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Abstract: Accurate and timely rainfall prediction enhances productivity and can aid proper
planning in sectors such as agriculture, health, transport and water resources. This study is aimed
at improving rainfall prediction using ensemble methods. It first assesses the performance of
six convective schemes (Kain–Fritsch (KF); Betts–Miller–Janjić (BMJ); Grell–Fretas (GF); Grell 3D
ensemble (G3); New–Tiedke (NT) and Grell–Devenyi (GD)) using the root mean square error
(RMSE) and mean error (ME) focusing on the March–May 2013 rainfall period over Uganda. 18
ensemble members are generated from the three best performing convective schemes (i.e. KF, GF
& G3). The performance of three ensemble methods (i.e. ensemble mean (EM); ensemble mean
analogue (EMA) and multi–member analogue ensemble (MAEM)) is also analyzed using the RMSE
and ME. The EM presented a smaller RMSE compared to individual schemes (EM:10.02; KF:23.96;
BMJ:26.04; GF:25.85; G3:24.07; NT:29.13 & GD:26.27) and a better bias (EM:-1.28; KF:-1.62; BMJ:-4.04;
GF:-3.90; G3:-3.62; NT:-5.41 & GD:-4.07). The EMA and MAEM presented 13 out of 21 stations & 17
out of 21 stations respectively with smaller RMSE compared to EM thus demonstrating additional
improvement in predictive performance. The MAEM is a new approach proposed and described in
the study.

Keywords: Ensemble mean; Analogue ensemble mean; Multi–member analogue ensemble mean;
Quantitative rainfall prediction

1. Introduction

Rainfall is a key climatic element that has consequences on key production sectors including
agriculture [1,2], health [3], electricity generation [4] and water resources [5,6] among others. Over
Eastern Africa, the rainfall distribution and quantity is influenced by many factors such as the
Inter–Tropical Convergence Zone, El Niño/La Niña episodes, Indian Ocean Dipole and extra-tropical
weather systems [7,8]. The spatial and temporal variability of rainfall makes its quantitative
prediction a challenge [8,9]. However, according to He et al. [5] and Jie et al.[10], rainfall can be
predicted quantitatively up to 7 days.

Some of the scientific ways of predicting rainfall quantitatively have been suggested such as: the
use of radar [8] and the use of Numerical Weather Prediction (NWP) models [6]. The use of radar
is considered superior at short–range forecasts due to better spatial representation and assimilation

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 October 2017                   doi:10.20944/preprints201710.0199.v1

©  2017 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201710.0199.v1
http://creativecommons.org/licenses/by/4.0/


2 of 16

of the initial rainfall estimates. Unfortunately the radar–based method’s accuracy degrades with
increasing temporal resolution due to poor resolving of the growth and decay of rainfall for long lead
times [5]. The NWP models usually have higher skill because they can represent the dynamics and
physics of the atmosphere [6]. The limitation of NWP models arise due model’s failure to resolve
sub–grid processes but it is addressed using parameterization schemes [11]. An additional scientific
method is the use of statistical models such as regression [9].

Due to spatial–temporal variability in performance of NWP models (e.g. the presence of
orographic bias [12] and the limit to predictability with increasing prediction period [13]), errors
often arise that introduce uncertainty. Therefore, a couple of deterministic NWP models can be run
to improve quantitative precipitation forecasts (QPF) and help to quantify uncertainty. He et al. [5]
noted that ensemble QPF normally produces a higher skill in terms of quantity and occurrence time
than the individual ensemble members.

According to the European Center for Medium–range Weather Forecasts (ECMWF [14]), which
runs 51–ensemble members, an ensemble prediction consists of simultaneously running multiple
forecasts (i.e. ’ensemble members’) with varying initial conditions and slightly perturbed physical
conditions to represent uncertainty in initial conditions and also produce a range of possible weather.
It is different from the model output statistics introduced by Glahn & Lowry[15] which is a method
of determining the statistical relationship between the predictand and the variables predicted by a
numerical model [16]. The output from the ensemble members are then statistically post–processed
to obtain a skillful probabilistic forecast [1,17] which addresses the uncertainty inherent in the initial
conditions and associated model imperfections faced by a deterministic NWP model [18,19]. This is
because the ensemble spread gives the measure of the uncertainty of the prediction [10,20]. However,
quantifying absolute uncertainty presents additional challenge due to the bias inherent in the models
used [20].

The ensemble mean is normally has a smaller error compared to the mean error of individual
deterministic forecasts [21,22]; it outperforms climatology; quantify uncertainty in prediction [23]
and presents high probability of precipitation prediction [10]. For this reason, the ensemble mean is
the most widely used tool and is normally used as a deterministic forecast [21]. However studies such
as He et al.[5], Coiffier[13], Evans et al.[24] and many others, suggest that much of the results given
by the ensemble mean could be obtained using a single deterministic forecast and then improved by
statistically correcting it. The major limitation of using this approach, is that, there could be a chance
that the statistical formulation process may not accurately represent extreme weather. A wide array
of ensemble members giving an adequate ensemble spread was found skillful for short and medium
term range prediction (i.e. less than 7 days) and also to assist in dividing ensemble rainfall data into
sub–samples [25].

Ensemble members can be obtained in many ways, such as running NWP models with varying
initial conditions [22], perturbing the physical parameterization schemes of the model [26], initializing
the models at the different times (time–lagged) [10], combining output from different NWP models
(multi–model ensemble) [10,27]. It is important to integrate multiple methods of generating ensemble
members because, for example, perturbing initial conditions or model physics has been found to be
under-dispersive [22,25].

Although ensemble rainfall prediction has been extensively covered by previous studies e.g. He
et al.[5], Fritsch et al.[27], Redmond et al.[26] and many others, majority of these studies employed
ensemble mean for quantitative rainfall prediction. The ensemble mean analogue has been used in
wind speed forecasting (e.g. Vanvyve et al.[28]) and this study employs it in rainfall prediction. The
performance of ensemble mean, ensemble mean analogue, including a new approach ’multi–member
analogue ensemble’ is assessed. 18 ensemble members are derived from the 3 best performing
cumulus schemes. The ensemble members are generated from combining the convection schemes,
model perturbation, and time–lagging.
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2. Data and Methods

2.1. Data sources

The study used rain gauge rainfall data of March–May 2013 from 21 weather stations of Uganda
(i.e. Figure, 1). The rainfall data were obtained from the Uganda National Meteorological Authority
(UNMA) and quality controlled by checking it for completeness. The missing gaps in some stations
were filled using normal ratio method described by Mugume et al.[8].

The rainfall data were then compared to the ensemble generated rainfall data over the same
period. The input data to initialize the deterministic NWP model were obtained from the National
Centers for Environmental Prediction (NCEP) final reanalysis [29] at a resolution of 1o × 1o, covering
the period of study.

2.2. The study area

The study was conducted over Uganda which geographically approximately extends from
29.55oE to 35.09oE and 1.50oS to 4.36 oN . The country largely experiences tropical savanna climate
with isolated cases like the Lake Victoria Basin experiencing equatorial climate [30]. Additional
climatological zoning has been carried out by Basalirwa[31] who delineated the country into
homogeneous zones. The 21 stations used in the study are representative of the major political regions
e.g. the northern region (Arua, Gulu, Lira, & Kitgum); the eastern region (Serere, Soroti, Buginyanya
& Tororo); the western region (Masindi, Kasese, Bushenyi, Mbarara & Kabale); the cattle corridor
(is a diagonal stretch from south western Uganda to north eastern Uganda, has Ntusi) and the Lake
Victoria Basin (Entebbe, Makerere, Kituza, Namulonge, Jinja, Kamenyamigo & Kibanda).

The rainfall over Uganda exhibits large spatial and temporal variations with the MAM rainfall
period starting in March in most areas except the norther region where the rains normally start in
April [2]. With exception of the northern region, which experience a unimodal rainfall distribution,
Uganda generally experience two rainfall seasons (i.e. March–May and September–November).
The March–May (MAM) seasonal rainfall over Uganda is generally influenced by the Inter–Tropical
Convergence Zone [2,8]; the monsoon winds of East Africa [32,33]; the Indian ocean dipole [2,7];
the humid Congo airmass [6]; the tropical cyclones, semi–permanent subtropical anticyclones and
easterly waves [7,8]; the complex topography [33], vegetation and inland water bodies which
modulate local rainfall [8,34]. The Inter–Tropical Convergence Zone migrates north and southwards
over the equator two times a year, which brings two rainfall seasons in the region i.e. the March–May
and September–November seasons.

2.3. Experimental design

The ensemble members were generated from (i) initializing models at different times (i.e.
time–lagged ensemble members); (ii) varying the cumulus parameterization schemes; (iii) perturbing
the cumulus parameterization schemes; and (iv) combination of (i) to (iii). We first assessed the
performance of six cumulus parameterization schemes (i.e. Kain–Fritsch (KF); Betts–Miller–Janjić
(BMJ); Grell–Fretas (GF); Grell 3D ensemble (G3); New–Tiedke (NT) and Grell–Devenyi (GD)) using
the root mean square error (A) and the mean error (B) and the three poor performers were eliminated
in line with Evans et al. [24]. The description of the cumulus schemes and their strong influence in
convective precipitation simulation is presented by Mayor & Mesquita [11],

The time–lagged ensemble members were derived by initializing WRF at 0000UTC, 0600UTC,
1200UTC and 1800UTC while perturbing the schemes was carried out by varying the entrainment
rates (i.e. ±25% of the default rate). The study mainly varies cumulus parameterization schemes
because of their significant effect on precipitation simulation [11]. All runs are done using the
same initial conditions provided by NCEP/NCAR (Section, 2.1) and we used a total of 18 ensemble
members.
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Figure 1. The figure shows the total MAM 2013 seasonal rainfall over the Uganda.

The study used three domains as shown in Figure (2):

• the first domain was at a horizontal resolution of 90 km. This domain covered Africa and was
deemed sufficiently enough to cover the large scale synoptic systems such as the sub–tropical
high pressure systems which are important for rainfall over equatorial region;

• the second domain was at a horizontal resolution of 30 km covering most parts of equatorial
region to cater for influx of moisture over Uganda especially the Congo air mass and the moist
currents from Mozambique channel;

• the third domain was at a horizontal resolution of 10 km covering Uganda, the study region.

The integration was done for the period 1st March – 31st May 2013 running the experiment
for each day with 12 hours as spin–up period and using the same initial conditions for all the
experiments. These experiments employed the staggered Arakawa C–grid; 30 vertical layers with
model top fixed at 50 hPa; the terrain–following mass coordinate as vertical coordinate that had the
capability of allowing variation of vertical grid–spacing and the Runge–Kutta 2nd order integration
option. The other physical schemes used are: the WRF Single–Moment 3–class microphyiscal scheme;
the Rapid Radiative Transfer Model as the longwave radiation scheme; the Dudhia scheme as the
shortwave radiation scheme; the Noah Land Surface Model and the Yonsei University scheme as the
planetary boundary layer scheme. A 12 hour spin-up time was allowed to reduce spin–up errors.

2.4. Methods

2.4.1. The ensemble mean

The ensemble mean is the arithmetic average of the ensemble members. It outperforms
climatological forecasts by 62% [23]. If we have n ensemble members such that,

φ1, φ2, · · · , φn−1, φn

and for each member, i we get the prediction distribution over a total number of m events,

a1i, a2i, · · · , a(m−1)i, ami
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Figure 2. The figure shows the domains used in running WRF model.

which we summarize as 

a11 a21 . . . am1

a12 a22 . . . am2

. . . . . .

. . . . . .

. . . . . .
a1n a2n . . . amn


where the rows represent the different ensemble members and the columns are the prediction events.
The ensemble mean is thus the arithmetic average of the individual columns. Therefore, for an event
tk within the events space i.e. [1, m], the ensemble average, ak is computed as (eqn. 1).

ak =
1
n

n

∑
i=1

aki (1)

the ensemble mean, ak is compared with the event, tk.

2.4.2. The ensemble mean analogue

This Ensemble Mean Analogue (EMA) method is proposed by Delle–Monache et al.[35] and used
by Vanvyve et al.[28] and Horvath et al.[36] in assessing the wind energy. They argued that it is key
in developing wind farm projects due to its ability to provide associated uncertainty.

The EMA method involves obtaining the ensemble mean, ak and looking in the training set
consisting of analogues (i.e. {OT : OT

1 , OT
2 , · · · , }) to obtain a corresponding prediction [36]. If the

ensemble average, ak corresponds to observed analogue (i.e. OT
k ), this OT

k is considered as the forecast,
but if a corresponding analogue cannot be found, then ak is used and the case is considered a rare
event. In the study, the analogues were obtained from prediction of the MAM 2006 rainfall season.
This period is considered an appropriate analogue season because it had the same Oceanic Niño
Index of -0.2 [37,38] with MAM 2013 and the Inter–tropical Convergence Zone, one of the major
rainfall drivers over the study area, is normally over the same region.
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2.4.3. The multi–member analogue ensemble

In order to improve ensemble rainfall prediction, the multi–member analog ensemble method
(MAEM) was used and is described here.

According to the MAEM, for a given member, its corresponding analogue is used to give the
new ensemble member. The description of this method follows that: for a given prediction φi making
part of the n member ensemble, i.e.

φ1, φ2, · · · , φi, · · · , φn−1, φn

we look for its analogue and consider the observed value corresponding to φi. This observed value,
Φi becomes the new ensemble member thus giving a new ensemble, i.e.

Φ1, Φ2, · · · , Φi, · · · , Φn−1, Φn

If more than one analogue is found, an average of the analogues is used, i.e.

Φi =
1
M

M

∑
j=1

Φij (2)

where M is the number of obtained analogues. If no corresponding analogue is found, model
prediction is used as it could probably indicate a rare event. The prediction now becomes the
arithmetic mean, Φk of the observed analogues, Φk, i.e.

Φk =
1
n

n

∑
i=1

Φik (3)

which was then compared with the rainfall event, tk.

3. Results and discussion

3.1. Overview of the MAM seasonal rainfall totals over Uganda

The total rainfall obtained at the stations used in the study is illustrated in Figure (1). The total
MAM 2013 rainfall amount over the entire study area was in the range of 200–900 mm. The stations in
northern Uganda received comparatively lower seasonal rainfall amounts of 200–500 mm. This was
expected because this region normally receives a unimodal rainfall distribution with rainfall onset
around April/May peaking around July/August [2]. Over western Uganda, the rainfall amount was
in the range of 270–550 mm while rainfall over Eastern Uganda varied from 400 mm to 900 mm. The
Lake Victoria Basin received rainfall in the range of 400–650 mm. The MAM 2013 seasonal rainfall
over Uganda thus exhibited large spatial and temporal variations.
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(a) KF (b) BMJ

(c) GF (d) G3

(e) NT (f) GD

Figure 3. The figure shows the amount of rainfall simulated by the cumulus schemes for the MAM 2013 rainfall
period
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3.2. Performance of the cumulus schemes

The performance of the cumulus schemes is presented using Tables (1 & 2). Table (1) shows the
RMSE of the cumulus schemes along with rankings in performance while Table (2) shows the ME
of the cumulus schemes and their respective ranking based on the ME. The schemes yielded varied
results for different regions in Uganda as shown by Figure (3 ). For example, the KF scheme over
estimated rainfall over northern Uganda (i.e. 300–750 mm) but also presented comparable rainfall
amounts over Eastern Uganda (i.e. 400–900 mm). The BMJ, the GD and the G3 underestimated
rainfall amount over most parts of the country especially the eastern region (i.e. 300–600 mm). The
GF captured rainfall amount over the northern region (i.e. 250–450 mm) but also underestimated
rainfall over the Lake Victoria Basin (i.e. 150–300 mm) while the NT generally underestimated rainfall
amount over most areas of Uganda.

Other studies such as Mayor & Mesquita[11] found the GF scheme to represent spatial
precipitation distribution and the BMJ presenting higher precipitation amount. Related studies by
Ratna et al. [39] found the GD scheme over–estimating convective rainfall. Our findings show
that the KF, GF and G3 had the comparatively smaller RMSE and better rankings based on RMSE
(Table, 1) and better scores of ME (Table, 2). These schemes were thus selected to generate additional
ensemble members.

Table 1. The RMSE of cumulus parametrization schemes.

RMSE Scores RMSE Rankings
KF BMJ GF G3 NT GD KF BMJ GF G3 NT GD

Arua 12.19 12.57 14.31 14.13 24.18 14.51 1 2 4 3 6 5
Buginyanya 19.66 58.76 59.51 33.10 62.66 42.89 1 4 5 2 6 3
Bushenyi 14.70 21.84 19.25 20.51 21.70 19.03 1 6 3 4 5 2
Entebbe 45.35 55.99 53.03 51.93 61.20 53.22 1 5 4 2 6 3
Gulu 57.98 17.49 24.05 23.04 6.53 25.21 6 2 4 3 1 5
Jinja 14.35 21.62 23.33 22.13 29.31 29.62 1 2 4 3 5 6
Kibanda 31.40 8.21 8.35 7.62 7.86 7.77 6 4 5 1 3 2
Kabale 8.19 15.95 10.04 11.31 6.28 13.00 2 6 3 4 1 5
Kamenyamigo 27.94 29.32 28.67 29.81 34.57 28.28 1 4 3 5 6 2
Kasese 19.18 14.63 15.43 18.02 19.27 16.72 5 1 2 4 6 3
Kitgum 16.44 14.69 16.31 18.33 24.77 18.32 3 1 2 5 6 4
Kituza 40.00 43.14 40.80 42.91 46.13 50.84 1 4 2 3 5 6
Lira 20.42 30.50 31.22 26.30 33.28 26.95 1 4 5 2 6 3
Makerere 33.76 43.77 42.71 41.29 46.78 37.59 1 5 4 3 6 2
Mbarara 11.73 18.17 18.80 22.16 18.68 15.68 1 3 5 6 4 2
Masindi 19.59 27.75 26.33 26.83 38.51 32.24 1 4 2 3 6 5
Namulonge 36.39 35.90 34.72 35.17 34.87 44.21 5 3 1 4 2 6
Ntusi 8.85 9.33 8.81 8.20 8.53 8.70 5 6 4 1 2 3
Serere 14.94 23.23 23.12 19.17 24.27 25.51 1 4 3 2 5 6
Soroti 16.08 27.62 25.25 18.84 28.24 25.93 1 5 3 2 6 4
Tororo 34.11 16.34 18.72 14.72 34.17 15.37 5 3 4 1 6 2
Average 23.96 26.04 25.85 24.07 29.13 26.27 2.38 3.71 3.43 3.00 4.71 3.76

3.3. The performance of ensemble mean

The comparison of the RMSE of the ensemble mean to the individual cumulus parameterization
schemes is presented in Figure (4) while comparison of ME of the ensemble mean to individual
cumulus parameterization schemes presented in Figure (5). The RMSE for ensemble mean is
presented in Table (3, 2nd column) while the results for bias (or ME) presented in Table (4, 2nd column).
This study is at 10 Km horizontal resolution, slightly higher than the 18 Km resolution of the ensemble
of European Center for Medium–range Weather Forecasts (ECMWF) which could interest ECMWF to
investigate potential improvement in its prediction skill using higher resolution.
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Table 2. The RMSE of cumulus parametrization schemes.

ME Scores ME Rankings
KF BMJ GF G3 NT GD KF BMJ GF G3 NT GD

Arua -0.89 0.91 1.83 1.20 -4.49 -1.97 1 2 4 3 6 5
Buginyanya -2.08 -11.77 -11.93 -6.00 -12.54 -8.31 1 4 5 2 6 3
Bushenyi -2.19 -4.03 -3.22 -3.78 -3.99 -3.34 1 6 2 4 5 3
Entebbe -9.06 -11.36 -10.73 -10.50 -12.44 -10.77 1 5 3 2 6 4
Gulu 11.76 3.39 4.76 4.50 0.64 4.93 6 2 4 3 1 5
Jinja -2.15 -4.14 -4.58 -4.31 -5.89 -5.93 1 2 4 3 5 6
Kibanda 6.22 -0.04 0.53 -0.18 -0.08 0.34 6 1 5 3 2 4
Kabale 0.83 2.75 1.65 1.90 0.31 2.16 2 6 3 4 1 5
Kamenyamigo -5.31 -5.58 -5.50 -5.76 -6.78 -5.46 1 4 3 5 6 2
Kasese -3.55 -2.39 -2.68 -3.31 -3.76 -2.98 5 1 2 4 6 3
Kitgum -2.90 -2.54 -2.93 -3.38 -4.80 -3.36 2 1 3 5 6 4
Kituza -7.94 -8.57 -8.08 -8.53 -9.23 -10.24 1 4 2 3 5 6
Lira -3.43 -5.85 -6.00 -4.94 -6.51 -5.11 1 4 5 2 6 3
Makerere -6.74 -8.75 -8.51 -8.22 -9.39 -7.39 1 5 4 3 6 2
Mbarara 1.30 -2.96 -3.17 -4.02 -3.29 -2.51 1 3 4 6 5 2
Masindi -2.34 -4.63 -4.29 -4.50 -7.26 -5.78 1 4 2 3 6 5
Namulonge -7.22 -7.06 -6.82 -6.89 -6.83 -8.81 5 4 1 3 2 6
Ntusi 0.32 -0.98 -0.54 -0.55 -0.48 0.47 1 6 4 5 3 2
Serere -2.61 -4.53 -4.51 -3.66 -4.78 -5.04 1 4 3 2 5 6
Soroti -2.34 -5.30 -4.63 -3.35 -5.41 -4.98 1 5 3 2 6 4
Tororo 6.30 -1.40 -2.51 -1.80 -6.58 -1.49 5 1 4 3 6 2
Average -1.62 -4.04 -3.90 -3.62 -5.41 -4.07 2.14 3.52 3.33 3.33 4.76 3.90

The performance of the three best cumulus schemes (i.e. KF, GF & G3) and the ensemble mean
(EM) across the regions in the country is illustrated in Figure (4). Spatial analysis of Figure (4) shows
that, the RMSE of the ensemble mean was slightly higher for the western and the eastern regions of
Uganda (i.e. RMSE:9–15 & 9–16) respectively. The ’cattle corridor’ of Uganda and the Lake Victoria
Basin had RMSE of 8–10 while the northern region had 8–11.

The ensemble mean RMSE results are comparatively smaller than the RMSE results of individual
cumulus parameterization schemes. Additional statistical analysis using paired t–test at 99%
confidence level also showed improvement in the RMSE of the ensemble mean compared to
individual cumulus parameterization schemes (i.e. KF: t=4.73 & p< 0.001; GF: t=5.14 & p< 0.001
and G3: t=5.41 & p< 0.001). The ensemble mean did not show a significant improvement in the ME
because, apart from the northern Uganda, we still observed a negative bias over most parts of the
country as shown by Figure 5(a–c). So relying on the RMSE, we can argue that there is improvement
in performance when using the ensemble mean but not necessarily changes in bias.

3.4. The performance of ensemble mean analogue

The RMSE results on the performance of the ensemble mean analogue (EMA) are presented in
Table (3, 3rd column) while the ME results are presented in Table (4, 3rd column). Results show that
although the improvement in simulation as shown by reduction in RMSE was not significant at 95%,
13 out of 21 stations (RMSE shown in italics in Table, 3, the 3rd column) had their RMSE less than
RMSE of ensemble mean. A slight improvement in negative bias is observed (t = 1.710; p_value =
0.096) and additional analysis shows that the magnitude of bias of 16 out of 21 stations (Table, 4 with
bold values, the 3rd column) was less than a magnitude of 2.00. The results of RMSE and ME confirm
that the EMA can present a modest improvement in rainfall prediction.

3.5. The performance of multi–member analogue ensemble method

The RMSE results for multi–member analogue ensemble are also presented in Table (3, the 4th

column) while the ME results are presented in Table (4, the 4th column). We again observed that
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(a) KF (b) BMJ

(c) GF (d) Ensemble Mean (ENS)

(e) Ensemble Mean Analogue
(EMA)

(f) Multi–analogue ensemble mean
(MAEM).

Figure 4. The figure shows the RMSE of KF(a), GF(b), G3(c) cumulus parameterization schemes and the
RMSE of the ensemble ENS(d) , EMA(e) & MAEM(e). The schemes KF, GF & G3 were found to have
comparatively smaller RMSE than the other cumulus schemes
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(a) KF (b) GF

(c) G3 (d) Ensemble mean (ENS)

(e) Ensemble Mean Analogue
(EMA)

(f) Multi–analogue ensemble mean
(MAEM)

Figure 5. The figure shows the ME of KF(a), GF(b), G3(c) cumulus parameterization schemes and the ME of
the ensemble ENS(d), EMA(e) & MAEM(e)
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Table 3. Shows the RMSE for: ensemble mean (ENS); ensemble mean analogue (EMA) and multi–member
analogue ensemble (MAEM). The italicized values show improvement in the RMSE of the EMA and the RMSE
of the MAEM compared to the RMSE of the ENS. The bold values in the 4th column show a reduction in RMSE
using MAEM compared to the RMSE of EMA

Station RMSE
ENS EMA MAEM

Arua 10.93 10.70 10.85
Buginyanya 15.23 15.36 15.02
Bushenyi 9.56 9.33 9.38
Entebbe 11.51 11.28 10.98
Gulu 7.78 7.76 8.04
Jinja 7.23 7.07 6.99
Kabale 5.81 5.92 5.87
Kamenyamigo 10.84 10.67 10.70
Kasese 8.37 8.21 8.28
Kibanda 6.91 6.89 6.90
Kitgum 8.34 8.96 8.32
Kituza 11.71 11.65 11.25
Lira 10.97 11.8 10.76
Makerere 11.02 10.83 10.63
Masindi 15.84 15.82 15.80
Mbarara 10.01 9.99 10.00
Namulonge 11.20 11.11 10.80
Ntusi 7.43 7.45 7.40
Serere 7.30 7.62 7.18
Soroti 9.83 10.16 9.84
Tororo 12.65 12.82 12.99

although the improvement in simulation as shown by reduction in RMSE was not significant at 95%,
17 out of 21 stations (RMSE shown in italics in Table, 3, the 4th column) had their RMSE less than
RMSE of ensemble mean. We further noted a slight improvement in RMSE, though not significant at
95% by employing multi–member analogue ensemble compared to ensemble mean analogue with 13
out of 21 stations (i.e. bold values in Table (3), the 4th column) having a smaller RMSE compared to
the RMSE for ensemble mean analogue.

The results further show a significant improvement in negative bias at 95% confidence level
(t=2.5285; p_value=0.016). Additional analysis shows that, the magnitude of bias of 18 out of 21
stations (Table, 4 with bold values, the 4th column) was less than a magnitude of 2.00. The results
of RMSE and ME confirm that the multi–member analogue ensemble method can improve rainfall
prediction.

4. Summary and conclusion

The study investigated the potential for improving rainfall prediction using ensemble methods
and considered 18 ensemble members. The study first analyzed the spatial distribution of the MAM
2013 rainfall and found that it was in the range of 200–900 mm. It was also noted that the MAM 2013
rainfall exhibited large spatial and temporal variations over the study region.

The study then assessed the performance of the cumulus schemes and found varying
performance over different regions of Uganda with the KF scheme over estimating rainfall over
northern Uganda; the BMJ, the GD and the G3 underestimating rainfall amount over most parts of
the country especially the eastern region; the GF capturing rainfall amount over the northern region
while the NT generally underestimating rainfall amount over most areas.

The study further assessed the performance of ensemble mean, ensemble mean analogue and
the multi–member analogue ensemble. An improvement in the RMSE was observed while using
the ensemble mean compared to using individual cumulus parametrization schemes. There was a
non significant change in the ME of the ensemble mean compared to individual parameterization
schemes. The ensemble mean analogue presented a reduction in the magnitude of the RMSE and a
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Table 4. Shows the ME (or Bias) for: ensemble mean (ENS); ensemble mean analogue (EMA) and
multi–member analogue ensemble mean (MAEM). The bold values indicate a magnitude of ME less than 2.00
for all the three methods.

Station Mean error (or Bias)
ENS EMA MAEM

Arua 0.42 1.45 2.61
Buginyanya -2.92 -2.02 -0.54
Bushenyi -1.62 -1.04 -1.06
Entebbe -5.20 -1.18 -1.94
Gulu 4.08 4.26 5.13
Jinja -1.60 -0.78 0.08
Kabale 0.57 1.00 1.25
Kamenyamigo -2.59 -2.35 -2.19
Kasese -1.49 -1.04 -0.76
Kibanda 0.89 0.56 1.15
Kitgum -1.02 0.15 0.94
Kituza -4.01 -1.52 -0.43
Lira -1.96 0.61 0.63
Makerere -3.92 -2.50 -1.39
Masindi -1.49 -1.03 -0.54
Mbarara -0.69 -0.71 -0.63
Namulonge -3.27 -2.13 -1.63
Ntusi 0.03 -0.03 0.05
Serere -1.15 0.17 0.34
Soroti -0.94 0.52 1.39
Tororo 1.08 1.32 1.89

slight improvement in the ME where 16 out of 21 stations had their magnitude of ME less than 2.00.
The multi–member analogue ensemble presented a further reduction in the RMSE and additional
improvement in the magnitude of ME. We thus note that although the ensemble mean improves the
prediction accuracy, the ensemble mean analogue and the multi–member analogue ensemble presents
additional improvement in accuracy with multi–member analogue ensemble giving the best results.
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Appendix: Performance measures

The study employed two performance measures i.e. the root mean square error (RMSE) and the
mean error (ME).

Appendix Root mean square error

The RMSE is obtained from the square root of the mean square differences between predicted
(i.e. P) and observed (i.e. O) when paired. It is computed mathematically as:

RMSE =

√
1
n

n

∑
i=1

[Pi −Oi]
2 (4)
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Appendix Mean error

The ME is the mean of the differences (i.e Pi −Oi) which is computed as:

ME =
1
n

n

∑
i=1

[Pi −Oi] (5)

where i is the ith data point ordered in time.
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