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Abstract 
Bayesian analysis for masked data under competing risk frameworks is studied for the purpose of 
assessing the impact of covariates on the hazard functions when the failure time is exactly observed 
for some subjects but only known to lie in an interval of time for the remaining subjects. Such 
data, known as partly interval-censored data, usually result from periodic inspection. Dirichlet and 
Gamma processes are assumed as priors for masking probabilities and baseline hazards. The 
Markov Chain Monte Carlo (MCMC) technique is employed for the implementation of the 
Bayesian approach. The effectiveness of the proposed model is tested through numerical studies, 
including simulated and real data sets. 
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1. Introduction 
Suppose we have a unit subjected to ܭ causes of failure under study. Let T be the time until the 
unit experiences failure due to one of the ܭ    causes. It often happens that there are a few 
unidentified causes responsible for the unit’s failure. Such type of incomplete data is generally 
referred to as masked data. Why a unit fails can only be identified up to a Minimum Random 
Subset (MRS) S ⊆ {1, … , K}. If the precise cause of failure is identified as ܭ, then S = {K} is a 
singleton. If the cause of failure is not identified, then S = {1, … , K} resulting in full masking of 
the cause. Thus, every detected failure time ௜ܶ,i = 1, … , N, is accompanied by a detected MRS 
denoted by  ௜ܵ. However, another reason for incomplete detections could be because the exact 
failure time T is not known.   
Work on masked data is in abundance in the literature, Miyakawa (1984) provided maximum 
likelihood estimates (MLEs) with two causes of failure and independent exponential failure-times 
when the data is masked and uncensored. Dinse (1986) suggested nonparametric maximum 
likelihood estimators of prevalence and mortality when the MRS is a known cause or a full masked 
cause. Reiser et al. (1995) presented a Bayesian analysis assuming exponentially distributed 
component lifetimes, and Guttman et al. (1994) took this work further to the case where the 
masking probability depends  on the actual cause of failure. Considering the partial masking cases, 
Mukhopadhyay & Basu (1997) studied a Bayesian analysis with independent Weibull distributions 
and made the assumption of similar shape structures for all the K risks. Basu et al. (1999) on the 
other hand, developed a Bayesian analysis for masked data from a general K component system 
with non-identical Weibull distributions. Further, they investigated a Bayesian analysis based on 
a general flexible parametric framework for complex forms of censoring (Basu et al. 2003). 
Without the symmetry assumption, Kuo & Yang (2000) developed a Bayesian analysis with 
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independent exponential as well as Weibull distributions, while Mukhopadhyay & Basu (2007) 
studied the case of a series system, the components of which possess independent log-normal life 
distribution. Xu & Tang (2011) considered a nonparametric Bayesian approach for masked data 
which extended the findings of Neath & Samaniego (1996) to series systems comprising some 
masked competing risks. In contrast, based on a cause-specific formulation, Flehinger et al. (2002) 
proposed an approach of completely parametric cause-specific hazards using stage 1 and stage 2 
information when the failure times for the competing risks have a Weibull distribution. Craiu & 
Reiser (2006) developed an EM-based method that allowed dependent competing risks and 
produced estimators for the sub-distribution functions. Moreover, Lu & Tsiatis (2001) presented 
parametric models to estimate the regression coefficients where by the cause-specific hazard for 
the cause of interest is associated with the covariates through a proportional hazards relationship. 
Sen et al. (2010) introduced a semi-parametric Bayesian approach discussing three different 
models using variety in priors. Yosra, et al. (2016) discussed partly interval-censored data under 
competing risks framework when the cause of failure might be masked, and compared their result 
with Sen’s models. 
In engineering field, researchers often show interest in component reliability. Therefore, most of 
the work mentioned above was developed for masked data based on the series system formulation 
considering the cases where the failure time is complete (no censored units), right-censored (RC) 
or interval-censored. Nevertheless, one can be interested in studying the impact of the risk factors 
on the hazard function other than the estimation of reliability.  
Since the covariates’ effect is of interest, a Bayesian analysis under cause-specific hazard 
framework is considered in this paper employing Cox proportional hazards model, which is used 
extensively but mostly for public health studies (see (Han et al. 2017) and (Liu et al. 2017)) . We 
investigate the case where the data are masked and the failure time is partly interval-censored 
(PIC). This work can be regarded as a development  of Sen et al.'s (2010) model. Section 2 and 3 
introduce the model construction and the Bayesian computation techniques. Section 4 provides 
some results using simulated data to evaluate the model performance, while section 5 illustrates 
our approach using an actual data set, while section 6 concludes this paper. 
 
2. Model Structure 
 In the case of masked data, for each unit, we not only observe the failure time but also a set of 
causes that include the true cause of failure. Assume that we observe N units each has K causes of 
failure acting on it. Let X denote the observed collection of covariates. Then for any unit ݅, we 
observe the vector ( ௜ܶ, ௜ܵ , ௜ܺ), where ௜ܶ denotes the failure time and  ௜ܵ denotes the MRS of causes 
that are possibly responsible for the unit failure. For the ݅௧௛  unit, the likelihood contribution from 
the data ( ௜ܶ, ௜ܵ , ௜ܺ) consists of  P( ௜ܶ, ௜ܵ| ௜ܺ), Kuo & Yang (2000) and can be expressed as P( ௜ܶ, ௜ܵ| ௜ܺ) = P( ௜ܶ, ௜ܥ = ݆| ௜ܺ)P( ௜ܵ| ௜ܶ, ௜ܥ = ݆, ௜ܺ), j = 1, … , K , 
where ܥ௜ denotes the actual cause of failure of the ݅௧௛ unit. Note that P( ௜ܶ, ௜ܥ = ݆| ௜ܺ) = ௝݂( ௜ܶ| ௜ܺ). 
Then when the observation of C is incomplete, see Martin J. Crowder (2001), the likelihood 
contribution for an observed failure can be modified to;  ෍ P( ௜ܶ, ௜ܵ| ௜ܺ)௝∈ௌ௜ = ෍ ௝݂( ௜ܶ| ௜ܺ)P( ௜ܵ| ௜ܶ, ௜ܥ = ݆, ௜ܺ).௝∈ௌ௜  

In the case of partly interval-censored data where the time of failure is incomplete, we observe the 
exact failure time for some units but only observe the interval of time that includes the true failure 
time for the remaining units. This type of data arises when the units might be inspected 
periodically. Let (ܮ௜, ܴ௜], where ܮ௜ < ܴ௜, denotes the observed interval including the true failure 
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time of the ݅௧௛  unit ( ௜ܶ ∈ ,௜ܮ) ܴ௜]).  If the unit failure occurred before the first inspection time, then 
we have a left-censored observation ( ௜ܶ ∈ (0, ܴ௜]) and if the unit did not fail until the last inspection 
time, then we have a right-censored observation ( ௜ܶ ∈ ,௜ܮ) ∞]). Define δ୧, γ୧ as censoring indicators 
taking the value of one if the failure time T୧ is left-censored or interval-censored and taking a value 
of zero otherwise. Then, the likelihood contribution of the ݅௧௛  unit when the observation of T is 
incomplete can be expressed as; ܮ = ෑ ݂( ௜ܶ| ௜ܺ)௡

௜ୀଵ ෑ |௜ܮ)ܵ] ௜ܺ) − ܵ(ܴ௜| ௜ܺ)]௠
௜ୀ௡ାଵ  

ܮ = ෑ ݂( ௜ܶ| ௜ܺ)௡
௜ୀଵ ෑ [1 − ܵ(ܴ௜| ௜ܺ)]ఋ೔[(ܵ(ܴ௜| ௜ܺ) |௜ܮ)ܵ ௜ܺ)⁄ ) − 1]ఊ೔௠

௜ୀ௡ାଵ |௜ܮ)ܵ] ௜ܺ)]ଵିఋ೔, 
where ݊, ݉ (݊ + ݉ = ܰ ) are the numbers of the units whose failure time is exact and interval-
censored (including left- and right-censored), respectively. 
In this study, our interest is in the semi-parametric Bayesian estimation of the regression 
coefficients. Therefore, we prefer to work with the cause-specific formulation utilizing the popular 
proportional hazards (PH) model that is; 

λ୨(T, X) = λ଴୨(T)eβౠ′ ଡ଼   ,     j = 1, … , K    ,                  (2.1) 
where λ଴୨, β୨ are, respectively, the baseline hazard and the regression coefficient of the ݅௧௛  cause 
of failure, and  X represents the vector of the explanatory variables.  
In this study, where both failure time and cause of failure are incomplete, we need to consider the 
two cases discussed above to formulate the likelihood function. Let ݊ଵ, ݊ଶ, ݊ଷ  (݊ଵ + ݊ଶ +  ݊ଷ =ܰ) denote the numbers of the units whose failure times are exact, right-censored, and interval-
censored (including left-censored) respectively. Then the full likelihood of masked and partly 
interval-censored data can be expressed as; L = ෑ ෍ P(S୧|T୧, C୧ = j, X୧)f୨(T୧|X୧)୨∈ୗ౟

୬భ
୧ୀଵ ෑ S(L୧|X୧)୬మ

୧ୀ୬భାଵ  
× ෑ ෍ P(S୧|T୧, C୧ = j, X୧)[F୨(R୧|X୧) − F୨(L୧|X୧)] ୨∈ୗ౟

୬య
୧ୀ୬మାଵ  

L = ෑ ෍ P(S୧|T୧, C୧ = j, X୧)λ୨(T୧|X୧)݁ି ∑ ׬ ஛ౠ൫ݐหX୧൯ௗ௧೅೔బೕ಼సభ୨∈ୗ౟
௡భ௜ୀଵ          ×  ෑ ݁ି ∑ ׬ ஛ౠ൫ݐหX୧൯ௗ௧೅೔బೕ಼సభ௡మ

௜ୀ௡భାଵ  

× ෑ ෍ P(S୧|T୧, C୧ = j, X୧)[න λ୨(t|X୧)eି ∑ ׬ ஛ౠ൫sหX୧൯ୢୱ౪బౠేసభୖ౟
଴ dt୨∈ୗ౟

୬య
୧ୀ୬మାଵ− න λ୨(t|X୧)eି ∑ ׬ ஛ౠ൫sหX୧൯ୢୱ౪బౠేసభ୐౟

଴ dt]                                                 (2.2) 

Substituting (2.1) in (2.2) the full likelihood function emerges as; 
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ܮ = ෑ ෍ P(S୧|T୧, C୧ = j, X୧)λ଴௝(T୧)݁ఉೕ′ ଡ଼౟݁ି ∑ ׬ ஛బౠ(௧)௘ഁೕ′ ౔౟ௗ௧೅೔బೕ಼సభ୨∈ୗ౟
௡భ௜ୀଵ  

× ෑ ݁ି ∑ ׬ ஛ౠ൫ݐหX୧൯ௗ௧೅೔బೕ಼సభ௡మ
௜ୀ௡భାଵ× ෑ ෍ P(S୧|T୧, C୧ = j, X୧)[න λ଴୨(t)݁ఉೕ′ଡ଼౟eି ∑ ׬ ஛బౠ(ୱ)௘ഁೕ′ ౔౟ୢୱ౪బౠేసభୖ౟

଴ dt୨∈ୗ౟
୬య

୧ୀ୬మାଵ− න λ଴୨(t)݁ఉೕ′ ଡ଼౟eି ∑ ׬ ஛బౠ(ୱ)௘ഁೕ′ ౔౟ୢୱ౪బౠేసభ୐౟
଴ dt]                                        (2.3) 

 
When dealing with the masked data, many researchers adopt the symmetry assumption that 
involves an equal chance of detecting a similarly masked subset of causes regardless of the actual 
cause, that is; P(S୧|T୧, C୧ = j, X୧) = P(S୧หT୧, C୧ = j′, X୧),    j, j′ ∈ S୧                    (2.4)    
The assumption (2.4)  makes the analysis proceed with less likelihood that is not reliant on 
masking probabilities. In this paper, we introduce a Bayesian analysis using the full likelihood (2.3). We model the masking probabilities to be autonomous of the failure time but dependent on 
cause of failure. Moreover, we allow them to depend on subject-level covariates. 
It is often of interest to determine the cause that is responsible for the unit failure when it is masked. 
To determine this cause, we need to compute the diagnostic probability, which is the probability 
of the i୲୦ risk, causing the unit to fail given the observed masking set and the unit’s failure time. 
According to our full likelihood, we have two different ways to compute the diagnostic 
probabilities depending on whether the failure time of the unit is exact or interval-censored 
(including left-censored). First, when the i୲୦unit is exact, the diagnostic probability can be defined 
as; P(C୧ = j|S୧, T୧, X୧) = P(S୧|T୧, C୧ = j, X୧)f୨(T୧|X୧)∑ P(S୧|T୧, C୧ = l, X୧)f୪(T୧|X୧)୪∈ୗ౟ ,       j ∈ S୧                (2.5) 

Second, when the i୲୦  unit is interval-censored, the diagnostic probability can be defined as; P(C୧ = j|S୧, T୧, X୧) = P(S୧|T୧, C୧ = j, X୧)ൣF୨(R୧|X୧) − F୨(L୧|X୧)൧∑ P(S୧|T୧, C୧ = l, X୧)[F୪(R୧|X୧) − F୪(L୧|X୧)]୪∈ୗ౟ ,       j ∈ S୧        (2.6)    
 
3. Bayesian analysis 
To derive the Bayesian analysis, we need to assign prior distributions to the unknown parameters 
which are assumed to be stochastically independent. In this paper, we consider using the most 
popular prior distributions in the literature. For example, we assign independent Dirichlet priors to 
the masking probabilities. Let J = 2୨ିଵ denote the number of sets that include the cause j, and let ௝ܵ = { ௝ܵଵ, … , ௝ܵଶ}  denote the collection of potential MRS’s that contain cause j. Then the random 
Dirichlet variables can be defined as; ൬μ୧୨൫S୨ଵ൯, … , μ୧୨൫S୨୎൯൰ ∽ Dir୎൫α୨൯, i = 1, … , N;  j = 1, … , K; J = 2୨ିଵ . 
where ߤ௜௝ = P(S୧|T୧, C୧ = j, X୧), and α୨ = (α୨ଵ, … , α୨୎) are the Dirichlet parameters. 
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As prior for cause-specific baseline hazards we use an independent Gamma process that is a very 
common prior for the baseline hazard, and it has the form  

Λ଴୨(t) ∽ GP൫cω୨(t), c൯,           j = 1, … , K  , 
where Λ଴୨ is the cumulative baseline hazard specific to i୲୦ cause of failure. Here, ω୨(t) can be 
regarded as a prior guess at unknown hazard function specific to j୲୦ cause of failure while c 
represents the degree of confidence in this guess. 
The regression coefficients are assumed to be independently normal distributed, that is;  

β୨ ∽ N൫θ୨, σ୨ଶ൯,         j = 1, … , K  , 
where β୨ , θ୨  and  σ୨ଶ  are the regression coefficient, the mean, and the variance, respectively, 
specific to the i୲୦cause of failure. 
After we define the prior distributions, our interest turns to the joint posterior distribution which 
is defined as; P(β, ,଴߉ μ|D) ∝ L(D|β, ,଴߉ μ)П(β)П(߉଴)П(μ),                     (3.1) 
where L  denotes the likelihood function, П  denotes the prior distribution, and D denotes the 
observed data. Since (3.1) has a complicated form, we utilize the MCMC technique to generate 
random draws from the related full conditional posterior distributions, 
namely ܲ(ܦ|ߚ, ,଴߉ ,ܦ|଴߉)ܲ,(ߤ ,ߚ ,ܦ|ߤ)ܲ  and ,(ߤ ,ߚ  ଴). These distributions need to be identified߉
for the construction of an effective simulation method. This is exactly what the WinBUGS 
software does. However, it performs these steps internally and automatically. 
 
4. Simulation Study 
Since we work under a cause-specific hazards formulation, we adopt the cause-specific hazards-
based simulation design of Beyersmann et al. (2009) to simulate the failure times. We consider a 
competing risks model with two causes of failure, where each has a Weibull distributed lifetime 
with parameters (λ௝, ݆ ,(௝ߩ = 1, 2 and set  ߣଵ = ଶߣ ,0.005 = ଵߩ ,0.003 = ଶߩ ,1.9 = 1.3. First, we 
simulate the failure times and the censored times. Then we simulate the causes of failure and mask 
them randomly with equal chance to be masked or unmasked, which results in masked right-
censored data. Last, we create inspection times so that the data becomes partly interval censored 
data which include exact, left-censored, right-censored, and interval-censored failure times. The 
obtained data consist of 46%  exact failure times, as well as 32% right, 10% left, and 12% 
interval censored times. Furthermore, 32% of the observations are masked while 30% and 6% of 
the observations fail due to causes 1 and 2, respectively. 
In order to evaluate the performance of our developed model, we apply it to the simulated partly 
interval-censored data, then compare the results with the ones obtained using Sen’s (2010) 
approach. For convergence monitoring, we check the time series plots and auto-correlation 
function plots, and both of them suggest convergence. Further, we use Gelman and Rubin multiple 
sequence diagnostics. The reported results are based on five chains each of 4000 iterations with 
burn-in of 1000 . The results obtained from a simulated random sample of N = 50  units 
demonstrate that the estimations of the two approaches are comparable. Although our model deals 
with left-, right-, and interval-censored failure times, which means considerable missing 
information, table 1 shows that its posterior estimations of regression coefficients are reasonably 
close to those estimated from the model with only right-censored failure times. On the other hand, 
figure 1 shows a comparison between the cumulative baseline hazards. It can be seen from the 
figure that the cumulative baseline hazards obtained from the two models are noticeably close with 
slight fluctuation up and down each other for both causes. 
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Table 1: The posterior summaries of the regression coefficients from the two approaches. 
 Right-censored Data Partly Interval-censored Data 

Parameters Mean     Median     SE         95% PCI* Mean    Median     SE         95% PCI 
β1 1.009     1.002       0.486     (0.0658, 1.973) 0.7739    0.7677    0.473       (-0.1436 , 1.730) 
β2 0.7331    0.719      0.667    (-0.05647, 2.072) 0.5075    0.4995    0.6436     (-0.7413 , 1.803) 

*Posterior credible interval. 
 

 

Solid line=cause1, Dashed line=cause2 

Figure1: Comparison of cumulative baseline hazards from the two approaches. 

 

5. Illustration  
We apply our approach to the data set reported in Klein and Basu (1981). The data represent the 
failure times of insulation systems for electric motors with their corresponding causes of failure. 
There are three possible types of failures, namely, turn, phase, and ground. The experiment was 
conducted at three different stress levels ܼଵୀ(190 + 273.16)/1000, ܼଶୀ(220 + 273.16)/1000, 
and ܼଷୀ(240 + 273.16)/1000)  where 20  units are tested at each level. To illustrate our 
methodology we reproduce this data to turn it into partly interval-censored data with masked 
causes of failure. The obtained results are based on five chains where each is run with a burn-in of 20000 iterations with 50000 retained draws and a thinning to every 15୲୦ draw. Convergence is 
monitored and it is achieved for all parameters. Table 2 describes the number of units across the 
masking sets and the failure/censored times. Table 3 summarizes the posteriors estimates (mean, 
median, standard error (SE), and posterior credible interval (PCI)) of the regression coefficients 
while Table 4 shows the posterior mean of the diagnostic probabilities of the full masked units 
which are computed using equations (2.5) and (2.6). The results indicate that 50%, 25%, and 25% 
of the units fail due to turn, phase, and ground causes, respectively. Figure 2 depicts the cumulative 
baseline hazard functions of the three causes of failure. It is obvious from the figure that the three 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 October 2017                   doi:10.20944/preprints201710.0142.v1

http://dx.doi.org/10.20944/preprints201710.0142.v1


causes have almost equal cumulative hazard. In addition, figure 3-5 demonstrates that as stress 
increases the hazard increases, irrespective of cause. This is exactly the purpose of such 
experiments as it is run in high levels of stress to accelerate the failure and so reduce the cost and 
the experiment period.     
 

Table 2: Number of units across masking sets and failure/censored times. 
Failure 

time 
type 

Masking sets  
   {0}**     { T}         { P}           {G }           {T,P }       {T,G }      {P,G }     {T,P,G}* Total 

Exact 0 0 0 1 0 1 0 0 2 
Interval - 7 4 6 6 4 3 11 41 

Left - 3 0 0 1 1 1 1 7 
Right 10 - - - - - - - 10 
Total 10 10 4 7 7 6 4 12 60 

*T=Turn, P=Phase, G=Ground. **{0}=No cause of failure or right-censored. 
 

Table 3: The posterior summaries of the regression coefficients. 
Parameters Mean       Median        SE              95% PCI 

β0T -21.49       -21.32         6.744        (-35.33, -8.82) 
β0P -18.94       -18.74         7.739        (-34.82, -4.355) 
β0G -20.96       -20.83         7.424        (-36.11, -6.728) 
β1T 28.67         28.39          13.71        (2.698, 56.70) 
β1P 22.55         22.17          15.75        (-7.589, 54.51) 
β1G 27.09         26.88          15.10        (-1.971, 57.73) 

 

Table 4: Diagnostic probabilities of the full masked units. 
Causes of Failure 

Diagnostic Prob Turn                 Phase              Ground 
P3

 0.2891              0.4439               0.2670 
P5

 0.5133              0.2150               0.2717 
P11

 0.4980              0.2445               0.2574    
P16

 0.2632              0.2242               0.5126 
P17

 0.2898              0.2041               0.5062 
P37

 0.5985              0.1647               0.2369 
P38

 0.3525              0.1886               0.4589 
P39

 0.6703              0.1554               0.1743 
P40

 0.6140              0.1670               0.2191 
P42

 0.3708              0.4063               0.2229 
P54

 0.3745              0.4021               0.2234 
P58 0.5049              0.2353               0.2598 
*Pi= (k=j | ti ,si) : i=no of unit,  Si= {T,P,G}. 
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Figure 2: Cumulative baseline hazard of the three causes. 

 

Figure 3: Cumulative hazard of cause turn. 
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Figure 3: Cumulative hazard of cause turn. 

 

Figure 4: Cumulative hazard of cause phase. 
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Figure 5: Cumulative hazard of cause ground. 

6. Conclusion 
In this study, Bayesian analysis for competing-risk models was derived from conditions of masked 
failure cause and incomplete failure time. This method offers some flexibility in modeling as it is 
not built on assumptions with questionable validity such as the symmetry assumption or 
independence of the competing risks. Furthermore, it provides an assessment of the risk factors’ 
(covariates) effect on the hazard function. Based on the simulation results, it can be seen that our 
method is feasible. 
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