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12 Abstract

13 Pattern recognition receptors such as nucleotide-binding oligomerization domain (NOD)-containing
14 protein receptors (NLRs) and the pyrin and HIN domain (PYHIN) receptors initiate the inflammatory
15  response following cell stress or pathogenic challenge. When activated some of these receptors
16  oligomerize to form the structural backbone of a signalling platform known as the inflammasome.
17 The inflammasome promotes the activation of caspase-1 and the maturation of the proinflammatory
18  cytokines, interleukin (IL)-1f and IL-18. In the gut dysregulation of the inflammasome complex is
19 thought to be a contributing factor in the development of inflammatory bowel diseases (IBD), such
20  as ulcerative colitis (UC) and Crohn’s disease (CD). The importance of inflammasomes to intestinal
21 health has been emphasized by various inflammasome deficient mice in dextran sulphate sodium
22 (DSS) models of intestinal inflammation and by the identification of novel potential candidate genes
23 in population based human studies. In this review we summarise the most recent finding with
24 regard to formation, sensing and regulation of the inflammasome complex and highlight their

25 importance in maintaining intestinal health.

26 Keywords: inflammasomes; ulcerative colitis; Crohn’s disease; interleukin (IL)-1f3; IL-18

27

28 1. Introduction

29  The gastrointestinal environment is a continuous system with dual function. Firstly, it provides the
30  human body with the energy it needs to grow and develop and aids in the elimination of waste
31  material. Secondly, it plays an important role in preventing infection by providing a vast array of
32  immune cells close to the mucosal surface to target environment toxins and potential pathogens.
33 Several disease are known to occur in the gastrointestinal tract, notably are ulcerative colitis (UC) and
34 Crohn’s disease (CD). Both are characterised by chronic and relapsing inflammation of unknown
35  aetiology. In CD the inflammation is discontinuous, transmural and often associated with intestinal
36 wall thickening, ulcerations, bowel strictures, luminal narrowing and abscesses. While in UC the
37  inflammation is continuous usually spreading proximally from the anal verge and affecting only the
38  mucosa and submucosa layers [1]. For both diseases mechanisms that regulate the gastrointestinal
39  innate immune system have been highlighted as contributing to disease pathology.

40 At the mucosal/gut lumen interface surveillance for pathogen-associated molecular pattern

41  molecules (PAMPs) and damage-associated molecular pattern molecules (DAMPs) is carried out by
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membrane bound pattern recognition receptors and intracellular pattern recognition receptors. Upon
activation many of these receptors promote the secretion of proinflammatory cytokines, transcription
mediators, and initiate pathways responsible for pathogen neutralisation and elimination. In
addition, some receptors are known to form the structural backbone of the multimolecular complex
known as the inflammasome. The inflammasome complex is a core component of the inflammatory
response and its activation enhances the maturation of pro-interleukin (IL)-1( and prolL-18 to their
biologically active IL-18 and IL-18 forms [2]. Transcription of prolL-1§ is induced by Toll-like
receptor (TLR) and C-type lectins receptor (CLR) stimulation via the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB) transcription pathway, whereas prolL-18 is constitutively
expressed and its expression is increased after receptor activation [3, 4]. For activated macrophages
and monocytes of the lamina propria inflammasome maturation of IL-1p and IL-18 is crucial for
cytokine secretion [5].

In the intestine, the inflammasome can also promote an inflammatory form of cell death, known as
pyroptosis. Pyroptosis halts the replication of intracellular pathogens by destroying the infected
immune cell and exposing the surviving bacteria to circulating phagocytes and neutrophils [6]. Both
canonical (caspase-1) and non-canonical (caspase-11) inflammasome pathways are able to induce
pyroptosis, however caspase-11 does not produce mature IL-13 or IL-18. Caspase-11 induced
pyroptosis is thought to occur upstream of canonical inflammasomes in response to
lipopolysaccharides (LPS) sensed in Gram-negative bacteria. Both mechanisms are considered

important for microbial defences in the gut [6, 7].

2. Formation of a NOD-like receptor protein (NLRP) inflammasome complex

In general, the NLRP inflammasome complex consists of a nucleotide-binding oligomerization
domain (NOD)-like receptor (NLR) protein, a caspase and often an adaptor protein known as
apoptosis-associated speck-like protein containing a CARD (ASC) [2, 8]. Several receptors from the
NLR family, NLRP1, NLRP2, NLRP3, NLRC4, NLRP6, NLRP7 and NLRP12 (Figure 1) have all shown
the ability to form the structural backbone of an inflammasome complex. The ASC adaptor protein is
identical for all inflammasomes and contains two transduction domains, a pyrin domain (PYD)
domain and a caspase recruitment domain (CARD) domain [9].

Formation of a NLRP inflammasome is initiated by ligand activation of the receptor protein and this
causes the NLR proteins to oligomerize through their nucleotide-binding and oligomerization
(NACHT) domains (Figure 2). This oligomerization creates a platform of NLRPYP molecules at the N-
terminal and through NLRPYP/ASCPP interactions nucleates helical ASC clusters to form an ASC
filament structure. The aggregation of multiple ASCEARP molecules promotes ASCCARP/caspase-1CARD
interactions which in turn brings caspase domains into close proximity for dimerization, trans-
autocleavage and activation [9]. The binding of ASC to both the NLR protein and caspase-1 is
facilitated by a 23-residual linker which orientates ASCP™P and ASCCARP back to back hence
preventing steric interference of binding sites, while enhancing binding partner prospects [10]. ASC
is sequestered in the nucleus but rapidly translocates to the cytoplasm upon stimulation where it
participates in inflammasome formation [11]. Interestingly, inflammasome formation can be

abolished by preventing the cellular redistribution of ASC [11].

d0i:10.20944/preprints201710.0160.v1
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85 Figure 1: Structure of the human NOD-like receptor subgroups

86  The NOD-like receptor (NLR) family comprises 23 human members [12, 13]. Al NLR proteins contain
87  a central nucleotide-binding and oligomerization (NACHT) domain flanked by a C-terminal LRR
88  domain and N-terminal effector domain. The NACHT domain facilities self-oligomerization and has
89  ATPase activity. The N-terminal domain participates in protein-protein interactions while the LRR
90  domain is involved in ligand recognition. Subgroup classification is based on the structure of the N-
91  terminal effector region which generally comprises a CARD, PYD or BIR domain. The NLRP1,
92  NLRP2, NLRP3, NLRC4, NLRP6, NLRP7 and NLRP12 receptors have all shown the ability to form

93  inflammasome complexes.
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Caspase-1 is synthesized as an inactive, monomeric zymogen (procaspase-1) and initially is cleaved
into a p35 fragment containing a CARD and p10 fragment. Autoproteolysis results in the generation
of a large p20 subunit and a small p10 subunit and the removal of the N-terminal CARD domain.
Dimerization of caspase molecules (p20 and p10) results in the catalytically active caspase-1 enzyme
(Figure 3) [14, 15]. Inflammasome activated caspase-1 cleaves its substrates, prolL-1{3 and prolL-18 at
recognition sites adjacent to aspartic acid residues, resulting in mature IL-1(3 and IL-18 [8].

In contrast to other members of the NLRP subfamily, NLRP1 contains both a function to find (FIIND)
and CARD domain at the C-terminal, and a PYD domain at the N-terminal [16] (Figure 1). Given that
NLRP1 contains two signal transduction domains (PYD and CARD) it can activate caspase-1 through
its C-terminal CARD domain without the need for the ASC adaptor protein, however ASC has been
shown to greatly enhance inflammasome formation and IL-1{3 processing [17]. The FIIND domain is
a highly conserved protein region and based on amino acid sequencing is only present in two human
proteins, NLRP1 and the caspase recruitment domain family, member 8 (CARDS) protein [18].
CARDS is thought to function as an adaptor molecule that negatively regulates NF-xB activation,
caspase-1 dependent IL-1{3 secretion and apoptosis, and is often overexpressed in many types of
cancers [19-21].

NLRP1 inflammasome formation is strictly dependent on autolytic proteolysis within the FIIND
domain and after cleavage the two fragments remain associated to form a processed NLRP1. Dimers
of ASC joined by ASCPYP/ASCPYP are recruited to the C-terminal NLRCARP domain and bind via
NLRCARD/ASCCARD jnteractions. This is in contrast to other NLRP proteins which recruit ASC to the
N-terminal PYD domain and bind via NLRPYP/ASCPYD interactions to form the inflammasome
complex. Subsequently, caspase-1 through its CARD domain interacts with ASCSARD which leads to
dimerization, trans-autocleavage and activation of caspase-1 and IL-1§3, IL-18 processing [22]. The

formation of ASC filaments in the activation of the NLRP1 inflammasome remain to be defined.

d0i:10.20944/preprints201710.0160.v1
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Figure 2: Formation of a NOD-like receptor protein inflammasome containing an N-terminal Pyrin
domain

Formation of a nucleotide-binding oligomerization domain (NOD)-like receptor protein (NLR)
inflammasome is initiated by ligand activation of the NLR protein. This causes the NLR proteins to
oligomerize through their NACHT domains to create a platform of NLR™P molecules at the N-
terminal and through NLRPYP/ASCPYP interactions, nucleates helical ASC clusters to form a filament
ASC structure. The aggregation of multiple ASCCARP molecules promotes ASCCARP/caspase-1CARD
interactions which in turn brings caspase domains into close proximity for dimerization, trans-
autocleavage, activation and the processing of pro-interleukin (IL)-18 and prolL-18 to their

biologically active form, IL-1f3 and IL-18 respectively.
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159  Figure 3: The mechanism for the inflammasome mediated catalytic conversion of procaspase-1 to
160  caspase-1

161  Caspase-1 is initially synthesized as the inactive monomeric zymogen, procaspase-1. Binding of the
162  procaspase-1€ARD to ASCCARD filaments on the inflammasome complex results in the cleavage of
163 procaspase-1 into a p35 fragment containing a CARD and a p10 fragment. Dimerization of the p10
164  and p20 and the removal of the procaspase-1¢AR0 domain produces catalytically active caspase-1.
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3. Structure and formation of a pyrin and HIN domain (PYHIN) inflammasome complex

Two receptor in the pyrin and HIN domain (PYHIN) receptor family, absent in melanoma 2 (AIM2)
and interferon inducible protein 16 (IFI16) have shown the ability to form inflammasome complexes
(Figure 4). Similar to NLRP inflammasomes, PYHIN inflammasomes, such as AIM2, upon ligand
activation oligomerize through their PYD domains to form a platform of AIM2"¥P molecules which
preferentially associates with ASC™P to form ASC filaments. The flexibly linked ASCCARP clusters
along the ASC™P to form a platform for the binding of caspase-1°ARP. Similar to other NLRP
inflammasomes, the ASC filament structure forms the main body of the inflammasome. The
interaction of ASCCARD/caspase-1ARD brings caspase domains into close proximity for dimerization,

trans-autocleavage and activation, and the subsequent maturation of IL-1 and IL-18 [9].

Protein name Effector domain Ligand sensing domain

AIM2 6_\_>
IFI16 6_(—>'\ )

MNDA g

IFIX (Pyhin1) 6_:

<=» PYDdomain &® HIN-A 4. HIN-B ... HIN-C

Figure 4: Structure of the human pyrin and HIN domain (PYHIN) family
The human pyrin and HIN (PYHIN) family of receptors comprises 4 members including, the
interferon inducible protein 16 (IFI16), absent in melanoma 2 (AIM2), myeloid nuclear differentiation
antigen (MNDA) and interferon inducible protein X [IFIX (Pyhinl)], while mouse contains 11
confirmed members [23]. All members consist of an N-terminal pyrin domain (PYD) domain attached
to one or more hemopoietic expression, interferon-inducibility, nuclear localisation (HIN-200)
domains at the C-terminal. Three distinct forms of HIN-200 have been characterised (HIN-A, -B and

-C) and are classified according to specific consensus motifs [24].
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4. Ligand sensing of inflammasome complexes

Depending on the type of receptor protein in the complex, inflammasomes have the ability to respond
to a wide array of pathogens and cellular danger signals. The LRR domains of the NLRP receptors
and the HIN200 domains of the PYHIN receptors are thought to be involved in ligand interactions,
however direct binding of an activating ligand to a receptor has only been demonstrated for the AIM2

and IFI16 inflammasomes.

5. The NLRP1 inflammasome

The NLRP1 inflammasome was one of the first inflammasomes to be described however efforts to
unravel the processes that lead to activation have been hampered by species variations in the NLRP1
gene. In humans the NLRP1 gene is singular, while in mouse the gene encoding Nlrp1 is polymorphic
with three homologs, Nirpla, Niprlb and Nlrplc [14]. Furthermore, the structure of mouse Nirp1 lacks
the N-terminal PYD domain found in human NLRP1 and five different strain specific Nlrp1b alleles
exist in inbred mice [25].

Nirpl is activated mainly by lethal toxin (LeTx) produced by Bacillus anthracis with variations in
Nlrp1b providing sensitivity or resistance to the toxin [26]. LeTx is a bipartite toxin consisting of a
protective antigen binding subunit and a catalytic lethal factor moiety. Binding of the protective
antigen to anthrax binding sites translocates lethal factor into the host cytosol where it cleaves the N-
termini of mitogen-activated protein kinase (MAPK) thereby disrupting cell signalling pathways.
Initially lethal factor blocks cytokine production from numerous cell types, inhibits chemotaxis of
neutrophils, induces apoptosis in activated macrophages and later induces cytokine-independent
shock and death [27]. Caspase-1 and IL-1{3 deficient mice are more susceptible to B.anthracis infection
indicating IL-1p production via the NLRPIb inflammasome is more important than ASC
independent pyroptosis in the host protective response to B.anthracis [15, 27].

More recently NOD2 has been linked to NLRP1 dependent sensing of MDP and B.anthracis in
activated cells where it produces a NOD2-NLRP1 inflammasome complex [28]. NOD2 is a known
intracellular sensor of MDP and has the ability to contribute to the induction of NF-xB and MAPK
transcription factors, however TLRs are much more effective in triggering these responses [29]. The
absence of NOD2 prevents B. anthracis induced IL-1{3 secretion but has little effect on the transcription
of prolL-1f indicating the importance of the NOD2-NLRP1 association in host defences against B.
anthracis [28].

6. The NLRP3 inflammasome

The NLRP3 inflammasome has the ability to activate upon exposure to a wide range of whole
pathogens, environmental irritants and structurally diverse DAMPs and PAMPs [2, 30, 31].

While the mechanisms are not yet fully understood it is thought that activation of NLRP3 occurs in
response to host derived factors that are altered by these agents. While several models have been
proposed for the activation of NLRP3 none have been found to be unified for all activating agents.
The proposed mechanisms include;

1. Krefflux [32]

2. The generation of mitochondrial derived reactive oxygen species (mROS) [33]

3. Phagolysosomal destabilisation and the release of cathepsins [34]

4. The release of mitochondrial DNA or the mitochondrial phospholipid cardiolipin [35-37]

d0i:10.20944/preprints201710.0160.v1
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239 5. Translocation to the mitochondria [33, 38, 39]

240  To add to the controversy, membrane permeation, phagolysosmal destabilisation, mitochondrial
241  damage and ROS production are all interrelated cellular events making the distinction between
242  bystander and causative activation events complicated.

243 In resting cells the basal expression of NLRP3 is insufficient for inflammasome activation and
244 consequently two signals are required for the activation of the NLRP3 inflammasome [40, 41]. The
245  first signal is the NF-xB mediated transcription of NLRP3 and proIL-1B from stimulation of TLR
246  antagonists or cytokines such as TNF-a and IL-1B. The second signal is the ligand activation step
247  which culminates in the activation of caspase-1 and the maturation of IL-1p and IL-18 [30, 42]. The
248  enhanced effect of guanylate binding protein (GBP5) on Nlrp3 inflammasome assembly in response
249  to bacteria and soluble but not crystalline inflammasome priming agents raises the possibility of
250  agent specific cofactors being required for inflammasome activation [43].

251  Particulate matter such as aluminium, silica, monosodium urate (MSU), calcium pyrophosphate
252 dehydrate crystals, cholesterol and amyloid {8 enters the cell by means of phagocytosis [34, 44-46).
253  The destabilisation of the phagolysosmal membrane and the release of the cysteine protease
254  cathepsins B into the cytosol is thought to also trigger NLRP3. Inhibitors of cathepsins B have been
255  shown to prevent caspase-1 activation induced by N. gonorrhoeae [47]. Interestingly, cathepsins
256  deficient mice show minimal defects in the activation of NLRP3 in response to particulate matter,
257  suggesting other off target effects may exist [48].

258  More recently, mitochondrial dysfunction and activation of the NLRP3 inflammasome has been an
259  area of intense research and much speculation. Mitochondrial reactive oxygen species (mROS) are
260  produced in response to cell stresses such as, hypoxia, starvation, pathogen infection, and growth
261 factor stimulation or membrane damage [49]. The release of mROS and oxidised mitochondrial DNA
262  have both been shown to activate the NLRP3 inflammasome [35, 50]. Interruption of ROS production
263  using inhibitors blocks NLRP3 activation suggesting ROS production upstream is necessary for
264  NLRP3 activation [50-52].

265  Ithasbeen proposed that NLRP3 associates with the mitochondria upon activation [38, 50] and when
266  exposed to non-crystalline activators, recruitment from the cytosol to the mitochondria is mediated
267 by the mitochondrial anti-viral signalling protein (MAVS) [39]. MAVS is also known as a
268  mitochondrial adaptor protein and plays a crucial role in RLR receptor signalling pathways leading
269  totype 1IFN induction and NF-xB activation [53]. MAVS is thought to directly associate with the N-
270  terminus of NLRP3 to promote optimal inflammasome formation [39]. Consistent with a role for
271  MAVS in NLRP3 activation, MAVS deficient mice exposed to dextran sodium sulphate (DSS)
272 induced colitis fail to upregulate IL-1p [54].

273 Other work on mitochondrial dysfunction has demonstrated a ROS independent activation of Nirp3
274  induced by the antibiotic linezolid whereby the mitochondrial specific lipid cardiolipin binds to Nirp3
275  leading to the maturation of IL-1p [37]. Cardiolipin is a phospholipid exclusively found in the inner
276  mitochondrial membrane of eukaryotic cells. Cardiolipin plays a critical role in the activation of
277  caspase-8 and caspase-3 in the apoptotic cell death pathway which raises the possibility that the
278  inflammasome pathways are linked to the apoptosis pathways by processes that control
279  mitochondrial homeostasis.

280  In addition, agents that induce NLRP3 activation, such as nigericin have demonstrated an ability to

281  disrupt mitochondrial homeostasis by reducing the intracellular concentration of the coenzyme
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282  NAD-. Low NAD* inactivates the a-tubulin deacetylase sirtuin 2 (SIRT2) and causes the accumulation
283  of acetylated a-tubulin. Excess acetylated a-tubulin mediates the microtubule transport of
284  mitochondria which drives the apposition of ASC on the mitochondria to NLRP3 on the endoplasmic
285  reticulum. Microtubule transport of organelles creates optimal sites for signal transduction between
286  ASC and NLRP3 and directs activation of NLRP3. Work using inhibitors of tubulin polymerisation
287  have demonstrated suppression of IL-1( [38].

288  Early work investigating caspase-1 activation by the NLRP3 inflammasome showed that K* efflux
289  accompanies NLRP3 activation [51, 55] and a high extracellular concentration of K+ blocks the
290  activation of not only the NLRP3 inflammasome but also the NLRP1, NLRC4 and AIM2
291 inflammasomes [56, 57]. ATP levels have been linked to K* efflux, such that high extracellular ATP
292 levels engage the ATP-gated purinergic P2X7 receptor promoting the formation of the pannexin-1
293 pore, which induces K+ efflux [42, 58]. Previous work by Munoz-Planillo [32] has shown that ROS
294  generation, opening of the pannexin-1 pore and K* efflux all occur upon stimulation with a variety of
295  bacterial pore-forming toxins, nigericin, ATP and particulate matter. However in contrast to other
296  work the permeation of the cell membrane to K* and Na* was found to be the only common step
297  induced by all NLRP3 antagonists and the primary activity that was necessary and sufficient for
298  caspase-1 activation. In addition, cytosolic K* efflux was found to be specific to NLRP3 activation and
299  was shown not to play a role in the activation of AIM2. These results await further clarification by
300  other independent researchers.

301

302 7. The NLRC4 inflammasome

303  The NLRC4 inflammasome has been well characterised in the mouse system and plays an important
304  rolein the detection of pathogenic bacteria [14]. The pathogenicity of a bacteria is reliant on functional
305  secretion systems including the type Il and IV which act as needle-like structures delivering virulent
306  factors into the host’s cytosol. NLRC4 is activated by two critical components of pathogenic bacteria,
307  a sequence motif found in the basal rod components of the type III (T3SS) and IV (T4SS) bacterial
308  secretion systems, and a similar sequence motif found in flagellin which is a component of their
309  flagellum apparatus [59, 60]. NLRC4 has been shown to detect basal rod components in Salmonella
310  typhimurium, Legionella pneumophila, Burkholderia pseudomallei, Escherichia coli, Shingella flexneri,
311 Pseudomonas aeruginosa [61, 62] and leaked cytosolic flagellin from Listeria monocytogenes, Salmonella
312 typhimurium, Pseudomonas aeruginosa and Legionella pneumophila [60, 63, 64].

313 Activation of the NLRC4 inflammasome involves the initial binding of a receptor protein from the
314  neuronal apoptosis inhibitory protein (NAIP) subfamily of NLRs to the activating ligand. NAIP
315  receptor proteins differ from other NLRs in that they contain multiple BIR domains at the N-terminus
316  instead of a CARD or PYD domain (Figure 1). In humans only one NAIP homolog is expressed,
317  whereas in mice the NAIP locus is polymorphic and seven paralogs of Naip (Naip1-Naip7) exist [62].
318  Human NAIP and its mouse ortholog, Naip1 recognise cytosolic T3SS needle proteins, Naip2 binds
319  T3SSrod components while Naip5 and Naip6 bind directly to bacterial flagellin [62, 64]. Binding of
320  a NAIP protein to a bacterial motif leads to the formation of the NAIP-NLRC4 inflammasome
321  complex and activation of caspase-1. Interestingly, in human U937 monocyte derived macrophages
322 NLRC4 activation does not occur in response to flagellin or T3SS rod protein but occurs in response
323 to the T3SS subunit Cprl from Chromobacterium violaceum which raises the possibility that other

324 accessory proteins may be involved in activation of the human NLRC4 inflammasome [64].
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8. The AIM2 and IFI16 inflammasome

Both the cytosolic AIM2 receptor and the nuclear IFI16 receptor directly bind their activating ligand
double stranded DNA (dsDNA) via the C terminal HIN200 domain [65-67]. Non-sequence specific
binding occurs at multiple sites along the dsDNA and is through electrostatic attractions between the
positively charged HIN domain residues and the dsDNA sugar phosphate backbone [68].

The mechanisms that enable AIM2 and IFI16 to respond to viral, bacterial, mammalian and synthetic
dsDNA while remaining unresponsive to self DNA are still unclear [14, 69].

Work using Aim2 deficient mice have demonstrated an essential role for AIM2 in the recognition of
viruses and bacteria by the detection of cytosolic dsSDNA. When compared to WT mice, Aim2-/- mice
experience higher mortality rates, higher bacterial loads and decrease production of caspase-1
generated cytokines after infection with Fransicella tularenis, suggesting AIM?2 is necessary for
detection of Fransicella tularenis [70, 71]. Similarly, mouse macrophages deficient for Aim2 show an
impaired ability to recognise not only Fransicella tularenis, but also vaccinia virus, murine
cytomegalovirus (mCMV) with only partial recognition of Listeria monocytogenes being demonstrated
[65, 72].

9. The NLRP6, NLRP7 and NLRP12 inflammasomes

In addition to the well-known NLRP1, NLRP3, NLRC4, AIM2 and IFI16 inflammasomes NLRPS,
NLRP7 and NLRP12 have shown an ASC dependent activation of caspase-1. However, the signals
that activate the NLRP6 and NLRP12 inflammasomes are yet to be determined [73].

Indeed, two independent studies have reported a lack of caspase-1 activation and IL-1{3 release in
Nlpr6 deficient mouse macrophages in response to ATP and LPS which suggest the triggers that
activate the NLRP6 inflammasome are different to those that activate the NLRP3 inflammasome [74,
75]. Recently NLRP7, which is not expressed in mice, was shown to form an ASC dependent

inflammasome in human macrophages in response to microbial acylated lipopeptides [76].
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10. Regulation of the inflammasome complex

The potent inflammatory cytokines, IL-13 and IL-18 and the pyroptosis pathway all have the
potential to cause tissue damage and disrupt an effective adaptive immune response. The
mechanisms that lead to maturation of IL-13 and IL-18 are tightly controlled at several levels and
multiple checkpoints along this process ensuring response appropriate levels.

In most cells the basal levels of many of the inflammasome constituents is insufficient for
inflammasome formation. Consequently, the expression of the inflammasome components is
regulated by NF-xB induced transcription and requires sensitization by a TLR or CLR ligand or
stimulus from cytokine signalling pathways [30, 77]. In contrast to most cytokines IL-1p and IL-18
are produced as inactive zymogens requiring caspase-1 cleavage between Asp and Ala for
maturation [3, 78]. The synthesis of precursor cytokines requiring activation prevents aberrant
secretion of the leaderless IL-1f3 and IL-18 cytokines. Serine proteinases such as cathepsins G, elastase
and in particular proteinase 3 found in neutrophils have also been shown to cleave prolL-1{3 to active
IL-1p. While in monocytes autocrine production of ATP can activate caspase-1 and cleave prolL-1{3,
thereby releasing IL-1{3 by transcription only [79]. Worth noting is that during acute inflammatory
conditions non-canonical maturation of IL-13 can also occur via caspase-11 and the NLRP3

inflammasome [6].

11. Regulation by autoinhibition of the ligand sensing domain

For most of the receptor proteins autoinhibition of the ligand sensing domain prevents unproductive
intramolecular interactions by providing a tight on-site repression of the protein in the absence of a
suitable activating ligand. For NLRP1, NLRP3, NLRP12 and NLRC4 receptors autoinhibition is
achieved by the association of two chaperone proteins, ubiquitin ligase-associated protein (SGT1)
and heat-shock protein 90 (HSP90) to the LRR domain. Upon ligand sensing SGT1 and HSP90
dissociate resulting in a conformation change within the protein which favours the recruitment of the
ASC adaptor protein [80]. Whether autoinhibition of the sensing region occurs for the NLRP6 protein
remains to be determined. For the PHYIN subfamily autoinhibition is provided by the molecular
interactions between the PYD and HIN-200 domain and binding of DNA releases this autoinhibition
[68].

12. Priming events that regulate activation

Specific priming events are known to regulate the activation of inflammasomes. The K-63 specific
deubiquitinating enzyme BRCC3 mediates the deubiquitylation of NLRP3 which has recently been
shown to occur in response to pattern recognition receptor stimulation [81]. Similarly, and as
mentioned above, GBP5 enhances NLRP3 assembly in response to bacterial but not crystalline agents
[43]. A priming event involving the phosphorylation of Ser533 by kinases like PKC? is necessary
before Salmonella typhimurium can activate the NLRC4 inflammasome. The phosphorylation of Ser533
is thought to result in a conformation change within the NLRC4 protein [82].

The anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma extra-large (Bcl-Xt) have
been shown to regulate the NLRP1 inflammasome. By associating with NLRP1 via their loop domains
Bcl-2 and Bcl-Xu are able to suppress caspase-1 activation and IL-1f3 processing [83, 84]. Similar

experiments for NLRP3 in Bcl-2 deficient macrophages have shown more caspase-1 processing while

d0i:10.20944/preprints201710.0160.v1


http://dx.doi.org/10.20944/preprints201710.0160.v1
http://dx.doi.org/10.3390/ijms18112379

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 October 2017 d0i:10.20944/preprints201710.0160.v1

13 of 25

395  Bcl-2 overexpressing macrophages demonstrated less caspase-1 processing suggesting NLRP3 may
396  also be regulated by Bcl-2 protein [35].

397  Activation of the NLRP3 inflammasomes is thought to be influenced by K* levels, indeed low
398 intracellular K+level enhance caspase-1 activation [51, 55]. Similarly, high extracellular K*levels block
399  IL-1p release from the NLRC4 and AIM?2 inflammasome suggesting the regulatory effect of K* may
400  be extended to other inflammasome complexes [70, 85]. Interestingly, the levels of extracellular K*
401  need to block IL-1p release for the NLRP3 inflammasome is less than that needed for the NLRC4 or
402  AIM2 complex, while for the NLRP7 inflammasome high K* levels only slightly reduced IL-10 release
403 [76]. More work is needed to exclude off target effects and to determine the reasons for inflammasome
404  specific thresholds to K+ levels.

405  13. Regulation by POPs and COPs

406  In humans, pyrin only proteins (POPs) and CARD-only proteins (COPs) regulate the inflammasome
407  at the level of death fold interactions. With the exception of caspase-12, POPs and COPs are lacking
408  from the mouse genome which suggests humans have evolved more complex inflammasome
409  regulatory systems [86]. The POPs include, POP1 (also known as PYDC1) and POP2 (also known as
410  PYDC2) and both inhibit PYD interactions between the receptor protein and the ASC adaptor
411  molecule. POP1 shows a higher homology to ASCFYP than POP2 and therefore inhibits inflammasome
412 formation by sequestering ASC from other inflammasome forming NLRs [87]. POP2 is surprisingly
413 similar to the PYD domain of NLRP2 and NLRP7 and is thought to interact with other NLRYD
414  proteins thereby preventing inflammasome formation [88]. Both POP1 and POP2 can prevent NF-xB
415  activation [87, 88].

416  The COPS proteins consists of several members including, CARD16 (also known as pseudo-ICE or
417  COP1), CARD17 (also known as INCA), CARD18 (also known as ICEBERG), caspase-12s and Nod2-
418  S.[89] COP proteins act as decoy inhibitors and sequester procaspase-1 via CARD-CARD interactions
419  thereby preventing its activation in the inflammasome. For example, CARD 17 is upregulated by IFN-
420  y in the monocytic cell lines THP-1 and U937 and interacts with procaspase-1 to supress IL-1p
421  processing and release in LPS stimulated macrophages [90].

422

423  14. Regulation by Type I interferons

424 Type ILinterferons restrict IL-1B production by two distinct mechanisms. Depending on the cell type,
425  type I interferons through the STAT3 signalling pathway can induce autocrine and paracrine
426  production of the anti-inflammatory cytokine IL-10 which inhibits the synthesis of proIL-1B and
427  prolL-18. Additionally, type I interferons signalling through the STAT1 transcription factor can
428  repress the activity of the NLRP1 and NLRP3 inflammasome thereby subduing IL-1( production [91].
429  For the AIM2 inflammasome, Irf3 deficient mouse macrophages, which are unable to secrete type I
430  interferons, have impaired AIM2 activation in response to Francisella tularensis infection indicating
431  that an intact type [ interferon response is required for AIM2 activation [70]. Interestingly, activation
432 of the AIM2 inflammasome in response to mouse cytomegalovirus does not require an intact type I
433 interferon response [72]. The mechanisms pertaining to the selective requirement of type I interferons
434 for the clearance of certain infections remain unclear.

435  Evidence suggests that cells of the adaptive immune response can also dampen inflammasome
436  activation. In mouse macrophages and dendritic cells, effector CD4+ T cells and memory T cells

437  suppress activation of the NLRP1 and NLRP3 inflammasomes. For the NLRP3 inflammasome the
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inhibitory effect requires the cell-to cell contact and could be mimicked by macrophage stimulation
with members of the TNF family such as, CD40L, OX40L and RANKL. Interestingly, the negative
feedback loop exerted by T cells is only evident for the NLRP1 and NLRP3 inflammasome and was
absent for the NLRC4 inflammasome [92].

15. Regulation from inflammasome components

Inflammasomes components can themselves indirectly impact on inflammasome formation and IL-
1B release. For example, NLRP12 acts as a negative regulator of the NF-kB pathway through its
interaction and regulation of NIK and TRAF3, and dysregulation of NF-kB is associated with colonic
inflammation and cancer [93]. NLRP10 interacts with ASC, even though it lacks a ligand sensing
LRR, and is thought to negatively regulate the inflammasome by sequestering ASC [94, 95]. The ASC
adaptor protein, in addition to the full length ASC also exists as three novel isoforms, ASC-b, ASC-c
and ASC-d. ASC-c exerted an inhibitory effect on NLRP3 inflammasome formation by only colocalise
with caspase-1 and not NLRP3. ASC-d failed to colocalise with either caspase-1 or NLRP3 suggesting
an undetermined function for this isoform [11].

Emerging evidence indicates NLRP7 is able to regulate inflammasomes, however conflict reports
argue the nature of the negative regulation. Reconstitution experiments in HEK293 cells have shown
that NLRP7 inhibits NLRP3 and caspase-1 mediated release of IL-1f3 and co-immunoprecipitation
studies indicated NLRP7 directly interacts with procaspase-1 and prolL-1B [96]. While other work
focusing on NLRP7 overexpression and gene specific mutations have indicated that NLRP7 inhibits
NF-kB activation by an unknown mechanism or inhibits release of IL-1{3 [97]. Positive regulation is
affirmed by the formation of the NLRP7 inflammasome in response to microbial acylated

lipopeptides [76].

16. Inflammasome complexes and the intestinal environment

Mouse models that stimulate colitis, such as DSS, have provide an accessible framework for
investigating the role of inflammasomes in diseases that affect the gastrointestinal tract. Differences
in the experimental conditions used for colitis induction and pathogen infection have resulted in
many discrepancies regarding the redundant or necessary role of individual inflammasome
complexes in protecting against colitis [16].

Mice deficient in Nirp3, Nirc4, IL-1B, Casp1/11 and Asc, when challenged by DSS, have all shown
increased susceptibility to colitis, disease exacerbation, frequent mortality and increased tumor
formation when compared to DSS challenged wild type mice, suggesting these components aid in
colitis protection [98-104]. Disease exacerbation has also been a feature of DSS challenged Nirp6
deficient mice [105]. Not reported in Nlrc4 and Nlrp3 deficient mice but associated with Nlrp6
deficiency is a reduction in the thickness of the mucus layer and the development of a transferable
colitis forming microbiota dominated by TM7 and Prevotellaceae species (Bacteroidetes phyla). The
reduction in mucus has been attributed to defects in mucin granule exocytosis and reduce autophagy
mechanisms in goblet cells which suggests that, unlike NLRP3 and NLRC4, NLRP6 orchestrates
downstream mechanisms involved in bacterial defences [105, 106].

Alterations in the composition of the gut microbiota have been reported for IBD patients [107, 108].
In general, UC patients exhibit higher overall bacterial counts while in CD the bacterial counts are
lower but associated with a higher proportion of unclassified Bacteroidetes spp. and a higher diversity

of TM7 phylotyes. Increases in Enterobacteriaceae, adherent-invasive strains of Escherichia coli and
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481  Ruminococcus gnavus populations and a decrease in Faecalibacterium and Roseburia have been reported
482  for ileal CD [109-111]. Interestingly, disease remission in UC induces microbial populations
483  comparable to healthy patients while in CD the microbial population is reportedly not altered by
484  disease remission, remaining constant in active and quiescent disease states [109].

485  Human work investigating the role of individual inflammasomes on gastrointestinal diseases are
486  currently lacking. It has however been demonstrated that the expression of inflammasome
487 components such as CASP1, IL-1B, IFI16 and AIM2 increases in active disease [112-114].

488

489  17. Future direction

490  The dysregulation of inflammasomes and their importance in maintaining intestinal health has been
491  demonstrated by mice deficient in inflammasome components in DSS models of intestinal
492  inflammation. Population based studies have identified possible risk polymorphisms associated with
493  UC and CD. IL-1 neutralising agent have provided remarkable reduction in clinical symptoms for
494  CAPS patients. Taken altogether, it highlights the potential therapeutic benefits of targeting
495  individual inflammasome complexes to complement mainstream therapeutic options.

496  Currently, the focus of treatment for IBD patients is to induce and maintain clinical remission. This
497  is usually achieved by a combination of antibiotics, vitamin support, immunomodulators,
498  corticosteroids, 5-aminosalicylates, biologic therapies and surgery [1]. For many patients however
499  active disease persists despite treatment. Recently, the compound MCC950 was shown to inhibit
500  NLRP3 non-canonical and canonical IL-1f production in both mouse bone-marrow derived
501  macrophages and human monocyte-derived macrophages [115]. The ability of this compound to
502 consistently inhibit inflammasome mediated IL-1f production provides promise for clinical trials and
503  future therapeutic options.

504  While mice work has been pivotal to determining the regulatory role of inflammasomes in intestinal
505  health, questions still remain. Firstly, what is the exact role of inflammasomes, such as the NLRP3
506  complex, in intestinal immune responses? Secondly, how accurately do the finding in mice translate
507  to the mechanisms that induce colitis in humans? Future research now needs to focus on individual
508  inflammasomes complexes; how they present in active human disease, what mechanisms they

509  influence downstream and if blockading alleviates disease symptoms.

510

511

512
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