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Abstract: The meticulous study of finite automata has produced many important and useful results.1

Automata are simple yet efficient finite state machines that can be utilized in a plethora of situations.2

It comes, therefore, as no surprise that they have been used in classic game theory in order to model3

players and their actions. Game theory has recently been influenced by ideas from the field of4

quantum computation. As a result, quantum versions of classic games have already been introduced5

and studied. The PQ penny flip game is a famous quantum game introduced by Meyer in 1999. In6

this paper we investigate all possible finite games that can be played between the two players Q and7

Picard of the original PQ game. For this purpose we establish a rigorous connection between finite8

automata and the PQ game along with all its possible variations. Starting from the automaton that9

corresponds to the original game, we construct more elaborate automata for certain extensions of the10

game, before finally presenting a semiautomaton that captures the intrinsic behavior of all possible11

variants of the PQ game. What this means is that from the semiautomaton in question, by setting12

appropriate initial and accepting states, one can construct deterministic automata able to capture13

every possible finite game that can be played between the two players Q and Picard. Moreover, we14

introduce the new concepts of a winning automaton and complete automaton for either player.15

Keywords: finite automata; games; PQ penny flip game; game variants; winning sequences16

0. Introduction17

Game theory studies conflict and cooperation between rational players. To this end, a sophisticated18

mathematical machinery has been developed that facilitates this reasoning. There are numerous19

textbooks that can serve as an excellent introduction to this field. In this paper we shall use just a few20

fundamental concepts and we refer to [1] and [2] as accessible and user-friendly references, whereas21

[3] is a more rigorous exposition. The landmark work “Theory of Games and Economic Behavior"22

[4] by John Von Neumann and Oskar Morgenstern is usually credited as being the one responsible23

for the creation this field. Since then Game theory has been broadly investigated due to its numerous24

applications, both in theory and practice. It would not be an exaggeration to claim that today the25

use of Game theory is pervasive in economics, political and social sciences. It has even been used in26

such diverse fields as biology and psychology. In every case where at least two entities are either in27

conflict or cooperate, Game theory provides the proper tools to analyze the situation. The entities are28

called players, each player has his own goals and the actions of every player affect the other players.29
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Every player has at his disposal a set of actions, from which his set of strategies is determined. The30

outcome of the game from the point of view of each player is quantitatively assessed by a function that31

is called utility or payoff function. The players are assumed to be rational, i.e., every player acts so as32

to maximize his payoff.33

Quantum computation is a relatively new field that was initially envisioned by Richard Feynman34

in the early ’80s. Today there is a wide interest in this area and, more importantly, actual efforts for35

the building practical commercial quantum computing machines or at least quantum components.36

One could argue that quantum computing perceives the actual computation process as a natural37

phenomenon, in contrast to the known binary logic of classical systems. Technically, a quantum38

computer is expected to use qubits as the basic unit of computation instead of the classical bit. The39

transitions among quantum states will be achieved through the application of unitary matrices. It is40

hoped that the use of quantum or quantum-inspired computing machines will lead to an increase41

in computational capabilities and efficiency, since the quantum world is inherently probabilistic and42

non-classical phenomena, such as superposition and entanglement, occur. Up to now, the superiority43

of quantum methods over classical ones has only been proven for particular classes of problems;44

nevertheless the performance gains in such cases are tremendous. In the PQ penny flip game described45

by Meyer in [5], the quantum player Q has an overwhelming advantage over the classical player46

Picard. The recent field of quantum game theory is devoted to the study of quantum techniques in47

classical games, such as the coin flipping, the prisoners’ dilemma and many others.48

Contribution. The main contribution of this work lies in establishing a rigorous connection49

between finite automata and the PQ game with all its finite variations. Starting from the automaton50

that corresponds to the original PQ game, we construct automata for various interesting variations of51

the game, before finally presenting the semiautomaton of Figure 6 that captures the “essence" of the52

PQ game. By this we mean that this semiautomaton serves as a template for building automata (by53

designating appropriate initial and accepting states) that cover all possible finite games that can be54

played between Q and Picard. We point out that the resulting automata are almost identical, since55

they differ only in the initial state and/or their accepting states; yet these minor differences have a56

profound effect on the accepting language.57

Furthermore we introduce two novel notions, that of a winning automaton and that of a complete58

automaton for either player. A winning automaton for either Q or Picard accepts only those words that59

correspond to actions that allow him to win the game with probability 1.0 and a complete automaton60

(for Q or Picard) accepts all such words. This is a powerful tool because it allows us to determine61

whether or not an arbitrary long sequence of actions guarantees that one of the two players will surely62

win just be checking if the corresponding word is accepted or not by the complete automaton for that63

player.64

We clarify that the automata we construct do more than simply accept dominant strategies. They65

are specifically designed to accept sequences of actions by both players, i.e., sequences that contain66

the actions of both players. This gives a global overview of the evolution of the game from the point67

of view of both players. Moreover, no information is lost and, in case one wishes to focus only on68

dominant strategies for a specific player, this can be simply achieved by considering a substring from69

each accepted word; this substring will contain only the actions of the specific player, disregarding all70

actions by the other player.71

The paper is organized as follows: Section 1 discusses related work, Section 2 explains the notation72

and definitions used throughout the rest of the paper, Section 3 lays the necessary groundwork for73

the connection of games with automata, Section 4 describes the automaton that corresponds to the74

standard PQ game, Section 5 analyzes how one may construct automata that correspond to specific75

variants of the PQ game, Section 6 contains the most important results of this work: the semiautomaton76

of Figure 6 that captures all possible finite games between Q and Picard, and the concepts of winning77

and complete automata for Q or Picard, and Section 7 summarizes our results and conclusions and78

points to directions for future work.79
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1. Related Work80

In 1999 Mayer [5] introduced the quantum version of the penny flip game with two players and a81

two dimensional coin. In the original game the two players are named Q and Picard (from a popular82

tv series). Picard is restricted to classic strategies whereas Q is able to use quantum strategies. As a83

result Q is able to apply unitary transformations in every possible state of the game. Mayer identifies a84

winning strategy for Q that boils down to the application of the Hadamard transform. Picard, on the85

other hand, who can either leave the coin as is or flip it, is bound to lose in every case.86

Many articles extended the aforementioned game to an n-state quantum roulette using various87

techniques. Salimi et al. [6] used permutation matrices and the Fourier matrix as a representation88

of the symmetric group Sn. They viewed quantum roulette as a typical n-state quantum system89

and developed a methodology that allowed them to solve this quantum game for arbitrary n. As90

an example they employed their technique for a quantum roulette with n = 3. Wang et al. [7] also91

generalized the coin tossing game to an n-state game. Ren et al. [8] developed specific methods that92

enabled them to solve the problem of quantum coin-tossing in a roulette game. Specifically, they used93

two methods, which they called analogy and isolation methods respectively, in order to tackle the94

above problem. All the previously mentioned articles focused on the expansion of states, essentially95

converting the coin into a roulette.96

Quantum protocols from the fields of quantum and post-quantum cryptography are widely97

studied in the framework of quantum game theory. Several cryptographic protocols have been98

developed in order to provide reliable communication between two separate players regarding the99

coin-tossing game [9], [10], [11], [12]. Nguyen et al. [9] analyzed how the performance of a quantum100

coin tossing experiment should be compared to classical protocols, taking into account the inevitable101

experimental imperfections. They designed an all-optical fiber experiment, in which a single coin102

is tossed whose randomness is higher than that of any classical protocol. In the same paper they103

presented some easily realizable cheating strategies for Alice and Bob. Berlin et al. [10] introduced a104

quantum protocol which they proved to be completely impervious to loss. The protocol is fair when105

both players have the same probability for a successful cheating upon the outcome of the coin flip.106

They also gave explicit and optimal cheating strategies for both players. Ambainis [11] devised a107

protocol in which a dishonest party will not be able to ensure a specific result with probability greater108

than 0.75. For this particular protocol, the use of parallelism will not lead to a decrease of its bias. In109

[12] Ambainis et al. investigated similar protocols in a context of multiple parties, where it was shown110

that the coin may not be fixed provided that a fraction of the players remain honest.111

Many researchers have investigated turn-based versions of classical games such as the prisoners’112

dilemma. One of the first works that associated finite automata with game theory was by Neyman [13],113

where he studied how finite automata can be used to acquire the complexity of strategies available114

to players. Rubinstein [14] studied a variation of the repeated prisoners’ dilemma, in which each115

player is required to play using a Moore machine (a type of finite state transducer). Rubinstein and116

Abreu [15] investigated the case of infinitely repeated games. They used the Nash equilibrium as a117

solution concept, where players seek to maximize their profit and minimize the complexity of their118

strategies. Inspired by the Abreu-Rubinstein style systems, Binmore and Samuelson [16] replaced the119

solution concept of Nash equilibrium with that of the evolutionarily stable strategy. They showed that120

such automata are efficient in the sense that they maximize the sum of the payoffs. Ben-Porath [17]121

studied repeated games and the behavior of equilibrium payoffs for players using bounded complexity122

strategies. The strategy complexity is measured in terms of the state size of the minimal automaton123

that can implement it. They observed that when the size of the automata of both players tends to124

infinity, the sequence of values converges to a particular value for each game. Marks [18] also studied125

repeated games with the assistance of finite automata.126

An important work in the field of quantum game theory by Eisert et al. [19] examined the127

application of quantum techniques in the prisoners’ dilemma game. Their work was later debated128

by others, such as Benjamin and Hayden in [20] and Zhang in [21], where it was pointed out that129
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players in the game setting of [19] were restricted and therefore the resulting Nash equilibria were130

not correct. The work in [22] gave an elegant introduction to quantum game theory, along with a131

review of the relevant literature for the first years of this newborn field. Parrondo games and quantum132

algorithms were discussed in [23]. The relation between Parrondo games and a type of automata,133

specifically quantum lattice gas automata, was the topic of [24]. Bertelle et al. [25] examined the134

use of probabilistic automata, evolved from a genetic algorithm, for modeling adaptive behavior in135

the prisoners’ dilemma game. Piotrowski et al. [26] provided a historic account and outlined the136

basic ideas behind the recent development of quantum game theory. They also gave their assessment137

about possible future developments in this field and their impact on information processing. Recently,138

Suwais [27] examined different types of automata variants and reviewed the use for each one of them139

in game theory. In a similar vein, Almanasra et al. [28] reported that finite automata are suitable for140

simple strategies whereas adaptive and cellular automata can be applied in complex environments.141

The relation of quantum games with finite automata was also studied in [29]. In that work142

quantum automata accepting infinite words were associated with winning strategies for abstract143

quantum games. The current paper differs from [29] in the following aspects: (i) the focus is in the PQ144

penny flip game and all its variations, (ii) the automata are either deterministic or nondeterministic145

finite automata, and (iii) the words accepted by the automata correspond to moves by both players.146

2. Preliminary definitions147

2.1. The PQ Game148

Meyer in his landmark paper [5] introduced the penny flip game. This game is played by two149

players named Q and Picard. The names are inspired from a successful science fiction tv show. Picard150

is a classical, probabilistic, player, in that he can only perform one of two actions:151

• leave the coin as is, which we denote by I, after the “identity" operator, or152

• flip the coin, which we denote by F, after the “flip" operator.153

Q on the other hand is a quantum player, in that he can affect the coin not only in a classical154

sense, but also through the application of unitary transformations, such as the Hadamard operator,155

which is denoted by H. The game is played with the coin prepared in the initial state heads up. The156

two players act on the coin always following a specific order: Q plays first, then its Picard’s turn, and,157

finally, Q plays one last time. Q wins if the coin is found heads up when the game is over; otherwise158

Picard wins. Mayer presents a dominant strategy for Q based on the application of the Hadamard159

transform H: Q starts by applying the H operator, which in a sense makes Picard’s move irrelevant.160

After Picard makes his move, Q applies once more the H operator, which restores the coin to its initial161

state, granting him victory.162

The game can be rephrased in a linear algebraic form:163

• The coin is represented by a ket |v〉 ∈ H2 of norm 1, where H2 is the 2-dimensional complex164

Hilbert space.165

• The possible actions of the two players I, F, H are represented by unitary operators. Specifically,166

sinceH2 is 2-dimensional, the operators can be represented by the following 2× 2 matrices:167

I =

[
1 0
0 1

]
, F =

[
0 1
1 0

]
, and H =

[√
2

2

√
2

2√
2

2 −
√

2
2

]
. (1)

In the rest of this paper we shall refer to the PQ penny flip game simply as the PQ game.168

2.2. Automata169

For completeness, we will now mention the definitions of deterministic and nondeterministic170

finite automata, which we will use in the following chapters as a succinct tool to represent the PQ game,171
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define new variants of the original game, and study strategies on the these variants. The definitions172

are taken from [30].173

Definition 1. A deterministic finite state automaton (DFA) is a tuple (Q, Σ, δ, q0, F), where:174

1. Q is a finite set of states,175

2. Σ is a finite set of input symbols called the alphabet,176

3. δ : Q× Σ→ Q is the transition function,177

4. q0 ∈ Q is the initial state, and178

5. F ⊆ Q is the set of accepting states.179

The definition of the nondeterministic finite automata (NFA) follows a similar pattern, save180

for some key differences: we replace the definition of the transition function δ seen above with181

δ : Q× Σ → P(Q), where P(Q) is the powerset of Q. We also allow for ε transitions. We note that182

DFA and NFA are equivalent in expressive power [30,31].183

Definition 2. A nondeterministic finite-state automaton (NFA) is a tuple (Q, Σ, δ, q0, F), where:184

1. Q is a finite set of states,185

2. Σ is the alphabet,186

3. δ : Q× Σε → P(Q) is the transition function,187

4. q0 ∈ Q is the initial state, and188

5. F ⊆ Q is the set of accepting states.189

3. Games and words190

Table 1. Correspondence between the operators I, F and H and the letters of the alphabet Σ = {i, f , h}.

(a)
Operators vs. letters.

Operator Letter
I i
F f
H h

(b)
Letter assignment λ.

λ : {I, F, H} → {i, f , h}
λ(I) = i
λ(F) = f
λ(H) = h

(c)
Operator assignment µ.

µ : {i, f , h} → {I, F, H}
µ(I) = i
µ(F) = f
µ(H) = h

In this work we intend to examine all finite games that can be played between Picard and Q. These191

games are in a sense “similar" to the original PQ game and can, therefore, be viewed as extensions that192

arise from modifications of the rules of the original game. First we must precisely state what we shall193

keep from the PQ game. Our analysis will be based on the following four hypotheses.194

H1: The two players, Picard and Q, are the stars of the game. Thus, they will continue to play against195

each other in all the two-persons games we study. Although the games will be finite, their196

duration will vary. Most importantly, the pattern of the games will vary: Picard may make the197

first move, one player may act on the coin for a number of conseutive rounds while the other198

player stays idle and so on.199

H2: The other cornerstone of the game is the 2-dimensional coin, so the players will still act on the200

same coin. This means that our games take place in the 2-dimensional complex Hilbert spaceH2201

and we shall not be concerned with higher dimensional analogs of the PQ game like those in [6]202

and [7].203

H3: Let us agree that the players have exactly the same actions at their disposal, that is Picard can204

use either I or F, whereas Q can only use H. This will enable us to treat all games in a uniform205

manner by using the same alphabet and notation.206

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 October 2017                   doi:10.20944/preprints201710.0179.v1

Peer-reviewed version available at Mathematics 2018, 6, 20; doi:10.3390/math6020020

http://dx.doi.org/10.20944/preprints201710.0179.v1
http://dx.doi.org/10.3390/math6020020


H4: Finally, we assume that the coin can initially be at one of the two basic states |0〉 (the coin is207

placed heads up) or |1〉 (the coin is placed tails up), and this state is known to both players. We208

note that for each game that begins with the coin in state |0〉, there exists an analogous game that209

begins with the coin in state |1〉 and vice versa. When the game is over, the state of the coin is210

measured and if it is found to be in the initial basic state, Q wins; otherwise Picard wins. This211

settles the question of how the winner is determined.212

From now on we shall take for granted the hypotheses H1 - H4 without any further mention. We213

shall occasionally write |heads〉 instead of |0〉 and |tails〉 instead of |1〉 to emphasize that the coin is214

heads up or tails up respectively.215

Let N be the set of the two players {Picard, Q} and let N? be the set of all finite sequences over N.216

We agree that N? contains the empty sequence e. Each γ ∈ N? is called a sequence of moves because it217

encodes a game between Picard and Q. For instance the sequence (Q, Picard, Q) expresses the original218

PQ game, while the sequence (Picard, Q, Picard, Q, Picard) represents a 5-round game variant, where219

Picard moves during rounds 1, 3 and 5, and Q during rounds 2 and 4. This idea is formalized in the220

next definition.221

Definition 3. Each sequence of moves γ ∈ N? defines the finite game G(|s〉 , γ) between Picard and Q. The222

rules of G(|s〉 , γ) are:223

• The initial state of the coin is |s〉. In view of hypothesis H4, |s〉 is either |heads〉 or |tails〉.224

• If γ = e, then G(|s〉 , e) is the 0-round trivial game (neither Picard nor Q act on the coin, which remains225

at its initial state).226

• If γ = (p1, p2, . . . , pn), where pi ∈ N, 1 ≤ i ≤ n, then G(|s〉 , γ) is a game that lasts n rounds and pi227

determines which of the two players moves during round i. Specifically, if pi = Picard then it’s Picard’s228

turn to act on the coin, whereas if pi = Q then it’s Q’s turn to act on the coin.229

In this work we shall employ sequences of moves as a precise, unambiguous and succinct way for230

defining finite games between Picard and Q. For instance the move sequences (Picard, Picard, Q, Q,231

Picard, Picard) and (Picard, Q, Picard, Q, Picard, Q, Picard, Q, Picard) correspond to a 6-round and a232

9-round game respectively. These particular games will be used in Section 6.233

Considering that the actions of Picard and Q are just three, namely I, F and H, we define the set of234

actions Act = {I, F, H}. The set of all finite sequences of actions, which includes the empty sequence235

ε, is denoted by Act?. In the original PQ game there are just two possible such sequnces: (H, I, H)236

and (H, F, H). Each action sequence is meaningful only in the appropriate game. For example the237

following sequence (F, H, H, I) is unsuitable for the PQ game, but it makes perfect sense in a 4-round238

game where Picard plays during the first and fourth round and Q plays during the second and third239

round. The precise game for which a given sequence of actions is appropriate is defined below.240

Definition 4. The function χ : Act? → N?, which maps sequences of actions to sequences of moves, is defined241

as follows.242

1. χ(ε) = e, and243

2. If α = (U1, . . . , Un), Ui ∈ Act, 1 ≤ i ≤ n, then χ(α) = (p1, p2, . . . , pn), where pi = Picard if Ui = I244

or Ui = F and pi = Q if Ui = H.245

Every action sequence α is an admissible sequence for the underlying game G(|s〉 , χ(α)).246

If Q (Picard) wins the game G(|s〉 , γ) with the admissible sequence α with probability 1.0, we say that Q247

(Picard) surely wins G(|s〉 , γ) with α, or that α is a winning sequence for Q (Picard) in G(|s〉 , γ).248

We employ the notation Q(G(|s〉 , γ), α), respectively P(G(|s〉 , γ), α), as an abbreviation of the foregoing249

assertion.250
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It is evident that χ is not an injective function. Take for example (H, I, H) and (H, F, H); both251

correspond to the same sequence of moves (Q, Picard, Q). It is also clear that only admissible sequences252

are meaningful.253

In this work we shall examine several variants of the PQ game. To each one we shall associate254

an automaton and study the language it accepts. As it will turn out, in every case the corresponding255

language has the same characteristic property. Automata are simple but fundamental models of256

computation. They recognize regular languages of words from a given alphabet Σ. The set of all finite257

words over Σ is denoted by Σ?; we recall that Σ? contains the empty word ε. The operation of the258

automaton is very simple: starting from its start state the automaton reads a word w and ends up in a259

certain state. It accepts (or recognizes) w if and only if this final state belongs to the set of accept states.260

The set of all the words that are accepted by the automaton is the language recognized (or accepted) by261

the automaton. We follow the convention of denoting by LA the language recognized by the automaton262

A.263

In order to associate games with automata in a productive way, we must fix an appropriate264

alphabet Σ and map the actions of the players to the letters of Σ. Accordingly, the alphabet Σ must265

also contain tree letters. Table 1 shows the 1-1 correspondence between the operators I, F and H and266

the letters of the alphabet Σ = {i, f , h}. In this work we are interested only in finite games and, hence,267

in finite words and finite sequences of actions. For simplicity, we shall omit the adjective finite from268

now and simply write game, word and sequence of actions.269

Definition 5. Given the set of actions Act = {I, F, H} of Picard and Q, the corresponding alphabet is270

Σ = {i, f , h}.271

We define the letter assignment function λ : Act→ Σ and the operator assignment function µ : Σ→272

Act.273

1. λ(I) = i, µ(i) = I,274

2. λ(F) = f , µ( f ) = F, and275

3. λ(H) = h, µ(h) = H.276

The letter assignment function λ follows the obvious mnemonic rule of mapping each operator,277

which in the literature is typically denoted by an uppercase letter, to the same lowercase letter. Clearly, µ278

is the inverse of λ. All the automata we shall encounter share the same alphabet Σ = {i, f , h}.279

Now, via λ we can map finite sequences of actions to words and via µ we can map words to finite280

sequences of actions. For instance, the sequence (H, I, H) is mapped to hih, the sequence (H, F, H) is281

mapped to h f h, etc. In this fashion, every sequence of actions is mapped to a word w ∈ Σ?. But, this282

is a two-way street, meaning that each word from Σ? corresponds to a sequence of actions: hihh f h283

corresponds to (H, I, H, H, F, H).284

At this point we should clarify that in the rest of this paper action sequences will be written285

as comma-delimited lists of actions enclosed within a pair of left and right parenthesis. This is in286

accordance with the practice we have followed so far, e.g., when referring to the action sequences287

(H, I, H), (H, F, H) or (H, I, H, H, F, H). On the other hand, words, despite also considered as288

sequences of symbols from the alphabet Σ, are always written as a simple concatenation of symbols,289

like hih, h f h or hihh f h, and never like (h, i, f ), etc. In this work we shall adhere to this well-established290

tradition.291

Formally, this correspondence between action sequences and words is achieved by properly292

extending λ and µ.293

Definition 6. The word mapping λ̄ : Act? → Σ? and the action sequence mapping µ̄ : Σ? → Act? are294

defined recursively as follows.295

1. λ̄(ε) = ε, µ̄(ε) = ε, and296
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2. For every U ∈ Act, every α ∈ Act?, every l ∈ Σ, and every w ∈ Σ?:297

λ̄((α, U)) = λ̄(α)λ(U), µ̄(wl) = (µ̄(w), µ(l)).298

Moreover, a word w ∈ Σ? via the corresponding sequence of actions µ̄(w) can be thought of299

as describing the game G(|s〉 , χ(µ̄(w))). For example, the word h f i f h corresponds to a 5-round300

game, where Q plays only during rounds 1 and 5, whereas Picard gets to act on the coin during the301

consecutive rounds 2, 3 and 4.302

4. An automaton for the PQ game303

Table 2. During the games played by Picard and Q, the coin may pass through the states shown in the
left column of this Table. The corresponding states of the automata that capture these game are shown
in the right column of this Table.

Coin state Automaton state[
1 0

]T
= |heads〉 = |0〉 heads[√

2
2

√
2

2

]T
=
√

2
2 |0〉+

√
2

2 |1〉 s2[
0 1

]T
= |tails〉 = |1〉 tails[√

2
2 −

√
2

2

]T
=
√

2
2 |0〉 −

√
2

2 |1〉 s4[
−
√

2
2

√
2

2

]T
= −

√
2

2 |0〉+
√

2
2 |1〉 s5[

0 −1
]T

= − |tails〉 = − |1〉 −tails[
−1 0

]T
= − |heads〉 = − |0〉 −heads[

−
√

2
2 −

√
2

2

]T
= −

√
2

2 |0〉 −
√

2
2 |1〉 s8

heads s2

h

h

f , i

Figure 1. This two state automaton APQ captures the moves of the PQ game.

In the PQ game the coin is a 2-dimensional system and so its state can be described by a ket
v ∈ C2. The players act upon the coin via the unitary operators:

I =

[
1 0
0 1

]
, F =

[
0 1
1 0

]
, and H =

[√
2

2

√
2

2√
2

2 −
√

2
2

]
. (2)

The game proceeds as follows:304

• The initial state of the coin is
[
1 0

]T
= |heads〉 = |0〉.305

• After Q’s first move (which is an action on the coin by H), the coin enters state
[√

2
2

√
2

2

]T
. We306

call this state s2 (see Figure 1 and Table 2).307

• s2 is a very special state in the sense that no matter what Picard chooses to play (Picard can act308

either by I or by F), after his move the coin remains in the state s2.309

• Finally, Q wins the game by applying H one last time, which in effect sends the coin back to its310

initial state |heads〉.311
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The simple automaton APQ shown in Figure 1 expresses concisely the states of the coin and the312

effect of the actions of the two players. The states of the automaton are in 1-1 correspondence with313

the states the coin goes through during the game (see Table 2). The actions of the players, that is the314

unitary operators I, F, H, are in 1-1 correspondence with the alphabet Σ = {i, f , h} of APQ (see Table 1).315

The effect of the actions of the players upon the coin is captured by the transitions between the316

states. Technically, APQ is a nondeterministic automaton (see [30]) that has only two states: heads and317

s2, where heads is the start and the unique accept state. The nondeterministic nature of APQ stems318

from the fact that no outgoing transitions from heads is labeled with i or f . This is a feature, not a bug,319

because the rules of the game stipulate that Q makes the first move and Picard’s only move takes place320

when the coin is in state s2 =
[√

2
2

√
2

2

]T
. This means that Picard never gets a chance to act when the321

coin is in state |heads〉 =
[
1 0

]T
. Hence, APQ is specifically designed so that the only possible action322

while in state |heads〉 is by Q via H. This will have an effect on the words accepted by APQ, as will be323

explained below. Other than this subtle point the behavior of APQ can be considered deterministic.324

According to the rules of the PQ game, there are just two admissible sequences of actions: (H, I, H)325

and (H, F, H). Both of them guarantee that Q will win with probability 1.0. The corresponding words326

are: hih and h f h, both of which are accepted by APQ and, thus, belong to LAPQ . Formally, these two327

words are the only ones that correspond to valid game moves.328

Let us now take a step back and view APQ as a standalone automaton. Its language LAPQ can be329

succinctly described by the regular expression (h(i ∪ f )?h)? (for more about regular expressions we330

refer again to [30]). So, LAPQ contains an infinite number of words, but only two, namely hih and h f h,331

correspond to admissible sequences of game actions. What about the other words of LAPQ ?332

Despite the fact that the other words of LAPQ do not correspond to permissible sequences of333

moves for the original PQ game, they do share a very interesting property. Given an arbitrary word334

w ∈ LAPQ , consider the game G(|heads〉 , χ(µ̄(w))). If the sequence of actions µ̄(w) is played, then Q335

will surely win, that is Q will win with probability 1.0. Note that µ̄(w), in general, will contain actions336

by both players. We emphasize that this property holds for every word of LAPQ . To develop a better337

understanding of this characteristic property, let us look at some concrete examples.338

• The empty word ε that technically belongs to LAPQ can be viewed as the representation of the339

trivial game, where no player gets to act on the coin, so the coin stays at its initial state |heads〉340

and Q trivially wins.341

• Words like hh, hhhh, i.e., having the form (hh)+, correspond to the most unfair (for Picard) games,342

where the game lasts exactly 2n rounds, for some n ≥ 1, and Q moves during each round (Picard343

does not get to make any move at all).344

• Words of the form h(i ∪ f )nh, where n ≥ 1, represent games that last n + 2 rounds, Q plays only345

during the first and last round of the game, whereas Picard plays during the n intermediate346

rounds. These variants give to Picard the illusion of fairness, without changing the final outcome.347

• Words of the form (h(i ∪ f )?h)?, e.g., h(i ∪ f )2hh(i ∪ f )3h, correspond to more complex games.348

They are in effect independent repetitions of the previous category of games.349

The formal definition of “winning" automata will be given in Section 6. The idea is very simple: a350

winning automaton for Q (Picard) accepts a word w only if Q (respectively Picard) surely wins the351

game G(|s〉 , γw) with αw, where s is the initial state of the automaton, αw = µ̄(w) is the corresponding352

action sequence, and γw = χ(µ̄(w)) is the corresponding move sequence. Therefore, a winning353

automaton for one of the players does not accept a single word for which, in the corresponding game,354

the associated sequence of actions will result in the other player winning with nonzero probability, for355

instance with probability 0.5 or 1/3.356
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5. Variants of the game and their corresponding automata357

tails s4 s5 −tails
h

h

i

f h

Figure 2. The four-state automaton APQπ/2
captures the possible moves of the PQπ/2 game, in which

the initial state of the coin is |tails〉. The accepting states are two: tails and −tails. This reflects the fact
that, after measurement, the state of the coin − |tails〉 will collapse to the basic state |tails〉.

5.1. Changing the initial state of the coin358

Let us see first what happens if we change the initial state of the coin, while keeping the form of359

the game the same. So there are still 3 rounds: Q acts during the first and the third (and final) round360

and Picard acts during the second round. The coin is initially at state |tails〉 =
[
0 1

]T
. Q wins if the361

coin ends up (after measurement) in the initial state |tails〉. We designate this game variant as PQπ/2.362

In this game, after Q’s first move, the coin will be in state
[√

2
2 −

√
2

2

]T
. Let’s call this state s4.363

The coin will remain in this state if Picard decides to use I but, if Picard decides to use F, the coin364

will enter state
[
−
√

2
2

√
2

2

]T
(we call it s5). If the coin is in state

[√
2

2 −
√

2
2

]T
, Q’s final action will365

send the coin to |tails〉, whereas if the coin is in state
[
−
√

2
2

√
2

2

]T
, it will finally end up in state366

− |tails〉 =
[
0 −1

]T
. Obviously, Q wins in both cases. When the game is over, the state of the coin is367

measured. The measurement process will collapse state − |tails〉 to the basic state |tails〉. The previous368

analysis shows that in the PQπ/2 game the coin may go through the states {|tails〉 , s4, s5,− |tails〉}. In369

view of the fact that these states are all “new", with respect to the original PQ game, we see that this370

variant introduces new states.371

Automaton APQπ/2
, depicted in Figure 2, captures the PQπ/2 game. The states of the automaton372

are in 1-1 correspondence with the states the coin goes through during the game (see Table 2) and373

the actions of the players are mirrored by the transitions between the states. Like APQ, APQπ/2
is374

nondeterministic because of the rules of the game.375

In the PQπ/2 game the two admissible sequences of moves are again (H, I, H) and (H, F, H).376

Both of them lead to Q’s victory with probability 1.0. The corresponding words hih and h f h belong377

to LAPQπ/2
. The other words of LAPQπ/2

do not correspond to permissible moves of the PQπ/2 game.378

However, it is easy to establish that APQπ/2
, like APQ, is a winning automaton for Q. The following379

remarks, similar to the ones we made regarding APQ, hold for pretty much the same reasons:380

• The words of LAPQπ/2
have the general form (hi?h)?(ε ∪ hi? f h).381

• Formally, hih and h f h are the only words that correspond to valid game moves.382

• Again the empty word ε belongs to LAPQπ/2
and can be thought of as expressing the trivial game,383

where Q trivially wins.384

• Like before, words of the form (hh)+ or (hi?h)+ correspond to games that last at least 2n, n ≥ 1,385

rounds. Q will surely win these games, provided Picard and Q play the corresponding sequence386

of actions.387

• Words of the form (hi?h)?hi? f h correspond to zero or more repetitions of the previous type of388

game, followed by one move by Q, at least one move by Picard (possibly more), and finally one389

last move by Q. Q surely wins whenever Picard uses F in his final move and I in all its preceding390

moves.391

• Finally, we remark that words like h f f h, h f f f h, etc., are not accepted and, thus, do not belong to392

LAPQπ/2
.393
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Again, we reach the same conclusion: all words accepted by APQπ/2
encode sequences of actions394

for which Q will surely win in the corresponding game.395

5.2. Variants with more rounds396

Let us suppose now that the duration of the game is increased. The original PQ game was a397

3-round game, so it makes sense to examine a 6-round, a 9-round, or, in general a 3n-round, n ≥ 2,398

variant of the game. We must however emphasize that these are not repeated PQ games. By repeated399

we mean multistage games where the original PQ game is repeated at each stage. In other words, the400

moves of the players do not follow the pattern: Q→ Picard→ Q→ Q→ Picard→ Q, etc. Instead, we401

focus on games that follow the pattern Q→ Picard→ Q→ Picard, etc. In these games Q acts during402

the odd numbered rounds and Picard acts during the even numbered rounds. The initial state of the403

coin is |heads〉 and Q wins the game if the coin ends up (after measurement) in state |heads〉. Let us404

denote by PQ3n, where n ≥ 2, these 3n-round games.405

• Initially, we examine the the 6-round game PQ6. Clearly, after round 3 (i.e., after Q’s second406

move) the coin is at state |heads〉 =
[
1 0

]T
. It may remain in this state if Picard decides to use I407

but, if Picard decides to use F, the coin will enter state |tails〉 =
[
0 1

]T
. Q’s subsequent move408

will send the coin to state s2 =
[√

2
2

√
2

2

]T
in the first case, or to state s4 =

[√
2

2 −
√

2
2

]T
in the409

second case. Thus, the coin may end up in s2 or s4, if Picard’s final action in the 6th round is I, or410

it may end up in s2 or s5 =
[
−
√

2
2

√
2

2

]T
, if Picard’s final action in the 6th round is F.411

heads s2

tails s4 s5

i

h

f

h

i, f

h

i

f

Figure 3. The automaton APQ6
corresponding to the 6-round PQ6 game.
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heads s2

tails s4 s5

−tails−headss8

i

h

f

h

i, f

f

i

h

h

i

f

f

i

hh

i

f

f

h

Figure 4. The automaton APQ9
corresponding to the 9-round PQ9 game.

heads s2

tails s4 s5

−tails−headss8

i

h

f

h

i, f

f

i

h

h

i

f

f

i

hh

i

f

f

i

h

h

i, f

Figure 5. The automaton AQ corresponding to the 3n-round variant PQ3n, for n ≥ 4.

The associated automaton APQ6
is shown in Figure 3. As expected, its states correspond to the412

states of the coin (see Table 2) and its transitions to the actions of the players. Like the previous413

automata we have seen, APQ6
is nondeterministic because of the rules of the game. An important414

observation we can make in this case is that by extending the duration of the game, the automata415

APQ and APQπ/2
“merge" into the APQ6

, with the exception of state −tails, since APQ6
does not416

contain state −tails.417
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Strictly speaking, the only possible valid moves in PQ6 are: (H, I, H, I, H, I), (H, I, H, I, H, F),418

(H, I, H, F, H, I), (H, I, H, F, H, F), (H, F, H, I, H, I), (H, F, H, I, H, F), (H, F, H, F, H, I), and419

(H, F, H, F, H, F). The corresponding words are: hihihi, hihih f , hih f hi, hih f h f , h f hihi, h f hih f ,420

h f h f hi, and h f h f h f ; none of them is recognized by APQ6
. This does not imply that LAPQ6

is421

empty. On the contrary, LAPQ6
is infinite. For example, h f hih f h belongs to LAPQ6

. This particular422

word corresponds to a 7-round game and Q will surely win in this game if the corresponding423

sequence of actions (H, F, H, I, H, F, H) is played by Q and Picard. APQ6
is a winning automaton424

for Q that accepts the language (i?h(i ∪ f )?h)?. It is therefore consistent with the winning425

property that all the words corresponding to the action sequences that are admissible for the PQ6426

game are rejected because they do not guarantee that Q will surely win. As a matter of fact, with427

admissible action sequences both Q and Picard have equal probability 0.5 to win.428

• We take a look now at the 9-round game PQ9. According to the previous analysis, after round 6429

the coin may be at one of the states s2 or s4 or s5. Consequently, Q’s move will send it to one of430

|heads〉, |tails〉 or − |tails〉 =
[
0 −1

]T
. Picard’s action will either leave the coin to its current431

state or forward it to one of |tails〉, |heads〉 or − |heads〉 =
[
−1 0

]T
(a “new" state). Finally, Q’s432

last action will result in the coin entering one of the states s2, s4 or s8 =
[
−
√

2
2 −

√
2

2

]T
(another433

“new" state). This behavior is captured by the automaton APQ9
, depicted in Figure 4.434

APQ9
has 8 states and is the biggest automaton we have encountered so far. In a way APQ9

435

“contains" all the previous automata. As expected, its states correspond to the states of the coin436

(see Table 2) and its transitions to the actions of the players. Like the previous automata we have437

seen, APQ9
is nondeterministic because of the rules of the game.438

• Finally, we look at the general 3n-round variant PQ3n, for n ≥ 4. At the end of round 9 the coin439

will be at one of the states s2 or s4 or s8. After round 10 (Picard’s turn) the coin will be at of440

s2, s4, s5 or s8. After round 11 (Q’s turn) the coin will be at one of heads, tails,−heads or −tails.441

After round 12 (Picard’s turn) the coin will be again at one of heads, tails,−heads or −tails. We442

can go on, but it should be clear by now that no matter how many more rounds are played, no443

more “new" states will appear. The automaton, which we designate as AQ, assumes now its final444

form depicted in Figure 5.445

Up to this point we have constructed the automata APQ6
, APQ9

and AQ, shown in Figures 3, 4,446

and 5, respectively. They are all winning automata for Q, exactly like APQ and APQπ/2
. This is more447

or less evident, but we shall give a formal proof in the next section. We close this section with an448

important observation. Whereas all previous automata were nondeterministic, AQ is deterministic.449

Exactly three transitions, one for each letter i, f and h, emanate from every state. This gives AQ a type450

of completeness because whatever action is taken by any player, the outcome will correspond to a451

state of AQ. Hence, AQ is able to accurately mirror the behaviour of the coin.452
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Figure 6. The semiautomaton A capturing the essence of the PQ game and its variants.
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Figure 7. The automaton A′Q accepts all winning sequences for Q when the coin starts at |tails〉.
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Figure 8. The automaton AP accepts all winning sequences for Picard when the coin begins at |heads〉.
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Figure 9. The automaton A′P accepts all winning sequences for P when the coin starts at |tails〉.
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Figure 10. The automaton A1/2 captures the fair action sequences when the coin begins at |heads〉.

heads s2

tails s4 s5

−tails−headss8

i

h

f

h

i, f

f

i

h

h

i

f

f

i

hh

i

f

f

i

h

h

i, f

Figure 11. The automaton A′1/2 captures the fair action sequences when the coin begins at |tails〉.

6. Automata capturing sets of games453

In this section we shall prove that AQ is a “better," more “complete" representation of the finite454

games between Picard and Q compared to all the previous automata. As a matter of fact, in a precise455

sense AQ captures all the finite games between Picard and Q.456

We begin by giving the formal definition of “winning" automaton.457
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Definition 7 (Winning automaton). Consider an automaton A with initial state s, where s is either heads or458

tails. Let w ∈ Σ? be a word accepted by A, let αw = µ̄(w) be the corresponding sequence of actions, and let459

γw = χ(µ̄(w)) be the corresponding sequence of moves.460

If for every word w accepted by A, Q surely wins in the game G(|s〉 , γw) with αw, then A is a winning461

automaton for Q.462

Symmetrically, A is a winning automaton for Picard, if for each word w accepted by A, Picard surely463

wins in the game G(|s〉 , γw) with αw.464

A more succinct way to express that A is a winning automaton for Q or Picard would be to write465

∀w ∈ LA : Q(G(|s〉 , γw), αw), and (3)

∀w ∈ LA : P(G(|s〉 , γw), αw), (4)

respectively.466

First we consider all finite games between Picard and Q that satisfy the following conditions467

(recall the hypotheses at the beginning of Section 3):468

• Picard’s actions are either I or F and Q’s action is H.469

• The coin is initially at state |0〉.470

• Q wins if, when the game is over and the state of the coin is measured, it is found to be in state471

|0〉; otherwise Picard wins.472

The proofs of the main results of this section are easy but lengthy, so they are given in the473

Appendix.474

Theorem 1 (Winning automata for Q). The automata APQ, APQπ/2
, APQ6

, APQ9
, and AQ are all winning475

automata for Q.476

Definition 8 (Complete automaton for winning sequences). An automaton A with initial state s (s is477

either heads or tails) is complete with respect to the winning sequences for Q if for every finite game between478

Picard and Q in which the coin is initially at state |s〉, every sequence of actions that enables Q to win the game479

with probability 1.0 corresponds to a word accepted by A.480

Symmetrically, A is complete with respect to the winning sequences for Picard, if for every finite game481

between Picard and Q and for every sequence of actions that enables Picard to win with probability 1.0, the482

corresponding word is accepted by A.483

More formally the completeness property can be expressed as follows484

∀γ ∈ N? ∀α ∈ Act? : Q(G(|s〉 , γ), α)⇒ λ̄(α) ∈ LA, and (5)

∀γ ∈ N? ∀α ∈ Act? : P(G(|s〉 , γ), α)⇒ λ̄(α) ∈ LA. (6)

Theorem 2 (Complete automaton for Q). AQ is complete with respect to the winning sequences for Q.485

To appreciate the importance of the completeness property, we point out that neither APQ6
, nor486

APQ9
are complete for Q. Let us first consider the 6-round game (Picard, Picard, Q, Q, Picard, Picard).487

In this game Q surely wins if the action sequence (F, F, H, H, F, F) is played. The corresponding word488

is f f hh f f , which belongs to LAQ but not to LAPQ6
. So APQ6

fails to accept all winning sequences for Q,489

i.e., it is not complete in this respect. Likewise, for the 9-round game (Picard, Q, Picard, Q, Picard, Q,490

Picard, Q, Picard), (F, H, F, H, F, H, F, H, I) is a winning sequence for Q and the corresponding word491

f h f h f h f hi, which is accepted by AQ, is not accepted by APQ9
. These counterexamples demonstrate492

that APQ6
and APQ9

fail to be complete for Q.493
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6.1. Devising other variants494

We can be even more flexible by using the semiautomaton A shown in Figure 6. Technically A495

is not an automaton because no initial state and no final states are specified. However, A captures496

the essence of all games between Picard and Q because it can serve as a template for automata that497

correspond to games that satisfy specific properties. This is easily seen by considering the examples498

that follow. Recall that we always operate under the assumption that Q wins if, when the game is over499

and the state of the coin is measured, it is found to be in the initial state; otherwise Picard wins.500

6.1.1. Changing the initial state of the coin501

Suppose we want to construct a complete winning automaton for Q for all the games in which502

the coin is initially at state |tails〉 = |1〉. Starting from the semiautomaton A of Figure 6 we define503

1. state tails as the initial state, and504

2. states tails and −tails as the accept states.505

The resulting automaton A′Q is depicted in Figure 7. The following theorem holds for A′Q.506

Theorem 3 (Complete and winning automaton II for Q). A′Q is a complete and winning automaton for Q507

for all the games in which the initial state of the coin is |tails〉 = |1〉.508

6.1.2. Picard surely wins509

By suitably modifying the semiautomaton A we can also design a complete winning automaton510

for Picard for all the games in which the coin is initially at state |heads〉 = |0〉. We can do that by511

1. setting heads as the initial state, and512

2. setting tails and −tails as the accept states.513

This will result in the automaton AP depicted in Figure 8, for which one can easily prove the next514

theorem.515

Theorem 4 (Complete and winning automaton for Picard). AP is a complete and winning automaton for516

Picard for all the games in which the initial state of the coin is |heads〉 = |0〉.517

Similarly, we can define a complete winning automaton for Picard for all the games in which the518

coin is initially at state |tails〉 = |1〉. All we have to do is519

1. set tails as the initial state, and520

2. set heads and −heads as the accept states.521

This will result in the automaton A′P shown in Figure 9, for which one can easily show that the522

following theorem holds.523

Theorem 5 (Complete and winning automaton II for Picard). A′P is a complete and winning automaton524

for Picard for all the games in which the initial state of the coin is |tails〉 = |1〉.525

6.1.3. Fair games526

Up to this point we have focused on winning action sequences for Q or Picard, that is sequences527

for which Q or Picard, respectively, wins the game with probability 1.0. However, we can also capture528

action sequences for which both players have equal probability 0.5 to win the game. We call such529

sequences fair.530
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Definition 9. Let α be an admissible sequence for the underlying game G(|s〉 , χ(α)). If both Q and Picard531

win the game G(|s〉 , χ(α)) with α with probability 0.5, we say that α is a fair sequence for Q and Picard in532

G(|s〉 , χ(α)).533

An automaton A with initial state s (s is either heads or tails) is complete with respect to the fair sequences534

if for every finite game between Picard and Q in which the coin is initially at state |s〉, every fair sequence535

corresponds to a word accepted by A.536

The semiautomaton A of Figure 6 can help in this case too. The states s2, s4, s5 and s8 of A537

correspond to the states
√

2
2 |0〉 +

√
2

2 |1〉 ,
√

2
2 |0〉 −

√
2

2 |1〉 ,−
√

2
2 |0〉 +

√
2

2 |1〉 ,−
√

2
2 |0〉 −

√
2

2 |1〉 of the538

coin, respectively, as can be seen from Table 2. The common characteristic of these states is that if the539

coin ends up in any of these, then upon measurement, it has an equal probability 0.5 to collapse in the540

basic ket |0〉 or the basic ket |1〉. In such a case both Q and Picard have equal probability 0.5 to win.541

Therefore, we can design an automaton that accepts all the fair sequences for all the games in which542

the coin is initially at state |heads〉 = |0〉 by543

1. setting heads as the initial state, and544

2. setting s2, s4, s5 and s8 as the accept states.545

Symmetrically, we can define an automaton that accepts all the fair sequences for all the games in546

which the coin is initially at state |tails〉 = |1〉 by547

1. setting tails as the initial state, and548

2. setting s2, s4, s5 and s8 as the accept states.549

The resulting automata are A1/2 and A′1/2, shown in Figures 10 and 11, respectively.550

Theorem 6 (Complete automata for fair sequences). A1/2 and A′1/2 are complete for fair sequences, that551

is they accept all fair sequences for all the games in which the initial state of the coin is |heads〉 = |0〉 and552

|tails〉 = |1〉, respectively.553

7. Conclusion and further work554

Quantum technologies have attracted the interest of not only the academic community but also555

of the industry. This observation leads to further research on the relationship between classical and556

quantum computation. Standard and well-established notions and systems have to be examined and,557

if necessary, revised in the light of the upcoming quantum era.558

In this we work we have presented a way to construct automata, and a semiautomaton, from the559

PQ game, such that the resulting automata and semiautomaton capture, in a specific sense, the game’s560

numerous variations. That is, the automata can be used to study possible variations of the game,561

and their accepting language can be used to determine strategies for any player, whether dominant562

or otherwise. Specifically, starting from the automaton that corresponds to the standard PQ game,563

we construct automata for various interesting variations of the PQ game, before finally presenting a564

semiautomaton that is in a sense “complete" with regards to the game and captures the “essence" of565

the generalized PQ game, in that by providing appropriate initial and final states we can study any566

possible variation of the PQ game.567

We remark that the automata presented here do much more than accepting dominant strategies.568

In game theory a strategy i for a player is strongly dominated by strategy j if the player’s payoff from569

i is strictly less than that from j. A stategy i for a player is a strongly dominant strategy iff all other570

strategies for this player are stronly dominated by i (see [2] and [1] for details). In our context the571

strategy (H, H) for the original PQ game is a strongly dominant strategy for Q. The automata we have572

constructed accept sequences of actions by both players, i.e., sequences that contain the actions of both573

players. As we have explained in Section 6, they can be designed so as to accept all action sequences of574
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all possible games between Picard and Q for which either Q surely wins, or Picard surely wins or even575

they both have probability exactly 0.5 to win.576

Future directions for this work are numerous, including the construction of corresponding577

automata for other (quantum) games, as well as further application of automata-theoretic notions,578

such as minimisation, to games like that. The connection of standard finite automata with the players579

actions on a particular quantum game can only be seen as a first step in the direction of checking, not580

only other games, but also different game modes on already known setups.581
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Abbreviations588

The following abbreviations are used in this manuscript:589

590

PQ Picard-Q
NFA Nondeterministic finite automaton
DFA Deterministic finite automaton

591

Appendix A Proofs of the main results592

It is clear from our prior analysis that, under the assumptions that the coin is initially at state593

|heads〉 = |0〉 or |tails〉 = |1〉 and the actions of the players are precisely I, F and H, the only states the594

coin may pass through are the eight states shown in Table 2. This fact prompts the following definition.595

Definition A1. The set of the eight kets {|0〉 ,
√

2
2 |0〉 +

√
2

2 |1〉 , |1〉 ,
√

2
2 |0〉 −

√
2

2 |1〉 ,−
√

2
2 |0〉 +596 √

2
2 |1〉 ,− |1〉 ,− |0〉 ,−

√
2

2 |0〉 −
√

2
2 |1〉} that represent the possible states of the coin is denoted by C. C ⊂ H2597

is a finite subset of the the 2-dimensional complex Hilbert spaceH2.598

For completeness we state the following Lemma A1. Its proof is trivial and is omitted.599

Lemma A1. C is closed with respect to the actions I, F and H.600

To prove the main theorems of this paper, we will have to give a few technical definitions.601

Definition A2. The transition function δ of a deterministic automaton A can be extended to a function602

δ̄ : K× Σ? → K, where K is the set of states and Σ the alphabet of A. Let q ∈ K, l ∈ Σ, and w0, w ∈ Σ?; then δ̄603

is defined recursively as follows:604

δ̄(q, w) =

{
q, w = ε

δ(δ̄(q, w0), l), w = w0l
. (A1)

If a deterministic automaton is in state q and reads the word w, it will end up in state δ̄(q, w). In605

this respect the extended transition function is a convenient way to specify how an arbitrary word will606

affect the state of the automaton. For instance AQ, whose initial state is heads, when fed with the input607

word f h f it will end up in state s5. In an analogous fashion, it will be useful to define a function that608

will specify how a sequence of actions will affect the state of the coin. Without further ado we state the609

next definition.610
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Definition A3. We define the function S : C× Act? → C which gives the state of the coin after the application611

of the action sequence α, assuming that the coin is initially in state |s〉. Formally,612

S(|s〉 , α) =

{
|s〉 , α = ε

U(S(|s〉 , α0)), α = (α0, U)
, (A2)

where U ∈ Act and α0, α ∈ Act?.613

Consider for example the action sequence α = (I, F, H, F); then S(|0〉 , α) = −
√

2
2 |0〉+

√
2

2 |1〉 and614

S(|1〉 , α) =
√

2
2 |0〉+

√
2

2 . Finally, we define the function ϕ and its inverse ϕ−1. ϕ maps states of the615

automaton AQ to states of the coin. This function conveys exactly the same information as Table 2 and616

it will enable us to rigorously express what we mean by saying that AQ captures all the finite games617

between Picard and Q.618

Definition A4. We define the function ϕ : K → C, where K is the set of states of the automaton AQ.619

ϕ(heads) = |0〉 , ϕ(s2) =

√
2

2
|0〉+

√
2

2
|1〉 , ϕ(tails) = |1〉 ,

ϕ(s4) =

√
2

2
|0〉 −

√
2

2
|1〉 , ϕ(s5) = −

√
2

2
|0〉+

√
2

2
|1〉 , ϕ(−tails) = − |1〉 , (A3)

ϕ(−heads) = − |0〉 , ϕ(s8) = −
√

2
2
|0〉 −

√
2

2
|1〉 .

Clearly ϕ is a bijection, so it has an inverse function ϕ−1 : C → K.620

ϕ−1(|0〉) = heads, ϕ−1(

√
2

2
|0〉+

√
2

2
|1〉) = s2, ϕ−1(|1〉) = tails,

ϕ−1(

√
2

2
|0〉 −

√
2

2
|1〉) = s4, ϕ−1(−

√
2

2
|0〉+

√
2

2
|1〉) = s5, ϕ−1(− |1〉) = −tails, (A4)

ϕ−1(− |0〉) = −heads, ϕ−1(−
√

2
2
|0〉 −

√
2

2
|1〉) = s8.

The next Lemma states that AQ is a faithful representation of the coin.621

Lemma A2 (Faithful representation Lemma). The states and the transitions of the coin are faithfully622

represented by the states and the transitions of AQ in the following precise sense623

∀w ∈ Σ? ∀q ∈ K : ϕ(δ̄(q, w)) = S(ϕ(q), µ̄(w)), and (A5)

∀α ∈ Act? ∀s ∈ C : ϕ−1(S(|s〉 , α)) = δ̄(ϕ−1(|s〉), λ̄(α)). (A6)

Proof624

Typically, the proof is by simultaneous induction on the length n of w and α.625

• When n = 0, the only word of length 0 is the empty word ε. In this case, by Definition 6 µ̄(ε) = ε,626

by Definition A2 δ̄(q, ε) = q and, by Definition A3, S(ϕ(q), ε) = ϕ(q). Equation (A5) then reduces627

to ϕ(q) = ϕ(q), which is trivially true.628

Similarly, when n = 0, α is the empty action sequence ε, in which case λ̄(ε) = ε (Definition 6),629

δ̄(ϕ−1(|s〉), ε) = ϕ−1(|s〉) (Definition A2), and S(|s〉 , ε) = |s〉 (Definition A3). In this special case,630

equation (A6) becomes ϕ−1(|s〉) = ϕ−1(|s〉), which is of course true.631

• We assume that (A5) and (A6) hold for n = k and for all q ∈ K and s ∈ C.632
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• It remains to prove (A5) and (A6) for n = k + 1.633

Consider an arbitrary word w over Σ of length k + 1. w can be written as w0l where w0 is a word634

of length k and l is one of i, f or h. By the induction hypothesis we know that635

∀q ∈ K : ϕ(δ̄(q, w0)) = S(ϕ(q), µ̄(w0)). (A7)

There are three cases to consider, depending on whether l = i, l = f or l = h.636

If l = i, then w = w0i and the transition function of AQ (Figure 5) ensures that δ̄(q, w0) =637

δ̄(q, w0i) (?). At the same time, by Definition 6, µ̄(w0i) = (µ̄(w0), I) and, by Definition A3,638

S(ϕ(q), (µ̄(w0), I)) = I(S(ϕ(q), µ̄(w0))) = S(ϕ(q), µ̄(w0)) (??) because I is the identity operator.639

Using (?), (??), and the induction hypothesis (A7), we get ϕ(δ̄(q, w0i))
(?)
= ϕ(δ̄(q, w0))

(A7)
=640

S(ϕ(q), µ̄(w0))
(??)
= S(ϕ(q), (µ̄(w0), I)). So, in this case (A5) holds.641

If l = f , then w = w0 f . With respect to f the transition function of AQ (Figure 5) is a bit more642

complicated, which implies that each state of AQ must be examined separately. Let’s begin with643

state heads, that is let’s assume that δ̄(q, w0) = heads. Then the transition function requires that644

δ̄(q, w0 f ) = tails. Accordingly, Definition A4 implies that645

ϕ(δ̄(q, w0)) = ϕ(heads) = |0〉 ϕ(δ̄(q, w0 f )) = ϕ(tails) = |1〉 . (∗)

By the induction hypothesis (A7) and (∗) we can deduce that646

S(ϕ(q), µ̄(w0))
(A7)
= ϕ(δ̄(q, w0))

(∗)
= |0〉 . (∗∗)

Combining Definitions 6 and A3 with (∗∗) we derive that µ̄(w0 f ) = (µ̄(w0), F) and647

S(ϕ(q), (µ̄(w0), F))
(De f . A3)

= F(S(ϕ(q), µ̄(w0)))
(∗∗)
= F |0〉 = |1〉 (∗ ∗ ∗)

because F is the flip operator. Therefore, if δ̄(q, w0) = heads, then648

ϕ(δ̄(q, w0 f ))
(∗)
= |1〉 (∗∗∗)= S(ϕ(q), (µ̄(w0), F)),

that is (A5) holds. It is straightforward to repeat the same reasoning for the remaining states of649

AQ and verify in each case the validity of (A5).650

If l = h, then w = w0h. As in the previous case, we have to examine each state of AQ separately.651

If δ̄(q, w0) = heads, then, according to the transition function, δ̄(q, w0h) = s2. Recalling652

Definition A4 we see that653

ϕ(δ̄(q, w0)) = ϕ(heads) = |0〉 ϕ(δ̄(q, w0h)) = ϕ(s2) =

√
2

2
|0〉+

√
2

2
|1〉 . (•)

By the induction hypothesis (A7) and (•) we conclude that654

S(ϕ(q), µ̄(w0))
(A7)
= ϕ(δ̄(q, w0))

(•)
= |0〉 . (••)

Together, Definitions 6 and A3 and (••) imply that µ̄(w0h) = (µ̄(w0), H) and655

S(ϕ(q), (µ̄(w0), H))
(De f . A3)

= H(S(ϕ(q), µ̄(w0)))
(••)
= H |0〉 =

√
2

2
|0〉+

√
2

2
|1〉 (• • •)
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because H is the Hadamard operator. Hence, if δ̄(q, w0) = heads, then656

ϕ(δ̄(q, w0h))
(•)
=

√
2

2
|0〉+

√
2

2
|1〉 (•••)= S(ϕ(q), (µ̄(w0), H)),

showing that (A5) holds. Repeating analogous arguments for the remaining states of AQ allows657

us to establish the validity of (A5).658

We proceed now to show that (A6) holds. Consider an arbitrary action sequence α of length659

k + 1: α = (α0, U), where α0 is the prefix action sequence of length k and U is one of the unitary660

operators I, F or H. In this case the induction hypothesis becomes661

∀s ∈ C : ϕ−1(S(|s〉 , α0)) = δ̄(ϕ−1(|s〉), λ̄(α0)). (A8)

Since U stands for one of I, F or H, we must distinguish three cases.662

If U is the identity operator I then, by Definition A3, S(|s〉 , (α0, I)) = I(S(|s〉 , α0)) =663

S(|s〉 , α0) (?). Hence, ϕ−1(S(|s〉 , α))
(?)
= ϕ−1(S(|s〉 , α0))

(A8)
= δ̄(ϕ−1(|s〉), λ̄(α0)) (??). The664

transition function of AQ (Figure 5) guarantees that ∀w ∈ Σ? ∀q ∈ K δ̄(q, w) =665

δ̄(q, wi). Therefore, δ̄(ϕ−1(|s〉), λ̄(α0)) = δ̄(ϕ−1(|s〉), λ̄(α0)i)
(De f . 5)
= δ̄(ϕ−1(|s〉), λ̄(α0) λ(I))666

(De f . 6)
= δ̄(ϕ−1(|s〉), λ̄(α)) (? ? ?). Combining (??) and (? ? ?), we conclude that ϕ−1(S(|s〉 , α)) =667

δ̄(ϕ−1(|s〉), λ̄(α)), i.e., (A6) holds.668

If U is the flip operator F, then each ket of C must be examined separately. Let’s begin with ket669

|0〉, that is let’s assume that S(|s〉 , α0) = |0〉. Then, by Definition A3, S(|s〉 , α) = S(|s〉 , (α0, F)) =670

F(S(|s〉 , α0)) = |1〉. In this case Definition A4 implies that671

ϕ−1(S(|s〉 , α0)) = ϕ−1(|0〉) = heads ϕ−1(S(|s〉 , α)) = ϕ−1(|1〉) = tails. (∗)

By the induction hypothesis (A8) and (∗) we see that672

δ̄(ϕ−1(|s〉), λ̄(α0))
(A8)
= ϕ−1(S(|s〉 , α0))

(∗)
= heads. (∗∗)

Combining Definitions 6 and A2 with (∗∗) we derive that λ̄(α) = λ̄(α0)λ(F) = λ̄(α0) f and673

δ̄(ϕ−1(|s〉), λ̄(α)) = δ̄(ϕ−1(|s〉), λ̄(α0) f )
(De f . A2)

=

δ(δ̄(ϕ−1(|s〉), λ̄(α0)), f )
(∗∗)
= δ(heads, f ) = tails, (∗ ∗ ∗)

by the transition function of transition function of AQ (Figure 5). Consequently,674

ϕ−1(S(|s〉 , α))
(∗)
= tails

(∗∗∗)
= δ̄(ϕ−1(|s〉), λ̄(α)),

that is (A6) holds. It is straightforward to repeat the same reasoning for the remaining kets of C675

and verify in each case the validity of (A6).676

The last case we have to examine is when U is the Hadamard operator H, in which case α =677

(α0, H). As in the previous case, we have to check each ket of C. Let’s consider first the case678

where S(|s〉 , α0) = |0〉. Then, by Definition A3, S(|s〉 , α) = S(|s〉 , (α0, H)) = H(S(|s〉 , α0)) =679 √
2

2 |0〉+
√

2
2 |1〉. In this case Definition A4 implies that680
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ϕ−1(S(|s〉 , α0)) = heads ϕ−1(S(|s〉 , α)) = s2. (•)

By the induction hypothesis (A8) and (•) we see that681

δ̄(ϕ−1(|s〉), λ̄(α0))
(A8)
= ϕ−1(S(|s〉 , α0))

(•)
= heads. (••)

Combining Definitions 6 and A2 with (••) we derive that λ̄(α) = λ̄(α0)λ(H) = λ̄(α0)h and682

δ̄(ϕ−1(|s〉), λ̄(α)) = δ̄(ϕ−1(|s〉), λ̄(α0)h)
(De f . A2)

=

δ(δ̄(ϕ−1(|s〉), λ̄(α0)), h)
(••)
= δ(heads, h) = s2, (• • •)

by the transition function of transition function of AQ (Figure 5). Finally,683

ϕ−1(S(|s〉 , α))
(•)
= s2

(•••)
= δ̄(ϕ−1(|s〉), λ̄(α)),

that is (A6) holds. Using similar arguments we can prove (A6) for the remaining kets of C.684

Theorem A1 (Winning automaton). AQ is a winning automaton for Q.685

Proof686

Recalling Definition 7 and taking into account that the initial state of AQ is heads, we see that we687

must prove that688

∀w ∈ LAQ : Q(G(|0〉 , γw), αw), (A9)

where αw = µ̄(w) and γw = χ(µ̄(w)).689

Let us first consider the special case where w is the empty word ε, which obviously belongs to LAQ .690

By Definition 6, ε corresponds to the empty action sequence ε, which, by Definition 4, corresponds to691

empty sequence of moves e, which, by Definition 3, corresponds to the trivial game G(|0〉 , e). Q wins692

this game, so in this special case Q(G(|0〉 , e), ε) is true.693

We consider now an arbitrary word w of LAQ . Applying Lemma A2 and taking into account that694

the initial state of AQ is heads, we arrive at the conclusion that695

ϕ(δ̄(heads, w)) = S(|0〉 , µ̄(w)). (?)

The fact that w is accepted by AQ means that δ̄(heads, w) = heads or δ̄(heads, w) = −heads, which696

in turn implies (recall Definition A4) that697

ϕ(δ̄(heads, w)) = |0〉 or ϕ(δ̄(heads, w)) = − |0〉 . (??)

Together (?) and (??) give698

S(|0〉 , µ̄(w)) = |0〉 or S(|0〉 , µ̄(w)) = − |0〉 . (? ? ?)

Hence, if the initial state of the coin is |0〉, and the sequence of actions µ̄(w) is applied, then the699

coin will end up, prior to measurent, either in state |0〉 or in state − |0〉. After the measurement the700

coin will be in state |0〉 with probability 1.0. Finally, by Definition 4, µ̄(w) is a winning sequence for701

G(|0〉 , χ(µ̄(w))). Therefore, (A9) holds.702

In an identical manner we can show the next Corollary.703
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Corollary A1. The automata APQ, APQπ/2
, APQ6

, and APQ9
are all winning automata for Q.704

Theorem A2 (Complete automaton for Q). AQ is complete with respect to the winning sequences for Q.705

Proof706

We must show that707

∀γ ∈ N? ∀α ∈ Act? : Q(G(|0〉 , γ), α)⇒ λ̄(α) ∈ LAQ . (A10)

Let us first consider the special case where γ is the empty sequence of moves e, which, by708

Definition 3, corresponds to the trivial game G(|0〉 , e). In this case the only admissible action sequence709

α is the empty sequence ε, which is a winning sequence for Q. Obviously, the corresponding word is710

the empty word, which is, of course, recognized by AQ. So in this special case (A11) is true.711

We consider now an arbitrary sequence of moves γ and an arbitrary winning sequence α for the712

game G(|0〉 , γ). Applying Lemma A2 and taking into account that the initial state of AQ is heads, we713

arrive at the conclusion that714

S(ϕ(heads), α) = S(|0〉 , α) = ϕ(δ̄(heads, λ̄(α))). (?)

The fact that Q wins with probability 1.0 means the final state of the coin before measurement715

is either |0〉 or − |0〉, that is S(|0〉 , α) = |0〉 or S(|0〉 , α) = − |0〉, which, in view of (?), implies that716

ϕ(δ̄(heads, λ̄(α))) = |0〉 or ϕ(δ̄(heads, λ̄(α))) = − |0〉. Consequently, by Definition A4717

δ̄(heads, λ̄(α)) = heads or δ̄(heads, λ̄(α)) = −heads. (??)

Hence, AQ starting from the initial state heads will end up either in state heads or in state −heads718

upon reading the word λ̄(α). Since both these states are accepting states, we conclude that λ̄(α)719

belongs to LAQ and (A11) holds.720

Theorem A3 (Complete and winning automaton II for Q). A′Q is a complete and winning automaton for721

Q for all the games in which the initial state of the coin is |tails〉 = |1〉.722

Proof723

The proof is just a repetition of the proofs of Theorems A1 and A2, the only difference being that724

this time the games begin with the coin at state |tails〉 = |1〉.725

Theorem A4 (Complete and winning automaton for Picard). AP is a complete and winning automaton726

for Picard for all the games in which the initial state of the coin is |heads〉 = |0〉.727

Proof728

Again the proof is just a repetition of the proofs of Theorems A1 and A2. The difference now is729

that the accepting states are tails and −tails.730

Theorem A5 (Complete and winning automaton II for Picard). A′P is a complete and winning automaton731

for Picard for all the games in which the initial state of the coin is |tails〉 = |1〉.732

Proof733

Once more we repeat the proofs of Theorems A1 and A2. In this case the games begin with the734

coin at state |tails〉 = |1〉, the initial state of A′P is tails and the accepting states are heads and −heads.735

736
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Theorem A6 (Complete automata for fair sequences). A1/2 and A′1/2 are complete for fair sequences, that737

is they accept all fair sequences for all the games in which the initial state of the coin is |heads〉 = |0〉 and738

|tails〉 = |1〉, respectively.739

Proof740

We first show that ∀γ ∈ N? ∀α ∈ Act?741

Q and Picard win G(|0〉 , γ) using α with probability 0.5⇒ λ̄(α) ∈ LA1/2 . (A11)

Before we give the proof let us point out that this time γ cannot be the empty sequence of moves742

e because, by Definition 3, it would correspond to the trivial game G(|0〉 , e). For the trivial game the743

only admissible action sequence α is the empty sequence ε, which is not a fair sequence. Naturally, the744

corresponding empty word is not accepted by A1/2.745

We consider now an arbitrary sequence of moves γ and an arbitrary fair sequence α for the game746

G(|0〉 , γ). Applying Lemma A2 and taking into account that the initial state of A1/2 is heads, we arrive747

at the conclusion that748

S(ϕ(heads), α) = S(|0〉 , α) = ϕ(δ̄(heads, λ̄(α))). (?)

The fact that both Q and Picard have probability 0.5 to win means the final state of the coin749

before measurement is one of:
√

2
2 |0〉+

√
2

2 |1〉 ,
√

2
2 |0〉 −

√
2

2 |1〉 ,−
√

2
2 |0〉+

√
2

2 |1〉 or −
√

2
2 |0〉 −

√
2

2 |1〉.750

This is guaranteed by Lemma A1 which asserts that the coin can only pass through the states in C.751

Hence, S(|0〉 , α) =
√

2
2 |0〉+

√
2

2 |1〉 or S(|0〉 , α) =
√

2
2 |0〉 −

√
2

2 |1〉, or S(|0〉 , α) = −
√

2
2 |0〉+

√
2

2 |1〉, or752

S(|0〉 , α) = −
√

2
2 |0〉 −

√
2

2 |1〉. In view of (?), this means that ϕ(δ̄(heads, λ̄(α))) =
√

2
2 |0〉+

√
2

2 |1〉, or753

ϕ(δ̄(heads, λ̄(α))) =
√

2
2 |0〉 −

√
2

2 |1〉, or ϕ(δ̄(heads, λ̄(α))) = −
√

2
2 |0〉+

√
2

2 |1〉, or ϕ(δ̄(heads, λ̄(α))) =754

−
√

2
2 |0〉 −

√
2

2 |1〉. Therefore, by Definition A4, δ̄(heads, λ̄(α)) is one of s2, s4, s5 or s8 (??). So, A1/2755

starting from the initial state heads will end up in one of s2, s4, s5 or s8 upon reading the word λ̄(α).756

Since all these states are accepting states, we conclude that λ̄(α) belongs to LA1/2 and A1/2 is complete757

for fair sequences.758

In a similar manner we show that A′1/2 is also complete for fair sequences.759
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