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1 Abstract: The meticulous study of finite automata has produced many important and useful results.
= Automata are simple yet efficient finite state machines that can be utilized in a plethora of situations.
s It comes, therefore, as no surprise that they have been used in classic game theory in order to model
s players and their actions. Game theory has recently been influenced by ideas from the field of
s quantum computation. As a result, quantum versions of classic games have already been introduced
s and studied. The PQ penny flip game is a famous quantum game introduced by Meyer in 1999. In
»  this paper we investigate all possible finite games that can be played between the two players Q and
s Picard of the original PQ game. For this purpose we establish a rigorous connection between finite
o automata and the PQ game along with all its possible variations. Starting from the automaton that
1 corresponds to the original game, we construct more elaborate automata for certain extensions of the
1 game, before finally presenting a semiautomaton that captures the intrinsic behavior of all possible
1z variants of the PQ game. What this means is that from the semiautomaton in question, by setting
1z appropriate initial and accepting states, one can construct deterministic automata able to capture
12 every possible finite game that can be played between the two players Q and Picard. Moreover, we
s introduce the new concepts of a winning automaton and complete automaton for either player.

1« Keywords: finite automata; games; PQ penny flip game; game variants; winning sequences

1z 0. Introduction

18 Game theory studies conflict and cooperation between rational players. To this end, a sophisticated
1»  mathematical machinery has been developed that facilitates this reasoning. There are numerous
20 textbooks that can serve as an excellent introduction to this field. In this paper we shall use just a few
xn fundamental concepts and we refer to [1] and [2] as accessible and user-friendly references, whereas
22 [3] is a more rigorous exposition. The landmark work “Theory of Games and Economic Behavior"
23 [4] by John Von Neumann and Oskar Morgenstern is usually credited as being the one responsible
2a  for the creation this field. Since then Game theory has been broadly investigated due to its numerous
2 applications, both in theory and practice. It would not be an exaggeration to claim that today the
26 use of Game theory is pervasive in economics, political and social sciences. It has even been used in
2z such diverse fields as biology and psychology. In every case where at least two entities are either in
2s  conflict or cooperate, Game theory provides the proper tools to analyze the situation. The entities are
2 called players, each player has his own goals and the actions of every player affect the other players.
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o Every player has at his disposal a set of actions, from which his set of strategies is determined. The
a1 outcome of the game from the point of view of each player is quantitatively assessed by a function that
2 is called utility or payoff function. The players are assumed to be rational, i.e., every player acts so as
s3  to maximize his payoff.

3a Quantum computation is a relatively new field that was initially envisioned by Richard Feynman
55 in the early ‘80s. Today there is a wide interest in this area and, more importantly, actual efforts for
ss the building practical commercial quantum computing machines or at least quantum components.
sz One could argue that quantum computing perceives the actual computation process as a natural
s phenomenon, in contrast to the known binary logic of classical systems. Technically, a quantum
30 computer is expected to use qubits as the basic unit of computation instead of the classical bit. The
« transitions among quantum states will be achieved through the application of unitary matrices. It is
a1 hoped that the use of quantum or quantum-inspired computing machines will lead to an increase
«2 in computational capabilities and efficiency, since the quantum world is inherently probabilistic and
«s non-classical phenomena, such as superposition and entanglement, occur. Up to now, the superiority
4« of quantum methods over classical ones has only been proven for particular classes of problems;
«s  nevertheless the performance gains in such cases are tremendous. In the PQ penny flip game described
s by Meyer in [5], the quantum player Q has an overwhelming advantage over the classical player
«z Picard. The recent field of quantum game theory is devoted to the study of quantum techniques in
s classical games, such as the coin flipping, the prisoners’ dilemma and many others.

a0 Contribution. The main contribution of this work lies in establishing a rigorous connection
so between finite automata and the PQ game with all its finite variations. Starting from the automaton
51 that corresponds to the original PQ game, we construct automata for various interesting variations of
s the game, before finally presenting the semiautomaton of Figure 6 that captures the “essence” of the
ss  PQ game. By this we mean that this semiautomaton serves as a template for building automata (by
s« designating appropriate initial and accepting states) that cover all possible finite games that can be
ss  played between Q and Picard. We point out that the resulting automata are almost identical, since
s they differ only in the initial state and/or their accepting states; yet these minor differences have a
s» profound effect on the accepting language.

58 Furthermore we introduce two novel notions, that of a winning automaton and that of a complete
s automaton for either player. A winning automaton for either Q or Picard accepts only those words that
s correspond to actions that allow him to win the game with probability 1.0 and a complete automaton
e1 (for Q or Picard) accepts all such words. This is a powerful tool because it allows us to determine
e whether or not an arbitrary long sequence of actions guarantees that one of the two players will surely
es win just be checking if the corresponding word is accepted or not by the complete automaton for that
es player.

o5 We clarify that the automata we construct do more than simply accept dominant strategies. They
es are specifically designed to accept sequences of actions by both players, i.e., sequences that contain
ez the actions of both players. This gives a global overview of the evolution of the game from the point
es Of view of both players. Moreover, no information is lost and, in case one wishes to focus only on
e dominant strategies for a specific player, this can be simply achieved by considering a substring from
7 each accepted word; this substring will contain only the actions of the specific player, disregarding all
7 actions by the other player.

72 The paper is organized as follows: Section 1 discusses related work, Section 2 explains the notation
7s and definitions used throughout the rest of the paper, Section 3 lays the necessary groundwork for
7¢ the connection of games with automata, Section 4 describes the automaton that corresponds to the
7 standard PQ game, Section 5 analyzes how one may construct automata that correspond to specific
76 variants of the PQ game, Section 6 contains the most important results of this work: the semiautomaton
7z of Figure 6 that captures all possible finite games between Q and Picard, and the concepts of winning
7e and complete automata for Q or Picard, and Section 7 summarizes our results and conclusions and
7 points to directions for future work.


http://dx.doi.org/10.20944/preprints201710.0179.v1
http://dx.doi.org/10.3390/math6020020

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 October 2017 d0i:10.20944/preprints201710.0179.v1

o 1. Related Work

]

81 In 1999 Mayer [5] introduced the quantum version of the penny flip game with two players and a
s2 two dimensional coin. In the original game the two players are named Q and Picard (from a popular
es  tv series). Picard is restricted to classic strategies whereas Q is able to use quantum strategies. As a
s« result Q is able to apply unitary transformations in every possible state of the game. Mayer identifies a
s winning strategy for Q that boils down to the application of the Hadamard transform. Picard, on the
e other hand, who can either leave the coin as is or flip it, is bound to lose in every case.

87 Many articles extended the aforementioned game to an n-state quantum roulette using various
ss techniques. Salimi et al. [6] used permutation matrices and the Fourier matrix as a representation
e of the symmetric group S,. They viewed quantum roulette as a typical n-state quantum system
%0 and developed a methodology that allowed them to solve this quantum game for arbitrary n. As
o1 an example they employed their technique for a quantum roulette with n = 3. Wang et al. [7] also
.2 generalized the coin tossing game to an n-state game. Ren et al. [8] developed specific methods that
o3 enabled them to solve the problem of quantum coin-tossing in a roulette game. Specifically, they used
s« two methods, which they called analogy and isolation methods respectively, in order to tackle the
s above problem. All the previously mentioned articles focused on the expansion of states, essentially
es converting the coin into a roulette.

o7 Quantum protocols from the fields of quantum and post-quantum cryptography are widely
s studied in the framework of quantum game theory. Several cryptographic protocols have been
o developed in order to provide reliable communication between two separate players regarding the
w0 coin-tossing game [9], [10], [11], [12]. Nguyen et al. [9] analyzed how the performance of a quantum
11 coin tossing experiment should be compared to classical protocols, taking into account the inevitable
102 experimental imperfections. They designed an all-optical fiber experiment, in which a single coin
103 is tossed whose randomness is higher than that of any classical protocol. In the same paper they
10s  presented some easily realizable cheating strategies for Alice and Bob. Berlin et al. [10] introduced a
15 quantum protocol which they proved to be completely impervious to loss. The protocol is fair when
16 both players have the same probability for a successful cheating upon the outcome of the coin flip.
17 They also gave explicit and optimal cheating strategies for both players. Ambainis [11] devised a
10s  protocol in which a dishonest party will not be able to ensure a specific result with probability greater
19 than 0.75. For this particular protocol, the use of parallelism will not lead to a decrease of its bias. In
1o [12] Ambainis et al. investigated similar protocols in a context of multiple parties, where it was shown
a1 that the coin may not be fixed provided that a fraction of the players remain honest.

112 Many researchers have investigated turn-based versions of classical games such as the prisoners’
us  dilemma. One of the first works that associated finite automata with game theory was by Neyman [13],
s Where he studied how finite automata can be used to acquire the complexity of strategies available
us  to players. Rubinstein [14] studied a variation of the repeated prisoners’ dilemma, in which each
ue Pplayer is required to play using a Moore machine (a type of finite state transducer). Rubinstein and
ur Abreu [15] investigated the case of infinitely repeated games. They used the Nash equilibrium as a
ue  solution concept, where players seek to maximize their profit and minimize the complexity of their
us  strategies. Inspired by the Abreu-Rubinstein style systems, Binmore and Samuelson [16] replaced the
120 solution concept of Nash equilibrium with that of the evolutionarily stable strategy. They showed that
iz such automata are efficient in the sense that they maximize the sum of the payoffs. Ben-Porath [17]
122 studied repeated games and the behavior of equilibrium payoffs for players using bounded complexity
123 strategies. The strategy complexity is measured in terms of the state size of the minimal automaton
124 that can implement it. They observed that when the size of the automata of both players tends to
125 infinity, the sequence of values converges to a particular value for each game. Marks [18] also studied
126 repeated games with the assistance of finite automata.

127 An important work in the field of quantum game theory by Eisert et al. [19] examined the
12 application of quantum techniques in the prisoners” dilemma game. Their work was later debated
120 by others, such as Benjamin and Hayden in [20] and Zhang in [21], where it was pointed out that
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130 players in the game setting of [19] were restricted and therefore the resulting Nash equilibria were
11 not correct. The work in [22] gave an elegant introduction to quantum game theory, along with a
132 review of the relevant literature for the first years of this newborn field. Parrondo games and quantum
133 algorithms were discussed in [23]. The relation between Parrondo games and a type of automata,
s specifically quantum lattice gas automata, was the topic of [24]. Bertelle et al. [25] examined the
135 use of probabilistic automata, evolved from a genetic algorithm, for modeling adaptive behavior in
136 the prisoners’ dilemma game. Piotrowski et al. [26] provided a historic account and outlined the
137 basic ideas behind the recent development of quantum game theory. They also gave their assessment
13s  about possible future developments in this field and their impact on information processing. Recently,
130 Suwais [27] examined different types of automata variants and reviewed the use for each one of them
190 in game theory. In a similar vein, Almanasra et al. [28] reported that finite automata are suitable for
11 simple strategies whereas adaptive and cellular automata can be applied in complex environments.

142 The relation of quantum games with finite automata was also studied in [29]. In that work
13 quantum automata accepting infinite words were associated with winning strategies for abstract
1es  quantum games. The current paper differs from [29] in the following aspects: (i) the focus is in the PQ
s penny flip game and all its variations, (ii) the automata are either deterministic or nondeterministic
s finite automata, and (iii) the words accepted by the automata correspond to moves by both players.

147 2. Preliminary definitions

us 2.1. The PQ Game

149 Meyer in his landmark paper [5] introduced the penny flip game. This game is played by two
10 players named Q and Picard. The names are inspired from a successful science fiction tv show. Picard
11 is a classical, probabilistic, player, in that he can only perform one of two actions:

152 o leave the coin as is, which we denote by I, after the “identity" operator, or
153 o flip the coin, which we denote by F, after the “flip" operator.

154 Q on the other hand is a quantum player, in that he can affect the coin not only in a classical
155 sense, but also through the application of unitary transformations, such as the Hadamard operator,
1ss  which is denoted by H. The game is played with the coin prepared in the initial state heads up. The
1z two players act on the coin always following a specific order: Q plays first, then its Picard’s turn, and,
s finally, Q plays one last time. Q wins if the coin is found heads up when the game is over; otherwise
10 Picard wins. Mayer presents a dominant strategy for Q based on the application of the Hadamard
10 transform H: Q starts by applying the H operator, which in a sense makes Picard’s move irrelevant.
161 After Picard makes his move, Q applies once more the H operator, which restores the coin to its initial
162 state, granting him victory.

163 The game can be rephrased in a linear algebraic form:
168 e The coin is represented by a ket |v) € H; of norm 1, where #; is the 2-dimensional complex
165 Hilbert space.
166 o The possible actions of the two players I, F, H are represented by unitary operators. Specifically,
167 since H; is 2-dimensional, the operators can be represented by the following 2 x 2 matrices:
10 01 22

I[O 1],1—"[1 O],andH[\éi _@. 1)
168 In the rest of this paper we shall refer to the PQ penny flip game simply as the PQ game.
e 2.2, Automata
170 For completeness, we will now mention the definitions of deterministic and nondeterministic

+ finite automata, which we will use in the following chapters as a succinct tool to represent the PQ game,

I
3
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12 define new variants of the original game, and study strategies on the these variants. The definitions
173 are taken from [30].

iza  Definition 1. A deterministic finite state automaton (DFA) is a tuple (Q, X, J, qo, F), where:

. Qs a finite set of states,

. X is a finite set of input symbols called the alphabet,
. 01 Q X X — Qis the transition function,

. qo € Q is the initial state, and

. F C Qs the set of accepting states.

"
5
3

Gr i W N =

180 The definition of the nondeterministic finite automata (NFA) follows a similar pattern, save
11 for some key differences: we replace the definition of the transition function § seen above with
12 0: QXX — P(Q), where P(Q) is the powerset of Q. We also allow for € transitions. We note that
13 DFA and NFA are equivalent in expressive power [30,31].

1.« Definition 2. A nondeterministic finite-state automaton (NFA) is a tuple (Q, %, 6, qo, F), where:

. Qs a finite set of states,

. X is the alphabet,

. 0:Q x Xe — P(Q) is the transition function,
. qo € Q is the initial state, and

. F C Qs the set of accepting states.

...
]
~

G W N

100 3. Games and words

Table 1. Correspondence between the operators I, F and H and the letters of the alphabet . = {i, f, h}.

(@ (b) (c)
Operators vs. letters. Letter assignment A. Operator assignment .
| Operator || Letter | [ A: {I,F,H} — {i,f,h} || p:{i,f,h} = {I,F,H} |
I i AMI) =i u(l) =i
F f AME) = f pE) =f
H h A(H)=h u(H) =nh
101 In this work we intend to examine all finite games that can be played between Picard and Q. These

102 games are in a sense “similar” to the original PQ game and can, therefore, be viewed as extensions that
103 arise from modifications of the rules of the original game. First we must precisely state what we shall
10s  keep from the PQ game. Our analysis will be based on the following four hypotheses.

15 HI1: The two players, Picard and Q, are the stars of the game. Thus, they will continue to play against

196 each other in all the two-persons games we study. Although the games will be finite, their
197 duration will vary. Most importantly, the pattern of the games will vary: Picard may make the
198 first move, one player may act on the coin for a number of conseutive rounds while the other
109 player stays idle and so on.

200 H2: The other cornerstone of the game is the 2-dimensional coin, so the players will still act on the
201 same coin. This means that our games take place in the 2-dimensional complex Hilbert space Hp
202 and we shall not be concerned with higher dimensional analogs of the PQ game like those in [6]
203 and [7]

20e  H3: Let us agree that the players have exactly the same actions at their disposal, that is Picard can
205 use either I or F, whereas Q can only use H. This will enable us to treat all games in a uniform

206 manner by using the same alphabet and notation.
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207 H4: Finally, we assume that the coin can initially be at one of the two basic states |0) (the coin is

208 placed heads up) or |1) (the coin is placed tails up), and this state is known to both players. We
200 note that for each game that begins with the coin in state |0), there exists an analogous game that
210 begins with the coin in state |1) and vice versa. When the game is over, the state of the coin is
211 measured and if it is found to be in the initial basic state, Q wins; otherwise Picard wins. This
212 settles the question of how the winner is determined.

213 From now on we shall take for granted the hypotheses H1 - H4 without any further mention. We

a1a - shall occasionally write |heads) instead of |0) and |tails) instead of |1) to emphasize that the coin is
215 heads up or tails up respectively.

210 Let N be the set of the two players {Picard, Q} and let N* be the set of all finite sequences over N.
2z We agree that N* contains the empty sequence e. Each v € N* is called a sequence of moves because it
21s  encodes a game between Picard and Q. For instance the sequence (Q, Picard, Q) expresses the original
210 PQ game, while the sequence (Picard, Q, Picard, Q, Picard) represents a 5-round game variant, where
220 Picard moves during rounds 1, 3 and 5, and Q during rounds 2 and 4. This idea is formalized in the
221 next definition.

222 Definition 3. Each sequence of moves y € N* defines the finite game G(|s) , ) between Picard and Q. The
22s rules of G(|s),y) are:

224 o The initial state of the coin is |s). In view of hypothesis H4, |s) is either |heads) or |tails).

22 o Ify =e, then G(|s),e) is the 0-round trivial game (neither Picard nor Q act on the coin, which remains
226 at its initial state).

227 o Ify=(p1,p2, ..., Pn), where p; € N, 1 <i < n,then G(|s),y) is a game that lasts n rounds and p;
228 determines which of the two players moves during round i. Specifically, if p; = Picard then it’s Picard’s
220 turn to act on the coin, whereas if p; = Q then it'’s Q’s turn to act on the coin.

230 In this work we shall employ sequences of moves as a precise, unambiguous and succinct way for

2 defining finite games between Picard and Q. For instance the move sequences (Picard, Picard, Q, Q,
232 Picard, Picard) and (Picard, Q, Picard, Q, Picard, Q, Picard, Q, Picard) correspond to a 6-round and a
233 9-round game respectively. These particular games will be used in Section 6.

238 Considering that the actions of Picard and Q are just three, namely I, F and H, we define the set of
2ss actions Act = {I,F, H}. The set of all finite sequences of actions, which includes the empty sequence
2s €, 1s denoted by Act*. In the original PQ game there are just two possible such sequnces: (H, I, H)
27 and (H, F, H). Each action sequence is meaningful only in the appropriate game. For example the
23s  following sequence (F, H, H, I) is unsuitable for the PQ game, but it makes perfect sense in a 4-round
230 game where Picard plays during the first and fourth round and Q plays during the second and third
2e0 round. The precise game for which a given sequence of actions is appropriate is defined below.

2 Definition 4. The function x : Act* — N*, which maps sequences of actions to sequences of moves, is defined
a2 as follows.

243 1. x(e) = e, and
244 2. Ifa=(Uy,..., Uy), U € Act, 1 <i <wmn, then x(«) = (p1,p2,- .., Pn), where p; = Picard if U; = I

245 orUj=Fand p; =QifU; = H.

246 Every action sequence « is an admissible sequence for the underlying game G(|s), x(«)).

247 If Q (Picard) wins the game G(|s) , y) with the admissible sequence a with probability 1.0, we say that Q
2as  (Picard) surely wins G(|s),y) with «, or that « is a winning sequence for Q (Picard) in G(|s), 7).

240 We employ the notation Q(G(|s), ), «), respectively P(G(|s) ,y),a), as an abbreviation of the foregoing

250 aSsertion.
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251 It is evident that y is not an injective function. Take for example (H, I, H) and (H, F, H); both
=2 correspond to the same sequence of moves (Q, Picard, Q). It is also clear that only admissible sequences
263 are meaningful.

254 In this work we shall examine several variants of the PQ game. To each one we shall associate
=55 an automaton and study the language it accepts. As it will turn out, in every case the corresponding
26 language has the same characteristic property. Automata are simple but fundamental models of
=7 computation. They recognize regular languages of words from a given alphabet Z. The set of all finite
s words over X is denoted by X*; we recall that ©* contains the empty word e. The operation of the
250 automaton is very simple: starting from its start state the automaton reads a word w and ends up in a
200 certain state. It accepts (or recognizes) w if and only if this final state belongs to the set of accept states.
201 The set of all the words that are accepted by the automaton is the language recognized (or accepted) by
22 the automaton. We follow the convention of denoting by L 4 the language recognized by the automaton
203 A

264 In order to associate games with automata in a productive way, we must fix an appropriate
2s alphabet X and map the actions of the players to the letters of . Accordingly, the alphabet ¥ must
266 also contain tree letters. Table 1 shows the 1-1 correspondence between the operators I, F and H and
267 the letters of the alphabet X = {i, f, h}. In this work we are interested only in finite games and, hence,
2ee  in finite words and finite sequences of actions. For simplicity, we shall omit the adjective finite from
260 now and simply write game, word and sequence of actions.

20 Definition 5. Given the set of actions Act = {I,F,H} of Picard and Q, the corresponding alphabet is
o1 L= {i,f, h}

272 We define the letter assignment function A : Act — X and the operator assignment function y : . —

277 The letter assignment function A follows the obvious mnemonic rule of mapping each operator,
2z which in the literature is typically denoted by an uppercase letter, to the same lowercase letter. Clearly,
2o is the inverse of A. All the automata we shall encounter share the same alphabet £ = {i, f, h}.

280 Now, via A we can map finite sequences of actions to words and via # we can map words to finite
21 sequences of actions. For instance, the sequence (H, I, H) is mapped to hih, the sequence (H, F, H) is
22 mapped to ifh, etc. In this fashion, every sequence of actions is mapped to a word w € £*. But, this
203 1S a two-way street, meaning that each word from X* corresponds to a sequence of actions: hihhfh
s« corresponds to (H,I,H,H,F, H).

205 At this point we should clarify that in the rest of this paper action sequences will be written
2es  as comma-delimited lists of actions enclosed within a pair of left and right parenthesis. This is in
27 accordance with the practice we have followed so far, e.g., when referring to the action sequences
2w (H,I,H), (H,F,H) or (H,I,H, H,F,H). On the other hand, words, despite also considered as
200 sequences of symbols from the alphabet X, are always written as a simple concatenation of symbols,
200 like hih, hfh or hihhfh, and never like (1,1, f), etc. In this work we shall adhere to this well-established
201 tradition.

202 Formally, this correspondence between action sequences and words is achieved by properly
203 extending A and p.

20a  Definition 6. The word mapping A : Act* — X* and the action sequence mapping fji : ¥* — Act* are
205 defined recursively as follows.

206 1. AMe) =¢, ji(e) =€, and
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2. Forevery U € Act, every a € Act*, every I € ¥, and every w € Z*:
A(a, U)) = Ma)A(U), fiwl) = (p(w), p(1)).

Moreover, a word w € X* via the corresponding sequence of actions fji(w) can be thought of
as describing the game G(|s), x(fi(w))). For example, the word hfifh corresponds to a 5-round
game, where Q plays only during rounds 1 and 5, whereas Picard gets to act on the coin during the

consecutive rounds 2, 3 and 4.

4. An automaton for the PQ game

Table 2. During the games played by Picard and Q, the coin may pass through the states shown in the

left column of this Table. The corresponding states of the automata that capture these game are shown

in the right column of this Table.

] Coin state | Automaton state

11 O]T = |heads) = |0) heads
T
2 R =2+ s
[0 1]" = |tails) = |1) tails
T
¢ -] =Fo-2n s
T
=2 2] =—F0)+2 s
0 -1 T'— _ tails) = — |1) —tails
-1 O]T = — |heads) = — |0) —heads
¢ -] =% -£n) s
fi
|
n

304

Figure 1. This two state automaton Apg captures the moves of the PQ game.

In the PQ game the coin is a 2-dimensional system and so its state can be described by a ket
v € C2. The players act upon the coin via the unitary operators:

1ol . Joo1 [ L
I—[o 1‘|,F—[1 O‘|,andH—l22 _@. 2)

The game proceeds as follows:

T
o The initial state of the coin is {1 0} = |heads) = |0).

T
o After Q’s first move (which is an action on the coin by H), the coin enters state [@ 4} . We

call this state s, (see Figure 1 and Table 2).
e 5 is a very special state in the sense that no matter what Picard chooses to play (Picard can act
either by I or by F), after his move the coin remains in the state s5.
e Finally, Q wins the game by applying H one last time, which in effect sends the coin back to its

initial state |heads).
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312 The simple automaton Apg shown in Figure 1 expresses concisely the states of the coin and the
a1z effect of the actions of the two players. The states of the automaton are in 1-1 correspondence with
as  the states the coin goes through during the game (see Table 2). The actions of the players, that is the
s1s  unitary operators I, F, H, are in 1-1 correspondence with the alphabet X = {i, f, 1} of Apg (see Table 1).
316 The effect of the actions of the players upon the coin is captured by the transitions between the
s1iz  states. Technically, Apg is a nondeterministic automaton (see [30]) that has only two states: heads and
sis 53, where heads is the start and the unique accept state. The nondeterministic nature of Apg stems
s10  from the fact that no outgoing transitions from heads is labeled with i or f. This is a feature, not a bug,
a20 because the rules of the game stipulate that Q makes the first move and Picard’s only move takes place

T
sz when the coin is in state s, = [@ 4} . This means that Picard never gets a chance to act when the

22 coin is in state |heads) = [1 O] T. Hence, Apg is specifically designed so that the only possible action
s while in state |heads) is by Q via H. This will have an effect on the words accepted by Apg, as will be
24 explained below. Other than this subtle point the behavior of Apg can be considered deterministic.
225 According to the rules of the PQ game, there are just two admissible sequences of actions: (H, I, H)
s2e and (H, F, H). Both of them guarantee that Q will win with probability 1.0. The corresponding words
a2z are: hih and hfh, both of which are accepted by Apg and, thus, belong to Ly . Formally, these two
s2e words are the only ones that correspond to valid game moves.

320 Let us now take a step back and view Ap as a standalone automaton. Its language L 4,, can be
30 succinctly described by the regular expression (h(i U f)*h)* (for more about regular expressions we
s refer again to [30]). So, L4, contains an infinite number of words, but only two, namely hil and hfh,
2 correspond to admissible sequences of game actions. What about the other words of L,,,?

333 Despite the fact that the other words of L4, do not correspond to permissible sequences of
;s moves for the original PQ game, they do share a very interesting property. Given an arbitrary word
3 W € Ly, consider the game G(|heads) , x(fi(w))). If the sequence of actions fi(w) is played, then Q
sse  Will surely win, that is Q will win with probability 1.0. Note that ji(w), in general, will contain actions
37 by both players. We emphasize that this property holds for every word of L4, To develop a better
s  understanding of this characteristic property, let us look at some concrete examples.

330 e The empty word ¢ that technically belongs to L4, can be viewed as the representation of the
340 trivial game, where no player gets to act on the coin, so the coin stays at its initial state |heads)
341 and Q trivially wins.

342 o Words like hh, hhhh, i.e., having the form (hh) ™", correspond to the most unfair (for Picard) games,
343 where the game lasts exactly 2n rounds, for some n > 1, and Q moves during each round (Picard
348 does not get to make any move at all).

245 e Words of the form h(i U f)"h, where n > 1, represent games that last # 4 2 rounds, Q plays only
346 during the first and last round of the game, whereas Picard plays during the n intermediate
347 rounds. These variants give to Picard the illusion of fairness, without changing the final outcome.
348 e Words of the form (h(i U f)*h)*, e.g., h(i U f)?hh(i U f)3h, correspond to more complex games.
240 They are in effect independent repetitions of the previous category of games.

350 The formal definition of “winning" automata will be given in Section 6. The idea is very simple: a

51 winning automaton for Q (Picard) accepts a word w only if Q (respectively Picard) surely wins the
ss2 - game G(|s), vw) with ay, where s is the initial state of the automaton, ay, = ji(w) is the corresponding
3 action sequence, and v, = x(fi(w)) is the corresponding move sequence. Therefore, a winning
s automaton for one of the players does not accept a single word for which, in the corresponding game,
s the associated sequence of actions will result in the other player winning with nonzero probability, for
356 instance with probability 0.5 or 1/3.
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ss7 5. Variants of the game and their corresponding automata

Figure 2. The four-state automaton Apg _, captures the possible moves of the PQ /, game, in which
the initial state of the coin is |tails). The accepting states are two: tails and —tails. This reflects the fact
that, after measurement, the state of the coin — |tails) will collapse to the basic state |tails).

sse  0.1. Changing the initial state of the coin

350 Let us see first what happens if we change the initial state of the coin, while keeping the form of
0 the game the same. So there are still 3 rounds: Q acts during the first and the third (and final) round

T
ser  and Picard acts during the second round. The coin is initially at state |tails) = {0 1} . Q wins if the

sz coin ends up (after measurement) in the initial state |tails). We designate this game variant as PQ ;.

T
363 In this game, after Q’s first move, the coin will be in state [4 — %} . Let’s call this state s4.
ssa  The coin will remain in this state if Picard decides to use I but, if Picard decides to use F, the coin

T T
ses  will enter state [_ @ 4] (we call it sg). If the coin is in state {@ — g} , Q’s final action will

T
ses  send the coin to |tails), whereas if the coin is in state [—g g} , it will finally end up in state

7 — |tails) = [O —1} T. Obviously, Q wins in both cases. When the game is over, the state of the coin is
see measured. The measurement process will collapse state — |tails) to the basic state |tails). The previous
o analysis shows that in the PQ,;/, game the coin may go through the states {|tails) , sy, s5, — |tails) }. In
a0 view of the fact that these states are all “new", with respect to the original PQ game, we see that this
sn variant introduces new states.

372 Automaton Apg_,, depicted in Figure 2, captures the PQ /» game. The states of the automaton
a3 are in 1-1 correspondence with the states the coin goes through during the game (see Table 2) and
s7e  the actions of the players are mirrored by the transitions between the states. Like Apg, Apg_, is
s7s  nondeterministic because of the rules of the game.

376 In the PQ,/, game the two admissible sequences of moves are again (H,I,H) and (H,F, H).
a7z Both of them lead to Q’s victory with probability 1.0. The corresponding words kil and /i fh belong
7z to L Apg, The other words of L Arg.., do not correspond to permissible moves of the PQ ./, game.
e However, it is easy to establish that A PQ./nr like Apg, is a winning automaton for Q. The following
sso remarks, similar to the ones we made regarding Apg, hold for pretty much the same reasons:

381 o The words of L, , have the general form (hi*h)* (e U hi* fh).

362 e Formally, hih and 4 fh are the only words that correspond to valid game moves.

383 o Again the empty word e belongs to L 4 PO and can be thought of as expressing the trivial game,
384 where Q trivially wins.

ass e Like before, words of the form (hh)™ or (hi*h)™ correspond to games that last at least 21, n > 1,
386 rounds. Q will surely win these games, provided Picard and Q play the corresponding sequence
387 of actions.

388 e Words of the form (hi*h)*hi* fh correspond to zero or more repetitions of the previous type of
389 game, followed by one move by Q, at least one move by Picard (possibly more), and finally one
390 last move by Q. Q surely wins whenever Picard uses F in his final move and I in all its preceding
301 moves.

302 o Finally, we remark that words like If fh, hf f fh, etc., are not accepted and, thus, do not belong to

LAPQn/z'
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394 Again, we reach the same conclusion: all words accepted by Apg , encode sequences of actions
a5 for which Q will surely win in the corresponding game.

ses  5.2. Variants with more rounds

307 Let us suppose now that the duration of the game is increased. The original PQ game was a
ss  3-round game, so it makes sense to examine a 6-round, a 9-round, or, in general a 3n-round, n > 2,
300 variant of the game. We must however emphasize that these are not repeated PQ games. By repeated
a0 We mean multistage games where the original PQ game is repeated at each stage. In other words, the
201 moves of the players do not follow the pattern: Q — Picard — Q — Q — Picard — Q, etc. Instead, we
202 focus on games that follow the pattern Q — Picard — Q — Picard, etc. In these games Q acts during
a3 the odd numbered rounds and Picard acts during the even numbered rounds. The initial state of the
se coin is |heads) and Q wins the game if the coin ends up (after measurement) in state |heads). Let us
a5 denote by PQ3,, where nn > 2, these 3n-round games.

06 o Initially, we examine the the 6-round game PQ¢. Clearly, after round 3 (i.e., after Q’s second
T

407 move) the coin is at state |heads) = [1 0} . It may remain in this state if Picard decides to use I

T

408 but, if Picard decides to use F, the coin will enter state |tails) = {0 1} . Q’s subsequent move
T T

400 will send the coin to state s, = [4 @} in the first case, or to state s, = {% - 4} in the

410 second case. Thus, the coin may end up in s; or sy, if Picard’s final action in the 6th round is I, or

T
a1 it may end up in s, or s5 = [— @ %} , if Picard’s final action in the 6th round is F.

Figure 3. The automaton Apg, corresponding to the 6-round PQg game.
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Figure 5. The automaton Ay corresponding to the 3n-round variant PQs,,, for n > 4.

a12 The associated automaton Apg, is shown in Figure 3. As expected, its states correspond to the
a13 states of the coin (see Table 2) and its transitions to the actions of the players. Like the previous
414 automata we have seen, Apg, is nondeterministic because of the rules of the game. An important
a15 observation we can make in this case is that by extending the duration of the game, the automata
416 Apg and Apg 1 “merge" into the Apg,, with the exception of state —tails, since Apg, does not

417 contain state —tails.
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Strictly speaking, the only possible valid moves in PQg are: (H,I,H,I,H,I), (H,I,H, I, H,F),
(H,I,H,F,HI), (HIHFHF) (HFHIHI), (HFHILH, F), (H F,HF,H,I), and
(H,F,H,F,H,F). The corresponding words are: hihihi, hihihf, hihfhi, hihfhf, hfhihi, hfhihf,
hfhfhi, and hfhfhf; none of them is recognized by Apg,. This does not imply that L Apg, 18
empty. On the contrary, L4 PO is infinite. For example, h fhih fh belongs to L Apgy This particular
word corresponds to a 7-round game and Q will surely win in this game if the corresponding
sequence of actions (H, F,H, I, H,F, H) is played by Q and Picard. A PQ, is @ winning automaton
for Q that accepts the language (i*h(i U f)*h)*. It is therefore consistent with the winning
property that all the words corresponding to the action sequences that are admissible for the PQg
game are rejected because they do not guarantee that Q will surely win. As a matter of fact, with
admissible action sequences both Q and Picard have equal probability 0.5 to win.

o We take a look now at the 9-round game PQqg. According to the previous analysis, after round 6
the coin may be at one of the states s, or s4 or s5. Consequently, Q’s move will send it to one of

T
|heads), |tails) or — |tails) = {0 —1} . Picard’s action will either leave the coin to its current
T
state or forward it to one of |tails), |heads) or — |heads) = {—1 O} (a “new" state). Finally, Q’s

T
last action will result in the coin entering one of the states sy, s4 or sg = [— % — 4} (another
“new" state). This behavior is captured by the automaton Apg,, depicted in Figure 4.

Apq, has 8 states and is the biggest automaton we have encountered so far. In a way Apg,
“contains" all the previous automata. As expected, its states correspond to the states of the coin
(see Table 2) and its transitions to the actions of the players. Like the previous automata we have
seen, Apg, is nondeterministic because of the rules of the game.

o Finally, we look at the general 3n-round variant PQ3,, for n > 4. At the end of round 9 the coin
will be at one of the states s, or s4 or sg. After round 10 (Picard’s turn) the coin will be at of
S», 84,85 or sg. After round 11 (Q’s turn) the coin will be at one of heads, tails, —heads or —tails.
After round 12 (Picard’s turn) the coin will be again at one of heads, tails, —heads or —tails. We
can go on, but it should be clear by now that no matter how many more rounds are played, no
more “new" states will appear. The automaton, which we designate as Ag, assumes now its final
form depicted in Figure 5.

Up to this point we have constructed the automata Apg » A PQ, and Ag, shown in Figures 3, 4,
and 5, respectively. They are all winning automata for Q, exactly like Apg and Apg_ ,. This is more
or less evident, but we shall give a formal proof in the next section. We close this section with an
important observation. Whereas all previous automata were nondeterministic, A is deterministic.
Exactly three transitions, one for each letter i, f and /1, emanate from every state. This gives Ag a type
of completeness because whatever action is taken by any player, the outcome will correspond to a
state of Ag. Hence, A is able to accurately mirror the behaviour of the coin.


http://dx.doi.org/10.20944/preprints201710.0179.v1
http://dx.doi.org/10.3390/math6020020

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 October 2017 d0i:10.20944/preprints201710.0179.v1

Figure 7. The automaton A/, accepts all winning sequences for Q when the coin starts at |tails).
g 0 P g seq
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Figure 9. The automaton A/, accepts all winning sequences for P when the coin starts at |tails).
g P P g seq
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Figure 11. The automaton A/ ,, captures the fair action sequences when the coin begins at |tails).
g 1/2 €@p q g

43 6. Automata capturing sets of games

asa In this section we shall prove that Ag is a “better," more “complete” representation of the finite
a5 games between Picard and Q compared to all the previous automata. As a matter of fact, in a precise
ase  sense Ag captures all the finite games between Picard and Q.

457 We begin by giving the formal definition of “winning" automaton.
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s Definition 7 (Winning automaton). Consider an automaton A with initial state s, where s is either heads or
aso  tails. Let w € ¥* be a word accepted by A, let ayy, = fi(w) be the corresponding sequence of actions, and let
a0 Y = X(fi(w)) be the corresponding sequence of moves.

a61 If for every word w accepted by A, Q surely wins in the game G(|s) , yw) with ay, then A is a winning
w2 automaton for Q.
463 Symmetrically, A is a winning automaton for Picard, if for each word w accepted by A, Picard surely

s wins in the game G(|s) , yw) With ay.

465 A more succinct way to express that A is a winning automaton for Q or Picard would be to write
Vw € Ly : Q(G(|s), Yw), &w), and (©)]
VYw € Ly : P(G(|S>/7w)/“w)r )

acs respectively.

a07 First we consider all finite games between Picard and Q that satisfy the following conditions

ss (recall the hypotheses at the beginning of Section 3):

469 e Picard’s actions are either I or F and Q’s action is H.

a70 e The coin is initially at state |0).

ar1 o Q wins if, when the game is over and the state of the coin is measured, it is found to be in state
ar2 |0); otherwise Picard wins.

a73 The proofs of the main results of this section are easy but lengthy, so they are given in the

aza  Appendix.

ars Theorem 1 (Winning automata for Q). The automata Apg, Apg_ 12 APQys APQys and Ag are all winning
aze automata for Q.

a7 Definition 8 (Complete automaton for winning sequences). An automaton A with initial state s (s is
a7s  either heads or tails) is complete with respect to the winning sequences for Q if for every finite game between
are  Picard and Q in which the coin is initially at state |s), every sequence of actions that enables Q to win the game
aso  with probability 1.0 corresponds to a word accepted by A.

481 Symmetrically, A is complete with respect to the winning sequences for Picard, if for every finite game
a2 between Picard and Q and for every sequence of actions that enables Picard to win with probability 1.0, the
w3 corresponding word is accepted by A.

484 More formally the completeness property can be expressed as follows
Vy € N* Vo € Act* : Q(G(|s),7), &) = A(a) € Ly, and (5)
Vy € N* Va € Act* : P(G([s),y),a) = A(a) € La. (6)

ass  Theorem 2 (Complete automaton for Q). Aq is complete with respect to the winning sequences for Q.

486 To appreciate the importance of the completeness property, we point out that neither Apg, , nor
a7 Apg, are complete for Q. Let us first consider the 6-round game (Picard, Picard, Q, Q, Picard, Picard).
ass  In this game Q surely wins if the action sequence (F, F, H, H, F, F) is played. The corresponding word
ses 18 ffhhff, which belongs to La, butnotto L4 PQg " So Apg, fails to accept all winning sequences for Q,
a0 1i.e., it is not complete in this respect. Likewise, for the 9-round game (Picard, Q, Picard, Q, Picard, Q,
«1  Picard, Q, Picard), (F,H,F,H,F,H,F,H,I) is a winning sequence for Q and the corresponding word
w2 fhfhfhfhi, which is accepted by A, is not accepted by Apg,. These counterexamples demonstrate
a3 that Apg, and Apg, fail to be complete for Q.
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aoa  6.1. Devising other variants

a95 We can be even more flexible by using the semiautomaton A shown in Figure 6. Technically A
a0s is not an automaton because no initial state and no final states are specified. However, A captures
a7 the essence of all games between Picard and Q because it can serve as a template for automata that
a8 correspond to games that satisfy specific properties. This is easily seen by considering the examples
a0 that follow. Recall that we always operate under the assumption that Q wins if, when the game is over
soo and the state of the coin is measured, it is found to be in the initial state; otherwise Picard wins.

so1  6.1.1. Changing the initial state of the coin

502 Suppose we want to construct a complete winning automaton for Q for all the games in which
sos the coin is initially at state |tails) = |1). Starting from the semiautomaton A of Figure 6 we define

504 1. state tails as the initial state, and
505 2. states tails and —tails as the accept states.
506 The resulting automaton A’Q is depicted in Figure 7. The following theorem holds for A’Q.

sor  Theorem 3 (Complete and winning automaton II for Q). A’Q is a complete and winning automaton for Q
sos for all the games in which the initial state of the coin is |tails) = |1).

soo  6.1.2. Picard surely wins

510 By suitably modifying the semiautomaton A we can also design a complete winning automaton
s for Picard for all the games in which the coin is initially at state |heads) = |0). We can do that by

s12 1. setting heads as the initial state, and
s13 2. setting tails and —tails as the accept states.
514 This will result in the automaton Ap depicted in Figure 8, for which one can easily prove the next

s15  theorem.

sis  Theorem 4 (Complete and winning automaton for Picard). Ap is a complete and winning automaton for
siz  Picard for all the games in which the initial state of the coin is |heads) = |0).

s18 Similarly, we can define a complete winning automaton for Picard for all the games in which the
s1o  coin is initially at state |tails) = |1). All we have to do is

520 1. set tails as the initial state, and
s21 2. set heads and —heads as the accept states.
522 This will result in the automaton A}, shown in Figure 9, for which one can easily show that the

s23  following theorem holds.

s2« Theorem 5 (Complete and winning automaton II for Picard). A}, is a complete and winning automaton
sas  for Picard for all the games in which the initial state of the coin is |tails) = |1).

s2¢  60.1.3. Fair games

527 Up to this point we have focused on winning action sequences for Q or Picard, that is sequences
s2s  for which Q or Picard, respectively, wins the game with probability 1.0. However, we can also capture
s20 action sequences for which both players have equal probability 0.5 to win the game. We call such
s30  sequences fair.
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ss1 Definition 9. Let « be an admissible sequence for the underlying game G(|s) , x(«)). If both Q and Picard
s:2  win the game G(|s), x(«)) with a with probability 0.5, we say that « is a fair sequence for Q and Picard in
o G(Is), x(a).

s34 An automaton A with initial state s (s is either heads or tails) is complete with respect to the fair sequences
s3s  If for every finite game between Picard and Q in which the coin is initially at state |s), every fair sequence
s corresponds to a word accepted by A.

537 The semiautomaton A of Figure 6 can help in this case too. The states sy, 54,55 and sg of A
sss  correspond to the states % |0) + @ 1), vz |0) — \/TE 1) ,—§ |0) + ‘/TE 1) ,—@ |0) — % |1) of the
s39  coin, respectively, as can be seen from Table 2. The common characteristic of these states is that if the
se0 coin ends up in any of these, then upon measurement, it has an equal probability 0.5 to collapse in the
sa1  basic ket |0) or the basic ket |1). In such a case both Q and Picard have equal probability 0.5 to win.
sz Therefore, we can design an automaton that accepts all the fair sequences for all the games in which
sa3  the coin is initially at state |heads) = |0) by

s4s 1. setting heads as the initial state, and
545 2. setting sy, 54, 55 and sg as the accept states.
546 Symmetrically, we can define an automaton that accepts all the fair sequences for all the games in

sez  which the coin is initially at state |tails) = |1) by

sa8 1. setting tails as the initial state, and
540 2. setting sy, 54, 55 and sg as the accept states.
550 The resulting automata are Ay, and A} ,, shown in Figures 10 and 11, respectively.

ss2 Theorem 6 (Complete automata for fair sequences). Ay, and A}, are complete for fair sequences, that
ss2  Is they accept all fair sequences for all the games in which the initial state of the coin is |heads) = |0) and
ssa|tails) = |1), respectively.

ssa 7. Conclusion and further work

555 Quantum technologies have attracted the interest of not only the academic community but also
sse  Of the industry. This observation leads to further research on the relationship between classical and
ss7  quantum computation. Standard and well-established notions and systems have to be examined and,
sss  if necessary, revised in the light of the upcoming quantum era.

559 In this we work we have presented a way to construct automata, and a semiautomaton, from the
seo  PQ game, such that the resulting automata and semiautomaton capture, in a specific sense, the game’s
ses numerous variations. That is, the automata can be used to study possible variations of the game,
se2 and their accepting language can be used to determine strategies for any player, whether dominant
ses Or otherwise. Specifically, starting from the automaton that corresponds to the standard PQ game,
ses We construct automata for various interesting variations of the PQ game, before finally presenting a
ses semiautomaton that is in a sense “complete” with regards to the game and captures the “essence" of
ses the generalized PQ game, in that by providing appropriate initial and final states we can study any
se7  possible variation of the PQ game.

s68 We remark that the automata presented here do much more than accepting dominant strategies.
seo In game theory a strategy i for a player is strongly dominated by strategy j if the player’s payoff from
s7o 1 is strictly less than that from j. A stategy i for a player is a strongly dominant strategy iff all other
snn  strategies for this player are stronly dominated by i (see [2] and [1] for details). In our context the
s2  strategy (H, H) for the original PQ game is a strongly dominant strategy for Q. The automata we have
sz constructed accept sequences of actions by both players, i.e., sequences that contain the actions of both
sz players. As we have explained in Section 6, they can be designed so as to accept all action sequences of
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s7s  all possible games between Picard and Q for which either Q surely wins, or Picard surely wins or even
sz they both have probability exactly 0.5 to win.

s77 Future directions for this work are numerous, including the construction of corresponding
s7e automata for other (quantum) games, as well as further application of automata-theoretic notions,
s7o  such as minimisation, to games like that. The connection of standard finite automata with the players
seo actions on a particular quantum game can only be seen as a first step in the direction of checking, not
ses  only other games, but also different game modes on already known setups.

ss2  Author Contributions: All of the authors have contributed extensively to this study. Th.A. and M.V. conceived
ses  the initial idea. K.G. and A.Sir. assisted Th.A. in forming the described operators used in the main part. M.V,
ssa KK, and A.Sin. thoroughly analyzed the current literature. Th.A. and K.G. were responsible for supervising the
sss  construction of this work. A.Sir. and Th.A. contributed to the proper typing of formal definitions and the maths
sse  used in the paper. All the authors contributed to the writing of the paper.
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sses Abbreviations
sss  The following abbreviations are used in this manuscript:
PQ Picard-Q

so1 INFA  Nondeterministic finite automaton
DFA  Deterministic finite automaton

se2 Appendix A Proofs of the main results

593 It is clear from our prior analysis that, under the assumptions that the coin is initially at state
sea |heads) = |0) or |tails) = |1) and the actions of the players are precisely I, F and H, the only states the
sos coin may pass through are the eight states shown in Table 2. This fact prompts the following definition.

o Definition Al. The set of the eight kets {|0),%2[0) + L2|1),[1), %2 [0) — %2 |1),—¥2|0) +
s07 g [1),—1),—|0), —% |0) — @ |1)} that represent the possible states of the coin is denoted by C. C C Hy
ses 15 a finite subset of the the 2-dimensional complex Hilbert space H,.

599 For completeness we state the following Lemma A1. Its proof is trivial and is omitted.
so Lemma Al. C is closed with respect to the actions I, F and H.
601 To prove the main theorems of this paper, we will have to give a few technical definitions.

sz Definition A2. The transition function é of a deterministic automaton A can be extended to a function
o3 0 : KX X* — K, where K is the set of states and % the alphabet of A. Let g € K, 1 € &, and wy, w € X*; then &
e0s 15 defined recursively as follows:

- a w=e
ogw) = {(5(5(q,w0),l), w=wol (&)

605 If a deterministic automaton is in state g and reads the word w, it will end up in state (g, w). In
s0s this respect the extended transition function is a convenient way to specify how an arbitrary word will
sor affect the state of the automaton. For instance Ag, whose initial state is heads, when fed with the input
es word fhf it will end up in state s5. In an analogous fashion, it will be useful to define a function that
0o Will specify how a sequence of actions will affect the state of the coin. Without further ado we state the
s10  next definition.
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sz Definition A3. We define the function S : C x Act* — C which gives the state of the coin after the application
1z 0f the action sequence w, assuming that the coin is initially in state |s). Formally,

sy, x=¢€
5(|s),a) = {' > , (A2)
U(S(ls) a0)), a = (ao,U)
613 where U € Act and g, x € Act*.
o14 Consider for example the action sequence « = (I, F, H, F); then 5(|0) ,a) = 7@ |0) + @ |1) and

eis S(|1),a) = 4 |0) + 4 Finally, we define the function ¢ and its inverse ¢ ~!. ¢ maps states of the
s1s automaton Ag to states of the coin. This function conveys exactly the same information as Table 2 and
ez it will enable us to rigorously express what we mean by saying that Ag captures all the finite games
e1s between Picard and Q.

10 Definition Ad. We define the function ¢ : K — C, where K is the set of states of the automaton Ag.

plheads) = [0}, plo) = Y210+ Y21, gltaits) = 1),
oo = 2100211, gles) = =210+ L2, gt = —[1), (A3
p(—heads) = ~ [0}, plss) = —Y210) = Y2 1),
620 Clearly ¢ is a bijection, so it has an inverse function ¢! : C — K.
0D —heads, g Y210+ Y2 —sa g7l = tail,
0 -2 = e =20+ 2 = ¢ - [1) = —tails, (A
§ (= 10)) = —heads, g7 (=2 [0) = Y2 |1)) = ss.
621 The next Lemma states that Ag is a faithful representation of the coin.

e2 Lemma A2 (Faithful representation Lemma). The states and the transitions of the coin are faithfully
e23  represented by the states and the transitions of Aq in the following precise sense

Vw e £* Vg e K: ¢(6(q,w)) = S(¢(q), fi(w)), and (A5)
Va € Act* Vs € C: ¢ 1(S([s), ) = (¢~ 1(Js)), A(a)). (A6)
e2a Proof
625 Typically, the proof is by simultaneous induction on the length n of w and «.

626 e When n = 0, the only word of length 0 is the empty word ¢. In this case, by Definition 6 ji(¢) = €,

627 by Definition A2 5(g,¢) = q and, by Definition A3, S(¢(q),€) = ¢(g). Equation (A5) then reduces
o28 to ¢(q) = ¢(q), which is trivially true.

620 Similarly, when n = 0, « is the empty action sequence ¢, in which case A(€) = ¢ (Definition 6),
630 5(p71(|s)),e) = ¢ 1(Js)) (Definition A2), and S(|s),€) = |s) (Definition A3). In this special case,
631 equation (A6) becomes ¢! (|s)) = ¢~ (|s)), which is of course true.

632 o We assume that (A5) and (A6) hold for n = k and forallg € Kand s € C.
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633 e It remains to prove (A5) and (A6) for n =k + 1.

634 Consider an arbitrary word w over X of length k + 1. w can be written as wy! where wy is a word
635 of length k and [ is one of i, f or h. By the induction hypothesis we know that
Vq € K: 9(6(q,w0)) = S(e(q), fwo))- (A7)
636 There are three cases to consider, depending on whether ! =i,/ = f or [ = h.
637 If I = i, then w = wyi and the transition function of Ay (Figure 5) ensures that (g, wy) =
o3s 5(q, woi) (*). At the same time, by Definition 6, ji(wgi) = (ji(wg),I) and, by Definition A3,
630 S(e(q), (fi(wo), I)) = I(S(@(q), fi(wo))) = S(¢(q), fi(wy)) (%) because I is the identity operator.
60 Using (%), (xx), and the induction hypothesis (A7), we get ¢(5(g, woi)) & @(6(q,wo)) 4
w  Sle()plwn) = S(plg), (1(wo), D). So,in this case (A5) holds.
6a2 If | = f, then w = wy f. With respect to f the transition function of Ag (Figure 5) is a bit more
643 complicated, which implies that each state of Ag must be examined separately. Let’s begin with
6as state heads, that is let’s assume that 5(q, wg) = heads. Then the transition function requires that
oas 5(q, wof) = tails. Accordingly, Definition A4 implies that
9(0(q,wo)) = g(heads) = |0)  ¢(3(q, wof)) = g(tails) = |1). ()
sas By the induction hypothesis (A7) and (x) we can deduce that
- (A7) = (*)
S$(@(q), i(wo)) =" ¢(6(q,w0)) = 10). (%)
ea7 Combining Definitions 6 and A3 with (xx) we derive that fi(wof) = (ji(wp), F) and
_ (Def. A3) _ ()
S(@(q), (a(wo), F)) =" F(S(¢(q), i(wo))) =" F|0) = [1) (%)
643 because F is the flip operator. Therefore, if 5(g, ) = heads, then

koK )

o(5@wof)) 2 1) "= S(0(g), (i(wo), F)),

649 that is (A5) holds. It is straightforward to repeat the same reasoning for the remaining states of
650 Ag and verify in each case the validity of (A5).

o51 If I = h, then w = wph. As in the previous case, we have to examine each state of Ag separately.
o52 If 5(q,wg) = heads, then, according to the transition function, 6(q, woh) = s;. Recalling
053 Definition A4 we see that

_ - 2 2
p(3(g,w0)) = gleads) = 10)  o(Flgwo) = g(s2) = 20+ 2|, (0
65 By the induction hypothesis (A7) and () we conclude that
S(o(@), iwo)) < p(6(q,w0)) = [0). (e9)
o5 Together, Definitions 6 and A3 and (ee) imply that ji(woh) = (ji(wy), H) and
ef. A2 .o 2 2
S(p(a), (o), 1) "L H(s(ple) o)) W HIO = 210+ 21y (ews)
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656 because H is the Hadamard operator. Hence, if 6(g, wg) = heads, then

(3(q,woh)) = —=10) + - 1) "=" S(e(q), (A(wo), H)),

657 showing that (A5) holds. Repeating analogous arguments for the remaining states of Ag allows
o58 us to establish the validity of (A5).
659 We proceed now to show that (A6) holds. Consider an arbitrary action sequence « of length
660 k+1: a« = (ap, U), where ay is the prefix action sequence of length k and U is one of the unitary
661 operators I, F or H. In this case the induction hypothesis becomes
Vs € C: g7 ((1s), a0)) = 5lg™"(Is)), Aao)). (A8)
662 Since U stands for one of I, F or H, we must distinguish three cases.
603 If U is the identity operator I then, by Definition A3, S(|s),(xo,I)) = I(S(|s),a0)) =
_ x _ (A8) & _ 3
S(Is), a0) (x). Hence, 9~1(S(|s),«)) = ¢~(S(Is),@0)) =" 3(¢~'(|s)),Alxo)) (+). The
665 transition function of Ay (Figure 5) guarantees that Vw < X* Vq € K d(qw) =
- , . < — < . (Def.5) - <
w  dlgwi). Therefore, (g7 (]s)), Alao) = () Aao)) VL (o711, Alao) A(D)
667 (Def-6) 5(@71(Js)), A(a)) (% x*). Combining (x) and (x % ), we conclude that ¢~ 1(S(|s) ,a)) =
o8 5(e71(|s)),A(«)), i.e., (A6) holds.
669 If U is the flip operator F, then each ket of C must be examined separately. Let’s begin with ket
670 |0), that is let’s assume that S(|s) , &) = |0). Then, by Definition A3, S(|s),«) = S(|s), (xo, F)) =
o71 F(5(]s) ,ap)) = |1). In this case Definition A4 implies that
971 (5(Is),m0)) = ¢71(|0)) = heads ¢~ (S(|s),a)) = ¢ (1)) = tails. ()
o72 By the induction hypothesis (A8) and (x) we see that
s 1 3 (48) 1 ()
5(¢~(Is)), Aao)) =" ¢~ (S(Is),a0)) = heads. ()
673 Combining Definitions 6 and A2 with (xx) we derive that A(a) = A(ag)A(F) = A(ag) f and
— < — < (Def. A2)
(97 (1)), A@)) = 8(9~ " (Is)), Alwo) f) =
5(8(p~1(Js)), Alo)), f) (=) 8(heads, f) = tails, (x * %)
674 by the transition function of transition function of Ag (Figure 5). Consequently,
1 (*_) , (*i*) = 1 -
¢~ (S([s), &) = tails " ="0(¢™(|s)), Aw)),
675 that is (A6) holds. It is straightforward to repeat the same reasoning for the remaining kets of C
676 and verify in each case the validity of (A6).
677 The last case we have to examine is when U is the Hadamard operator H, in which case & =
o78 (g, H). As in the previous case, we have to check each ket of C. Let’s consider first the case
679 where S(|s) ,a9) = |0). Then, by Definition A3, S(|s),a) = S(|s), (a0, H)) = H(S(]s),a0)) =

60 4 |0) + % |1). In this case Definition A4 implies that
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¢ ' (S(|s),a0)) = heads ¢ 1(S(|s),a)) = 52. (*)
o81 By the induction hypothesis (A8) and (o) we see that

=, _ - A8 _ .

807 (19)), A w0)) = 97 (S(1s) 20)) © heads. (o)
o2 Combining Definitions 6 and A2 with (ee) we derive that A(a) = A(ag)A(H) = A(ag)h and

5o 1(1s)), A@)) = 8(p 1 (|s)), Aag)) DL

5(5(¢ 1 (1s)), Awo)), 1) "2 6(heads, ) = sy, (s00)
o83 by the transition function of transition function of Ag (Figure 5). Finally,

o1 (S(ls), ) < s = (p71(1s)), A(w)),

684 that is (A6) holds. Using similar arguments we can prove (A6) for the remaining kets of C.  [J

—
—

sss Theorem Al (Winning automaton). Ag is a winning automaton for Q.

ess Proof
687 Recalling Definition 7 and taking into account that the initial state of A is heads, we see that we
ess Must prove that

Vw S LAQ : Q(G(|0>r’)’w)/0¢w)r (A9)
o8 where ay, = ji(w) and v, = x(fi(w)).
690 Let us first consider the special case where w is the empty word ¢, which obviously belongs to L ,.

e01 By Definition 6, € corresponds to the empty action sequence €, which, by Definition 4, corresponds to
sz empty sequence of moves e, which, by Definition 3, corresponds to the trivial game G(]0),¢). Q wins
s0s this game, so in this special case Q(G(|0),e), €) is true.

694 We consider now an arbitrary word w of L. Applying Lemma A2 and taking into account that
sos the initial state of Ag is heads, we arrive at the conclusion that

¢(8(heads,w)) = 5(|0) , ft(w)). ()
696 The fact that w is accepted by A means that 6(heads, w) = heads or 5(heads, w) = —heads, which
oz in turn implies (recall Definition A4) that
@(6(heads,w)) = |0) or ¢(é(heads,w)) = —10). (x%)
698 Together (x) and (**) give
5(10), i(w)) = 10) or 5(|0), f(w)) = —0). (x5 %)
699 Hence, if the initial state of the coin is |0), and the sequence of actions fi(w) is applied, then the

700 coin will end up, prior to measurent, either in state |0) or in state — |0). After the measurement the
701 coin will be in state |0) with probability 1.0. Finally, by Definition 4, ji(w) is a winning sequence for
72 G(|0), x(fi(w))). Therefore, (A9) holds. [

703 In an identical manner we can show the next Corollary.
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70a  Corollary Al. The automata Apg, ApQ, ,, APQqs and Apg, are all winning automata for Q.

70s Theorem A2 (Complete automaton for Q). Ag is complete with respect to the winning sequences for Q.

706 Proof
707 We must show that

Yy € N* Va € Act” : Q(G(|0),7),a) = Ma) € Lag,. (A10)
708 Let us first consider the special case where v is the empty sequence of moves e, which, by

7o Definition 3, corresponds to the trivial game G(]0), e). In this case the only admissible action sequence
70 & is the empty sequence €, which is a winning sequence for Q. Obviously, the corresponding word is
71 the empty word, which is, of course, recognized by Ag. So in this special case (A11) is true.

712 We consider now an arbitrary sequence of moves 7y and an arbitrary winning sequence « for the
73 game G(|0), 7). Applying Lemma A2 and taking into account that the initial state of A is heads, we
na  arrive at the conclusion that

S(g(heads), o) = S(|0),a) = @(6(heads, A(x))). (*)
715 The fact that Q wins with probability 1.0 means the final state of the coin before measurement
716 is either |0) or — |0), that is S(]|0),«) = |0) or 5(]|0),a) = — |0), which, in view of (%), implies that

77 @(8(heads, A(a))) = |0) or ¢(6(heads, A(a))) = — |0). Consequently, by Definition A4

5(heads, A(x)) = heads or &(heads,A(x)) = —heads. (*%)

718 Hence, Ag starting from the initial state heads will end up either in state heads or in state —heads
70 upon reading the word A(a). Since both these states are accepting states, we conclude that A(a)
720 belongs to Ly, and (All) holds. [

72 Theorem A3 (Complete and winning automaton II for Q). A’Q is a complete and winning automaton for
722 Q for all the games in which the initial state of the coin is |tails) = |1).

72 Proof
724 The proof is just a repetition of the proofs of Theorems A1l and A2, the only difference being that
72s  this time the games begin with the coin at state |tails) = |1). O

72s Theorem A4 (Complete and winning automaton for Picard). Ap is a complete and winning automaton
72z for Picard for all the games in which the initial state of the coin is |heads) = |0).

72s  Proof
720 Again the proof is just a repetition of the proofs of Theorems Al and A2. The difference now is
730 that the accepting states are tails and —tails. O

711 Theorem A5 (Complete and winning automaton II for Picard). A}, is a complete and winning automaton
72 for Picard for all the games in which the initial state of the coin is |tails) = |1).

733 Proof

734 Once more we repeat the proofs of Theorems Al and A2. In this case the games begin with the
735 coin at state |tails) = |1), the initial state of A, is tails and the accepting states are heads and —heads.
736 D
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757 Theorem A6 (Complete automata for fair sequences). Ay, and Al ,, are complete for fair sequences, that
7ss IS they accept all fair sequences for all the games in which the initial state of the coin is |heads) = |0) and
730 |tails) = |1), respectively.

740 Proof
741 We first show that Vy € N* Va € Act*

Q and Picard win G(|0) , ) using « with probability 0.5 = A(a) € Ly, ,,. (A11)
742 Before we give the proof let us point out that this time -y cannot be the empty sequence of moves

a3 e because, by Definition 3, it would correspond to the trivial game G(|0),e). For the trivial game the
7as only admissible action sequence « is the empty sequence €, which is not a fair sequence. Naturally, the
a5 corresponding empty word is not accepted by A ;.

746 We consider now an arbitrary sequence of moves < and an arbitrary fair sequence « for the game
27 G(|0),7). Applying Lemma A2 and taking into account that the initial state of Ay /; is heads, we arrive
es  at the conclusion that

S(¢(heads),a) = S(|0) , &) = @(6(heads, A(«))). (*)

749 The fact that both Q and Picard have probability 0.5 to win means the final state of the coin
70 before measurement is one of: % |0) + % 1), v2 |0) — % 1) ,f§ |0) + % [1) or 7% |0) — % [1).
751 This is guaranteed by Lemma A1 which asserts that the coin can only pass through the states in C.
ne Hence, S(10) &) = %2 |0) + %2 [1) or §(0) , &) = %2 |0) — *2 [1), or S(|0) &) = —*2 |0) + %2 [1), or
s S(]0),a) = —@ |0) — % |1). In view of (x), this means that ¢(5(heads, A(a))) = @ |0) + % |1), or
75 @(6(heads, A(w))) = % |0) — % 1), or ¢((heads, A(a))) = —4 |0) + % 1), or ¢((heads, A(a))) =
755 —% |0) — @ |1). Therefore, by Definition A4, §(heads, A(«)) is one of 3,84, 85 or sg (). So, Aq/2
75 starting from the initial state heads will end up in one of s, 54, s5 or sg upon reading the word A(a).
757 Since all these states are accepting states, we conclude that A(«) belongs to L4, ,, and Ay /5 is complete
e for fair sequences.

759 In a similar manner we show that A] /2 is also complete for fair sequences. [
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