

1 Article

2 Thermally Stimulated Currents in Nanocrystalline 3 Titania

4 Mara Bruzzi ^{1,*}, Riccardo Mori ², Andrea Baldi ³, Ennio Antonio Carnevale ⁴, Alessandro
5 Cavallaro ⁵, Monica Scaringella ⁶

6 ¹ Dipartimento di Fisica e Astronomia, Università di Firenze, Via G.
7 Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy; mara.bruzzi@unifi.it

8 ² Albert-Ludwigs-Universität Freiburg, Experimentelle Teilchenphysik,
9 Physikalisches Institut, Hermann-Herder Straße 3, 79104 Freiburg im
10 Breisgau, Germany; riccardo.mori@physik.uni-freiburg.de

11 ³ Dipartimento di Ingegneria Industriale, Università di Firenze, Via S.
12 Marta 1, 50139 Firenze, Italy; ennio.carnevale@unifi.it, andrea.baldi@unifi.it

13 ⁴ LBT Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721, U.S.A.;
14 acavallaro@lbt.org

15 ⁵ Dipartimento di Ingegneria dell'Informazione, Università di Firenze, Via S.
16 Marta 1, 50139 Firenze, Italy; monica.scaringella@unifi.it

17 * Correspondence: mara.bruzzi@unifi.it; Tel.: +39-055-4572291

18 **Abstract:** A thorough study on the distribution of defect-related active energy levels has been
19 performed on nanocrystalline TiO₂. Films have been deposited on thick-alumina printed circuit
20 boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed
21 thermally stimulated currents analysis on a wide temperature range (5-630K), in view to evidence
22 contributions from shallow to deep energy levels within the gap. Data have been processed by
23 numerically modelling electrical transport. The model considers both free and hopping contribution
24 to conduction, a density of states characterized by an exponential tail of localized states below the
25 conduction band and the convolution of standard TSC emissions with gaussian distributions to take
26 into account the variability in energy due to local perturbations in the highly disordered network.
27 Results show that in the low temperature range, up to 200K, hopping within the exponential band
28 tail represents the main contribution to electrical conduction. Above room temperature, electrical
29 conduction is dominated by free carriers contribution and by emissions from deep energy levels,
30 with a defect density ranging within 10¹⁴–10¹⁸cm⁻³, associated to physio- and chemi-sorbed water
31 vapour, OH groups and to vacancy-oxygen defects.

32 **Keywords:** thermally stimulated currents; photocurrent; titanium dioxide; hopping; nanoporous
33 film; desorption current; chemisorbed current

34

35 1. Introduction

36 The study of the electronic transport in nanocrystalline Titanium dioxide (nc-TiO₂) is motivated
37 by its wide range of application, from catalysis to green energy systems such as Dye Sensitized Solar
38 Cells (DSSCs) [1] and toxic gas sensing devices [2]. In fact, performances of devices based on nc-TiO₂
39 strongly depend on electron transport mechanisms, which can be very different from those
40 dominating in the bulk single-crystal semiconductor, due to the complex morphology structure and
41 to the huge active surface of this porous material with respect to its volume. Investigation of the
42 electrical transport properties on nc-TiO₂ and its relationship with surface and bulk defects is thus
43 strategic in the perspective of increasing their performance. A model of the electrical conductivity in
44 nc-TiO₂ that takes into account all the complexities of this material (disorder, fractional
45 dimensionality of the nanoporous material and potential barriers between the constituent
46 nanoparticles) is still lacking; its implementation is a cumbersome task. In order to progress in this

47 direction, a systematic characterisation of defects states, in the widest range of energy and an
48 evaluation of their concentration in the material is mandatory.

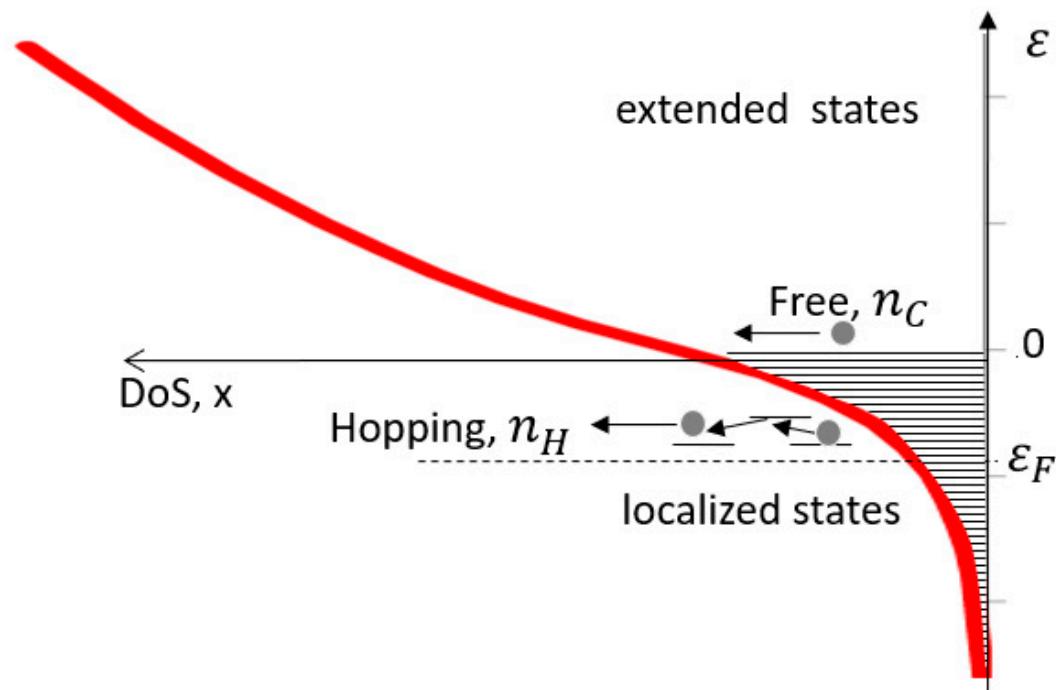
49 The thermally stimulated current technique is one of the most effective tool for characterizing
50 electrical defects in semiconductors. In this paper, we apply this method to get an overall picture of
51 the defect distribution in nanocrystalline Titania used in state-of-art DSSC devices.

52 The model of TSC used to interpret our experimental results, takes account of the heavily
53 disordered microscopic nature of nc-TiO₂. In this work, we adopt the model usually considered the
54 for electrical transport in nc-TiO₂ which treats this material as a strongly disordered 3-D medium and
55 neglects the potential barriers at the grain interface; than in general both the hopping and free carrier
56 contributions must be taken into account for the electrical conductivity [3]. In a previous paper a
57 model for the TSC at low temperature was developed starting from studies on strongly disordered
58 semiconductors, such as amorphous semiconductors [4]. In particular, the reference model we
59 considered is that first developed by Gu et al. [3], then extended by Baranovski et al. [5] and Nagy [6]
60 to take into account, in addition to the trapping, the contribution to conduction of hopping electrons,
61 in a variable range model. In our study, previous models have been extended taking into account the
62 degeneracy, a condition that in TSC measurements in disordered media is easily attained either at
63 low temperature or after a strong priming. In this paper, thermally stimulated current analysis [7] is
64 used also to investigate defects related to water, OH groups and vacancy-oxygen, in view to give a
65 quantitative contribution to elucidate their role in transport properties, nowadays still a matter of
66 intense debate [8,9].

67 2. Mixed conduction model in nc-TiO₂

68 In heavily disordered semiconductors, significant carrier hopping can occur between localized
69 sites, whose energies fall within the band gap, giving a non-negligible contribution to the electrical
70 conductivity. As a result, mixed conduction mechanisms with hopping and free carriers contributions
71 should be taken into account when discussing the electrical transport in such a material, especially at
72 low-to-moderate temperatures and high carrier densities.

73 As it is usually done, we consider the nc-TiO₂ as a strongly disordered intrinsic semiconductor
74 whose charge carriers are electrons: then the Density of States (DoS) is modelled as the sum of the
75 extended state contribution (i.e. the conduction band), with the typical square root dependence on
76 energy, and the localized state contribution characterized by an exponential tail, below the
77 conduction band, as for amorphous materials [10]. Then, the density of states in the overall energy
78 range, putting at $\varepsilon = 0$ the border between extended and localized states, is given by the function:


$$g(\varepsilon) = \frac{N_L}{E_L} \theta(-\varepsilon) e^{\frac{\varepsilon}{E_L}} + \theta(\varepsilon) N_{C0} \sqrt{\varepsilon + E_B}, \quad (1)$$

79 with $\theta(\varepsilon)$ Heaviside function, E_L tailing factor, $N_L = \int_{-\infty}^0 g(\varepsilon) d\varepsilon$ total density of localized states
80 within the band gap, N_{C0} related to the effective density of states at the conduction band minimum
81 ($N_{C0} = 4 \cdot 10^{19} \text{ cm}^{-3} \text{ meV}^{-3/2}$, in order to get at room temperature $N_C = 5.2 \cdot 10^{21} \text{ cm}^{-3}$, typical for TiO₂). The
82 energy parameter:

$$E_B = \left(\frac{N_L}{N_{C0} E_L} \right)^2, \quad (2)$$

83 is introduced so as to have the continuity of $g(\varepsilon)$ at $\varepsilon = 0$. The DoS obtained with this procedure is
84 shown in Figure 1.

85

86 **Figure 1.** DoS as obtained with an exponential decay tail in the forbidden gap and a square root
 87 dependence in the conduction band region. The boundary is kept at $\varepsilon_C = 0$, minimum of the
 88 conduction band. conduction is due to both free electrons in the conduction band and to hopping at
 89 localized states.

90 Mixed electrical conductivity, in case of a n-type nc-TiO₂ layer, is the result of transport processes
 91 of both hopping electrons within the band tail and free electrons in the conduction band, as depicted
 92 in figure 1, then for the total conductivity we have:

$$\sigma = \sigma_H + \sigma_C = q\mu_H n_H + q\mu_C n_C, \quad (3)$$

93 where σ_H and σ_C , μ_H and μ_C , n_H and n_C , are conductivity, mobility and electron concentration of
 94 hopping carriers and free carriers respectively; q is the electron charge. In (3) μ_H is an effective
 95 mobility that must be calculated taking into account that the hopping probability depends on the site.
 96 Assuming the validity of the Einstein relation, the hopping mobility is related to the carrier energy
 97 through the diffusivity $D(\varepsilon)$:

$$\mu(\varepsilon) = \frac{q}{K_B T} D(\varepsilon) = \frac{q}{K_B T} r(\varepsilon)^2 v, \quad (4)$$

98 with v hopping rate and $r(\varepsilon)$ average distance between hopping sites available for hopping for carrier
 99 with energy ε . The rate for hopping from site i to site j , respectively characterized by energies ε_i and
 100 ε_j , is given by the Miller-Abrahams [11] model:

$$v = v_0 \begin{cases} e^{-2\frac{r_{ij}}{\alpha} \frac{\varepsilon_j - \varepsilon_i}{K_B T}}, & \varepsilon_i < \varepsilon_j \\ e^{-2\frac{r_{ij}}{\alpha}}, & \varepsilon_i > \varepsilon_j \end{cases}, \quad (5)$$

101 where r_{ij} is the distance between sites at ε_i and at ε_j , α is the localization radius of the electron and
 102 v_0 is the hopping frequency coefficient.

103 The localization radius can be assumed as a constant, of the order of a few angstrom, for states
 104 deeply localized, but when approaching the boundary $\varepsilon = 0$ with the extended states this length
 105 diverges. Then, as the hopping probability depends exponentially on this length, the description of
 106 the conduction for carriers localized in states near the mobility edge must take into account this
 107 behavior. This divergence, according to several models, behaves as $E^{-\gamma}$ with γ ranging between 0.5
 108 and 1.5 [10]. Here, we assume for the localization length α :

$$\alpha(\varepsilon) = \alpha_0 \left(1 - \frac{z}{\varepsilon}\right)^\gamma, \quad (6)$$

109 with α_0 carrier localization length of the deep states and z the energy to which α starts to diverge.
 110 The evaluation of the hopping conductivity requires some kind of approximation in order to get an
 111 expression useful for fitting experimental data. Referring to the approach already proposed by Nagy
 112 [6] the hopping conductivity can be calculated as:

$$\sigma_H(T) = q \int \mu \, dn = \nu_0 \frac{q^2}{K_B T} \int_{-\infty}^0 g(\varepsilon) f(e, E_F, T) r(\varepsilon)^2 e^{-2\frac{r(\varepsilon)}{\alpha(\varepsilon)}} d\varepsilon, \quad (7)$$

113 where $r(\varepsilon)$ is an average hopping distance for a site of energy ε , given by:

$$\begin{aligned} \frac{1}{r(\varepsilon)^3} &= \frac{4\pi}{BR_L^3} \int_{-\infty}^{\varepsilon} g(\varepsilon') [1 - f(\varepsilon', E_F, T)] d\varepsilon', \\ \frac{1}{R_L^3} &= \frac{4\pi}{3} \int_{-\infty}^0 g(\varepsilon') d\varepsilon' = \frac{4\pi}{3} N_L, \end{aligned} \quad (8)$$

114 with $f(\varepsilon, E_F, T) = \frac{1}{\frac{\varepsilon - E_F}{K_B T} + e^{\frac{\varepsilon - E_F}{K_B T}}}$ Fermi-Dirac distribution function and B the percolative limit factor, namely
 115 the average number of site links, a parameter dependent on the system dimensionality ($B=2.7$ for 3-
 116 D hopping [5]).

117 The Fermi energy E_F is obtained by evaluating the total electron concentration n as the sum of
 118 the electron density in the band tail ($\varepsilon < 0$), n_H , and in the conduction band ($\varepsilon > 0$), n_c ; then $n = n_c + n_H$,
 119 where:

$$n_H = \int_{-\infty}^0 g(\varepsilon) f(e, E_F, T) d\varepsilon, \quad n_c = \int_0^{\infty} g(\varepsilon) f(e, E_F, T) d\varepsilon. \quad (9)$$

120 Finally, the contribution of free electrons to the electrical conductivity is given by the typical
 121 expression of the conductivity for electrons in the conduction band:

$$\sigma_c(T) = q \mu_c n_c = q \frac{\mu_{c0}}{(K_B T)^{3/2}} n_c, \quad (10)$$

122 with n_c as calculated from Eq. 9. A typical value for the TiO_2 mobility constant is $\mu_{c0} = 1 \text{ cm}^2 \text{meV}^{3/2} / \text{Vs}$,
 123 which gives a room temperature mobility $\mu_c = 7.5 \cdot 10^{-3} \text{ cm}^2 / \text{Vs}$ [13].

124 3. Rate equations for priming and thermally stimulated process

125 The rate equation for hopping and free carriers is:

$$\frac{dn}{dt} = - \left(\frac{dn_H}{dt} \right) - \frac{n_c}{\tau_c} + S(t), \quad (11)$$

126 where $S(t)$ is the generation rate during priming (e.g. light exposure, null during the TSC scan). Here
 127 conduction carriers decay is considered via annihilation on recombination centers or trapping from
 128 deep levels, characterized by an active energy level within the gap. The free electron lifetime, τ_c , is
 129 typically dependent on the defect capture cross section σ_t and concentration N_t :

$$\frac{1}{\tau_c} = N_t \sigma_t < v_{th} > = N_t \sigma_t \sqrt{\frac{3K_B T}{m}}, \quad (12)$$

130 where m is the effective mass of the free carriers (in TiO_2 it is about 7 times the electron mass m_0 [12])
 131 and $< v_{th} >$ their average thermal velocity. In general, in a disordered semiconductor, defects may
 132 have a spread in energy, so its concentration is calculated through a gaussian distribution:

$$N_t = \frac{N_{t0}}{\sqrt{2\pi} \sigma_{E_t}} \int e^{-\frac{(\varepsilon-E_t)^2}{2\sigma_{E_t}^2}} d\varepsilon, \quad (13)$$

133 The decay of the hopping carriers, in turn, is given as [5]:

$$\left(\frac{dn_H}{dt}\right)_{dec} = - \int_{-\infty}^0 \frac{g(\varepsilon)f(\varepsilon)}{\tau(T,\varepsilon)} d\varepsilon, \quad (14)$$

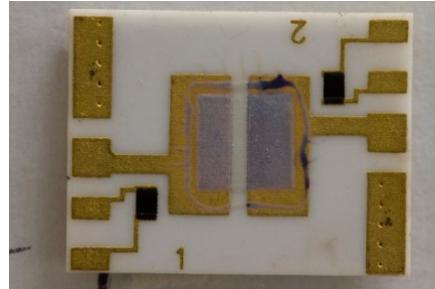
$$\frac{1}{\tau(T,\varepsilon)} = N_t \frac{r(\varepsilon)^2 D(\varepsilon)}{\alpha} = v_0 N_t \frac{r(\varepsilon)^4}{\alpha} e^{-2\frac{r(\varepsilon)}{\alpha}}. \quad (15)$$

134 In the following, we will describe results of decayed/fractionated Thermally Stimulated Currents
 135 (TSC) experiments analyzed with the mixed conduction model described above. In this method, after
 136 priming the sample only once at a low temperature, successive cycles of heating/cooling are applied
 137 to fractionally deplete levels of lowering energy. The sample is heated up to a first maximum
 138 temperature T_{stop} and cooled down to a first minimum temperature T_{start} then it is heated and
 139 cooled again to higher T values and so on, eventually up to the final temperature.

140 At first, we have used the decayed TSC method to get useful information about the DoS shape.
 141 For each scan of the decayed TSC, we extracted the couple (E_{act}, Q) with E_{act} = activation energy as
 142 determined from the initial rise of the TSC and Q = emitted charge calculated by integrating the TSC
 143 of the corresponding scan [15]. In this way, we obtained the DoS shape as a function of the energy by
 144 plotting the charge released at each step as a function of the activation energy E_{act} .

145 Then, delayed TSC measurements have been best fitted using the mixed conduction model,
 146 considering a constant heating/cooling rate: $\beta = \frac{dT}{dt}$, starting from the initial condition due to priming,
 147 stated that in between two scans there is a time delay in which the electrical state of the sample evolve
 148 very slowly. So, assuming the initial state got from priming, it is possible to fit the entire sequence of
 149 the delayed TSC at once. The rate equation is solved starting from an evaluation of the Fermi level,
 150 then the distance between hopping sites, the transport energy, the hopping carrier density and the
 151 average hopping rate are obtained and finally iterating for each temperature the calculation is
 152 performed for the entire experimental data set.

153 In the high temperature range, above room temperature, when conductivity is mainly due to
 154 free carriers and hopping can be neglected, in our model TSC is considered as dominated by deep
 155 centers with discrete energy levels E_t in the forbidden gap, characterized by a capture cross section
 156 σ_n (for electrons) and a trap N_t concentration. So, we consider the standard TSC expression as [16]:


$$I_{TSC}(T) = q\mu_c \Sigma N_t F e_n(T) e^{-\frac{1}{\beta} \int_{T_i}^T e_n(T) dT}, \quad (16)$$

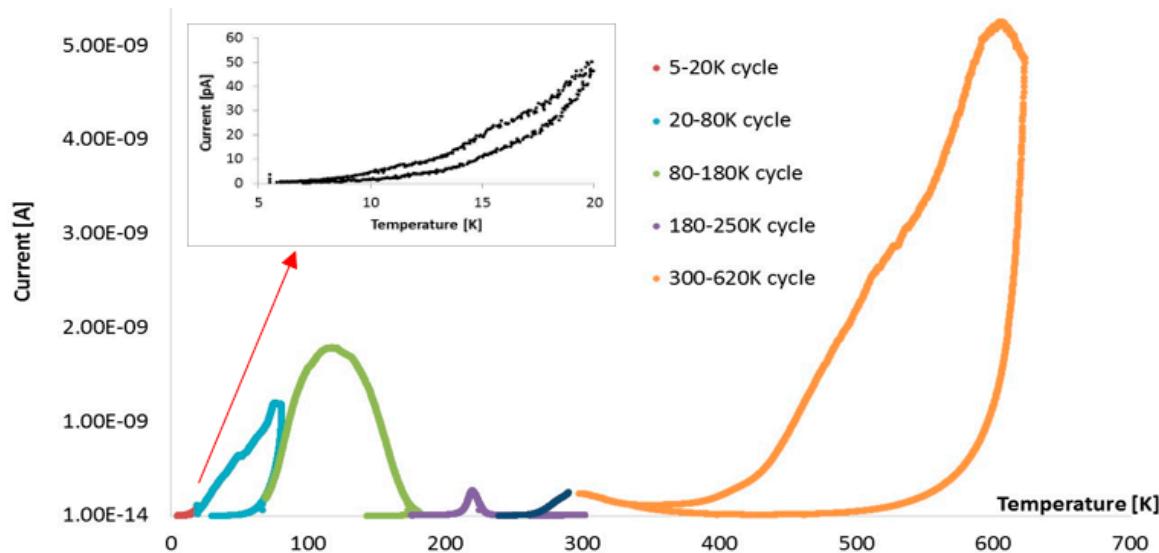
157 with $e_n(T) = N_c \sigma_n v_{th} e^{-\frac{E_C-E_t}{k_B T}}$ emission constant, Σ surface normal to electric field F , T_i initial
 158 temperature of the scan Due to the disorder in the nanocrystalline material, the TSC peak usually
 159 results in a peak broader in temperature than the standard one. This is due to the fact that the energy
 160 E_t of a defect varies within a certain range due to local morphological changes. We have taken into
 161 account that by convoluting the TSC peak with a gaussian distribution, as given in Eq. 13.

162 4. Experimental Set-up and Procedure

163 To manufacture our samples, we used a colloidal system produced by Solaronix, Switzerland,
 164 containing about 11 % wt. nanocrystalline titanium dioxide mixed with optically dispersing anatase
 165 particles (13/400 nm, Ti-Nanoxide D). This material is specifically developed for prototypal electrodes
 166 in DSSCs. We deposited the nc-TiO₂ paste on alumina substrates having two parallel gold contacts,
 167 7mm long and spaced 0.8mm; thickness of the film is about 1 μ m. A picture of the sample is shown
 168 in Fig. 2. After deposition, the films have been syntherized in two steps, 30 minutes each, first at 280
 169 °C and then at 450°C. The current-voltage characteristics of the sample showed an ohmic behaviour
 170 in the overall investigated range (0-100V) with room temperature resistivity of the order of 2×10^8 Ω m
 171 [15]. In a typical DSSCs, with a 2 μ m-thick nc-TiO₂ film, a voltage of about 0.5V is applied and an
 172 average electric field of about 2.5×10^5 V/m is settled. In our TSC measurements we therefore chose to

173 apply a bias of 100V across the sample, in view to get an electric field of the same order of magnitude,
174 considering the increased distance between our planar electrodes.
175

176 **Figure 2.** Nc-TiO₂ film deposited on an alumina chip for TSC measurements.

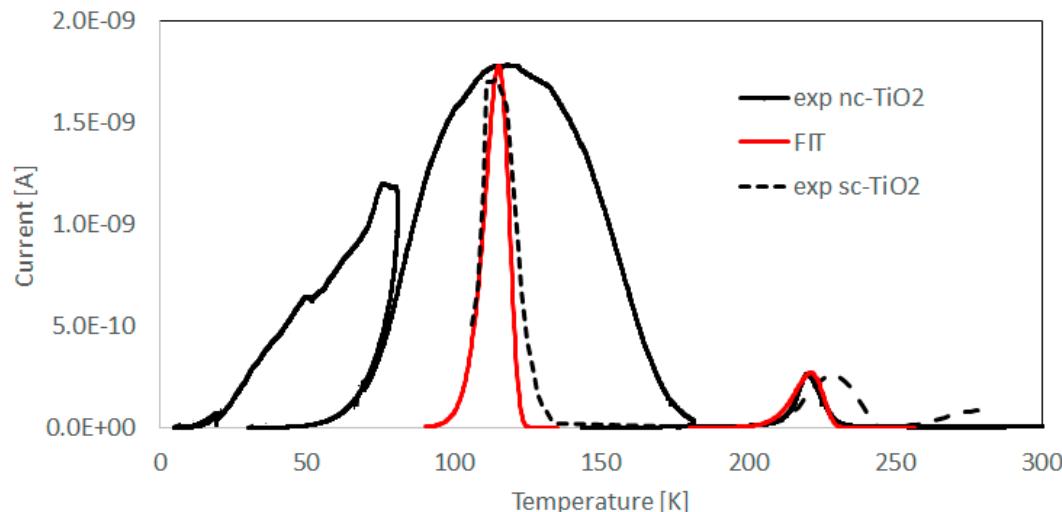

177 To perform TSC measurements in the temperature range 5-300K, the alumina substrates coated
178 with the nc-TiO₂ have been placed in a sample holder equipped with a 4Ω heating resistor and a
179 silicon temperature sensor. The sample-holder has been inserted into a dewar containing liquid He
180 (LHe) and positioned over the LHe vapours to ensure stable temperatures down to 4.2K, minimize
181 thermal inertia and reduce possible mismatch between the sample and the thermometer. Details of
182 the experimental setup are given in [16]. Polarization of the sample and current reading was
183 performed by a Keithley 6517 electrometer, the heater was biased by a TTi QL564P power supply and
184 temperature was read by a Lakeshore DRC91C temperature controller. Priming was performed by a
185 LED source placed in front of the sample inside the sample holder. We used two priming sources: a
186 400 nm UV (NUV) LED and a 355 nm UV (FUV) LED, having 12 mW (typical) and 8.4 mW
187 (maximum) output power, respectively. LEDs were driven by a Systron Donner 110D pulse
188 generator. The light spot on the sample during illumination has a diameter of about 2mm.

189 Delayed TSC measurements have been performed as follows. We primed the sample at a low
190 temperature T₀ with the LED source, biasing the sample at 100 V. Then, we waited a time interval to
191 make fast transient effects relaxing and to get a constant temperature on the whole sample. Then,
192 fractionated TSC analysis has been carried out performing different heating/cooling cycles up to
193 300K. TSC has been also studied in the temperature range from 300K to 630K using a different
194 chamber where heating / cooling is performed by a system controlling temperature, pressure and gas
195 composition. During each TSC measurement, both in the low and high temperature ranges, the scan
196 rate was fixed at 0.1 K/s.

197 5. Experimental Results and Discussion

198 Figure 3 shows a typical TSC spectrum observed in the overall range 5-630K obtained with the
199 procedure described in the previous section. A fractionated TSC is performed up to 300K, after
200 priming at 5K. Then, a second priming is carried out at 300K inside the high temperature TSC setup
201 and a second TSC analysis is performed up to 630K. The low temperature analysis is divided into 4
202 TSC fractions in the ranges: 5-20K, 20-80K, 80-180K, 180-300K, then, a unique TSC curve is measured
203 after priming at 300K up to 630K. At last, a final cooling step from 300 to 250K is measured to close
204 the whole cycle.

205



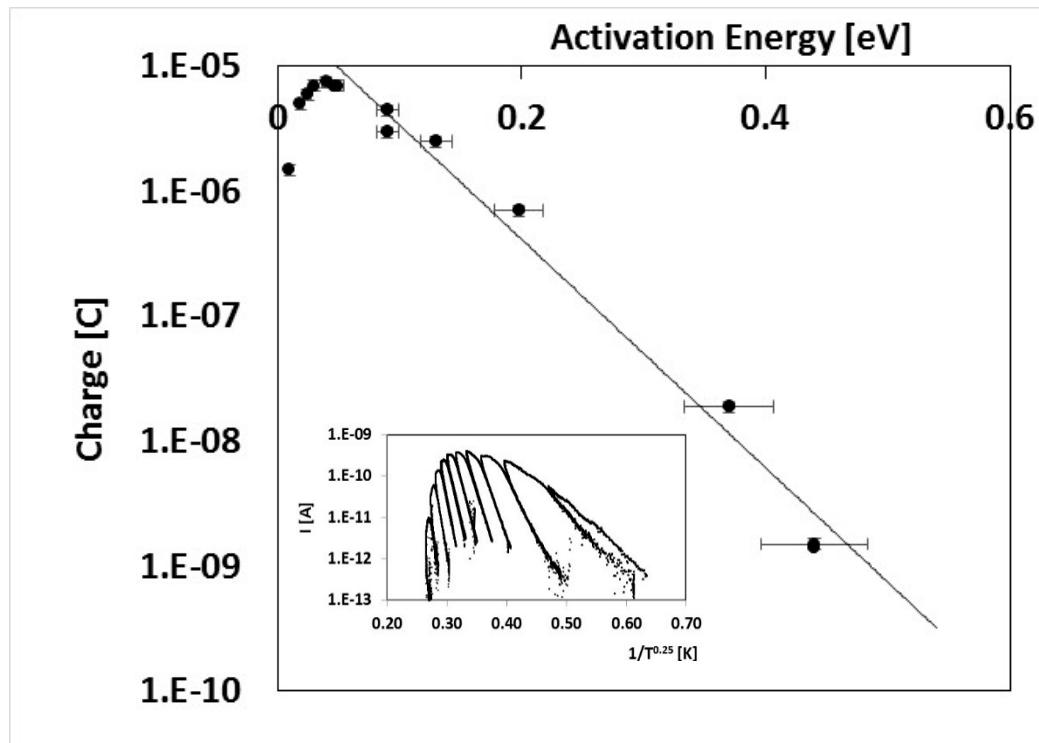
206 **Figure 3.** Fractionated TSC analysis performed in different cycles of measurements after UV priming
 207 at 5K. Inset on the left shows an enlarged view of the 5-20K temperature range.

208 Main conductivity processes in the two temperature ranges 5-300K and 300-630K are different.
 209 In fact, in the low T range, hopping conduction is non- negligible against free conduction. Conversely,
 210 in the high T range conductivity is mainly due to free carriers. Moreover, in this latter case, the
 211 influence of the surrounding gas atmosphere to the charge state of deep discrete levels in the
 212 forbidden gap cannot be neglected. Thus, in the following, we will discuss separately results
 213 measured below and above room temperature.

214 *5.1. TSC analysis below room temperature*

215 Figure 4 compares the TSC spectrum measured in the low T range together with TSC data
 216 reported in past for single crystal TiO₂ [19].

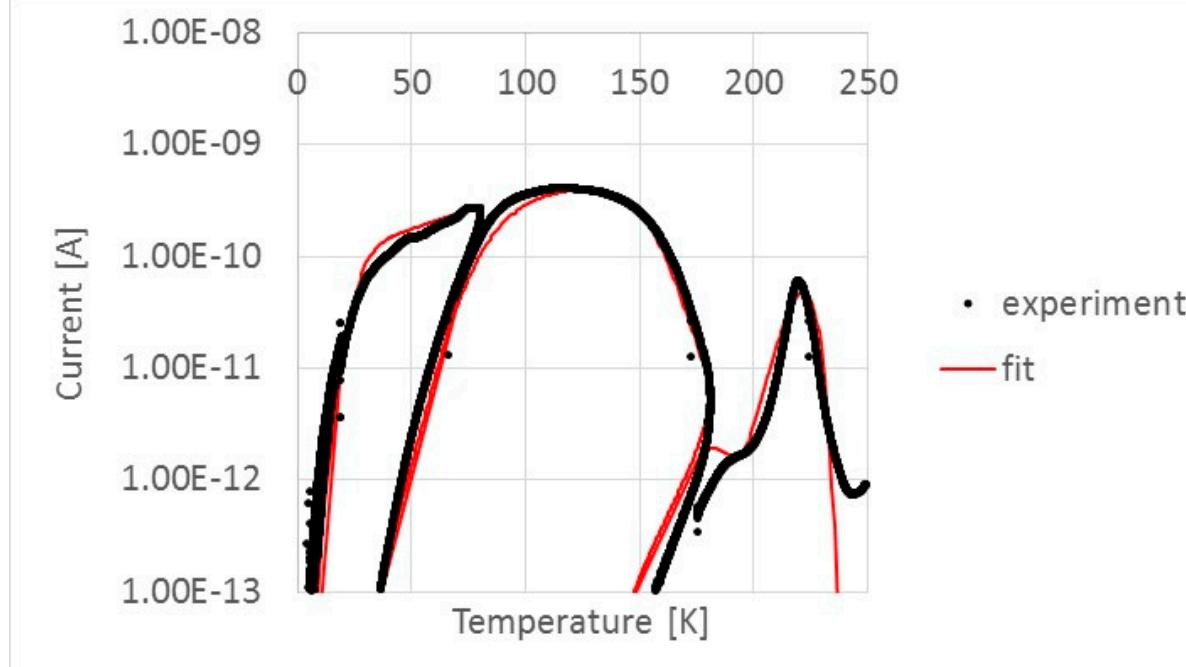
217 **Figure 4.** Fractional TSC measured with the nc-TiO₂ film in the range 5-300K compared with
 218 experimental TSC peaks reported in [19] for single crystal TiO₂ and with a best fit obtained
 219 considering a standard TSC emission from discrete energy levels. The experimental peaks for sc-TiO₂
 220 have been multiplied respectively by 1700 (120K) and 500 (230K) to compare with those measured
 221 with the nc-TiO₂ ones.


222 In single crystal TiO_2 , two peaks related to two discrete energy levels at 120K and 230K are
 223 present, which can be described in terms of standard TSC emissions [16] as given in Eq. 16. In
 224 nanostructured TiO_2 , we observe a much broader peak at 120K, which cannot be described in terms
 225 of standard single-level TSC emission, and a peak at 220K, rather similar to the one measured in
 226 single crystal TiO_2 . In the figure, a best fit of this latter peak is shown, obtained with a standard TSC
 227 analysis (Eq. 16), a very high capture cross section, $\sigma_n \approx 10^{-10} \text{ m}^2$ and $E_t \approx 0.8 \text{ eV}$, $N_t \approx 10^{14} \text{ cm}^{-3}$.

228 To investigate the origin of the broad band peaked at 120K, we then performed a measurement
 229 in the same temperature range with more delayed heating steps (up to 10). Results are shown in the
 230 inset of figure 5. We note that, in a standard thermally activated emission where carriers are emitted
 231 from discrete energy levels towards the corresponding extended band, the current measured at the
 232 foot of the TSC curve in each heating / cooling step has a dependence on temperature given by: $I(T) \propto$
 233 $T^2 e^{-\frac{E_{act}}{k_B T}}$, while if hopping conduction dominates, the dependence should be (Mott's expression):
 234 $I(T) \propto e^{-\left(\frac{T_0}{T}\right)^4}$ [20]. Inset of fig. 5 shows current measured in the range 5-150K in a Mott plot. Indeed,
 235 the foot of the logarithmic plots at each heating/cooling stage is linear with $T^{-1/4}$, in agreement with
 236 the fact that hopping conduction is prevailing in this temperature range and that, as suggested by [4],
 237 it should be related to a band tail deforming the DoS shape close to the mobility edge.

238 As described in the previous section, to investigate the DoS shape we evaluated, for each scan,
 239 the activation energy in the rising foot range of each peak and the corresponding total emitted charge.
 240 The result is shown in Fig. 5, where the total charge is plotted as a function of the activation energy.
 241 Results evidence a mono-exponential DoS: $f(\varepsilon) = Q_L e^{\frac{\varepsilon}{E_L}}(E)$, in the energy range 0.1-0.6eV with E_L
 242 tailing factor.

243

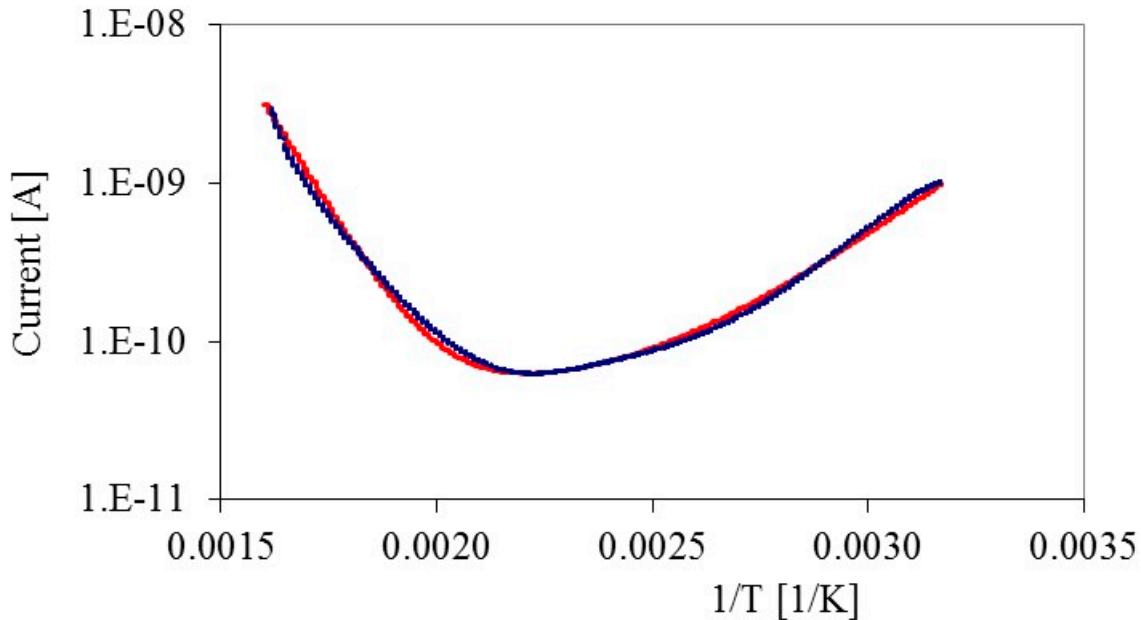

244

245 **Figure 5.** Emitted charge plotted as a function of the activation energy measured in the rising range
 246 of each peak of the fractionated TSC experiment shown in the inset. The exponential fit reflects the
 247 trend of the band tail in the deepest range within the forbidden gap. Inset: Delayed TSC in the range
 248 5-150K plotted as a function of $1/T^{1/4}$ to evidence the contribution of hopping conduction in the
 249 electrical transport.

250 Best fit gives: $E_L = 47.5\text{meV}$, $Q_L = 2.8 \times 10^{-5} \text{ C}$, values fairly in agreement with literature [19]. We
 251 note that in the low energy range of the plot, the charge is lower than the expected value indicated
 252 by the exponential trend. This can be explained considering that priming could not fill all the states
 253 in the highest part of the band tail, close to the boundary point at $\epsilon = 0$. As a strong evidence of this,
 254 using a deeper UV LED (355nm) the drop appears for shallower energies with respect to the
 255 shallower UV LED (400nm). Considering a 2mm diameter light spot and a sample thickness of about
 256 $1\mu\text{m}$, the effective volume involved in this process is: $Vol \approx \pi \cdot 10^{-12} \text{ m}^3$ and a rough estimate of the
 257 density of states is: $N_L = \frac{Q_L}{qVol} \approx 5 \times 10^{19} \text{ cm}^{-3}$.

258 Best-fit of TSC experimental data shown in figure 4 in the low temperature range, obtained using
 259 our mixed conductivity model taking care of the band tail in the range down to 0.6eV plus a discrete
 260 level at 0.8eV, is shown in Fig. 6. Of note the agreement between numerical and experimental data in
 261 the overall range, up to almost 4 orders of magnitude of the current. A disagreement is observed at
 262 high temperature, where the experimental current stabilize itself on the pAs range, while in the
 263 numerical model it decreases to lower values, as a consequence of the decrease of the Fermi level
 264 towards midgap. The pAs contribution to the current could be due to the residual presence of water
 265 vapor physisorbed on the film surface, as discussed in the next section.

266 **Figure 6.** Experimental TSC measured in the 5-250K range and best fit obtained considering the mixed
 267 conductivity model taking care of both hopping and free carriers conduction plus emission from a
 268 discrete energy level at 0.8eV.


269 *5.2. TSC analysis above room temperature*

270 In this temperature range, the effect of hopping conduction should become more and more
 271 negligible against free carrier one. Moreover, physisorption and chemisorption mechanisms at
 272 surface should also participate to conduction. In particular, dangling bonds at the nc-TiO₂ surface are
 273 capturing and releasing oxygen depending on pressure and relative humidity, these effects should
 274 be possibly investigated separately. To this purpose, we performed different sets of measurements
 275 as follows.

276 *5.2.1. Current vs Temperature with no priming*

277 Measurements are performed without previous priming. Using a low heating/cooling rate
 278 (0.1K/s) as a first approximation we can assume a quasi-stationary equilibrium. The sample is kept in

279 dark with air at a pressure of 1100mb, slightly higher than ambient pressure. A typical measurement
 280 is presented in Fig. 7.
 281

282 **Figure 7.** Current measured as a function of reciprocal temperature during a quasi-stationary heating
 283 process, in the range 300-600K with no priming. dark: data, red: best-fit.

284 The Arrhenius plot shows two distinct ranges: up to about 400K the current decreases increasing
 285 the temperature T, then it increases with T. To explain this behavior we can consider the model
 286 proposed by [22], taking account of two dominant defects, one acting as a trap, the other as a
 287 recombination center (probably associated to dangling bonds at surface, releasing holes via a
 288 thermally activating process). Neglecting the small contribution of the hopping, the rate equation for
 289 the charged carriers (free electrons and holes concentrations are denoted by n, p) is then given by:

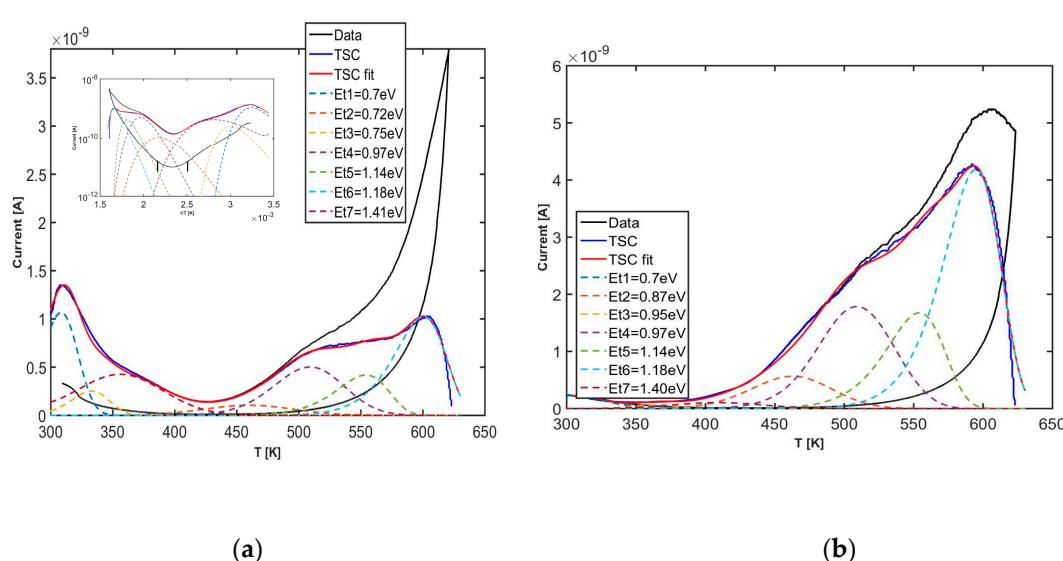
$$\frac{dn}{dt} = N_{t1}c_1e^{-E_{t1}/K_B T} - Bnp - (n - n_0)\gamma, \quad (17)$$

290 The first term of the right side is due to emission of electrons from the trap of energy E_{t1} ,
 291 concentration N_{t1} and frequency factor c_1 . The second term describes the recombination of electrons
 292 with holes at the recombination center. We here assume that also hole capture is a thermally activated
 293 process: $p = N_{t2}c_2e^{-E_{t2}/K_B T}$, with N_{t2} , E_{t2} , c_2 respectively concentration, energy and frequency factor
 294 of the recombination center and B a probability coefficient. The third term in eq. (17) takes account
 295 of other possible free electron removal mechanisms, with a coefficient γ , as trapping from deeper
 296 levels.

297 During the current temperature measurements in dry fluxed air the system, is actually in a quasi-
 298 stationary regime, so we can reasonably consider $\frac{dn}{dt} = 0$, then:

$$n = \frac{n_0 + \frac{N_{t1}c_1}{\gamma}e^{-\frac{E_{t1}}{K_B T}}}{1 + \frac{BN_{t2}c_2}{\gamma}e^{-\frac{E_{t2}}{K_B T}}}, \quad (18)$$

299 which gives a current dependence with temperature as:


$$I_{fit} = \left(\frac{a + be^{-\frac{E_{t1}}{K_B T}}}{1 + de^{-\frac{E_{t2}}{K_B T}}} \right) F, \quad (19)$$

300 with $a = q\Sigma\mu_c n_0$; $b = q\Sigma\mu_c \frac{N_{t1}c_1}{\gamma}$; $d = \frac{BN_{t2}c_2}{\gamma}$ and where again Σ is the surface normal to electric
 301 field F . Best-fit of our data with Eq. 19, shown in Figure 7, is obtained with energy values: $E_{t1} = 1.30$
 302 ± 0.05 eV and $E_{t2} = 0.40 \pm 0.05$ eV.
 303

304 5.2.2. TSC after storage in dark and humid environment

305 To analyze the effect of water vapor on TSC data, we first primed the sample by keeping it in a
 306 controlled humid environment ($rh = 20\%$) in dark at room temperature ($T = 300K$) for selected time
 307 intervals, up to 14 days. Then, a TSC heating/cooling cycle has been performed by fluxing dry air
 308 with a pressure slightly higher than atmosphere, in view to measure only emissions originated
 309 during charging in the storage period. As an example, Figures 8(a, b) show TSC experimental data
 310 obtained after 2 and 4 days storage respectively. TSC emissions are observed within two distinct
 311 ranges of temperatures: one from ambient temperature, up to 400K, the other one above 400K.

312 An evaluation of the main TSC components involved in these measurements has been carried
 313 out in order to identify the origin of the emissions. Measurements show statistically broadened
 314 emissions like the ones in Figures 8(a, b). They can be fitted using TSC peaks convoluted with a
 315 gaussian as given in Eq. 13. Best fits have been obtained by opportunely changing trap concentration
 316 N_t for a same set of $(E_t, \sigma_{E_t}, \sigma_n)$, within errors, best fitting the two measurements. Up to seven energy
 317 levels are required to fit our data. Parameters are shown in Table 1, energy levels are peaked at $E_{t0} =$
 318 0.7-1.14 eV and are characterized by an energy spread σ_{E_t} up to 70 meV. As a general trend, increasing
 319 the storage time, peaks at low temperatures decrease their concentration N_t , while those at high
 320 temperatures increase N_t . A source of uncertainty in the determination of concentration for the peak
 321 at ambient temperature is due to the increasing background current observed during the cooling
 322 stage, observed especially in Figure 8(a). This effect can indicate reversible charging/discharging of
 323 the involved energy states, maybe due to adsorbing/ desorbing from the porous alumina substrate.
 324

325

326 **Figure 8.** TSC after storage in ambient air ($T = 300K$) in humid environment ($rh = 20\%$) for (a) two
 327 days (inset: logarithmic plot) experimental data (black); TSC with background subtracted (blue); TSC
 328 best fit (red curve) obtained with a set of 7 peaks with energy E_{t0} given in the legend. (b) TSC
 329 measurements after four days storage and best fit with same E_{t0} parameters as in (a).

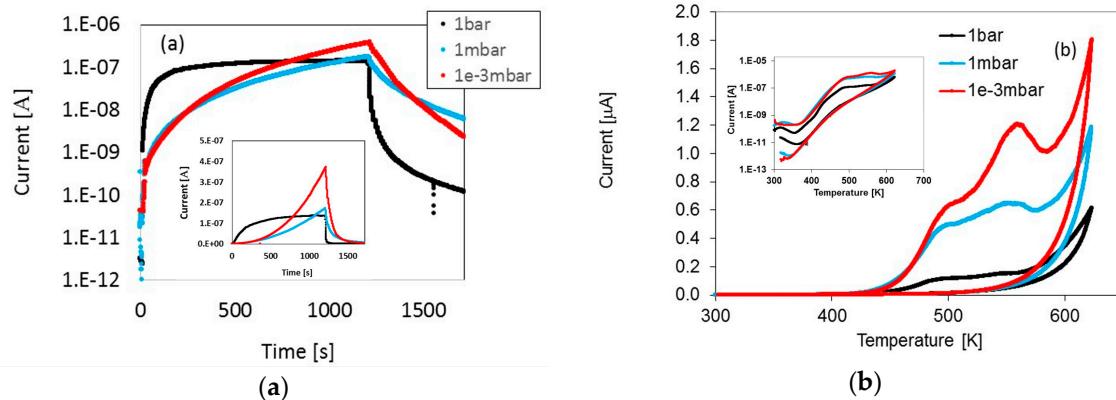
330 To comment on the origin of these peaks, we observe that our measurements are in
 331 agreement e.g. with temperature programmed desorption (TPD) analyses measured in past
 332 with TiO_2 after exposure to water. Four peaks at 155K, 190K, 295K, and 490-540 K were
 333 observed by [24,25], the first three assigned to molecular desorption from multilayer,

334 second layer, and first layer states, while the higher temperature feature was assigned to
 335 recombinative desorption. Effusion peaks from water were also observed in [26] by thermal
 336 desorption in the 150-350K range from porous nanostructured TiO₂ and attributed to
 337 physisorbed H₂O, while in [27], two H₂O effusion peaks were detected around 440K and
 338 650K. Moreover, physically adsorbed and dissociated H₂O molecules in nanostructured
 339 anatase TiO₂ have been studied by FTIR emission spectroscopy (IES) at different
 340 temperatures in the range 100-300 °C [28]. A 3665 cm⁻¹ band assigned to OH hydrogen
 341 bonded (adjacent) OH groups was observed to considerably decrease when the sample was
 342 heated from 373K to 573K, while one at 3705 cm⁻¹, attributed to isolated OH groups, more
 343 difficult to remove from the surface than adjacent OH groups, only slightly changed. A 3250
 344 cm⁻¹ component attributed to the stretching vibration of water molecules that are hydrogen
 345 bonded was considerably weakened when heated up to 423K, while the one at 3400 cm⁻¹,
 346 related to hydrogen-bound surface OH groups (Ti OH), became visible at this temperature.
 347 This latter and the 1625 cm⁻¹ band (identified as the water bond-bending vibration mode)
 348 finally disappeared at 573K. In our measurements, increasing the storage time, peaks at low
 349 temperature are decreasing, while those at high temperature are increasing, and eventually
 350 saturating. This can be explained considering that molecular adsorbed water, in time, is
 351 slowly evolving into recombinative species.

352 **Table 1.** Best fit trap parameters of the TSC measured after storage in humid air environment at
 353 room temperature

peak #	E _t [eV]	σ _{E_t} [eV]	σ _n [cm ²]	N _t [10 ¹⁶ cm ⁻³] 2 days	N _t [10 ¹⁶ cm ⁻³] 4 days
1-3	0.70-75	0.070	10 ⁻²⁰ -10 ⁻¹⁸	0.34	0.06
4	0.97	0.070	4x10 ⁻²⁰	0.42	0.07
5	1.14	0.020	2x10 ⁻¹⁹	0.3	1.43
6	1.18	0.007	5x10 ⁻²⁰	0.82	1.15
7	1.41	0.007	7.x10 ⁻¹⁹	0.25	1.14

354 5.2.3. TSC after illumination in He atmosphere with different pressures


355 To evidence the effect on TSC of the oxygen-exchange at surface, we performed a set of
 356 measurements were the sample was primed in a dry He atmosphere at different pressure, from 10⁻⁶
 357 bar to 1bar, at room temperature (T = 300K), during illumination with a Xe lamp for a selected time
 358 interval. Then, TSC heating/cooling cycles were carried out by fluxing dry air with a pressure slightly
 359 higher than atmosphere, to measure only emissions originated during charging in the storage period.
 360 In fact, it is known that oxygen vacancies can be created by annealing TiO₂ at elevated temperatures
 361 in an oxygen-poor environment, such as a pure He gas atmosphere or vacuum condition [29].

362 Results of photocurrent measurements during priming are shown in Fig. 9a. TSC curves after
 363 priming in these conditions are shown in Fig. 9b.

364

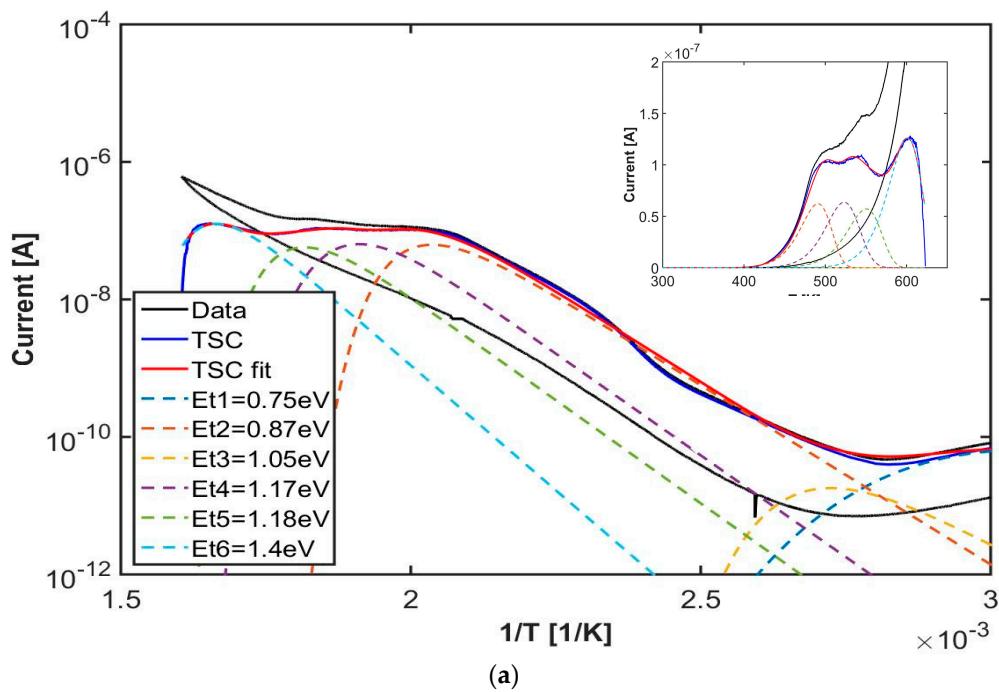
365

366

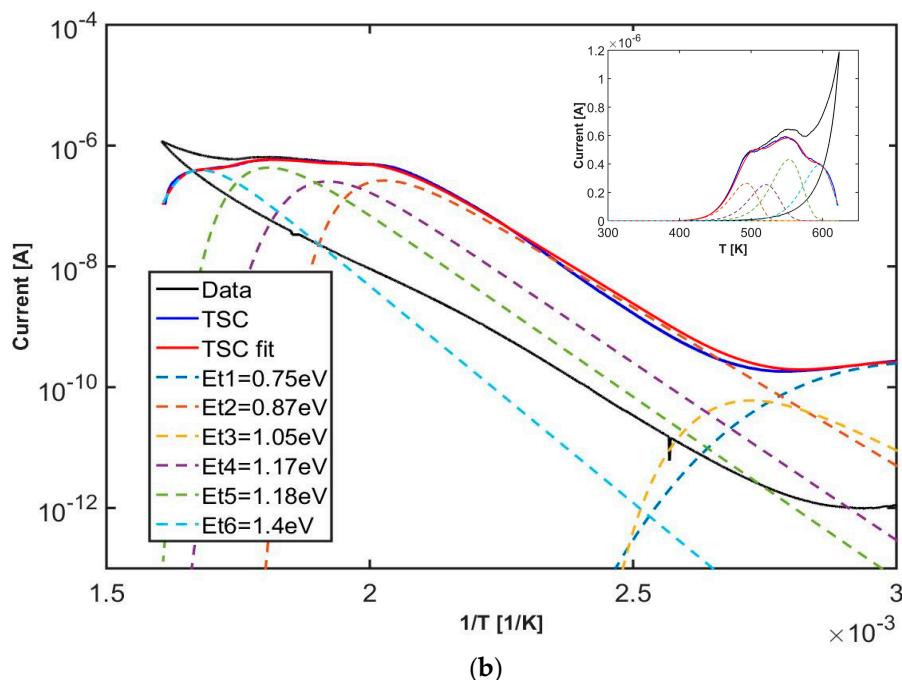
367 **Figure 9.** (a) Photocurrent measured during priming by illuminating with a Xe lamp the nc-TiO₂
 368 sample in an He atmosphere of different pressures at T = 300K. (b) TSC measured after priming with
 369 1bar, 1mbar, 10⁻³mbar. Heating/cooling cycles are performed in He atmosphere with 1bar pressure.

370 While at 1bar the photocurrent is almost saturating during priming, at low pressure it increases
 371 superlinearly, a fact that can be explained considering the creation of extra oxygen-vacancies, which
 372 are releasing an ever increasing free carriers concentration, so favoring the passivation of deep traps
 373 during priming. To comment on TSC curves reported in Fig. 9b (inset: logarithmic plot) we observe
 374 that, in the case of vacuum priming, the tail in the cooling stage of increasing current below 400K
 375 observed in case of humid environment (Figures 7 and 8) is almost absent. Then, higher TSC
 376 emissions are observed in the high temperature range in vacuum, showing an increasing number of
 377 passivated deep traps in the priming stage. Best fits of the TSC measurements in He atmosphere have
 378 been performed starting with the same set of energy levels used in the previous section. They are
 379 shown in figures 10(a-c). Measured emissions have been calculated considering TSC peaks
 380 statistically broadened as given in Eq. 13. Results are shown in Figures 10(a,b,c) respectively for the
 381 cases of 1bar, 10⁻³bar, 10⁻⁶bar. Best-fit procedure turns out in a six-fold emission, with trap parameters
 382 listed in Table 2. The fit has been performed considering the same set of values (E_t , σ_{E_t} , σ_n), within
 383 errors, for the three measurements, and best-fitting the TSC scans obtained by subtracting the
 384 response during cooling to the one measured during heating and by opportunely changing the trap
 385 concentration values N_t . Trap parameters given in table 2 are in agreement with the model [30]
 386 indicating that localized donor states originating from oxygen vacancies are located at 0.75–1.18 eV
 387 below the conduction band of Titania.

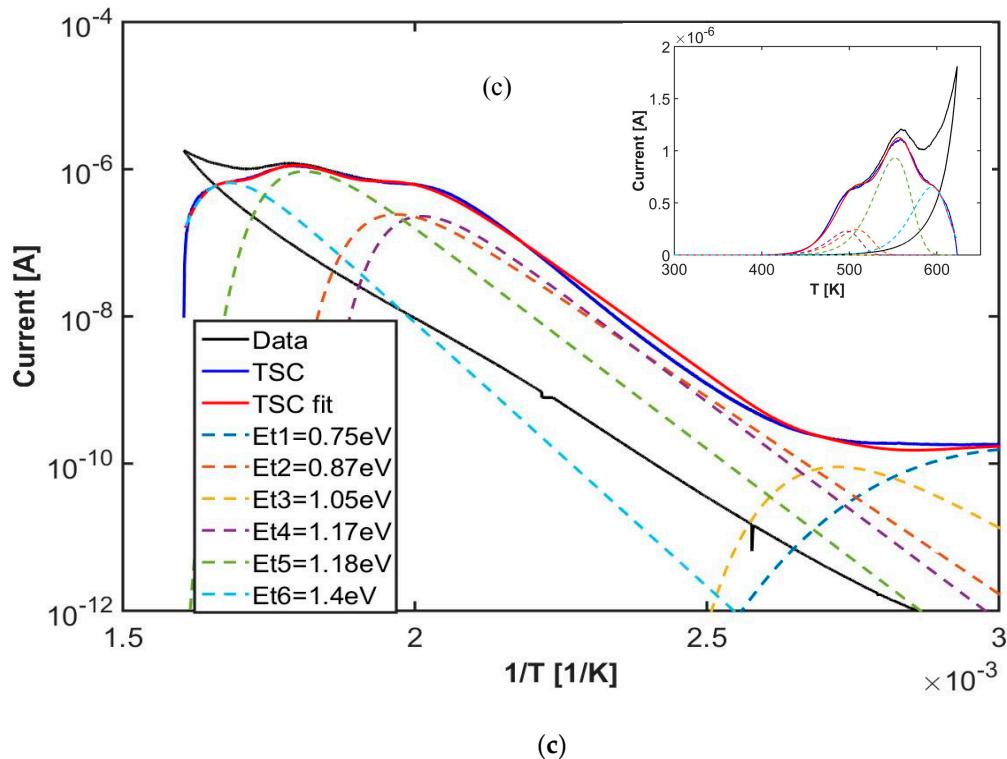
388


389 **Table 2.** Best fit trap parameters of the TSC measured after storage in different pressures of He
 390 atmosphere at room temperature during illumination with a Xe lamp.

peak #	E _t [eV]	σ_{E_t} [eV]	σ_n [cm ²]	N _t [10 ¹⁸ cm ⁻³]		
				1bar	10 ⁻³ bar	10 ⁻⁶ bar
1	0.750	0.040	1x10 ⁻¹⁸	1.8x10 ⁻⁴	0.7x10 ⁻³	0.5x10 ⁻³
2	0.870	0.001	3x10 ⁻¹⁸	0.4x10 ⁻⁴	0.2x10 ⁻³	0.3x10 ⁻³
3	1.031	0.015	3x10 ⁻²⁰	0.31	1.35	1.35
4	1.166	0.030	1x10 ⁻¹⁸	0.37	1.53	1.08
5	1.177	0.007	5x10 ⁻²⁰	0.38	2.87	6.21
6	1.411	0.009	7x10 ⁻¹⁹	0.94	2.88	4.77


391

392 The six peaks used to best-fit our TSC curves are characterized by the same (E_t , σ_{E_t} , σ_n), within
 393 errors, used to fit TSC measurements in the humid environment (apart of the shallowest two levels
 394 that here are present in only one component). Here, at every pressure analyzed, shallowest levels
 395 have negligible concentrations with respect to deepest levels. Looking to plots in Figures 10, we
 396 observe a good agreement between fit and data on a four-orders of magnitude scale. Logarithmic


397 plots are shown as a function of $1/T$: the observed linear trend is in favour with our previous
 398 observation, that hopping conduction in this high-temperature range is negligible.

(a)

(b)

399 **Figure 10.** TSC response after priming in He atmosphere with a pressure in chamber (a) 1bar; (b) 10^{-3}
 400 bar (c) 10^{-6} bar. TSC experimental data (black); Blue: TSC heating scan subtracted from background
 401 (cooling stage); dotted curves: TSC peaks convoluted with a gaussian, parameters are given in table
 402 2.

403 6. Conclusions

404 Nanocrystalline Titanium dioxide is widely applied as a high gap semiconducting material in
 405 many optoelectronic devices, from solar cells to gas sensors, where its peculiar electronic properties
 406 and high chemical reactivity play a crucial role. To attain good performances in terms of efficiency
 407 and photoactivity, Titania is mostly used in form of porous nanocrystalline thin films, a material
 408 characterized by a high degree of microstructural disorder, which detrimental effect in transport
 409 properties should be taken in great care and possibly minimized.

410 The thermally stimulated current technique is one of the most effective tool for characterizing
 411 electrical defects in semiconductors. In this paper, we have used this method to get an overall picture
 412 of the defect distribution in nanocrystalline Titania used in state-of-art DSSC devices. The model of
 413 TSC used to interpret our experimental results, briefly described in this work, takes account of the
 414 heavily disordered microscopic nature of nc-TiO₂. Mixed conductivity with non-negligible
 415 contributions from hopping between localized defects grouped in a band-tail below the conduction
 416 band is considered. Moreover, a broadening of the energy levels associated to discrete defects in the
 417 forbidden gap, has been accounted for, by convoluting the TSC standard emission with a gaussian
 418 distribution. Shallow-to deep energy level ranging from 0.1eV to 1.4eV have been studied via a
 419 thermal spectroscopy spanning from 5K to 630K and interpreted with this model: main results of our
 420 analysis can be summarized as follows.

421 An exponential DoS tail within the forbidden gap has been observed in the range 0.1-0.6eV from
 422 the bottom of the conduction band, with energy tailing factor of about 47.5meV, characterized by
 423 density of states of the order of 10^{20}cm^{-3} . This tail is responsible for a large TSC emission visible after
 424 priming with a UV source at 5K for temperatures up to approximately 150K. At higher temperatures,
 425 up to room temperature and above, the hopping contribution to conduction becomes less and less
 426 negligible against free carrier one and contributions from discrete energy levels emitting in the
 427 conduction band become visible. Similar to single crystal TiO₂, a sharp TSC peak at 220K is observed,

428 with energy 0.8eV, probably related to water adsorption. Above room temperature, dark current
429 measured as a function of the temperature without any priming reveals to be non-negligible, as it
430 should be due in pure intrinsic TiO₂ material. So, we studied it separately before any TSC analysis.
431 Measurements as a function of temperature shows a double exponential trend, with a minimum at
432 about 400K. To explain this behavior a model taking account of two dominant defects, one acting as
433 a recombination center, the other as a trap has been considered. The activation energy measured in
434 this experiment in dark, for the recombination center, is about 0.4eV a value compatible with
435 dangling bonds at surface [23]. The trap energy, evaluated as about 1.3eV, is in the highest energy
436 range found for trap states observed in our further analyses.

437 Then, TSC response above background current has been studied as a function of the
438 temperature, as a spontaneous emission observed after a prolonged storage of the sample in
439 moderately (rh=20%) humid ambient air. They are best-fitted using gaussian-broadened TSC
440 emissions, with average energy 0.7-1.4eV, characterised by uncertainties up to 70meV. Two groups
441 of peaks are measured, respectively below and above temperature. Peaks up to 350K are probably
442 related to molecular desorption from multilayer, second layer, and first layer states, while the higher
443 temperature features should be assigned to recombinative desorption [31]. Our measurements show
444 that increasing the storage time molecular adsorbed water slowly evolves into recombinative species.
445 Finally, to evidence the relationship between TSC emissions and vacancy-oxygen defects,
446 measurements have been carried out after priming in inert atmosphere (He) at different pressures.
447 Main TSC emissions, observed in the high temperature range, 400-630K, are best-fitted considering
448 energy levels for localized energy states in the range 0.75-1.18 eV, in agreement with a model from
449 [28] for donor states related to oxygen-vacancies below the conduction band.

450

451 **Acknowledgments:** Authors wish to heartily acknowledge Prof. Franco Bogani, from University of Florence
452 (now retired) for helpful discussions and precious guidance . This study has been performed within the SEAR
453 laboratory of CERTUS, University of Florence.

454 References

- 455 1. Gratzel, M. Dye-sensitized solar cells. *J. Photochem. Photobiol.C* **2003**, *4*, 145-153,
456 [https://doi.org/10.1016/S1389-5567\(03\)00026-1](https://doi.org/10.1016/S1389-5567(03)00026-1).
- 457 2. Lin, H.-M.; Keng, C.-H.; Tung, C.-Y. Gas-sensing properties of nanocrystalline TiO₂. *Nanostructured
458 materials* **1997**, *9*, 747-750, [https://doi.org/10.1016/S0965-9773\(97\)00161-X](https://doi.org/10.1016/S0965-9773(97)00161-X).
- 459 3. Gu, B.; Xu, Z.; Dong, B. A theoretical interpretation of thermostimulated conductivity in amorphous
460 semiconductors. *J. Non-Cryst. Solids* **1987**, *97-98*, 479-482, [https://doi.org/10.1016/0022-3093\(87\)90112-8](https://doi.org/10.1016/0022-3093(87)90112-8).
- 461 4. Bruzzi, M.; Mori, R.; Carnevale, E.; Scaringella, M.; Bogani, F. Low temperature Thermally Stimulated
462 Currents (TSC) characterization of nanoporous TiO₂ films. *Phys. Status Solidi A*, **2014**, *211*, 1691-1697,
463 <http://dx.doi.org/10.1002/pssa.201330608>.
- 464 5. Baranovski, S. D.; Zhu, M.; Faber, T.; Hensel, F.; Thomas, P.; von der Linden, M. B. and van der Weg, W. F.
465 Thermally stimulated conductivity in disordered semiconductors at low temperatures. *Phys. Rev. B* **1997**,
466 *55*, 16227-16232, <https://doi.org/10.1103/PhysRevB.55.16226>.
- 467 6. Nagy, A.; Hundhausen, M.; Ley, L.; Brunst, G.; Holzenkämpfer, E. Steady-state hopping conduction in the
468 conduction-band tail of a-Si:H studied in thin-film transistors, *Phys. Rev. B* **1995**, *52*, 11289-11295,
469 <https://doi.org/10.1103/PhysRevB.52.11289>.
- 470 7. Bube, R. H. *Photoelectronic properties of semiconductors*, 1st ed.; Cambridge University Press: Cambridge.,
471 Great Britain, 1992; pp. 171, ISBN 0-521-40491-6.
- 472 8. U.Diebold, Perspective: A controversial benchmark system for water-oxide interfaces: H₂O/TiO₂(110), The
473 Journal of Chemical Physics, 2017, *147*, 040901.
- 474 9. M. Setvin, J. Hulva, G. S. Parkinson, M. Schmid, U. Diebold, Electron transfer between anatase TiO₂ and an
475 O₂ molecule directly observed by atomic force microscopy, Proceedings of the National Academy of
476 Science of the United States of America, 2017, *114*, 13, E2556-E2562.
- 477 10. Tiedje, T.; Cebulka, J. M.; Morel, D. L.; Abeles, B.. Evidence for exponential band tails in amorphous silicon
478 hybride. *Phys. Rev. Letters*, **1981**, *46*, 21-25, <https://doi.org/10.1103/PhysRevLett.46.1425>.

- 479 11. Miller, A.; Abrahams, E. Impurity Conduction at Low Concentrations. *Phys. Rev.*, **1960**, *120*, 745-755, 480 <https://doi.org/10.1103/PhysRev.120.745>.
- 481 12. Shklovskii, B.I.; Efros, A.L. *Electronic Properties of doped Semiconductors*, 1st ed.; Springer-Verlag: Heidelberg, 482 Germany, 1984; ISBN 978-3-662-02403-4.
- 483 13. Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. Defect chemistry and semiconducting properties of titanium 484 dioxide: III. Mobility of electronic charge carriers. *Journal of Physics and Chemistry of Solids* **2003**, *64*, 1069- 485 1087, [https://doi.org/10.1016/S0022-3697\(02\)00481-X](https://doi.org/10.1016/S0022-3697(02)00481-X).
- 486 14. Yagi, E.; Hasiguti, R. R.; Aono, M. Electronic conduction above 4 K of slightly reduced oxygen-deficient 487 rutile TiO₂-x. *Phys. Rev. B*, **1996**, *54*, 7945-7956, <https://doi.org/10.1103/PhysRevB.54.7945>.
- 488 15. Steiger, J.; Schmeichel, R.; von Seggern, H. Energetic trap distributions in organic semiconductors. *Synthetic 489 materials*, **2002**, *129*, 1-7, [https://doi.org/10.1016/S0379-6779\(02\)00012-7](https://doi.org/10.1016/S0379-6779(02)00012-7).
- 490 16. Blood, P.; Orton, J. W. *The Electrical Characterization of Semiconductors: Majority Carriers and Electron States*, 491 2nd ed.; Academic Press: London, Great Britain, 1992; pp. 393-397 and pp. 469-473, ISBN 9780125286275.
- 492 17. Mori, R.; Scaringella, M.; Cavallaro, A.; Bogani, F.; Bruzzi, M. Low temperature thermally stimulated 493 current analysis of nanocrystalline Titanium dioxide. In PoS, Proceedings of the Conference 10th 494 International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors- 495 Rd11, PoS: Florence, Italy, 2011.
- 496 18. Baldini, A.; Bruzzi, M. Thermally stimulated current spectroscopy: Experimental techniques for the 497 investigation of silicon detectors. *Rev. Scient. Instr.*, **1993**, *64*, 932-936, <http://dx.doi.org/10.1063/1.1144145>.
- 498 19. Wakim, F. G. Some effects of trapping on the Photoelectronic properties of TiO₂ single crystals. *Phys. Stat. 499 Sol. A*, **1970**, *1*, 479-485, <http://dx.doi.org/10.1002/pssa.19700010313>.
- 500 20. Baranovski, S.; Rubel, O. Description of Charge transport in amorphous semiconductors. In *Charge transport 501 in Disordered Solids with applications in Electronics*, 1st ed.; Baranovski, S.; John Wiley & Sons: Chichester, UK, 502 2006; pp. 61, <http://dx.doi.org/10.1002/0470095067.ch2>.
- 503 21. Van de Lagemaat, J.; Frank, A.J. Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline 504 TiO₂ Films: Transient Photocurrent and Random-Walk Modeling Studies. *J. Phys. Chem. B*, **2001**, *105*, 11194- 505 11205, <http://dx.doi.org/10.1021/jp0118468>.
- 506 22. Nelson, J.; Eppler, A. M.; Ballard, I. M. Photoconductivity and charge trapping in porous nanocrystalline 507 titanium dioxide. *J. Photochemistry and Photobiology A*, **2002**, *148*, 25-31, [https://doi.org/10.1016/S1010-6030\(02\)00035-7](https://doi.org/10.1016/S1010- 508 6030(02)00035-7).
- 509 23. Weiler, B.; Gagliardi, A.; Lugli, P. Kinetic Monte Carlo Simulations of Defects in Anatase Titanium 510 Dioxide. *J. Phys. Chem. C* **2016**, *120*, 10062-10077, <https://doi.org/10.1021/acs.jpcc.6b01687>.
- 511 24. M. A. Henderson, *Langmuir* **12**, 5093 (1996).
- 512 25. M. A. Henderson, S. Otero-Tapia, and M. E. Castro, *Faraday Discuss.* **114**, 313 (1999).
- 513 26. Diebold, U. The surface science of titanium dioxide. *Surface science reports*, **2003**, *48*, 59-229, 514 [https://doi.org/10.1016/S0167-5729\(02\)00100-0](https://doi.org/10.1016/S0167-5729(02)00100-0).
- 515 27. Weidmann, J.; Dittrich, Th.; Kostantinovac, E.; Lauermann, I.; Uhendorfa, I.; Koch, F. Influence of oxygen 516 and water related surface defects on the dye sensitized TiO₂ solar cell. *Solar Energy Materials and Solar Cells*, 517 **1999**, *56*, 153 -165, [https://doi.org/10.1016/S0927-0248\(98\)00153-6](https://doi.org/10.1016/S0927-0248(98)00153-6).
- 518 28. Zhanfeng Zheng et al. Correlation of the Catalytic Activity for Oxidation Taking Place on Various TiO₂ 519 Surfaces with Surface OH Groups and Surface Oxygen Vacancies, *Chem. Eur. J.* **2010**, *16*, 1202 – 1211
- 520 29. Xiaoyang Pan, et al. Defective TiO₂ with oxygen vacancies: synthesis, properties and photocatalytic 521 applications, *Nanoscale*, **2013**, *5*, 3601.
- 522 30. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara and K. Takeuchi, *J. Mol. Catal. A: Chem.*, **2000**, 523 *161*, 205
- 524 31. I. M. Brookes, C. A. Muryn, and G. Thornton, Imaging Water Dissociation on TiO₂ (110), *Phys. Rev. Lett.*, 525 **2001**, *86*, 26, 266103-1., 526