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Abstract: Research within the field of hydrology often focuses on comparing stochastic to 

machine learning (ML) forecasting methods. The comparisons performed are all based on 

case studies, while an extensive study aiming to provide generalized results on the subject 

is missing. Herein, we compare 11 stochastic and 9 ML methods regarding their multi-

step ahead forecasting properties by conducting 12 large-scale computational 

experiments based on simulations. Each of these experiments uses 2 000 time series 

generated by linear stationary stochastic processes. We conduct each simulation 

experiment twice; the first time using time series of 100 values and the second time using 

time series of 300 values. Additionally, we conduct a real-world experiment using 405 

mean annual river discharge time series of 100 values. We quantify the performance of 

the methods using 18 metrics. The results indicate that stochastic and ML methods 

perform equally well. 

Key	 Words: no free lunch theorem; random forests; river discharge; stochastic 

hydrology; support vector machines; time series 

1. Introduction	

1.1 Background information 

Point forecasting of univariate time series (hereafter, “forecasting”, unless specified 

differently) is of great importance in operational hydrology (Wang et al. 2009). Right after 

the introduction of the currently classical Autoregressive Integrated Moving Average 

(ARIMA) models by Box and Jenkins (1968), Carlson et al. (1970) used several stationary 

models of this specific family, i.e. Autoregressive Moving Average (ARMA) models, to 

forecast the evolution of four annual time series of streamflow processes. Today the 

available models for time series forecasting are numerous and can be classified according 
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to De Gooijer and Hyndman (2006) into eight categories, i.e. (a) exponential smoothing, 

(b) ARIMA, (c) seasonal models, (d) state space and structural models and the Kalman 

filter, (e) nonlinear models, (f) long-range dependence models, e.g. the family of 

Autoregressive Fractionally Integrated Moving Average (ARFIMA) models, (g) 

Autoregressive Conditional Heteroscedastic/Generalized Autoregressive Conditional 

Heteroscedastic (ARCH/GARCH) models and (h) count data forecasting. The models from 

the categories (a)-(g) are of potential interest in hydrology. 

The theoretical properties of the models of categories (a)-(d), (f), (g) (hereafter, 

referred to as “stochastic”) more or less have been investigated, in contrast to those of the 

nonlinear models and in particular the Machine Learning (ML) algorithms, also referred 

to in the literature as black-box models. These two main categories of models are known 

to represent two different cultures in statistical modelling, the data modelling culture and 

the algorithmic modelling culture (Breiman 2001b). The former assumes that an 

analytically formulated stochastic model is behind the generation of the data, while the 

latter that behind this process is something complex and unknown, which does not have 

to be analytically formulated, as long as a purely algorithmic model can offer high forecast 

accuracy. In other words, profoundly understanding and properly modelling the (future) 

behaviour of a process are strongly connected within the data modelling culture, but 

completely irrelevant within the algorithmic modelling culture. The distinction between 

causal explanation, prediction and description is acknowledged and clarified in terms of 

modelling in Shmueli (2010). Still, one could question whether the (rather artificial) 

separation of models with respect to the “stochastic-ML dipole” actually corresponds to a 

striking difference in their forecasting performance. 

What cannot be questioned, on the other hand, is the popularity that the various ML 

forecasting methods have gained in many scientific fields, including hydrology. Amongst 

the most popular ML algorithms are the Neural Networks (NN), Random Forests (RF) and 

Support Vector Machines (SVM). The SVM are presented in their current form by Cortes 

and Vapnik (1995) (see also Vapnik 1995, 1999), while RF by Breiman (2001a). For the 

implementation of the NN for time series forecasting the reader is referred to Zhang et al. 

(1998) and Zhang (2001). Regarding the use of SVM for this specific purpose, a review can 

be found in Sapankevych and Sankar (2009). The large number of the relevant 

applications of the NN and SVM algorithms in the field of hydrology is imprinted in Maier 
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and Dandy (2000) and Raghavendra and Deka (2014) respectively, while the RF 

algorithms are barely used for the forecasting of hydrological processes. 

In Table 1 we present some literature information on hydrometeorological time series 

forecasting. As it is apparent, hydrological research often focuses on ML or hybrid (e.g. a 

combination of ARMA and ML) forecasting methods and, in particular, on the comparison 

between stochastic (mainly ARMA and ARFIMA) and ML methods. However, the culture 

of assessing the performance of forecasting methods on large datasets is not customary 

within the field of hydrology. Therefore, the assessment is performed within case studies. 

Concerning the testing procedure, while the available metrics for the assessment of the 

forecast quality are a lot, most of the studies use only a few (Krause et al. 2005), 

understating the importance of the testing process despite relevant suggestions (e.g. 

Humphrey et al. 2017). Similarly, the number of the implemented forecasting methods is 

usually small, although benchmarks are commonly included in the relevant comparisons 

(Pappenberger et al. 2015). 

Researchers have long been chasing the most accurate forecast for their data, a 

“universally best technique”. On the other hand, there is an argument that it is the data and 

the application of interest that determine the proper methodology for each case, rather 

than vice versa (Hong and Fan 2016). Another argument is that perhaps research should 

invest more on probabilistic forecasting (e.g. using Bayesian statistics as in Tyralis and 

Koutsoyiannis 2014) and less on point forecasting (Krzysztofowicz 2001). In fact, the 

opinions on forecast evaluation are often diverging, as they tend to depend on the 

perspective from which the forecasts are examined. An interesting study on this subject 

can be found in Murphy (1993). The latter identifies three criteria for this specific 

evaluation, which are adopted as a foundation for further discussion in later studies, e.g. 

Ramos et al. (2010) and Weijs et al. (2010). These criteria are (1) the consistency during 

the forecasting process, (2) the quality or the correspondence between the forecasts and 

the target values and (3) the value or the profit that the forecast provide to the decision 

makers. Weijs et al. (2010) note that criterion (2) concerns more the pure science, while 

criterion (3) is closer related to the decisions made within the engineering applications 

(of science), rather than science itself. Thus, only a few studies are dedicated to criterion 

(3), such as Ramos et al. (2010) and Ramos et al. (2013), while the greatest part of the 

literature focuses on criterion (2). The latter likewise applies to the present study and to 
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all of its references aiming to deal with the modelling issue (which model should I use?) 

within specific hydrological concepts. 

Table 1. Case studies presenting forecasts of hydrometeorological processes. 
s/n Study Primary 

focus 
Hydrometeorological 
process 

Data level Horizon 
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1 Atiya et al. (1999) NN 
methods 

× ×  × × ×  × ×  × 
2 Lambrakis et al. 

(2000) 
× ×  ×  × × ×  × × 

3 Kişi (2007) × ×  × ×  × ×   × 
4 Cheng et al. (2008) × ×   × ×     × 
5 Yaseen et al. (2016) × ×  × ×   ×  × × 
6 Sivapragasam et al. 

(2001) 
SVM 
methods 

×   × ×  × ×  × × 

7 Shi and Han (2007) × ×   × ×     × 
8 Lu and Wang (2011) ×  × × ×  × ×  × × 
9 Hu et al. (2001) Hybrid 

methods 
×  × × × × ×   × × 

10 Kim and Valdés (2003) × × ×  × ×  ×   × 
11 Pai and Hong (2007) ×  × ×  × × ×  × × 
12 Hong (2008) ×  × ×  × × ×  × × 
13 Kişi and Cimen (2011) × ×  × × ×  ×  × × 
14 Liong and 

Sivapragasam (2002) 
SVM vs NN 
methods 

× × ×  ×  × ×   × 

15 Guo et al. (2011) × ×  × × ×  × × ×  
16 Kişi and Cimen (2012) ×  × × ×  × ×  × × 
17 He et al. (2014) × ×  × ×  × ×  × × 
18 Jain et al. (1999) Stochastic 

vs ML 
methods 

× ×  × × ×  ×  × × 
19 Ballini et al. (2001) × ×  × × ×  ×   × 
20 Kişi (2004) × ×  × × ×  ×   × 
21 Khan and Coulibaly 

(2006) 
× × ×  × ×  ×   × 

22 Lin et al. (2006) × ×  × × ×  × × ×  
23 Mishra et al. (2007) × × ×  × ×  ×   × 
24 Yu and Liong (2007) × ×  × × × × × ×  × 
25 Koutsoyiannis et al. 

(2008) 
× ×  × × ×  ×  × × 

26 Wang et al. (2009) × ×  × × ×  × ×  × 
27 Abudu et al. (2010) × ×  × × ×  ×  × × 
28 Kişi et al. (2012) × × ×  ×  × ×   × 
29 Shabri and Suhartono 

(2012) 
× ×  × × ×  ×  × × 

30 Valipour et al. (2013) × ×  × × ×  × × ×  
31 Patel and 

Ramachandran (2014) 
× ×  × × ×  × ×  × 

32 Papacharalampous et 
al. (2017b) 

  × × × ×  ×   × 

Regarding the so far conducted comparisons between forecasting methods, their 

majority in all scientific fields is based on case studies. Nevertheless, in some few cases 
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beyond the field of hydrology the number of the examined real-world time series is quite 

large. These time series are realizations of several phenomena, which however are 

fundamentally different from being hydrological, and their examination includes concepts 

that are rather inappropriate in hydrological terms (e.g. paying attention to small 

quantitative differences in the forecasting performance of the methods). Examples of such 

studies can be found in Makridakis et al. (1987), Makridakis and Hibon (2000) and Ahmed 

et al. (2010), which examine 1 001, 3 003 and 1 045 time series respectively. Within these 

studies a statistical analysis is performed and the results are presented correspondingly. 

Furthermore, the literature includes two studies (Zhang 2001; Thissen et al. 2003) in 

which the performance of the methods is assessed on simulated time series from linear 

stochastic processes. The scale of the simulation experiment is small in both cases. 

Thissen et al. (2003) examine one long time series from the ARMA family, while Zhang 

(2001) examine 8 stochastic processes from the ARMA family and 30 simulated time 

series for each stochastic process. The forecasting methods are ARMA models, NN and 

SVM in the former study and ARMA models and NN in the latter study, while Makridakis 

and Hibon (1987), Makridakis and Hibon (2000) and Ahmed et al. (2010) do not focus 

their comparisons on the stochastic-ML dipole. 

Admittedly, the studies mentioned in the previous paragraph pursue generalized 

results to greater extent than most of the available studies. However, the gap still remains. 

What specifically needs to be addressed is whether the stochastic-ML dipole actually 

corresponds to a clear difference in the forecasting performance of the methods, 

especially in the light of published studies, which claim that they found a technique better 

than others. Given the fact that each forecasting case is indisputably unique, this task 

would necessarily require the examination of a sufficiently large and representative 

sample of forecasting cases within the same (properly designed) methodological 

framework. Extensive simulations combined with statistical analysis and benchmarking 

can constitute, nevertheless, a highly effective approach to solving the problem under 

discussion. In more detail, for the generalized comparison of stochastic and ML 

forecasting methods, a sufficient number of different and representative of the underlying 

phenomena time series could be used for the estimation of the expected performance of 

several forecasting methods regarding several criteria of interest. The need of using 

simulated time series to assess the performance of forecasting methods is emphasized by 

forecasting experts (Bontempi 2013). The analytical approach in assessing the 
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performance of ML algorithms is usually not possible; therefore, the only alternative 

approach is using simulations. Apparently, the larger the scale of the simulation 

experiments, the more general would be the results. Real-world experiments of large-

scale could be used to complement the results of the simulation experiments in alignment 

with specific applications. 

1.2 The present study 

In the context described in the above section, we perform an extensive comparison 

between several stochastic and ML methods for the forecasting of hydrological processes 

by conducting large-scale computational experiments based on simulations. The 

comparison refers to the multi-step ahead forecasting properties of the methods, 

although one-step ahead forecasting is also of practical and scientific interest. The 

simulated time series are 48 000 in total, while they are generated by linear stationary 

stochastic processes. The latter are commonly used for modelling hydrological processes. 

In fact, stationary models, in contrast to the non-stationary, are established as the 

appropriate modelling choice when dealing with natural processes, unless tangible and 

quantitative information that can fully support a deterministic description (not based on 

data but on physical laws) of change in time are available (Koutsoyiannis 2011; 

Koutsoyiannis and Montanari 2015). Additionally to the simulation experiments, we 

examine 405 real-world time series. Our aim is to fill the gap detected in the literature by 

providing generalized results and useful insights on the comparison of stochastic and ML 

forecasting methods for the case of hydrological time series forecasting, with an emphasis 

on river discharge processes. 

The preliminary research for this paper was conducted for the Postgraduate Thesis of 

the first author (Papacharalampous 2016). Subsequently, we provide some basic 

information about its large-scale companion studies. Papacharalampous et al. (2017a) 

examine the problem of error evolution in hydrological multi-step ahead forecasting, 

while Tyralis and Papacharalampous (2017) improve the performance of RF in one-step 

ahead forecasting of geophysical processes. Papacharalampous et al. (2018b) also focuses 

on the fundamental problem of one-step ahead forecasting with the aim to provide 

generalized results on the latter in geoscience. These three studies examine simulated, as 

well as real-world datasets. In detail, they examine 12 000 simulated and 92 monthly 

streamflow time series, 16 000 simulated and 135 annual temperature time series, and 
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24 000 simulated, 185 annual temperature and 112 annual precipitation time series 

respectively. Finally, Papacharalampous et al. (2018c) produce multi-step ahead forecasts 

for 985 monthly temperature and 1 552 monthly precipitation time series aiming at the 

investigation of the predictability of these processes. All the time series examined by the 

present study and its companions are short, as it is expected for the hydrometeorological 

time series. 

2. Methodology	

In Section 2 we present the basic methodological elements of this study, while the reader 

is referred to the supplementary material for a brief theoretical background, as also to the 

scientific literature for a more complete coverage of the relevant theory. 

2.1 Simulated processes 

We simulate time series according to several stochastic models from the frequently used 

families of ARMA and ARFIMA. This modelling approach is considered satisfying for the 

generalization pursued here and has been widely applied in hydrology (e.g. Montanari et 

al. 1997, 2000). The simulated stochastic processes are presented in Table 2, while for the 

related definitions the reader is referred to the report entitled “Definition of the stochastic 

processes’’ of the supplementary material. We use the arima.sim built in R algorithm (R 

Core Team 2017) to simulate the ARMA(p, q) processes and the fracdiff.sim algorithm of 

the fracdiff R package (Fraley et al. 2012) to simulate the ARFIMA(p, d, q) processes. 

Table 2. Simulated stochastic processes of the present study. Their definitions are given 
in the supplementary material. 

s/n Stochastic model Parameters of the stochastic model 
1 AR(1) φ1 = 0.7 
2 AR(1) φ1 = –0.7 
3 AR(2) φ1 = 0.7, φ2 = 0.2 
4 MA(1) θ1 = 0.7 
5 MA(1) θ1 = –0.7 
6 ARMA(1,1) φ1= 0.7, θ1 = 0.7 
7 ARMA(1,1) φ1 = –0.7, θ1 = –0.7 

8 ARFIMA(0,0.45,0)  
9 ARFIMA(1,0.45,0) φ1 = 0.7 
10 ARFIMA(0,0.45,1) θ1 = –0.7 
11 ARFIMA(1,0.45,1) φ1 = 0.7, θ1 = –0.7 
12 ARFIMA(2,0.45,2) φ1 = 0.7, φ2 = 0.2, θ1 = –0.7, θ2 = –0.2 
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2.2 Real-world time series 

We examine 405 mean annual discharge time series of 100 values, sourced from GRDC 

(2017). For the exploration of these time series we calculate the sample Autocorrelation 

Function (ACF) and the sample Partial Autocorrelation Function (PACF). The side-by-side 

boxplots of the ACF and PACF estimates are presented in Figure 1. The Hurst-Kolmogorov 

behaviour (HK behaviour) is a common property of geophysical properties (e.g. Tyralis 

and Koutsoyiannis 2011). To describe the HK behaviour of discharge we estimate the 

Hurst parameter H of all time series using the mleHK algorithm of the HKprocess R 

package (Tyralis 2016), which implements the maximum likelihood method (Tyralis and 

Koutsoyiannis 2011). The parameter H takes values in the interval (0, 1). The larger it is 

the larger the magnitude of the HK behaviour, which can be modelled by an 

ARFIMA(0, d, 0) model. A histogram of the H estimates is presented in Figure 1. 
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(a) 

 

(b) 

 

(c) 

 
 

Figure 1. (a) H, (b) ACF, (c) PACF estimates of the real-world time series. Data source: 
GRDC (2017). 

2.3 Forecasting methods 

We compare 11 stochastic to 9 ML forecasting methods. The stochastic methods are 

classified into five main categories as presented in Table 3. Similarly, the ML methods are 

classified into three main categories as presented in Table 4 and Table 5. For the 

implementation of the forecasting methods the reader is referred to the supplementary 

material. 
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Table 3. Stochastic forecasting methods. The forecasting methods are available in code 
form in the supplementary material. 

s/n Abbreviated name Category 
1 Naïve Simple 
2 RW 
3 ARIMA_f ARIMA 
4 ARIMA_s 
5 auto_ARIMA_f 
6 auto_ARIMA_s 
7 auto_ARFIMA ARFIMA 
8 BATS State Space 
9 ETS_s 
10 SES Exponential Smoothing 
11 Theta 

Table 4. ML forecasting methods. The time lag selection procedures adopted are defined 
in Table 5. The forecasting methods are available in code form in the supplementary 
material. 

s/n Abbreviated 
name 

Category Model structure 
information 

Hyperparameter 
optimized 
(grid values) 

Time lag 
selection 
procedure 

1 NN_1 NN Single hidden layer 
Multilayer 
Perceptron (MLP) 

Number of hidden 
nodes (0, 1, …, 15) 

1 
2 NN_2 2 
3 NN_3 3 
4 RF_1 RF Breiman’ s random 

forests algorithm 
with 500 grown 
trees 

Number of variables 
randomly sampled  
as candidates at each 
split (1, …, 5) 

1 
5 RF_2 2 
6 RF_3 3 

7 SVM_1 SVM Radial Basis kernel 
“Gaussian” function, 
C = 1, epsilon = 0.1 

Sigma inverse 
kernel width 
(2n, n = -8, -7, …, 6) 

1 
8 SVM_2 2 
9 SVM_3 3 

Table 5. Time lag selection procedures adopted for the ML methods. The forecasting 
methods are available in code form in the supplementary material. 

s/n Time lags 
1 The corresponding to an estimated value for the ACF using the acf R algorithm (built 

in R algorithm), i.e. the time lags 1, …, 19 for a time series of 90 values and the time 
lags 1, …, 24 for a time series of 290 values 

2 The corresponding to a statistical important estimated value for the ACF using the acf 
R algorithm (built in R algorithm). If there is no statistical important estimated value 
for the ACF, the corresponding to the largest estimated value 

3 According to the nnetar R function (package forecast), i.e. the time lags 1, …, n, where 
n is the number of AR parameters that are fitted to the time series data using the ar R 
algorithm (built in R algorithm) 

We use two simple forecasting methods in the comparisons. The Naïve forecasting 

method, one of the most commonly used benchmarks (Hyndman and Athanasopoulos 

2013; Pappenberger et al. 2015), simply sets all forecasts equal to the last value. The RW 

forecasting method, a variation of the Naïve forecasting method, is equivalent to drawing 

a line between the first and the last value and extrapolating it into the future (Hyndman 
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and Athanasopoulos 2013). The stochastic methods also include the ARIMA and ARFIMA 

methods. These five methods apply the maximum likelihood method to estimate the 

values of the parameters of the AR and MA parts of the models. For the ARIMA_f and 

ARIMA_s forecasting methods the numbers of the AR (p) and MA (q) parameters are set 

to be the same to those used in the simulated processes, while the number of differencing 

(d) is set to be zero. The auto_ARIMA_f and auto_ARIMA_s methods estimate the values of 

p, d, q of the ARIMA model using the Akaike Information Criterion with a correction for 

finite sample sizes (AICc), as described in Hyndman and Athanasopoulos (2013). The 

same applies to the auto_ARFIMA method for the estimation of the values of p, d, q of the 

ARFIMA models. We note that ARIMA_s and auto_ARIMA_s are simulation models.  

The BATS and ETS_s forecasting methods use the point forecasts from an exponential 

smoothing state space model with several key features, i.e. capability of performing Box-

Cox transformation and/or including ARMA errors correction, Trend and Seasonal 

components (BATS), also allowing an optimal model selection using the Akaike 

Information Criterion (AIC), and an exponential smoothing state space simulation model 

with automatic selection of the Error, Trend and Seasonal components (ETS) respectively. 

We additionally include the SES (Simple Exponential Smoothing) and Theta forecasting 

methods in the comparisons. The latter method was presented by Assimakopoulos and 

Nikolopoulos (2000) and performed well in the M3-Competition (Makridakis and Hibon 

2000). The reader is referred to Hyndman et al. (2008) and Hyndman and Athanasopoulos 

(2013) for the theoretical background of the exponential smoothing and space state 

models. 

Regarding the NN, the RF and the SVM forecasting methods, there are some additional 

concerns to the selection of the algorithms, originating from the nature of the ML methods. 

The choices to be considered for the selection of the time lags used to build the regression 

matrix (input data matrix), as well as the choices for the values of the hyperparameters of 

the models (e.g. the hidden nodes in a NN model), are many. Usually, hyperparameters 

are not automatically decided by the ML algorithm during the fitting process. A fact is that 

the ML models are by design rather more flexible than needed in most cases and, thus, 

hyperparameter optimization is often used to detect and prevent overfitting as much as 

possible. In Tables 4 and 5 we summarize the basic information about the model 

structures, the hyperparameter optimization and the time lag selection procedures 

adopted. 
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We apply the stochastic methods using mainly the R package forecast (Hyndman and 

Khandakar 2008, Hyndman et al. 2017) and the ML methods using the R package rminer 

(Cortez 2010, 2016) and the nnetar algorithm from the R package forecast (the latter is 

the NN_3 forecasting method), as also several built in R algorithms. The R package rminer 

uses the nnet algorithm of the nnet R package (Venables and Ripley 2002), the 

randomForest algorithm of the randomForest R package (Liaw and Wiener 2002) and the 

ksvm algorithm of the kernlab R package (Karatzoglou et al. 2004) for the application of 

the NN, the RF and the SVM methods respectively. 

2.4 Metrics 

The metrics used for the comparative assessment of the forecasting methods are 

classified into five main categories according to the criteria of Table 6. They provide 

assessment regarding two types of accuracy, the capture of the variance and the 

correlation. By Type 1 accuracy we mean the closeness of the forecasted time series to the 

actual, while by Type 2 accuracy we mean the closeness of the mean of the forecasted 

values of each time series to the mean of the actual ones. The definitions of the metrics 

are listed in the report entitled “Definition of the metrics’’ of the supplementary material, 

while the reader is also referred to Nash and Sutcliffe (1970), Kitanidis and Bras (1980), 

Yapo et al. (1996), Krause et al. (2005), Criss and Winston (2008), Gupta et al. (2009), 

Zambrano-Bigiarini (2014) for further information. 

Table 6. Metrics used in the present study. Their definitions are given in the 
supplementary material. 

s/n Abbreviated 
Name 

Full name Criterion Values Optimum 
Value 

Condition  
(the desired) 

1 MAE Mean Absolute Error Type 1 accuracy [0, +∞) 0 smaller MAE 
2 MAPE Mean Absolute Percentage Error  [0, +∞) 0 smaller MAPE 
3 RMSE Root Mean Square Error  [0, +∞) 0 smaller RMSE 
4 NSE Nash-Sutcliffe Efficiency  (-∞, 1] 1 larger NSE 
5 mNSE Modified Nash-Sutcliffe Efficiency  (-∞, 1] 1 larger mNSE 
6 rNSE Relative Nash-Sutcliffe Efficiency  (-∞, 1] 1 larger rNSE 
7 cp Persistence Index  (-∞, 1] 1 larger cp 
8 ME Mean Error Type 2 accuracy (-∞,+∞) 0 smaller |ME| 
9 MPE Mean Percentage Error  (-∞,+∞) 0 smaller |MPE| 
10 PBIAS Percent Bias  (-∞,+∞) 0 smaller |PBIAS| 
11 VE Volumetric Efficiency  (-∞,+∞) 1 smaller |VE - 1| 
12 rSD Ratio of Standard Deviations Capture of the 

variance 
[0, +∞) 1 larger min{rSD, 

1/rSD} 
13 Pr Pearson’ s Correlation Coefficient Correlation [-1, 1] 1 larger Pr 
14 r2 Coefficient of Determination  [0, 1] 1 larger r2 
15 d Index of Agreement Type 1 accuracy, 

capture of the 
variance 

[0, 1] 1 larger d 

16 md Modified Index of Agreement  [0, 1] 1 larger md 
17 rd Relative Index of Agreement  (-∞, 1] 1 larger rd 
18 KGE Kling-Gupta Efficiency Type 2 accuracy, 

capture of the 
variance, correlation 

(-∞, 1] 1 larger KGE 
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2.5 Methodology outline 

For the comparison of the forecasting methods (see Section 2.3) we conduct 12 large-scale 

computational experiments based on simulations. Within each of the latter we simulate 

2 000 time series according to a stochastic process (see Section 2.1). We conduct each 

simulation experiment twice; the first time using time series of 100 values and the second 

time using time series of 300 values. The simulation experiments are named as presented 

in Table 7. Additionally, we conduct a real-world experiment using the time series 

presented in Section 2.2. We apply the forecasting methods to the simulated and the real-

world time series according to Table 8. 

Table 7. Simulation experiments of the present study. The simulated processes are 
presented in Table 2. 

s/n Code Simulated process Length of the time series 
1 SE_1a 1 100 values 
2 SE_2a 2 
3 SE_3a 3 
4 SE_4a 4 
5 SE_5a 5 
6 SE_6a 6 
7 SE_7a 7 
8 SE_8a 8 
9 SE_9a 9 
10 SE_10a 10 
11 SE_11a 11 
12 SE_12a 12 
13 SE_1b 1 300 values 

 14 SE_2b 2 
15 SE_3b 3 
16 SE_4b 4 
17 SE_5b 5 
18 SE_6b 6 
19 SE_7b 7 
20 SE_8b 8 
21 SE_9b 9 
22 SE_10b 10 
23 SE_11b 11 
24 SE_12b 12 
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Table 8. Use of the forecasting methods on the time series. 
Forecasting method ARMA simulated processes ARFIMA simulated process Real-world time series 
Naïve    
RW    
ARIMA_f  × × 
ARIMA_s  × × 
auto_ARIMA_f  × × 
auto_ARIMA_s  × × 
auto_ARFIMA ×   
BATS    
ETS_s    
SES    
Theta    
NN_1    
NN_2    
NN_3    
RF_1    
RF_2    
RF_3    
SVM_1    
SVM_2    
SVM_3    

For the application of the stochastic methods we divide each time series into two 

segments, i.e. the fitting segment and the test segment, which contain n1 and n2 values 

respectively, as indicated in Figure 2. We fit the stochastic models to the former and make 

predictions corresponding to the latter using the recursive multi-step ahead forecasting 

method. For the total of the conducted experiments n2 equals 10. For the application of 

the ML forecasting methods, we additionally divide the segment of n1 values into two 

segments, i.e. the fitting segment (first [2n1/3] values of the time series) and the validation 

segment, as also indicated in Figure 2. 
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(a) 

 

(b) 

 
 

Figure 2. Division of a time series into (a) two segments for the application of the 
stochastic methods and (b) three segments for the application of the ML methods. 

The validation segment serves the hyperparameter optimization procedure, as 

explained subsequently. We use the fitting segment to fit several ML models that differ 

only as it comes to the values of a specific hyperparameter. We use each of those models 

to make predictions corresponding to the validation segment and measure the RMSE of 

those predictions. Finally, we decide on the value of the hyperparameter, i.e. the 

corresponding to the model with the smallest RMSE on the validation segment (optimum 

model). We fit a model with the selected hyperparameter value to data of both the fitting 

and validation segments and make predictions corresponding to the test segment. 

Finally, we compute the values of the metrics presented in Section 2.4 for each 

forecasting test. The computation takes place on the test segment, which functions as a 

reference for the comparative assessment of the forecasting methods’ performance. We 

use the metric values for the comparative assessment of the forecasting methods, mainly 
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their medians and iqr values computed for each method per experiment. We compare the 

medians within each experiment, as described in Table 6, while the smallest the iqr the 

better the forecasts. In particular, for the real-world experiment we rank the forecasting 

methods for each individual test and further compute an average-case ranking for each of 

the metrics. We emphasize in the 18 average-case rankings and not directly in the mean 

or median values of the metrics (as in Tyralis and Papacharalampous 2017), because the 

latter might be more affected by the results of specific time series.  

Although our computational experiments are designed to produce new knowledge in 

the field of hydrological time series forecasting, there are several outcomes rather well 

known at the forefront of our methodological framework. In more detail, the ARIMA_f and 

also the auto_ARIMA_f forecasting methods are expected to have the best performance 

regarding the Type 1 accuracy, mainly in terms of RMSE, on the time series resulting from 

the simulation of ARMA processes because of their theoretical background (for details see 

Wei 2006, pp. 88-93). Likewise, this applies to the performance of ARIMA_s and 

auto_ARIMA_s regarding the capture of the variance exhibited by the time series within 

the same simulation experiments. Furthermore, the ARIMA_f and ARIMA_s forecasting 

methods share an additional advantage, since they use by design the p, d, q numbers used 

in the simulation process. Similarly to the ARIMA_f and auto_ARIMA_f forecasting 

methods, auto_ARFIMA is expected to be the best in terms of RMSE on the time series 

resulting from the simulation of ARFIMA processes. The five forecasting methods 

mentioned in the present paragraph, together with the two simple methods, play the role 

of benchmarks within our methodological approach. 

3. Results	

3.1 Simulation experiments 

Section 3.1 aims at providing a synopsis of the results of the simulation experiments. To 

support our key findings, here we present a small representative sample of the entire 

information. For the about 13 000 figures, conducted in the context of an exploratory 

visualization, as well as for the numerical summaries of the results in table form, the 

reader is referred to the fully reproducible reports, which are available together with their 

codes in the supplementary material. In the latter we also enclose the report entitled 

“Selected figures for the qualitative comparison of the forecasting methods”, which 
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includes Figures S.1-S.24. These figures can support the main conclusions of this paper in 

a satisfactory manner. 

In Figures 3-5 we present the side-by-side boxplots of the metric values computed 

within the SE_1a simulation experiment. These figures can provide a rough outline of the 

forecasting methods and the utility of the metrics within this study. By their examination, 

we observe that the ARIMA_f and auto_ARIMA_f benchmarks are the best performing with 

respect to Type 1 accuracy, as assumed in Section 2.5, while BATS exhibits a very close to 

these methods performance, perhaps because it uses information from an ARMA model. 

We also note that the total of the ML methods except for NN_1 are competitive with BATS 

and with each other, while they are also better than the stochastic SES and Theta. The 

latter forecasting methods share a quite similar performance, a fact also applying to Naïve 

and RW. These simple benchmarks are better than NN_1 and the simulation models 

(ARIMA_s, auto_ARIMA_s, ETS_s), amongst which ETS_s produces forecasts with the most 

varying metric values and the worst median. Regarding the Type 2 accuracy, all the 

methods seem to have rather equally good average-case performance, since the 

differences in the latter are small and not perceivable from these figures. However, the 

metric values computed for ETS_s are the most scattered with respect to each other, while 

the opposite applies to the metric values computed for ARIMA_f, auto_ARIMA_f, BATS and 

all the ML methods apart from NN_1. The metric values computed for the remaining 

forecasting methods are scattered with respect to each other to an extent in between. 

In terms of rSD, the image is rather reversed compared to the one produced by the 

Type 1 accuracy metrics. Naïve, RW, SES and Theta are clearly the worst, while the ML 

methods are more segregated. The average-case performance of NN_1, ARIMA_f, 

auto_ARIMA_f and ETS_s is good. Nevertheless, the rSD values for these four forecasting 

methods can vary significantly from the one forecasting attempt to the other, more than 

the rSD values computed for the remaining forecasting methods, a fact also applying to 

the rest of the metrics. Regarding the average-case performance with respect to 

correlation, ARIMA_f, auto_ARIMA_f and BATS are the best, followed by NN_3. With 

respect to Type 1 accuracy and capture of the variance, ARIMA_f, auto_ARIMA_f, BATS and 

all the ML methods apart from NN_1 are clearly better than the simple benchmarks and 

competitive with each other. SES and Theta, on the other hand, exhibit a very close 

performance to the one of Naïve and RW. Finally, in terms of KGE, the best performing 

methods are the same three stochastic and eight ML ones. NN_1, ARIMA_f and 
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auto_ARIMA_f are better than Theta, which is competitive with RW. Overall, we observe 

that for the SE_1a simulation experiment the metrics (even the corresponding to the same 

criterion) provide different aspects of the same information to an extent larger or smaller, 

while these 18 different aspects may also be conflicting to each other. 

Subsequently, we state the main observations obtained from the total of the simulation 

experiments. To base these observations, in Figure 6 we present the heatmaps of the 

average-case performance of the forecasting methods within the SE_1a, SE_1b, SE_2a and 

SE_2b simulation experiments, while in Figures 7-9 we present the heatmaps formed 

using the medians of the total of the RMSE, rSD and d metric values respectively. In these 

figures the scaling is performed in the row direction and the darker the colour the better 

the forecasts. A clustering analysis on the forecasting methods based on their 

performance is also applied. Some observations obtained from SE_1a apply to the rest of 

the simulation experiments as well. These are the following (see, for example, Figures 6-

9): (a) forecasting methods from both the stochastic and ML categories are amongst the 

best performing and the worst performing ones, (b) the metrics can provide significantly 

different, even conflicting, image regarding the performance of the forecasting methods, 

(c) the ARIMA_f, auto_ARIMA_f and auto_ARFIMA benchmarks are the best performing in 

terms of Type 1 accuracy, while ETS_s, and the ARIMA_f and auto_ARIMA_f benchmarks 

exhibit a good average-case performance in terms of rSD, (d) the image produced by rSD 

is reversed with respect to the one produced by the Type 1 accuracy metrics, i.e. the well 

performing with respect to the latter criterion are bad performing with respect to the 

capture of the variance of the time series, (e) BATS is very close to the ARIMA_f, 

auto_ARIMA_f and auto_ARFIMA benchmarks, and (f) Naïve and RW, as well as SES and 

Theta, exhibit similar performance with each other. Nevertheless, the Pr, r2 and KGE 

values computed for Naïve and SES are infinite. Finally, by the examination of the side-by-

side boxplots produced for each and every of the simulation experiments we note that (g) 

the ARIMA_s, auto_ARIMA_s, ETS_s and NN_1 forecasting methods seem to share a form 

of instability, i.e. their metric values vary more with each other than the metric values of 

other forecasting methods. The latter concerns the results obtained from all the metrics 

except for Pr and r2. 
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Figure 3. Side-by-side boxplots for the comparative assessment of the forecasting 
methods regarding their performance within the SE_1a simulation experiment (part 1). 
The far outliers have been removed. 
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Figure 4. Side-by-side boxplots for the comparative assessment of the forecasting 
methods regarding their performance within the SE_1a simulation experiment (part 2). 
The far outliers have been removed. 
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Figure 5. Side-by-side boxplots for the comparative assessment of the forecasting 
methods regarding their performance within the SE_1a simulation experiment (part 3). 
Concerning the boxplots of the rd and KGE metrics, the far outliers have been removed. 
The values of the Pr, r2 και KGE metrics computed for the Naïve and SES forecasting 
methods are infinite and, thus, excluded from the respective side-by-side boxplots. 
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(a) (b) 

  

(c) (d) 

  

Figure 6. Heatmaps for the comparative assessment of the forecasting methods within the 
(a) SE_1a, (b) SE_1b, (c) SE_2a, (d) SE_2b simulation experiments according to the median 
values of the metrics and the conditions listed on Table 6. The infinite values of the Pr, r2 
και KGE metrics for the Naïve and SES forecasting methods are not taken into 
consideration during the comparative assessment and are imprinted with white colour. 
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Figure 7. Heatmaps for the comparative assessment of the forecasting methods according 
to the median values of the RMSE metric and the condition stated on Table 6. 
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Figure 8. Heatmaps for the comparative assessment of the forecasting methods according 
to the median values of the rSD metric and the condition stated on Table 6.  
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Figure 9. Heatmaps for the comparative assessment of the forecasting methods according 
to the median values of the d metric and the condition stated on Table 6. 

By the examination of Figure 6 (or Figures S.1-S.6) we observe that the image provided 

by the metrics and the resulted clustering of the forecasting methods can also vary from 

the one simulation experiment to the other, while by the examination of Figures 7-9 (or 

Figures S.7-S.24) we observe that the differences are more due to the information 
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provided by specific metrics or due to specific forecasting methods. In fact, the heatmaps 

formed for the MAE, MAPE, RMSE, NSE, mNSE, rNSE, cp and KGE are smoother than those 

formed for the remaining metrics. In particular, the pictures obtained from the ME, MPE, 

VE, r2, d and md metrics are the most dispersed. On the other hand, the Naïve, RW, 

ARIMA_s, auto_ARIMA_s, ETS_s, SES, Theta and NN_1 forecasting methods are more likely 

to have a varying performance. For example, we observe that Naïve and RW exhibit rather 

the best average-case performance in terms of d (see Figure 9) and md (see Figure S.22), 

while they have either bad, moderate or good average-case performance in terms of MAE, 

MAPE, PBIAS and VE depending on the simulation experiment (see Figures S.7, S.8, S.16 

and S.17 respectively). The same applies to SES and Theta in terms of d, etc. We also note 

that forecasting methods resulting from the implementation of the same algorithm can 

exhibit a far distant or always close performance depending on the algorithm. For 

instance, NN_1 and NN_2 (or NN_3) may differ with each other to a great extent, a fact also 

applying to ARIMA_s and ARIMA_f, but not to the RF and SVM forecasting methods. 

Regarding NN_1, we observe that length of the time series largely affects its performance 

in a systematic way, while the performance of the rest forecasting methods is less or even 

slightly affected. The latter effect depends on the forecasting method, as well as on the 

simulated process. In detail, the NN_1 forecasting method exhibits a bad performance 

with respect to Type 1 accuracy (and a good one in terms of rSD; see Figure 8), when 

applied to the time series of 100 values, while its performance becomes good with respect 

to Type 1 accuracy (and bad in terms of rSD), when applied to the time series of 300 

values. The latter observation might apply to a small extent to some of the remaining ML 

methods. 

Finally, we summarize some important information about the best performing 

forecasting methods in terms of Type 1 accuracy. A good performance with respect to this 

criterion is a major pursuance in most of the forecasting applications. In terms of MAE 

(see Figure S.7) BATS is very close to the ARIMA_f, auto_ARIMA_f and auto_ARFIMA 

benchmarks, while SES, Theta and all the ML methods except for NN_1 have always a good 

or moderate performance. With respect to the MAPE metric (see Figure S.8) SVM_3 and 

BATS are mostly close to ARIMA_f, auto_ARIMA_f and auto_ARFIMA, and NN_2, NN_3, 

RF_1, RF_2, RF_3, SVM_1, SVM_2, SVM_3, SES and Theta are well performing for the 

greatest part of the simulation experiments. The same observations apply with respect to 

RMSE (see Figure 7). Nevertheless, NN_2 and NN_3 are rather very close to the good 
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benchmarks as well. Regarding the NSE, mNSE, rNSE and cp values (see Figures S.10, S.11, 

S.12 and S.13 respectively), most of the stochastic and ML methods are competitive to 

each other and to the good benchmarks. The only ones that are not competitive are the 

simulation models, the simple benchmarks and NN_1, the latter when applied to time 

series of 100 values. 

3.2 Real-world experiment 

In full correspondence to the simulation experiments, the results of the real-word 

experiment are presented in both quantitative and qualitative forms. In Figure 10 we 

present the side-by-side boxplots of the MAPE, NSE, cp MPE, d and KGE values. 

Additionally, in Table 9 we present the median values of the dimensionless metrics, while 

in Figure 11 the average-case rankings of the forecasting methods. Here as well, we 

observe small differences between most of the methods, especially with respect to specific 

metrics (e.g. MAPE, cp, MPE, d). For example, the median values of MAPE computed for 

auto_ARFIMA, BATS, SES, Theta, NN_3, RF_1, SVM_1, SVM_2 and SVM_3 are very close to 

each other. The same applies to the median values of NSE computed for the same methods, 

although the differences in the respective side-by-side boxplots seem to be larger in the 

latter case than in the former. Because of the small differences in the performance of the 

forecasting methods, the median metric values of Table 9 (e.g. the median MAPE values) 

may result to a different ranking of the forecasting methods than the average-case ranking 

presented in Figure 11. 

Furthermore, while the average-case rankings with respect to accuracy mostly favour 

stochastic methods (SES, Theta, auto_ARFIMA and BATS), SVM_1 is also ranked amongst 

the best performing methods. In more detail, SES is ranked first according to MAE, RMSE, 

NSE, mNSE, cp, ME, MPE, PBIAS and VE, but it is worse than SVM_1 and SVM_2, and SVM_1, 

SVM_2 and SVM_3 according to MAPE and rNSE respectively. With respect to the latter 

metrics, the best performing method is BATS. This method has a rather moderate overall 

performance in terms of accuracy. The less accurate methods, on the other hand, are 

Naïve, RW, ETS_s and NN_1, as it is expected from the simulation experiments. With 

respect to the remaining criteria, SES is clearly the worst performing method, while Theta, 

Naïve, BATS, SVM_1, NN_3 and auto_ARFIMA are also ranked behind the remaining ML 

methods, amongst which NN_1 is mostly ranked first. 
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Figure 10. Side-by-side boxplots for the comparative assessment of the forecasting 
methods regarding their performance within the real-word experiment. The far outliers 
have been removed. 
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Table 9. Median values of the dimensionless metrics computed within the real-word 
experiment.  
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NSE -0.72 -0.84 -0.20 -0.19 -1.53 -0.17 -0.18 -1.26 -0.33 -0.22 -0.26 -0.46 -0.48 -0.22 -0.25 -0.26 
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Figure 11. Heatmap for the comparative assessment of the forecasting methods within the 
real-world experiment according to their average-case rankings. The latter are based on 
the values of the metrics and the conditions listed on Table 6. The Naïve and SES 
forecasting methods are ranked 15th and 16th according to rSD, Pr, r2 and KGE. Their rSD 
values are 0, while the Pr, r2 and KGE values are infinite. 
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4. Discussion	

4.1 Contribution in hydrology and beyond 

The present study contributes by developing a detailed framework for assessing 

forecasting techniques in hydrology. Furthermore, its findings can provide new insights 

into the nature of short hydrological time series forecasting, while they concern all natural 

processes that could be modelled by stationary processes and all possible time scales. A 

first view of the results suggests that the differences in the performance of the forecasting 

methods are mostly small (insignificant for hydrometeorological applications), while the 

stochastic and ML methods can share a quite similar performance when forecasting 

hydrological time series of small length. In fact, methods from both these categories are 

found to perform better or worse mainly depending on the metric, but on the experiment 

as well. Regarding the Type 1 accuracy, in the simulation experiments BATS is always 

close to the ARIMA_f, auto_ARIMA_f and auto_ARFIMA benchmarks, probably because it 

uses information from an ARMA model, while most of the ML methods (e.g. NN_3 and 

SVM_3) are amongst the best performing and often better than SES and Theta. 

Nevertheless, in the real-world experiment SES is mostly ranked first, followed by 

auto_ARFIMA, BATS, SVM_1 and Theta, while NN_3, RF_1, SVM_2, and SVM_3 are also close 

to the latter methods. This outcome might mean that for a different sample of river 

discharge time series, the average-case rankings would differ as well, and that there might 

be no particular reason to choose some methods over others for this specific process. 

Given the claims that in linear situations (e.g. the simulation experiments of this study) 

the ML methods are more likely to be inferior to the stochastic ones, while in non-linear 

situations, as it could apply to river discharge processes, the ML methods are more likely 

to outperform, the algorithmically obtained results of the present study are even more 

interesting. 

Importantly, we would like to emphasize that the ML algorithms are accurate enough, 

while a worth-mentioning particularity of theirs is perhaps related to the concomitant to 

the use of many lagged variables decrease of the fitting set (for more details, see Tyralis 

and Papacharalampous (2017)) and is largely perceivable through the examination of the 

results obtained for NN_1. In detail, for the simulation experiments using time series of 

100 values, NN_1 exhibits a bad performance in terms of Type 1 accuracy (a fact not 

applying to NN_2 and NN_3, which use less and very few lagged variables respectively). 
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On the contrary, for the simulation experiments using time series of 300 values, this 

method is amongst the most accurate ones. The same number of lagged variables is used 

by RF_1 and SVM_1. Nevertheless, the performance of the RF and SVM algorithms seems 

to be less affected by the length of the fitting set. 

While there are forecasting methods regularly better or worse than others with respect 

to specific criteria, this does not apply to all the forecasting methods neither to all the 

criteria. For example, we observe that Theta can exhibit good, moderate or bad average-

case performance in terms of specific metrics depending on the simulation experiment. 

Furthermore, sophisticated forecasting methods (such us the above mentioned ones) do 

not necessarily (but mostly) provide better forecasts than the simple Naïve and RW, as 

also shown in previous studies (e.g. Makridakis and Hibon (2000)). These two methods 

perform almost identically in the experiments of the present study, but not for longer 

forecast horizons (see Papacharalampous et al. (2017a; 2018c)). Another pair of similarly 

performing forecasting methods is SES and Theta, as proved in Hyndman and Billah 

(2003). 

In general, we cannot decide on a universally best or worst forecasting method 

(stochastic or ML), neither we can rank the forecasting methods based on the results of 

the simulation experiments. Even the relative metrics, i.e. the corresponding to the same 

criterion (see Table 6), provide measurements which lead us to different aspects of the 

same information to an extent larger or smaller depending on the pair of metrics 

considered. Some of these 18 different aspects are also conflicting to each other. Any 

ranking of the forecasting methods would require the a priori selection of an experiment 

and a criterion of interest, as well as the application of a simplification procedure (e.g. use 

of the median values of the selected metric) and, thus, would not be general. However, the 

classification of the forecasting methods is possible, though only to some extent. This 

classification could be based on the similar or contrasting performance of the forecasting 

methods with respect to the various metrics. For example, the simulation models 

(ARIMA_s, auto_ARIMA_s and ETS_s) exhibit the best average-case performance with 

respect to the capture of the variance, while they are clearly the worst performing in 

terms of Type 1 accuracy. This happens, since these two criteria are contradictory. For 

instance, the optimum forecast for an ARFIMA model is obtained when the innovations 

are set to be zero. 
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Our contribution in the field of hydrology also includes the implementation of several 

forecasting models barely used in hydrometeorological concepts, but commonly used in 

the forecasting field (RW, BATS, ETS, SES and Theta) or for regression purposes (RF). This 

innovation holds, especially if we could exclude from the hydrological literature the large-

scale companions of this study, i.e. Papacharalampous et al. (2017a; 2018b,c) and Tyralis 

and Papacharalampous (2017), while its practical value is indisputable. One could claim 

that there may be an undiscovered forecasting method (stochastic or ML), which will be 

better than the existing ones. As regards the “myth of the best method” the reader is 

referred to Hong and Fan (2016), who mention that the number of original techniques is 

countable and has been exhausted, while the hybrid techniques, i.e. combinations of 

original techniques, cannot improve further the forecasting performance. 

Another important contribution of the present study is related to the so-called “no free 

lunch theorem” (Wolpert 1996). According to Wolpert (1996), in the space of all possible 

problem instances, there is not a model, which will always perform better than the other 

models, in the absence of significant information for the problem at hand. The present 

empirical study shows that even in the finite space of simple (simulated) and real-world 

time series examined here there is not an optimal forecasting solution. Finding the best 

algorithm mostly depends on our knowledge of the system. For example, using ARFIMA 

models for forecasting the ARFIMA simulated time series is obviously the best choice, due 

to the prior known information about the system. The other methods are equivalent in 

performance since they cannot incorporate this knowledge. In the specific class of 

hydrological processes forecasting finding information about the examined system could 

be possible, e.g. with the application of principles of physics, such as the maximum 

entropy principle. Obviously, the knowledge of the system is not simply equivalent to the 

knowledge of its statistical properties, e.g. the mean, variance, the autocorrelation 

function etc., but should be deeper. Therefore, the frequently met in the literature of the 

hydrological science blind use of forecasting methods is not suggested. 

Additionally, it seems that major advancements in the time series forecasting 

performance of all methods can be achieved by incorporating appropriate exogenous 

variables in the model, while the potential for improving their performance in univariate 

time series forecasting seems limited. The latter in our opinion is also due to the nature 

of the problem, which is simple. Therefore, methods that are more complicated will not 

necessarily yield better results. A similar example is for instance the difference in the 
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games of tic-tac-toe and Go. The former game is simple and can be solved by simple 

algorithms, therefore the choice of the method is not of relevance. On the other hand, the 

best performance on the more complex game of Go was achieved by the use of 

complicated machine learning algorithms (e.g. Silver et al. (2016)). 

Regarding the extent to which the conclusions are generalizable for the forecasting of 

short hydrological time series, we note that the stationarity assumption and the reasoning 

concerning its appropriateness in the modelling of geophysical properties in 

Koutsoyiannis and Montanari (2015) is consistent with the no free lunch theorem. In 

particular, if we cannot explain the behaviour of a geophysical process based on a 

deterministic mechanism, then the most appropriate models are stationary. Even in cases 

of deterministic systems, stochastic approaches are appropriate (Koutsoyiannis 2010). 

This is a frequently met case in modelling of geophysical processes (i.e. there is not an 

adequate explanation for the behaviour of the geophysical process), proving that our 

results are generalizable. Finally, in practical terms the contribution of this study can be 

summarized as follows. A forecasting problem should be approached with more than one 

algorithmic solutions, i.e. using many forecasting methods (stochastic and ML), while the 

final judgment should always be provided by an expert. 

4.2 On the methodological approach 

The above section highlights the efficiency of our methodological approach in producing 

generalized results. Moreover, the real-world experiment particularly accounts for the 

case of river discharge forecasting. Someone who examines both the results of the 

simulation experiments and the real-world experiment has a more complete picture of 

the underlying phenomena than whom considering only the results of the simulation 

experiments. On the other hand, the use of simulated processes combined with 

benchmarking has proved pivotal in delivering the pursued generalization under the 

stationarity assumption. Additionally, the use of an adequate number of forecasting 

methods and metrics in the present study is also of crucial importance. Using fewer 

forecasting methods and fewer metrics would have led to a very different overall picture, 

particularly if those fewer metrics corresponded to fewer criteria. Besides, the 

comparison is rather the only available research method for any evaluation and, 

consequently, the larger its scale the more generalized the derived results. For this 

specific reason, the novel (mainly with respect to hydrology) methodological approach of 
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the present study is considered appropriate for the assessment of forecasting methods in 

hydrology. Furthermore, the qualitative form of the results facilitates their handy 

examination and, thus, eases the delivery of the generalized findings. In fact, our 

methodology enables the assessment of the failure risk or, alternatively worded, the 

available opportunities for success that accompany the use of a specific forecasting 

method to a significant extent, while it also leads to the recognition of several 

advantages/disadvantages characterizing the latter. This knowledge is fundamental to 

the forecasters and the users of the forecasts, since a specific forecasting method can be 

both useful and useless, depending on the forecasting task. 

5. Conclusions	

We conduct an extensive comparison between several stochastic and machine learning 

methods for the multi-step ahead forecasting of hydrological processes by performing 

large-scale computational experiments based on simulations under the stationarity 

assumption. The stochastic methods used include simple models, models from the 

frequently used families of Autoregressive Moving Average and Autoregressive 

Fractionally Integrated Moving Average, as well as State Space and Exponential 

Smoothing models, while the machine learning ones are Neural Networks, Random 

Forests and Support Vector Machines. The aim is to provide generalized results, while the 

respective comparisons in the literature are usually based on case studies. We also run a 

real-world experiment on the largest river discharge dataset ever used for forecasting 

purposes. Despite this specific focus, the results concern all natural processes that could 

be modelled by stationary processes and all possible time scales. The findings suggest that 

stochastic and machine learning methods do not differ dramatically. In fact, methods from 

both these categories are found to perform equally well in univariate short time series 

forecasting. This is particularly important, because it reveals that the forecast quality is 

subject to certain limitations. It is also consistent with the no free lunch theorem, albeit 

the theorem refers to an infinite space of problems instances, while here we examined a 

finite space of problems. The empirical investigation showed that in the given finite space, 

formed by simulated and annual river discharge time series, it is still satisfied. The 

practical conclusion drawn from this paper is that, unless there is relevant theoretical 

knowledge, a forecasting problem should be algorithmically approached using many 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2018                   doi:10.20944/preprints201710.0133.v2

http://dx.doi.org/10.20944/preprints201710.0133.v2


35 

 

forecasting methods (stochastic and machine learning), while the final judgment should 

be made by an expert. 
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Appendix	A Statistical	software	and	supplementary	material 

The analyses and visualizations have been performed in R Programming Language (R 

Core Team 2017). We have used the contributed R packages cgwtools (Witthoft 2015), 

devtools (Wickham and Chang 2017), EnvStats (Millard 2013), forecast (Hyndman and 

Khandakar 2008; Hyndman et al. 2017), fracdiff (Fraley et al. 2012), gdata (Warnes et al. 

2017), ggplot2 (Wickham 2016), HKprocess (Tyralis 2016), kernlab (Karatzoglou et al. 

2004), knitr (Xie 2014, 2015, 2017), nnet (Venables and Ripley 2002), randomForest 

(Liaw and Wiener 2002), readr (Wickham et al. 2017), rminer (Cortez 2010, 2016) and 

tidyr (Wickham and Henry 2017). 

The supplementary material is available in Papacharalampous et al. (2018a). We 

provide the fully reproducible reports together with their codes. We also provide the 

reports entitled “Definition of the stochastic processes’’, “Definition of the metrics’’, 

“Selected figures for the qualitative comparison of the forecasting methods’’, which we 

suggest to be read alongside with Sections  2.1, 2.4 and 3.1 respectively. 
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