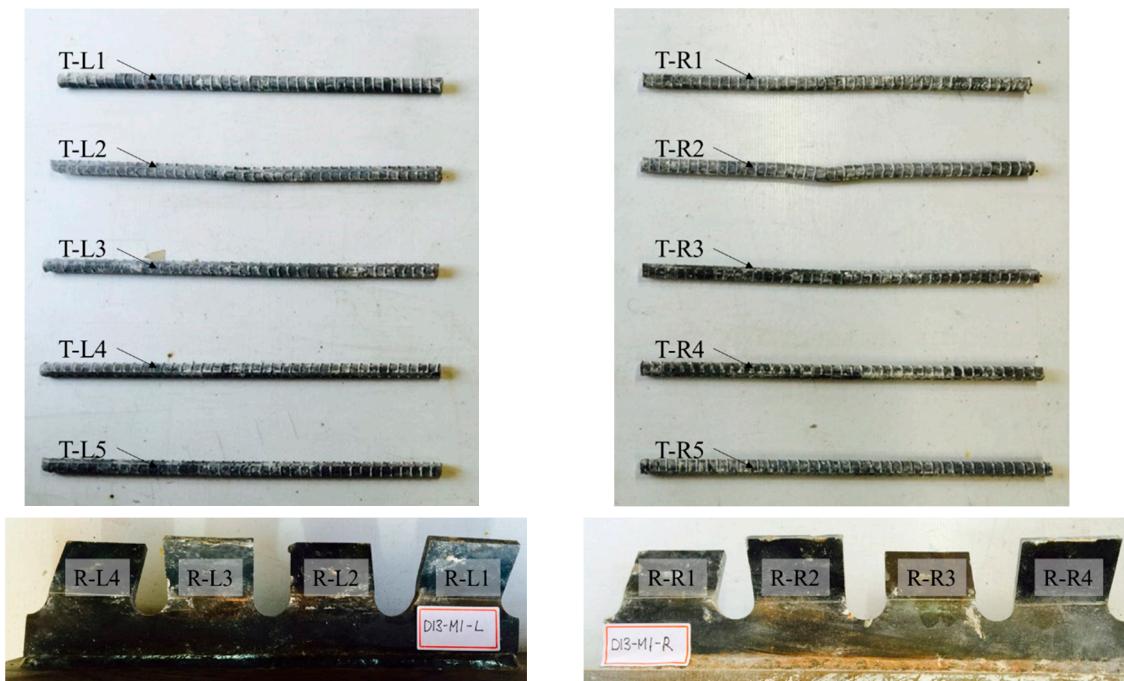
223 **Table 6.** Crack distribution of stubby Y-type perfobond rib shear connectors.


	SY-D13-M3	SY-D16-M3
Stage 1	Initial crack: splitting crack on bottom of concrete	
Stage 2	Crack propagation: vertical direction	
Stage 3	Additional crack: vertical direction	Additional crack: horizontal direction
Stage4	Failure: pry-out	
Stage5		Failure: splitting

229

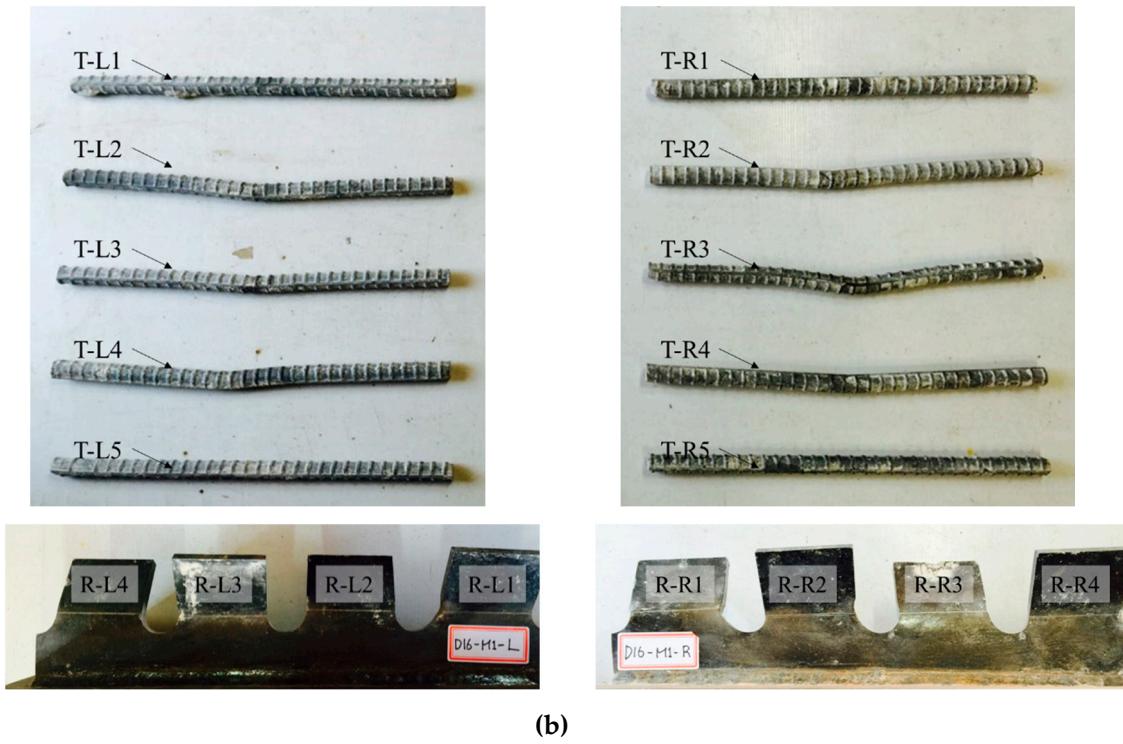
Figure 7. Loading stage: (a) SY-D13-M3; (b) SY-D16-M3.

230


Figure 8. Crack pattern in each stage: (a) SY-D13-M3; (b) SY-D16-M3.231

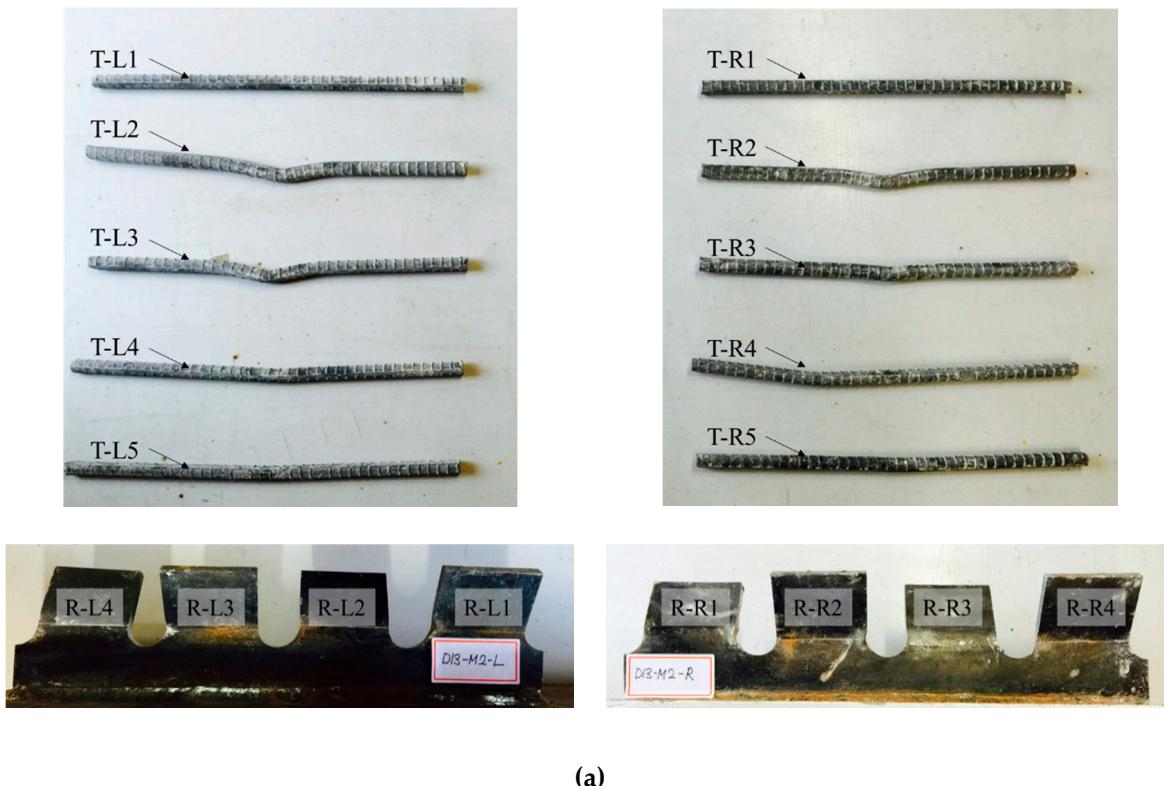
4.2. Deformation of Ribs and Transverse Rebars of Stubby Y-Type Perfobond Rib Shear Connectors

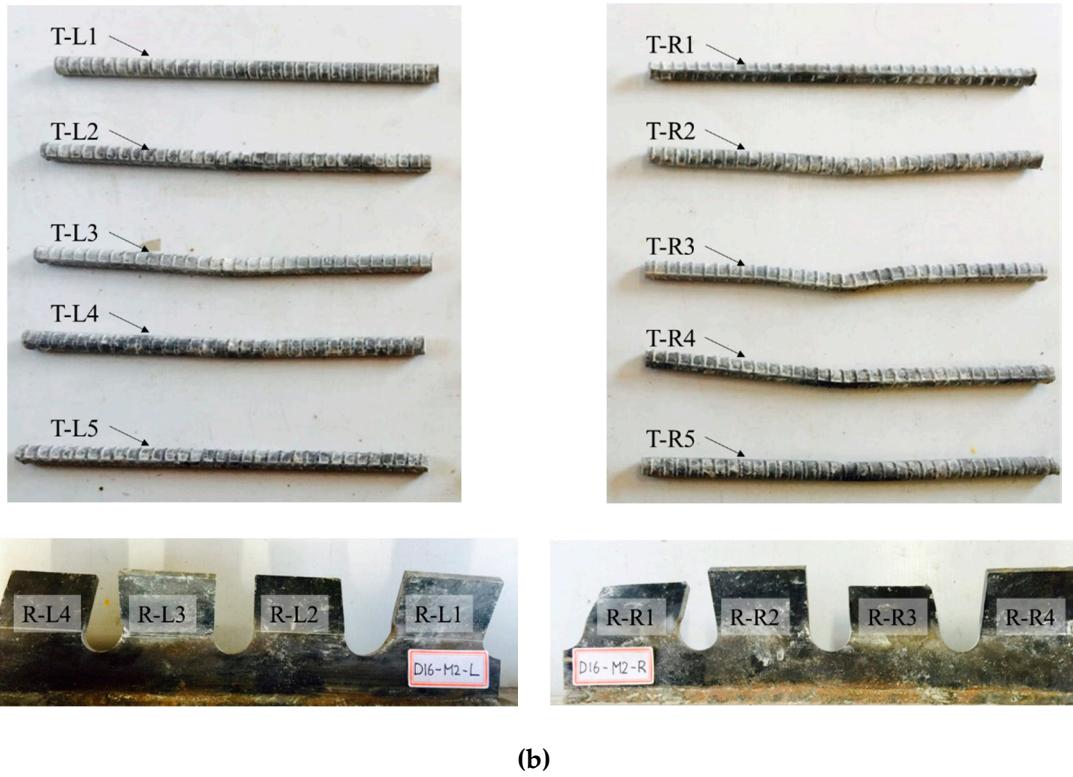
232 Figures 9, 10, and 11 show the deformations of ribs and transverse rebars for SY-D13-M and SY-
 233 D16-M. In the figures, the transverse rebars are labeled as T-L# and T-R#, where "T" refers to the
 234 transverse rebar, while "L" and "R" refer to the transverse rebar on the left and right sides,
 235 respectively. Furthermore, the group of transverse rebars is numbered from 1 to 5 in the bottom-top
 236 manner. Similarly, the ribs are labeled as R-L# and R-R#, where "R" refers to the rib, and "L" and "R"


237 refer to the left and right ribs, respectively. The ribs are numbered from 1 to 4 in the bottom-top
238 manner.

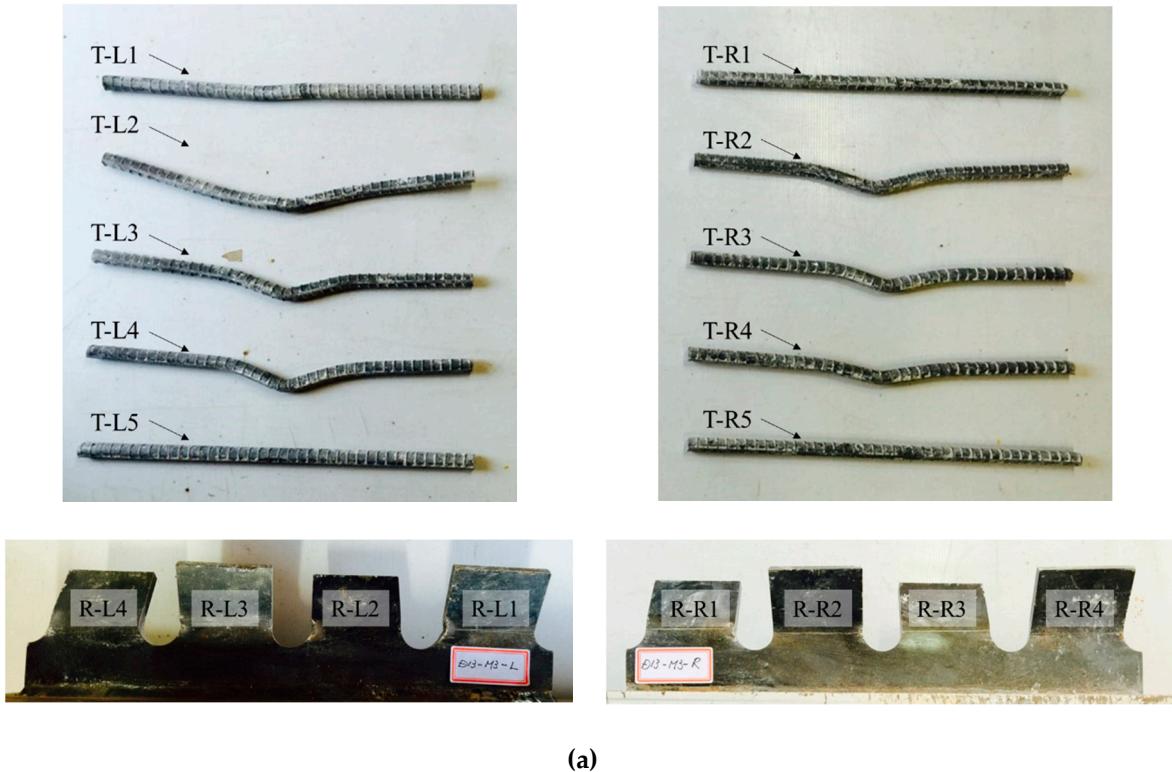
239 In the case of the M1 specimen, with approximately 80% shear strength, a slight deformation
240 occurred at the transverse rebar T-R2 of SY-D13-M1, and most other transverse rebars and ribs did
241 not show any significant deformation. However, in the case of SY-D13-M1, multiple transverse rebars
242 (T-L2/L3/L4 and T-R2/R3/R4) and ribs (R-L1; R-R1/R2) showed deformation. These deformations
243 were assumed to be caused by differences in the distance between the ribs and transverse rebars (SY-
244 D13-M: 8.5 mm; SY-D16-M: 7 mm) and the transverse rebar diameter. After local crushing of concrete
245 in the rib hole, the transverse rebars were sheared with increasing shear load, and then the transverse
246 rebars of SY-D16-M with a shorter distance underwent load transfer before those of SY-D13-M.
247 Therefore, the relative slip at shear strength of SY-D16-M is longer than that of SY-D13-M, and the
248 load reduction slope after shear strength of the load-slip curve of SY-D16-M is relatively gradual
249 compared with that of SY-D13-M. Moreover, SY-D13-M2 and SY-D16-M2 have relative slip as the
250 level of stiffness recovery. After stiffness reduction of the load-slip relationship, the strength
251 reduction rate slowly decreased until the strength became constant. In SY-D13-M2, large
252 deformations occurred in several transverse rebars (T-L2/L3 and T-R2), and deformations of several
253 ribs (R-L1 and R-R1) were confirmed. In addition, the degree of deformation was more severe in the
254 transverse rebars than in ribs. As a result, the shear load was transferred to the transverse rebars and
255 ribs, and the shear force was concentrated more on the transverse rebar with a relatively low stiffness
256 than the rib. SY-D16-M2 showed deformation tendencies similar to SY-D16-M1. In the ultimate limit
257 state of SY-S13-M3, most transverse rebars (T-L2/L3/L4 and T-R2/R3/R4) underwent severe
258 deformation and additional deformation occurred at some ribs (R-L1/L2/L3 and R-R1/R2). In the case
259 of SY-D16-M3, most transverse rebars (T-L2/L3/L4 and T-R2/R3/R4) and some ribs (R-L1/L3 and R-
260 R1/R2) showed deformation. The stubby Y-type perfobond rib shear connectors with transverse
261 rebars (D13 or D16) showed suitable stiffness recovery until the ultimate limit state and did not
262 exhibit brittle failure of the shear connectors owing to sufficient deformation of the transverse rebars
263 and ribs under the ultimate shear load.

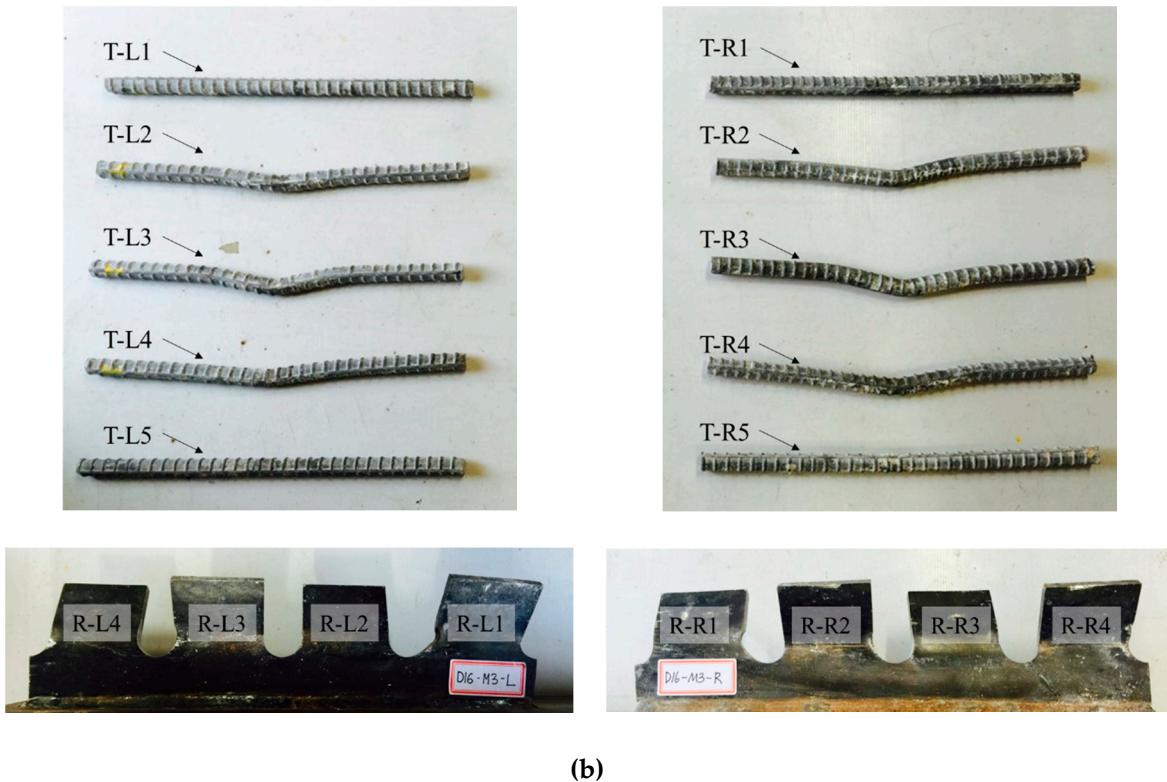
264
265


(a)


266

(b)


267


Figure 9. Deformation of transverse rebars and ribs; Stage 3: (a) SY-D13-M1; (b) SY-D16-M1.

(a)

268

Figure 10. Deformation of transverse rebars and ribs; Stage 4: (a) SY-D13-M2; (b) SY-D16-M2.

269 **Figure 11.** Deformation of transverse rebars and ribs; Stage 5: (a) SY-D13-M3; (b) SY-D16-M3.

270 **5. Conclusions**

271 In this study, stubby Y-type perfobond rib shear connectors were proposed for composite frames
 272 of building structures by modifying the conventional Y-type perfobond rib shear connector [26–30].
 273 To evaluate the shear strength and ductility of this connector, push-out tests of Y-type perfobond rib
 274 shear connectors with transverse rebars of different diameters (D13 and D16) were conducted. The
 275 occurrence and propagation of cracks on the surface of concrete slabs during the push-out tests were
 276 recorded using a digital camera. After testing, the concrete blocks of the push-out test specimens were
 277 destroyed to identify the deformation of the ribs and transverse rebars in each loading stage. The
 278 following results were obtained:

279 (1) The push-out tests of stubby-Y-type perfobond rib shear connectors with different transverse
 280 rebars (D13 and D16) indicated that the diameter of the transverse rebars did not considerably
 281 affect the change in shear strength. The shear strengths of the stubby Y-type shear connectors
 282 with D13 and D16 were 894.6 and 907.4 kN, respectively. That is, their shear strength per unit
 283 length (1 m) was approximately 2,250 kN/m, which is a significant shear capacity for composite
 284 frames of building structures. The experimental results showed a difference of approximately
 285 13% from the shear strength predicted using the existing equation for Y-type perfobond rib shear
 286 connectors; however, the equation slightly overestimates the influence of the rebar diameter.
 287 Therefore, to verify the applicability of the existing resistance formula, numerous parametric
 288 studies are required for stubby Y-type shear connectors.

289 (2) In terms of ductility, both specimens (SY-D13-M and SY-D16-M) satisfied the ductility standard
 290 of Eurocode-4. The ductility of the stubby Y-type perfobond rib shear connector with transverse
 291 rebar D16 was 45.1% greater than that with D13. According to the assessment criteria for
 292 ductility provided by Kim et al. (2013), the ductility of the stubby Y-type perfobond rib shear
 293 connector with transverse rebar D16 was also 28.8% greater than that with D13. These results
 294 show that when stubby Y-type perfobond rib shear connectors with identical rib sizes are used
 295 in composite frame structures, the structures with larger-diameter transverse rebars are
 296 preferable in terms of ductility.

297 (3) Concrete crack distributions of the stubby Y-type perfobond rib shear connectors were detected
298 according to the increase in relative slip. Most specimens started to show cracks at the bottom
299 end of the cut rib. The initial cracks in SY-D13-M and SY-D16-M occurred at approximately 75%
300 and 85% shear strength, respectively. In stage 3, SY-D13-M developed additional vertical cracks,
301 whereas SY-D16-M developed additional horizontal cracks. Then, all the crack patterns of the
302 stubby Y-type perfobond rib shear connector with transverse rebar D13 appeared as pry-out
303 failure of concrete, while those of the shear connector with transverse rebar D16 displayed
304 overall splitting failure of concrete. Thus, it can be deduced that the load distribution on the
305 transverse rebar, rib, and concrete is well balanced with increasing transverse rebar stiffness of
306 the shear connector using transverse rebar D16, which has a relatively large cross-section area
307 compared with the shear connector with transverse rebar D13. In addition, most rebars exhibited
308 large deformations in stage 5. These deformations delay concrete crushing in the dowel hole and
309 prevent the brittle failure of shear connections after the ultimate limit state.

310 (4) The difference of the shear force is low following the diameter of the transverse rebar. However,
311 the size of the rebar affects the ductility and load distribution. A larger size shows better
312 performance than the smaller one. Thus, it is expected that the size of the rebar affects the
313 behavior of the whole shear connector system.

314 **Acknowledgments:** This research was supported by Basic Science Research Program through the National
315 Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
316 (2017R1D1A1B03028262). In addition, it was supported by the Korea Institute of Energy Technology Evaluation
317 and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No.
318 20174030201480).

319 **Author Contributions:** Sang-Hyo Kim proposed the topic of this study and designed the process; Kun-Soo Kim
320 performed numerical simulations; Do-Hoon Lee and Jun-Seung Park performed the experiments; and Oneil Han
321 performed the analysis and wrote the paper.

322 **Conflicts of Interest:** The authors declare no conflict of interest.

323 References

- 324 1. Kim, H.Y.; Jeong, Y.J. Ultimate strength of a steel-concrete composite bridge deck slab with profiled
325 sheeting, *Eng. Struct.* **2010**, *32*(2), 534–546.
- 326 2. Qureshi, J.; Lam, D.; Ye, J. Effect of shear connector spacing and layout on the shear connector capacity in
327 composite beams, *J. Constr. Steel Res.* **2011**, *67*(4), 706–719.
- 328 3. Vasdravellis, G.; Uy, B. Shear strength and moment-shear interaction in steel-concrete composite beams, *J.*
329 *Struct. Eng.* **2014**, *140*(11), 04014084.
- 330 4. Shariati, M.; Sulong, N.R.; Shariati, A.; Kueh, A.B.H. Comparative performance of channel and angle shear
331 connectors in high strength concrete composites: An experimental study, *Constr. Build. Mater.* **2016**, *120*,
332 382–392.
- 333 5. Lasheen, M.; Shaat, A.; Khalil, A. Behaviour of lightweight concrete slabs acting compositely with steel I-
334 sections, *Constr. Build. Mater.* **2016**, *124*, 967–981.
- 335 6. Caughey, R.A. Composite beams of concrete and structural steel, Proceedings of the 41st Annual Meeting,
336 Iowa Engineering Society, 1929, pp. 96–104.
- 337 7. Viest, I.M. Investigation of stud shear connectors for composite concrete and steel T-beams, *ACI Journal*
338 *Proceedings* **1956**, *53*(8), 875–891.
- 339 8. Viest, I.M. Review of research on composite steel-concrete beams, *J. Struct. Div. ASCE* **1960**, *86*(ST6), 1–21.
- 340 9. Slutter, R.G.; Fisher, J.W. Fatigue strength of shear connectors, *Highw. Res. Rec.* **1966**, *147*, 65–88.
- 341 10. Ollgaard, J.G.; Slutter, R.G.; Fisher, J.W. Shear strength of stud connectors in lightweight and normal weight
342 concrete, *AISC Eng. J.* **1971**, *8*(2), 55–64.
- 343 11. Menzies, J.B. CP 117 and shear connectors in steel-concrete composite beams made with normal-density or
344 lightweight concrete, *Struct. Eng.* **1971**, *49*(3), 137–54.
- 345 12. Badie, S.S.; Tadros, M.K.; Kakish, H.F.; Splittgerber, D.L.; Baishya, M.C. Large shear studs for composite
346 action in steel bridge girders, *J. Bridge Eng.* **2002**, *7*(3), 195–203.

347 13. An, L.; Cederwall, K. Push-out tests on studs in high strength and normal strength concrete, *J. Constr. Steel*
348 *Res.* **1996**, *36*(1), 15–29.

349 14. Nguyen, H.T.; Kim, S.E. Finite element modeling of push-out tests for large stud shear connectors. *J. Constr.*
350 *Steel Res.* **2009**, *65*(10), 1909–1920.

351 15. Leonhardt, F.; Andrä, W.; Andrä, H. P.; Harre, W. New advantageous shear connection for composite
352 structures with high fatigue strength, *Beton und Stahlbetonbau* **1987**, *62*(12), 325–331.

353 16. Oguejiofor, E.C., Hosain, M.U. Behaviour of perfobond rib shear connectors in composite beams: full-size
354 tests, *Can. J. Civil Eng.* **1992**, *19*(2), 224–235.

355 17. Oguejiofor, E.C.; Hosain, M.U. A parametric study of perfobond rib shear connectors, *Can. J. Civil Eng.*
356 **1994**, *21*(4), 614–625.

357 18. Oguejiofor, E.C.; Hosain, M.U. Numerical analysis of push-out specimens with perfobond rib connectors,
358 *Comput. Struct.* **1997**, *62*(4), 617–624.

359 19. Valente, I.; Cruz, P.J. Experimental analysis of Perfobond shear connection between steel and lightweight
360 concrete, *J. Constr. Steel Res.* **2004**, *60*(3), 465–479.

361 20. Vianna, J.D.C.; Costa-Neves, L.F.; Vellasco, P.D.S.; de Andrade, S.A.L. Structural behaviour of T-Perfobond
362 shear connectors in composite girders: An experimental approach, *Eng. Struct.* **2008**, *30*(9), 2381–2391.

363 21. Vianna, J.D.C.; Costa-Neves, L.F.; Vellasco, P.D.S.; de Andrade, S.A.L. Experimental assessment of
364 Perfobond and T-Perfobond shear connector's structural response, *J. Constr. Steel Res.* **2009**, *65*(2), 408–421.

365 22. Vianna, J.D.C.; de Andrade, S.A.L.; Vellasco, P.D.S.; Costa-Neves, L.F. Experimental study of Perfobond
366 shear connectors in composite construction, *J. Constr. Steel Res.* **2013**, *81*, 62–75.

367 23. Lorenc, W.; Kożuch, M.; Rowiński, S. The behaviour of puzzle-shaped composite dowels—Part I:
368 Experimental study, *J. Constr. Steel Res.* **2014**, *101*, 482–499.

369 24. Lorenc, W.; Kożuch, M.; Rowiński, S. The behaviour of puzzle-shaped composite dowels —Part II:
370 Theoretical investigations, *J. Constr. Steel Res.* **2014**, *101*, 500–518.

371 25. Papastergiou, D.; Lebet, J.P. Design and experimental verification of an innovative steel–concrete
372 composite beam, *J. Constr. Steel Res.* **2014**, *93*, 9–19.

373 26. Kim, S.H.; Choi, K.T.; Park, S.J.; Park, S.M.; Jung, C.Y. Experimental shear resistance evaluation of Y-type
374 perfobond rib shear connector, *J. Constr. Steel Res.* **2013**, *82*, 1–18.

375 27. Kim, S.H.; Kim, K.S.; Park, S.; Ahn, J.H.; Lee, M.K. Y-type perfobond rib shear connectors subjected to
376 fatigue loading on highway bridges, *J. Constr. Steel Res.* **2016**, *122*, 445–454.

377 28. Kim, S.H.; Heo, W.H.; Woo, K.S.; Jung, C.Y.; Park, S.J. End-bearing resistance of Y-type perfobond rib
378 according to rib width–height ratio, *J. Constr. Steel Res.* **2014**, *103*, 101–116.

379 29. Kim, S.H.; Park, S.J.; Heo, W.H.; Jung, C.Y. Shear resistance characteristic and ductility of Y-type perfobond
380 rib shear connector, *Steel Compos. Struct.* **2015**, *18*(2), 497–517.

381 30. Kim, S.H.; Choi, J.; Park, S.J.; Ahn, J.H.; Jung, C.Y. Behavior of composite girder with Y-type perfobond rib
382 shear connectors, *J. Constr. Steel Res.* **2014**, *103*, 275–289.

383 31. Eurocode 4-1994, Design of composite steel and concrete structures, Part 1. 1: General rules and rules for
384 buildings. EN1994-1-1, European Committee for Standardization, Brussels, 2004.