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Abstract: Speckle noise reduction is an important area of research in the field of ultrasound image 10 
processing. Several algorithms for speckle noise characterization and analysis have been recently 11 
proposed in the area. Synthetic ultrasound images can play a key role in noise evaluation methods 12 
as they can be used to generate a variety of speckle noise models under different interpolation and 13 
sampling schemes, and can also provide valuable ground truth data for estimating the accuracy of 14 
the chosen methods. However, not much work has been done in the area of modelling synthetic 15 
ultrasound images, and in simulating speckle noise generation to get images that are as close as 16 
possible to real ultrasound images. An important aspect of simulated synthetic ultrasound images 17 
is the requirement for extensive quality assessment for ensuring that they have the texture 18 
characteristics and gray-tone features of real images. This paper presents texture feature analysis of 19 
synthetic ultrasound images using local binary patterns (LBP) and demonstrates the usefulness of a 20 
set of LBP features for image quality assessment. Experimental results presented in the paper 21 
clearly show how these features could provide an accurate quality metric that correlates very well 22 
with subjective evaluations performed by clinical experts.  23 

Keywords: ultrasound image analysis; speckle noise; synthetic ultrasound images; texture features; 24 
local binary patterns; image quality assessment 25 

 26 

1. Introduction 27 

Ultrasound images are known to have poor signal-to-noise ratio, yet they are low cost 28 
non-invasive techniques in diagnostic radiology and hence extensively used in clinical applications. 29 
Several new ultrasound image analysis algorithms are currently being researched for noise 30 
reduction [1-3], segmentation [4], registration and volume reconstruction [5]. Online ultrasound 31 
image databases are now becoming increasingly available and this has greatly benefitted researchers 32 
in obtaining reference images for testing and evaluating algorithms [5-7]. 33 

 The speckle noise in ultrasound images degrades the fine details and edge definitions, and 34 
limits the contrast resolution by making it difficult to detect small and low contrast lesions in the 35 
body. Therefore, algorithms for ultrasound image filtering and analysis primarily focus on the 36 
characteristics of speckle noise and try to minimize its effects on image interpretation [8]. To analyse 37 
the effectiveness or accuracy of speckle reduction techniques, it is necessary to add controlled noise 38 
to ideal noiseless images [2]. In the absence of such noiseless ground truth images, researchers 39 
commonly use standard non-ultrasound test images (eg. Lena, Mandrill etc.) or discrete gray-level 40 
patterns and model speckle noise on those images to perform algorithm evaluation.  This paper 41 
addresses the need for generating accurate synthetic models of ultrasound image formation for 42 
applications in speckle noise analysis. A synthetic ultrasound image can be sampled using a 43 
configuration of points that correspond to either linear or sector scan modes of ultrasound imaging, 44 
and interpolated later after generating speckle noise at the sampled points to obtain visually realistic 45 
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effects. Synthetic images can therefore be used to generate simulated ultrasound images with a wide 46 
range of image and noise characteristics useful for filtering methods and noise analysis. 47 

Statistical and empirical methods of generating speckle lack realism since several important 48 
characteristics of the image acquisition models are often ignored. There are only very limited 49 
algorithms reported in literature for speckle simulation based on image acquisition modeling.  50 
Perreault and Auclair-Fortier [9] proposed an efficient simulation model of ultrasound images based 51 
on a radial-polar configuration of sampling points and a speckle noise simulation algorithm. We 52 
extend their work by considering different types of sampling and interpolation schemes and by 53 
performing detailed experimental analysis to compare their effectiveness in producing realistic 54 
speckle simulation.  Their work used images of Lena and Barbara for generating the simulated 55 
images with speckle noise.  However, for generating highly realistic synthetic models, we require 56 
images that have texture features and intensity characteristics that closely match the features of real 57 
ultrasound images. Therefore, a very important aspect of synthetic image modelling algorithms is 58 
quality assessment. In the proposed method, the base synthetic image is modified as outlined above 59 
using the acquisition model, speckle noise simulation and interpolation of the sampled points. 60 
Second order texture feature analysis using Gray level co-occurrence matrix (GLCM) has been 61 
already performed in our recently proposed work [12], where we felt the need for more robust 62 
texture descriptors that would show consistent behavior with variation of image quality induced by 63 
changes in the modeling parameters. This paper addresses this problem by considering local binary 64 
patterns (LBP) for representing the texture content in the images.  To the authors’ knowledge, no 65 
prior work has been reported on image texture feature based quality assessment of realistic synthetic 66 
ultrasound images using local binary patterns. In this paper, the quality of the generated synthetic 67 
image texture features are analysed using LBP [10, 11], and correlated with subjective evaluation 68 
scores assigned by clinicians.  69 

The paper presents the complete framework for the development of synthetic ultrasound 70 
images including the set of processes in both simulation and evaluation stages. It also presents the 71 
results of an exhaustive experimental analysis of texture features using LBP for each of the three 72 
sampling methods.  The presented results clearly show the usefulness of LBP in accurately 73 
characterizing the texture features and therefore the overall quality of modelled synthetic images. 74 
This paper is organized as follows:  The next section gives a brief outline of the images used and the 75 
methods in the processing pipeline. Section 3 describes the simulation model in detail.  Section 4 76 
presents the synthetic ultrasound images with variations of modeling parameters. Section 5 gives an 77 
overview of local binary patterns.  Section 6 presents experimental results and their evaluations 78 
using LBP.  Section 7 gives a summary of the work presented in the paper and outlines future 79 
directions. 80 

 81 

2. Materials and Methods 82 

For experimental work presented in the paper, the reference images of real ultrasound images 83 
were sourced from the online ultrasound image gallery [7]. These are ultrasound scans of the liver, 84 
and have very similar image features, intensity distribution and noise content. Figure 1 shows three 85 
such reference images and their histogram to show intensity distribution of each image.  86 

 87 
 88 
 89 
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  90 

     91 
        Liver 1              Liver 2                 Liver 3 92 

Figure 1. Reference ultrasound images [7] used in our work, and their histograms. 93 

The three reference images in Figure 1 were used by an artist to sketch the image features which 94 
formed our base synthetic image (Figure 2). The histogram of the synthetic image bears similarity 95 
with those of the reference images. 96 

 97 

   98 
  Artist rendered image     Sector Image          Histogram of Sector image 99 

 Figure 2. Artist rendered synthetic image, and Sector image and its histogram. 100 

The main methods used in the speckle simulation modelling and evaluation pipeline are 101 
depicted in Figure 3. Within the simulation model, the synthetic image is first sampled based on an 102 
acquisition model, speckle noise is then generated at the sampled points, and an interpolation 103 
algorithm used to fill the sector scan region. The evaluation model uses image quality metrics 104 
computed for the output are then compared with those of the reference ultrasound images for a 105 
quantitative assessment of the quality of the final synthetic images. A subjective evaluation is also 106 
performed using expert sonographers. In consideration of subjective evaluation, texture feature 107 
analysis is performed using local binary patterns in order to validate subjective assessment and 108 
equate results to human perception of texture. 109 

 110 
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 111 

Figure 3. The simulation and evaluation stages of the processing pipeline. 112 

The processing stages within the simulation model are further elaborated in the next section. 113 

3. The Modeling and Speckle Simulation 114 

The first stage of the sampling model is the method that generates a set of points at a coarse spatial 115 
resolution. The configuration of points models the loss of resolution of the ultrasound image due to 116 
pulse length, and also the scanning mode (sector or linear). One of the original contributions in this 117 
field is the paper by Perreault and Auclair-Fortier [9], where a radial-polar sampling model was 118 
introduced. We extend their work and propose three types of sampling methods called radial-polar, 119 
radial-uniform, and uniform grid. The first two are closely related to sector scan, while the third 120 
corresponds to a sampling in linear orthogonal directions (Figure 4). 121 

 122 
   

Radial-Polar Radial-Uniform Uniform Grid 

Figure 4. Sampling models that can be used in simulating speckle noise. 123 

In Figure 4, the sector angle is denoted by Φ, and the extent of the sector is given by radial 124 
distances dmin and dmax. The image width is denoted by w. We also denote the total number of 125 
divisions along each radial line (axial resolution) by m, and the number of division of the sector 126 
angle (lateral resolution) by n. The Cartesian coordinates of the sampled points for radial-polar 127 
sampling are given by 128 

 dj = dmin + j(dmax−dmin)/(m−1);      θi = (3π−Φ)/2 + iΦ/(n−1) 129 

 x(i, j) = dj cosθi + w/2;     y(i, j) = − dj sinθi;     i = 0..(n−1);    j = 0..(m−1)     (1) 130 
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The non-uniform spacing of points in the radial-polar sampling method causes the density of 131 
points to increase towards the sector's apex. The radial-uniform sampling method uses a constant 132 
arc length Δ between points along each arc to generate a uniform spacing between points. The 133 
equations for this sampling model are same as in eq. (1) except that the polar angle θ  will now 134 
depend on both i and j as shown below. 135 

 θij = (3π−Φ)/2 + iΔ/dj     (2) 136 

In the radial uniform sampling scheme, the parameter equivalent to the lateral resolution n is the 137 
number of sampling points nu along an arc at distance di given by 138 

 nu = Φ dj/Δ     (3) 139 

The uniform grid is the simplest sampling model corresponding to a rectangular arrangement of 140 
uniformly spaced points with a constant distance δ  between points. If a sector scan region is 141 
required, the points outside the region are clipped using the line equations of the two bounding 142 
edges. Using eq.(3), if  f(x, y, θmin ) > 0  or  f(x, y, θmax ) < 0,  the point (x, y) is outside the sector 143 
region. 144 

 θmin = (3π−Φ)/2;     θmax = (3π+Φ)/2 145 

 f(x, y, θ) = (x− w/2) sinθ  + y cosθ     (4) 146 

More details and implementation aspects of the above three models are given in [13].  For speckle 147 
simulation, we use the method given in [7]. Their model is based on a complex distribution of 148 
incoherent phasors (u, v) given by a two-dimensional Gaussian function gσ . The complex amplitude 149 
of each pixel is initialized with the square-root of the sampled intensity value.  The number of 150 
incoherent phasors M(x, y) at each pixel (x, y) is set as the value of a random number under a 151 
uniform distribution within a pre-specified range [a, b]. The incoherent phasors are generated and 152 
added M times to both the real and imaginary components of the complex value at each pixel. The 153 
noisy intensity value is then given by the amplitude of the complex number. 154 

After generating speckle noise at the sampled points, we use an interpolation method to fill the 155 
empty space left by the sampling step. In general, the interpolated value at a specified coordinate (x, 156 
y) of an image I is computed by grouping the sample values at neighboring pixels (l, m) using the 157 
following formula [14]: 158 

 ( ) ),(,),(
,

mlImylxyxI
Zml


∈

−−= ϕ      (5) 159 

where, ϕ() denotes a two-dimensional interpolation/synthesis function that provides the weights 160 
of the linear combination of sampled intensity values. Commonly used interpolation methods are 161 
B-Spline and cubic Hermite [15, 16].  In [9], the authors used an interpolation scheme using the 162 
Lanczos-3 kernel [14], [17-20]. 163 

4. Synthetic Ultrasound Images 164 

The framework detailed above provides several options and parametric variations in each stage of 165 
the pipeline. As seen in Section 3, the three sampling methods and three interpolation schemes 166 
themselves give nine possible combinations. Each sampling scheme has its own set of parameters 167 
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that can be varied over a wide range of values. The speckle noise generation algorithm also has a set 168 
of statistical parameters governing the noise distribution.  169 

The first row of Figure 5 shows the variations when the axial resolution m is increased in 170 
radial-polar sampling, keeping the lateral resolution fixed at n = 40. The interpolation used was 171 
Lanczos-3 [18]. 172 

 173 

  
m = 120 m = 160 m = 200 

Figure 5. Effect of changing axial resolution (m) in radial-polar sampling. 174 

Similar results for radial uniform sampling are shown in Figure 6. 175 
 176 

 
m = 120 m = 160 m = 200 

Figure 6. Effect of changing axial resolution (m) in radial-uniform sampling. 177 

Some of the commonly found artifacts in simulated images when values of certain parameters 178 
become large are shown in Figure 7.  In Figure 7(a), a large value for m results in a dense, 179 
overlapping set of points along beam directions resulting in smoothing/merging of pixels. A similar 180 
effect is seen when both n and m are large (Figure 7(b)). When the σ  value is large in the speckle 181 
generation function, the image becomes too grainy with loss of fine details, as in Figure 7(c).  182 

 183 
 184 

  
(a)  n=40, m=240, σ=1.7  (b)  n=60, m=160, σ=0.5 (c)  n=80, m=120, σ=1.9 

Figure 7.  Image artifacts produced by large values of sampling and noise parameters 185 
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5. Analysis of Texture Features  186 

 One of the key requirements in the analysis of image modelling and simulation algorithms that 187 
use synthetic data is image quality assessment. Quality measures such as spatial frequency measure 188 
(SFM) and spectral activity measures (SAM) are commonly used in the assessment of image quality 189 
in the evaluation of compression and noise filtering algorithms [17]. In our prior work [21], we used 190 
entropy, SFM and SAM to compare the quality of the synthetic images with that of real ultrasound 191 
images. From that analysis, it became evident that we need to use higher order texture features to 192 
accurately characterize the desirable image properties, and to arrive at a robust set of quality metrics 193 
that conform to the subjective evaluations performed by expert clinicians. This paper presents a 194 
quality evaluation model using local binary patterns (LBP) and proposes a set of quality metrics 195 
(LBP feature values) that can provide consistent results on both synthetic and real ultrasound 196 
images. It has also been shown that synthetic images that give minimum feature deviation from real 197 
images are the ones that were given the highest subjective evaluation scores by experts, and 198 
therefore the proposed feature set contain sufficient information about the required texture features 199 
in the input synthetic images. In other words, these quality metrics determine the optimal set of 200 
sampling and noise parameters that would produce simulated ultrasound images closely matching 201 
the texture features of real ultrasound images. The images generated in this manner could be used to 202 
evaluate algorithms for speckle noise filtering (Figure 8). 203 

 204 
Figure 8. Application of the proposed LBP features in the evaluation of filtering algorithms.   205 

5.1. Local Binay Patterns (LBP) 206 

The irregularity and heterogeneity of texture features form the primary characteristics of 207 
ultrasound images and therefore play an important role in the assessment of their quality. A 208 
powerful texture descriptor that has been successfully applied in the field of medical image analysis 209 
is called the Local Binary Pattern (LBP) [22], [23]. This feature is derived by comparing the intensity 210 
at each pixel with its eight neighbors and encoding the information in an 8-bit integer value. This 211 
encoding can be viewed as a transformation of the input image into an LBP image as shown in 212 
Figure 9.  213 
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 214 

Figure 9.  The intermediate steps in the computation of the LBP histogram of an image. 215 

The histogram of the LBP image is generally used for texture classification [11].  In the area of 216 
medical image analysis, LBP methods have been successfully used in characterizing disease patterns 217 
[23]. There has also been a limited number of applications of local binary patterns in image quality 218 
assessment [10].  In this paper, we propose a novel approach for objective quality evaluation of 219 
synthetic ultrasound images using features derived from the LBP histogram.  220 

5.2. LBP Features of Synthetic Ultrasound Images 221 

The LBP histogram of ultrasound images contains predominant features that represent texture 222 
characteristics in the image.  As an example, a synthetic ultrasound image of size 256x256 pixels, the 223 
corresponding LBP image and the LBP histogram are shown in Figure 10. 224 

 225 

   

(a) (b) (c) 

Figure 10.  (a) A synthetic ultrasound image; (b) The LBP image; (c) the LBP histogram. 226 

In Figure 10(c), we have highlighted the important LBP features based on their magnitudes. The 227 
LBP histogram contains 256 values Li ,  i = 0…255.   We propose the following feature vector 228 
consisting of eight LBP features for quality assessment: 229 

V = {L8, L15, L120, L128, L135, L143, L240, L248}           (6) 230 

The above features show consistent variations with changes in axial and lateral resolutions at 231 
the modelling stage. The next section discusses the experimental results in detail and also shows that 232 
the LBP features can also help select these modelling parameters so that the features closely match 233 
with those of real ultrasound images. 234 

6. Experimental Analysis and Validation 235 

6.1. LBP Feature Vector for Reference Images 236 

The feature vector given in Equation (6) was computed for the three reference images in Figure 237 
1, and the average of the three sets were used as the reference feature vector. These values are given 238 
below: 239 
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VRef = {447.3, 597.3, 508.7, 433.7, 691.7, 435.3, 459.3, 290}          (7) 240 

The reference values were used in our experimental analysis detailed in the following sections, 241 
to find the answers to three main research questions: 242 
1. When the parameters controlling the resolution in a sampling method are adjusted from coarse 243 

to fine, do the values of the corresponding LBP feature vector consistently tend towards the 244 
reference feature vector? 245 

2. Do the synthetic images that give feature values close to the reference vector also have 246 
consistently high subjective evaluation scores assigned by clinical experts? 247 

3. Which one of the three modelling schemes generated feature values that are closest to the 248 
reference feature vector? 249 
We performed an extensive analysis using LBP features by varying the sampling parameters for 250 

the radial polar, radial uniform and uniform grid methods, and the results are summarized below. 251 

6.2. LBP Feature Vector for Radial-Polar Sampling 252 

Here, we consider the images generated using the radial-polar sampling scheme. Quality 253 
analysis using global features such as entropy, SAM and SFM, and also subjective evaluations 254 
revealed that an axial resolution value (m in Equation 1) of 120, and speckle noise level σ = 0.5 gave 255 
acceptable results. We therefore fixed these parameters and varied only the lateral resolution (n in 256 
Equation 1) from 10 to 120. A few sample images are shown in Figure 11. 257 

 258 

 259 

Figure 11. Synthetic images generated using radial polar sampling with a coarse to fine variation of 260 
lateral resolution parameter n.  261 

The variations of each of the eight components of the feature vector (Equation 6) computed 262 
from the LBP histogram are shown in Figure 12. 263 

 264 

  265 
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Figure 12. Variations of LBP feature vector components with lateral resolution in radial-polar 266 
sampling. The x-axis gives the values of n. 267 

In Figure 12, the blue horizontal lines indicate the values of the reference feature vector as given 268 
in Equation 7. All components of the LBP feature vector show consistent variations towards the 269 
reference values as the value of the lateral resolution parameter n is increased. 270 

6.3. LBP Feature Vector for Radial-Uniform Sampling 271 

The parameter affecting the lateral resolution in radial uniform sampling is nu given in Equation 272 
3. The effect of variation of this parameter in the quality of the synthetic images is shown in Figure 273 
13. 274 

 275 
Figure 13. Synthetic images generated using radial uniform sampling with a coarse to fine variation 276 
of lateral resolution parameter nu . 277 

The variations of the LBP feature vectors (Equation 6) with nu are shown in the graphs in Figure 14. 278 

 279 

Figure 14. Variations of LBP feature vector components with lateral resolution in radial-uniform sampling. 280 
The x-axis gives the values of nu. 281 

In the case of radial uniform sampling also, we see a trend towards the reference values of the 282 
LBP features as the lateral resolution nu of the images is increased from 10 to 120. 283 

6.4. LBP Feature Vector for Uniform-Grid Sampling 284 

As previously mentioned in Section 3, the uniform-grid sampling method uses a constant 285 
spacing δ  between sampling points along both x and y directions. Therefore, increasing δ reduces 286 
the resolution of the sampled image in both directions. Consequently, we will get a fine to coarse 287 
variation of quality in the image as δ is increased, as shown in Figure 15. 288 
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 289 

 290 
Figure 15. Synthetic images generated using uniform-grid sampling scheme with increasing values 291 
of the grid spacing parameter δ. 292 

Since the image quality deteriorates as the value of δ is increased, the corresponding values of 293 
the LBP feature vector deviates further from the reference feature vector, as shown in Figure 16. 294 

 295 

 296 
Figure 16. Variations of LBP feature vector components with grid spacing in uniform-grid sampling. 297 
The x-axis gives the values of δ. 298 

6.5 Comparative Analysis of Sampling Techniques 299 

The objective quality of the synthetic images produced by the three sampling methods is 300 
evaluated by computing the closest distance of the LBP feature vectors from the reference feature 301 
vector (indicated by the blue horizontal lines in Figures 12, 14, 16) using a Euclidean distance metric. 302 
The plots of the distance values for the three methods are given in Figure 17. 303 

 304 

(a) (b) (c) 
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Figure 17. Plots showing the closest matching positions of the LBP feature vector with reference 305 
vector for images generated using (a) radial-polar sampling; (b) radial-uniform sampling; (c) 306 
uniform-grid sampling. 307 

The comparative analysis showed that radial polar sampling with lateral resolution n = 110 308 
gave the closest distance of the LBP feature vector from the reference feature vector. This result also 309 
matches very closely with the subjective evaluation scores reported in [21]. 310 

  311 

7. Conclusions and Future Work 312 

This paper has presented the complete algorithmic framework for generating realistic and 313 
simulated ultrasound images incorporating image acquisition models, speckle noise formation 314 
processes and image interpolation schemes. The paper has introduced three sampling schemes, viz., 315 
radial-polar, radial-uniform and uniform grid sampling methods. These methods together with the 316 
speckle simulation model and the interpolation scheme formed the simulation model of the 317 
processing pipeline. These processes within the simulation model allows users to vary a wide range 318 
of parameters that control the image and noise formation processes.  The simulated images with 319 
speckle noise could be used to evaluate noise filtering methods as ground truth data (the 320 
corresponding synthetic images without noise) are readily available.  321 

This paper has also presented detailed experimental study involving objective quality 322 
assessment using texture features derived from local binary patterns. The components of the LBP 323 
feature vector showed changes consistent with variations in the resolution of the synthetic images. 324 
More importantly, the values of the LBP features approached the values computed from real 325 
synthetic images, thus providing us an optimal set of modelling parameters that could be used for 326 
generating realistic synthetic images. The quality of such synthetic images was further validated 327 
using subjective evaluations performed by clinical experts.  328 

Future work is directed towards using the proposed algorithm on a wider range of ultrasound 329 
images to analyse deviations in the values of LBP feature components and to evaluate the robustness 330 
of the selected LBP features under variations in imaged objects and tissue characteristics. 331 

 332 
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