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Abstract: In this paper, a two-stage stochastic programming modelling is proposed to design a 11 
multi-period, multistage, and single-commodity integrated forward/reverse logistics network 12 
design problem under uncertainty. The problem involves both strategic and tactical decision levels. 13 
The first stage deals with strategic decisions, which are the number, capacity, and location of 14 
forward and reverse facilities. At the second stage tactical decisions such as base stock level as an 15 
inventory policy is determined. The generic introduced model consists of suppliers, manufactures, 16 
and distribution centers in forward logistic and collection centers, remanufactures, redistribution, 17 
and disposal centers in reverse logistic. The strength of proposed model is its applicability to various 18 
industries. The problem is formulated as a mixed-integer linear programming model and is solved 19 
by using Benders’ Decomposition (BD) approach. In order to accelerate the Benders’ decomposition, 20 
a number of valid inequalities are added to the master problem. The proposed accelerated BD is 21 
evaluated through small-, medium-, and large-sized test problems. Numerical results reveal that 22 
proposed solution algorithm increases convergence of lower bound and upper bound of BD and is 23 
able to reach an acceptable optimality gap in a convenient CPU time.  24 

Keywords: integrated forward/reverse logistics network; accelerated benders’ decomposition; two-25 
stage stochastic programming  26 

 27 

1. Introduction 28 

The main purpose of Supply Chain Management (SCM) is to integrate entities including 29 
suppliers, manufacturers, distribution centers, and retailers in order to acquire raw materials, 30 
transform raw materials to finished products and distribute products to customers in an efficient way 31 
[1]. Achieving success in supply chain management involves decisions relating to flow of 32 
information, products, and funds. Above-mentioned decisions fall into three levels; those are supply 33 
chain design, - planning, and –operations [2]. In general, a Supply Chain Network Design (SCND) 34 
problem includes long-term decisions (strategic level) such as facilities’ location, number, capacity 35 
level, and technology selection; mid-term decisions (tactical level) that usually contain the production 36 
quantity and the volume of transportation between entities; and finally short-term decisions 37 
(operational level) where all material flows are scheduled based on decisions made in the two other 38 
levels [3].  39 

Over the last decade, the intensity of environmental regulations and guarantee commitments 40 
lead manufactures to adopt activities associated with returned product, such as collection, recovery, 41 
remanufacturing, refurbishing, and disposal of used products that generally called Reverse Logistics 42 
(RL) [4]. RL literature is divided in two groups; those which considered forward and reverse flows 43 
simultaneously and those that fully concentrate on reverse flows. Actually the integrated forward 44 
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and reverse flow networks, such as Closed-Loop Supply Chain (CLSC), have more complexity in 45 
design and planning.  46 

Many researchers have investigated supply networks design in deterministic environment. In 47 
comparison with forward supply chains that consider uncertainties in customers demand, price, and 48 
resource capacity levels, RL operations are confronted with a higher degree of uncertainty such as 49 
collection rates, availability of recycled production inputs, disposal and recycling rates[5]. 50 
Nevertheless, the majority of studies assume that the operational characteristics and design 51 
parameters of RL networks are deterministic.  52 

In recent years, a number of reviewing papers have been published on reverse logistics. Ackali 53 
et al [6] presented a critical review on RL and Integrated Forward/Reverse Logistic Network (IFRLN) 54 
problems, and discussed the main characteristic of models and solution methods proposed in the 55 
literature. Chanintrakul et al. [7] reviewed open loop and closed-loop supply chain models with 56 
considering the impact of uncertainty in recent researches. They argued the fact that few researches 57 
deals with demand and return uncertainty in terms of quality and quantity. And moreover, tactical 58 
decisions should be resolved along with strategic decisions in which previous researches have not 59 
effectively investigated.  60 

In the context of RL various models have been developed in the last decade (e.g. [8-10]). For 61 
integrated forward/reverse logistic network design one of the first stochastic models was presented 62 
by Listes [11] and later Listes et al. [12]. The model explores one echelon forward network combined 63 
with two echelon reverse network. The uncertainty is handled in a stochastic formulation by means 64 
of discrete alternative scenarios. Matthew et al. [13] studies a network design problem for carpet 65 
recycling in the US where supply and demand parameters were stochastic. Later Salema et al. [14] 66 
extended the Fleischmann’s model [15] to a capacitated multi-product stochastic CLSC applied to an 67 
office document company in Spain.  68 

Most of articles in stochastic IFRLN literature are single-period (e.g. [16-21]). Lee et al. [22] 69 
introduce a multi-period, multi-product dynamic location and allocation model under demand 70 
uncertainty. To solve the model an integrated sampling Average Approximation (SAA) method with 71 
a simulated annealing (SA) algorithm is developed.  72 

The literatures that studied stochastic IFRLN network design problem considering inventory 73 
policy are few. Lieckens et al. [23] extends a closed-loop supply Mixed-Integer Linear Programming 74 
(MILP) model combined with queuing characteristics using a G/G/m model which increase the 75 
dynamic aspects like Lead Time and inventory position of the basic model. Since combining RL with 76 
queuing model intensifies the computational complexity of the model, they restrict to a single-level, 77 
single-product network design problem that covers a single-period. The new MINLP is solved with 78 
the differential evolution technique (DE). El-Sayed et al. [24] proposed a MILP multi-period, multi-79 
echelon forward and reverse logistic network design model under uncertainty. The problem is 80 
formulated to maximize the total expected profit under risk. To achieve a generic model of CLSC 81 
authors incurred various costs such as transportation, materials, remanufacturing, recycling, 82 
disposal, non-utilized capacity, storage, shortage, recycling, and inventory holding cost.  83 

To structure the literature review specifically on closed loop supply chain and integrated 84 
forward/reverse logistic network design problem under uncertainty, we give a systematic review of 85 
existing studies presented in Table 2. To facilitate the structure of Table 2, characteristics of networks 86 
are coded and demonstrated in Table 1. As shown in Table 2, most of the papers are those that are 87 
single-period and single-product. A few papers solve their model with exact optimization approach 88 
where utilizing commercial solvers are more common. 89 
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 90 

 91 

 92 

 93 

Table 1 94 

Modeling approach codes 95 
Category Detail Code Category Detail Code

 
Model 

objectives 

Cost minimization CM 
 
 

Features of 
model 

Period  
Profit maximization PM  Single-period S 
Responsiveness R  Multi-period M 
Quality Q Facility capacity  
Other OT  Uncapacitated U 

 
 
 
 
 
 

Features 
of model 

Stochastic parameters   Capacitated C 
 Quantity of demand D  Capacity expansion CE 
 Quantity of returns R Single sourcing SS 
 Quality of returns 
 Recovery rate 

RQ 
RR Model 

Mixed Integer Linear 
Programming 

MILP 

  Recovery cost RC Mixed Integer Non-
Linear Programming 

MINL
P   Transportation cost TC 

  Lead time LT 
Decision 

variables of 
model 

Inventory decisions I 
  Income In Facility capacity Fc 
  Other OT Demand satisfaction D 
Product commodity  Transportation values TV 
 Single-commodity S Location/allocation LA 
 Multi-commodity M Transportation mode 

selection 
TM 

  Solution 
methodology 

Technology selection TS 
  Exact solution method EX 

  Heuristic solution 
method 

HE 

 96 

Table 2 97 

Summary of Stochastic integrated forward/reverse logistic network design 98 

Ref. Model 

obj. 

Stoch. 

param. 

Product 

com. 

Period Facility 

cap. 

Model D.V. Sol. 

method 

Solution 

approach 

[11] PM R S S C MILP TV,LA EX B&C 

[13] PM D M M C MILP TV, LA, Fc, TM -- AIMMS 

[12] PM R, In M S C MILP TV, LA -- CPLEX 

[25] PM D,R S S C MILP TV, LA,SS EX Integer L-Shape 

Method 

[14] CM TC, D, 

 R 

M S C MILP TV, LA, D -- CPLEX 

[23] PM LT S S C MINL

P 

TV, LA, Fc, I HE Differential 

Evaluation (DE) 

[22] CM D,R M M C MILP TV, LA HE SAA with SA 
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 99 
In this paper, we first develop a MILP model for a multi-period, single-product, and capacitated 100 

integrated forward/reverse logistic network design. Due to uncertainty of various parameters in real 101 
problems, demand and return quantity of products are considered to be stochastic. The model is 102 
formulated with a two-stage stochastic programming approach. In the first stage, the strategic 103 
decisions are determined, which are the number, capacity, and location of collection, plants and 104 
distribution centers as well as amount of wholesale contract. Tactical decisions are made in the second 105 
stage (e.g. base stock level). We utilize Latin Hypercube Sampling to make scenarios from input data 106 
by considering correlations between each market. The model is solved with an accelerating Benders’ 107 
Decomposition (BD) approach. Numerical tests investigate the power of accelerated BD in handling 108 
with uncertainty and solving the problem with an acceptable optimal gap.  109 

In summary, Major contributions to this research are: (1) designing a new multi-period 110 
integrated forward/reverse logistic network design amenable for forward and reverse flow in 111 
integrated scheme (2) taking tactical decisions into account by considering an inventory policy for 112 
distribution centers and raw material stocks (3) Applying risk pooling strategy as well as push/pull 113 
mechanism to the model (4) Solving the introduced two stage stochastic programming model with 114 
an accelerate BD where some valid inequalities are added to the master problem equations in order 115 
to avoid infeasibility of problem solution space. 116 

The remainder of the paper is organized as follows. In the next section, we present a 117 
mathematical formulation of proposed IFRLN design. The solution method is introduced in section3, 118 
followed by analysis of computational result in section4. Finally, in section5, we conclude by 119 
reviewing contributions of this research and offer some issues for future researches. 120 

2. Problem definition 121 

2.1. Model description 122 

The general structure of proposed IFRLN is illustrated in Figure 1. In forward direction, the new 123 
product is manufactured in plants by raw material provided from different suppliers, i.e. whole sale 124 
contract, spot market, and recycled material. The product is conveyed from plants to customers 125 
through distribution centers within certain safety stock level. In backward direction, returned 126 
product is transferred from product sellers to collection centers for testing and inspecting. After 127 
classification, returned product is conveyed to distribution centers, remanufacturing plants, and 128 
disposals with respect to amount of repair. In any circumstances, the remanufactured product is 129 
transferred to second market customers through certain distribution centers. The model is proposed 130 
with generic nature, but it can encompass various industries such as digital, equipment, and vehicle 131 

[17] CM, 

OT 

TC,R, 

OT 

M S C MILP TV, LA, TS -- CPLEX10 

[21] CM TC, D, 

 R, RQ 

S S C MILP TV, LA -- LINGO  

[18] PM D, R S S C MILP TV, LA -- CPLEX  

[20] CM D,R M S C MILP TV, LA EX SAA with 

CPLEX 

[16] CM RQ S S  MILP LA EX SAA  

[26] CM, 

R, Q 

D, R , 

RC, OT 

M S C,SS MILP TV, LA, Fc -- Commercial 

Solver 

[19] CM D,R S S C MILP TV, LA -- CPLEX 

[24] PM D,R S M C MILP TV, LA, I -- XpressSp 

Our 

paper 

CM D,R S M C MILP TV, LA, I EX Accelerated BD 
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industries. As a matter of fact, the model is more appropriate for industries with high return rate of 132 
products where these products can be selling up later as refurbished products in second markets.   133 

 134 
Figure 1.The proposed integrated forward/reverse logistic network model consisting suppliers, manufacturers, 135 

distribution centers, collection/inspection centers and disposal centers. 136 

 137 
The introduced model is a multi-stage, multi-period, capacitated, single commodity IFRLN 138 

under uncertainty. Our specifications of model are listed as below:  139 
• The periodic review policy is used for the distribution centers and manufactures in which the 140 

inventory levels are reviewed at certain intervals and the appropriate orders are placed after 141 
each review. The inventory level of raw material should meet a specific amount in each period. 142 
The production and shipment from the manufacturers to the distribution centers take place to 143 
raise the inventory level of distribution centers to the base-stock level (S) at the beginning of each 144 
period. This concept is referred to as the push strategy in the related literature. On the other 145 
hand, 6 the customer demands are met with the inventory kept by the distribution centers. The 146 
customers only place the orders to the distribution centers. This system is known as a pull-based 147 
system.  148 

• A Hybrid concept for production plants is considered. Due to fact that Locating manufacture 149 
and remanufacture plants in a same potential place will reduce fixed costs, we are interested in 150 
locating hybrid plants. 151 

• In distribution centers, risk pooling strategy is considered where both new and remanufactured 152 
product is held simultaneously. The ‘‘risk-pooling” strategy is as an efficient ways to manage 153 
demand uncertainty, for which inventory needs to be centralized at distribution centers (DC’s) 154 
arriving to a convenient service levels. Each DC use base stock level inventory policy to satisfy 155 
demands from retailers as well as safety stock to cope with the variability of the customer 156 
demands at retailers to achieve ‘‘risk-pooling” benefits.  157 

• As mentioned above, inventory level of raw material should meet a specific amount in each 158 
period. To this aim, raw material is provided through wholesale contract, spot market and 159 
recycled material. Wholesale contract is a long term agreement with suppliers to convey certain 160 
proportion of raw material in the beginning of each period. If amount of provided raw material 161 
by wholesale contract and recycled material do not meet the base stock level in each period, 162 
shortage of raw material compensates with buying from spot market but in higher price. 163 
 To specify the study scope, assumptions and limitations in the proposed model formulation are 164 

as follows.  165 
• A single-product, multi-stage, multi-period supply chain network is given.  166 
• We assume there are a finite set of facilities, i.e. manufacturers and distribution centers, should 167 

be opened.  168 
• There is no limitation on the capacity of the material flow through the network. 169 
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• We face with the uncertainty on the demand of the customers to the distribution centers and 170 
return of used products to collection centers.  171 

• Transportation cost is linearly dependent on the distance between stages.  172 
• Distribution centers and raw material stock at manufactures incur inventory holding costs at the 173 

end of each period. 174 
• All of the returned products must be collected, but, shortage is allowed for satisfying the 175 

demands of second market’s customers. 176 
• Customers’ locations are known and fixed. 177 

2.2. Model formulation 178 

According to Birge et al. [27], in a stochastic optimization model the decisions could be taken in 179 
two stages. In the first stage, strategic decisions are determined as here-and-now decisions that 180 
should be made before the demand and return realization and the tactical decisions should be made 181 
in the secondstage as wait and see decisions. Moreover, the second-stage in our model considers 182 
multi-periods in which the tactical costs can be efficiently captured. This would be advantageous 183 
specifically for those supply chain networks whose demands differ from one period to another 184 
period. The following notations are used for the mixed integer linear programming (MILP) of the 185 
proposed model: 186 
Sets: 

 Set of potential manufacturer locations  

 Set of potential distribution center locations   

 Set of periods in planning horizon  

 Set of customers for new product  
 Set of customers for used product  

 Set of potential collection center locations  

 Set of  disposal locations  

 Set of seller product  
 Set of scenarios  

 

Parameters, constants, and coefficients: 

 Fixed cost of locating manufacturer at location i 

 Fixed cost of locating remanufacturer at location i 

 Fixed cost of locating distribution center for new product at location j 

 Fixed cost of locating distribution center for used product at location j 

 Fixed cost of locating collection center at location l 

 Saving cost of locating a hybrid manufacture/ remanufacture facility at location i 

I Iii ∈′,

J Jj∈

T Tkt ∈,

C Cc∈
C ′ Cc ′∈′
l Ll∈
D Dd∈
R Rr∈
S Ss∈

M
iF

RM
iF

Dc
jF

cD
jF

′

Cl
lF

p
is
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 Saving cost of locating a hybrid distribution center facility at location j 

 Cost for capacity of manufacturer i per unit of product 

 Cost for capacity of remanufacturer i per unit of product 

 Cost for capacity of distribution center j per unit of new product 

 Cost for capacity of distribution center j per unit of used product 

 Cost for capacity of collection center l per unit of returned product 

 Maximum available capacity of manufacturing at location i 

 Maximum available capacity of remanufacturing at location i 

 Maximum available capacity for new product at distribution center j 

 Maximum available capacity for second hand product at distribution center j 

 Maximum available capacity of collection center at location l 

 Maximum available capacity for production facilities at location i 

 Maximum available capacity for distributing center facilities at  location j 

 Cost of transporting per unit of product between manufacturer p and distribution center j 

 Cost of transporting per unit of new product between distribution center j and customer c  

 Cost of transporting per unit of used product between distribution center j and customer  

 Cost of transporting per unit of product between seller r and collection center l 

 Cost of transporting per unit of  product between collection center l and disposal d 

 Cost of transporting per unit of recycled product between disposal d and manufacture i 

 Cost of transporting per unit of product between collection center l and distribution center j 

 Cost of transporting per unit of product between collection center l and manufacture i 

Dcs
js

M
iVc

RM
iVc

Dc
jVc

cD
jVc ′

Cl
lVc

MMax
iCap −

RMMax
iCap −

DcMax
jCap −

cDMax
jCap ′−

ClMax
lCap −

PMax
iCap −

DcsMax
jCap −

DcM
ijTc −

CuDc
jcTc −

uCcD
cjTc ′−′
′ uc ′

ClSr
rlTc −

DiCl
ldTc −

MDi
diTc −

cDCl
ljTc ′−

MCl
liTc −
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 Cost of transporting per unit of product between manufacture i and remanufacture  

 Cost of holding per unit of inventory in distribution center j  

 Cost of holding per unit of inventory in manufacture i 

 Product demand of customer c in scenario s at period t 

 Product returns of seller r in scenario s at period t 

 Probability of scenario s 

The quantity of raw material needed for one unit of a product 

 Cost of buying raw material from spot market 

 Rate of raw materials shipped from disposal center to raw material stock 

Rate of new product shipped from manufacture centers to distribution centers 

 Rate of product shipped from collection centers to distribution centers 

 Rate of product shipped from collection centers to disposal centers 

 A large number 

 Number of periods 

Decision variables: 

 Binary variable equals to 1 if a manufacturer is located at location i, 0 otherwise 

 Binary variable equals to 1 if a remanufacturer is located at location i, 0 otherwise 

 
Binary variable equals to 1 if a distribution center for new product is located at location j, 0 

otherwise 

 
Binary variable equals to 1 if a distribution center for used product is located at location j, 0 

otherwise 

 
Binary variable equals to 1 if a manufacture and remanufacture located at location i, 0 

otherwise 

 
Binary variable equals to 1 if a new product distribution center and used product 

distribution center located at location j, 0 otherwise 

 Binary variable equals to 1 if a collection center is located at location l, 0 otherwise 

 Quantity committed in wholesale contract 

RmM
iiTc

−
′ i′

Dc
jIc

M
iIc

Cu
cstD

rtsRs

sPr

BOM

smC

β

λ

1γ

2γ

M

tN

M
ix

RM
ix

Dc
jy

Dc
jy′

p
ii

x

Dcs
jy

Cl
lz

CW
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 Quantity committed in contract to manufacture i at period t  

 Quantity bought from spot market for manufacture i in scenario s at period t  

 Quantity of production in manufacture i in scenario s at period t 

 Capacity of manufacture i 

 Capacity of remanufacture i 

 Capacity of distribution center j for new product 

 Capacity of distribution center j for used product 

 Capacity of collection center l 

 Base-stock level of distribution center j at the beginning of each period 

 Base-stock level of manufacture i at the beginning of each period 

 
Inventory level of manufacture i at the end of period t in scenario s 

 Inventory level of distribution center j for new products at the end of period t in scenario s 

 
Inventory level of distribution center j  for second market products at the end of period t in 

scenario s 

 
flow of production in manufacture i transported to distribution center j at period t in 

scenario s 

 flow of material from disposal d transported to manufacture i at period t in scenario s 

 
flow of remanufactured product in remanufacture i transported to distribution center j in 

scenario s at period t  

 
flow of production in manufacture i transported to remanufacture  in scenario s at period 

t 

 
flow of returned product from collection center l transported to remanufacture i in scenario 

s at period t 

 
flow of returned product from collection center l transported to distribution center j at 

period t in scenario s 

 
flow of returned product from collection center l transported to disposal d at period t in 

scenario s 

M
itr

M
istsm

M
istqp

M
ic

RM
ic

Dc
jc

cD
jc

′

Cl
lc

Dc
jb

M
ib

M
istinv

Dc
jstinv

cD
jstinv ′

DcM
ijstf

−

MDi
distf

−

cDRM
ijstf

′−

RmM
stiif

−
′

i′

RmCl
listf

−

cDCl
ljstf

′−

DiCl
ldstf

−
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flow of new product from distribution center j transported to customer c at period t in 

scenario s 

 
flow of used product from distribution center l transported to customer  at period t in 

scenario s 

 
Flow of returned product from sellers r transported to collection center l at period t in 

scenario s 

 187 

It should be noted that the uncertain demand and return in our mathematical formulation is 188 

introduced by .  is a given realization of uncertain parameters and  represents the expected 189 

value with respect to . 190 

According to [27] the actual value of  becomes known in the second stage in which recourse 191 

decisions can be calculated. Therefore, decisions related to the first-stage are made by taking the 192 

future uncertain effects into account. These effects are measured by the recourse function,193 

, where is the value of the second-stage for a given realization of 194 

the demand and return. 195 

 

 (1) 

Subject to:   

  (2) 

 
 (3) 

 
 (4) 

 
 (5) 

 
 (6) 

  (7) 

  
(8) 

  
(9) 

  
(10) 

CuDc
jcstf −

uCDc
stcjf

′−
′

c′

ClSr
rlstf

−

ζ sζ Eζ

ζ

ζ

( ) ( )( ), , , , , sQ x wb E Q x wbζ ζ= ( ), ,Q x w b

( )bwxQsysxMNWVccVccVcc

VccVccFzFyFyFxFxw

j

Dcs
j

Dcs
j

i

p
i

p
it

c

l

Cl
l

Cl
l

j

cD
j

cD
j

j

Dc
j

Dc
j

i

RM
i

RM
i

i

M
i

M
i

Cl
l

l

Cl
l

cD
j

j

cD
j

Dc
j

j

Dc
j

RM
i

i

RM
i

M
i

i

M
i

,,

min

+−−++++

++++++=





′′

′′

( )MMax
i

M
i

M
i Capxc −×≤ Ii∈∀

( )RMMax
i

RM
i

RM
i Capxc −×≤ Ii∈∀

P
i

RM
i

M
i xxx ×≥+ 2 Ii∈∀

( ) P
i

PMax
i

RM
i

M
i xCapcc ×≤+ − Ii∈∀

1+≤+ P
i

RM
i

M
i xxx Ii∈∀

( )DcMax
j

Dc
j

Dc
j Capyc −≤ Jj∈∀

( )cDMax
j

cD
j

cD
j Capyc ′−′′ ≤ Jj∈∀

Dcs
j

cD
j

Dc
j yyy ×≥+ ′ 2 Jj∈∀

( ) D
j

DcsMax
j

cD
j

Dc
j yCapcc −′ ≤+ Jj∈∀
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(11) 

  (12) 

  (13) 

  (14) 
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(36) 

  
(37) 

  
(38) 

Relation (1) is the objective function that minimizes the sum of the first-stage costs and the 196 
expected second-stage costs. The first-stage costs represent the costs of locating and capacity of the 197 
manufacturers, remanufactures, distribution centers for new and used products and collection 198 
centers along with wholesale contract amount and base stock level. Finally, saving costs of locating 199 
hybrid facilities are subtracted from the above-mentioned objective function. The second-stage 200 
objective function, i.e. Relation (15), includes two types of costs: firstly, the transportation costs, and 201 
secondly, the inventory holding costs.  202 

Constraints (2-6), (7-11) and (12) ensure that the capacity restrictions for each production plants, 203 
distribution center facilities, and collection centers respectively. Constraints (4-6) deal with the hybrid 204 
strategy of locating manufacturing and remanufacturing plants. Constraint (13) guarantees that the 205 
capacity of each distribution center should be greater than base-stock level amount. Relation (14) 206 
assures that the amount of raw material provided to every manufactures in each period by wholesale 207 
contract should be equal to wholesale contract amount. Relations (16-20) are balance constraints that 208 
calculate base stock level at the beginning and inventory level at the end of each period. To be more 209 
specific relation (16) shows base stock level of each plant is equal with amount of raw material 210 
transported from all disposals, bought from spot market and assigned from wholesale contract in 211 
each period. These constraints refer to the push-based strategy concept in aforementioned 212 
mathematical formulation.  213 

Relation (18) assesses Inventory of each plant in each scenario and period equals to sum of input 214 
raw materials subtracted from quantity of material used in production in that period. Relation (19) 215 
calculates the inventory level at the end of period t by subtracting the total output flow of new 216 
product to the customers in scenario s from all input flows to each distribution center until period t. 217 
Constraint (23) assures that products are not produced more than manufacturers’ capacities in each 218 
scenario and period, while constraint (24) assures that used products will not carry more than the 219 
capacity of its DCs. Constraint (29) ensures the demands of all retailers are satisfied in scenario s at 220 
period t. relation (30) show that used product quantity in DCs is equal to customer’s demand of it in 221 
each period and scenario. Rests of the constraints are mostly flow constraints between stages and 222 
facilities. 223 

3. A Benders’ decomposition-based solution algorithm  224 

Benders’ Decomposition (BD) algorithm is a classical solution approach for combinatorial 225 
optimization problems, which was firstly presented to solve MILP problems by Benders[28] . This 226 
method is one of wide commonly used techniques in the SCND problems (see for example[2] ,[29], 227 
[30]). In CLSC literature, Üster et al. [31] explore a multi-product network design problem and solve 228 
the model using Benders’ Decomposition where multiple Benders’ cuts are generated. 229 

Benders’ algorithm decomposes the main problem into two parts. The first part, called master 230 
problem (MP), solves a relaxed version of the problem to obtain values for a subset of the variables. 231 
The second part, called subproblem (SP), obtains the values of remaining variables while fixing 232 
variables of master problem, and utilizes these to generate cuts for the MP. The MP and SP are solved 233 
iteratively until the algorithm is converged. It should be note that there are two types of cuts: 234 
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feasibility cut and optimality cut. Feasibility cut is added to the MP when the SP becomes infeasible, 235 
otherwise optimality cut is needed to be embedded in the MP.  236 

BD is computationally very time-consuming if a large number of scenarios are used to 237 
characterize the randomness. To face with this problem in stochastic optimization problems, various 238 
techniques of accelerating Benders’ decomposition have been proposed in recent decade. Research 239 
has mainly focused on either reducing the number of integer relaxed master problems being solved 240 
or on accelerating the solution of the relaxed master problem. In fact these techniques commonly 241 
generated stronger lower bounds and promoted faster convergence opposed to the classical Benders’ 242 
approach. Multi-cut [32], local branching [33], valid inequalities [34, 35], alpha covering-bundling 243 
cuts, Magnanti [36], and combination of Meta heuristic approaches [37] are the most popular 244 
accelerating BD techniques. None of these approaches are a generic solution to accelerate BD and 245 
they mostly deal with very limited and specific problems.  246 

In this paper, due to the nature of our problem, we apply valid inequalities to accelerate Benders’ 247 
decomposition algorithm for solving the developed optimization problem. 248 

Valid inequalities are some constraints that should be added to MP constraints. These constraints 249 
can strengthen the LP relaxation of the problem. They can also improve convergence of lower and 250 
upper bound by helping the relaxed MP to find close to optimal solutions. Indeed, because the 251 
iterative algorithm is initialized from empty subset s of extreme rays and extreme points, the relaxed 252 
MP initially contains only the integrality constraints. As a result, several iterations must be performed 253 
before enough information is transferred to the MP. Introducing valid inequalities in the MP can thus 254 
dramatically reduce the number of cuts that will have to be generated from extreme points and 255 
extreme rays of the dual SP polyhedron. 256 

A pseudo-code of the proposed Benders’ decomposition algorithm is presented as follows: 257 
 258 

Benders’ decomposition algorithm 

Step 0. Initialization 

i.  
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iii.  k =0. 
iv.  Solve the initial master problem to obtain
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ii.     

       Step 3. Solving the master problem 
i.  Add optimality cuts to the master problem for each scenario. 

 
ii.  k=k+1. 
iii. Solve the master problem to obtain

. 

  End while 

 
 259 

3.1. Valid inequalities 260 

As mentioned, we have added some valid inequalities equations to MP constraints in order to 261 
improve the convergence rate by hopefully reducing the associated feasible solution of MP. Using 262 
these valid inequalities reduces solution space of MP and avoids infeasibility of SP solution in each 263 
iterations. As a result only an optimal cut is generated to apply to MP. In our problem, following 264 
constraints can be added to the MP to ensure the feasibility of the sub-problems: 265 
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(44) 

  (45) 

Constraint (39) guarantees that total base stock level of all DCs should be greater than or equal 267 
to the summation of customers’ demand in each period and scenario. Constraint (40) indicates the 268 
relation between base stock level of manufacturers and DCs. Like constraint (39), constraint (41) 269 
guarantees that summation of returned products from all sellers cannot exceed total capacity of all 270 
collection centers. Constraints (42-45) addressing the relation between facilities capacities and base 271 
stock levels. For instance constraint (45) illustrates that capacity of each manufacturer must be at least 272 
equal to provided new product. 273 

 274 
Lemma 1. Adding Constraint (39) to the mathematical formulation has no effect on the optimal value of the 275 

objective function. 276 

Proof of Lemma 1. When the feasible solution for the addressed problem is available, the Constraints 277 

(17) and (30) are satisfied. Therefore, we can rewrite these constraints for the first period as follows: 278 

  279 

 280 

(I) and (II) lead to constraint . Since we show that Constraint (39) is constructed 281 

using the constraints of the SP, adding it to the mathematical formulation do not change the feasible 282 

space. So, the optimal value of the objective function remains unchanged.  □ 283 

Lemma 2. Adding constraint (40) to the mathematical formulation has no effect on the optimal value of the 284 

objective function. 285 

Proof of Lemma 2. The same as proof of Lemma 1, when the feasible solution for the addressed 286 

problem is available, the constraints (21) and (32) are satisfied. Therefore, we can rewrite these 287 

constraints as follows: 288 
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 Since obviously it can be inferred that . 291 

(I) and (II) lead to constraint . Since we show that Constraint (41) is 292 

constructed using the constraints of the SP, adding it to the mathematical formulation do not change 293 

the feasible space. So, the optimal value of the objective function remains unchanged.  □  294 

Lemma 3. Adding constraint (41) to the mathematical formulation has no effect on the optimal value of the 295 

objective function. 296 

Proof of Lemma 3. The same as proof of previous Lemmas, when the feasible solution for the 297 

addressed problem is available, the constraints (25) and (31) are satisfied. Therefore, we can rewrite 298 

these constraints as follows: 299 

 
300 

 
301 

 (I) and (II) lead to constraint . Since we show that Constraint (41) is constructed 302 

using the constraints of the SP, adding it to the mathematical formulation do not change the feasible 303 

space. So, the optimal value of the objective function remains unchanged.  □  304 

4. Computational results 305 

To evaluate the performance of the proposed Benders’ decomposition algorithm in terms of the 306 
solution quality, we performed some numerical experiments on a set of randomly generated problem 307 
instances. The algorithm was implemented in GAMS using CPLEX solver. All experiments were run 308 
with an Intel Pentium IV dual core 2.1 GHz CPU PC at 1 GB RAM under a Microsoft Windows XP 309 
environment. 310 

4.1. Data generation for parameters and settings 311 

The required data for random generation of problem instances drawn from the probability 312 
distributions and equations are shown in Table 3. Afterward, using the generated parameters, twelve 313 
problem instances with different sizes are constructed. Table 4 specifies the features of problem 314 
instances used to evaluate proposed solution approach. 315 
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 319 

Table 3 320 

Nominal values of the model parameters. For most of the parameters a uniform distribution is utilized. For 321 

demand and return an autoregressive time series (AR) is used. 322 
Parameter Range Parameter Range 

 ~Uniform (1000000, 4000000)  ~ Uniform (10, 25) 

 ~Uniform (500000,1500000)  ~ Uniform (10, 20) 

 ~Uniform (500000,2500000)  ~ Uniform (20, 25) 

 ~Uniform (400000, 600000)  ~ Uniform (30, 40) 

 ~Uniform (300000,900000)   

 ~Uniform (1000, 1800)  α ~ Uniform (20, 40) 

 ~Uniform(2000,2800)  ~ Uniform (0.15, 0.2) 

 ~Uniform (1500, 3000)  ~ N(0, Uniform (20, 35)) 

 ~Uniform (900,1500)  ~ Uniform (30, 50) 

 ~Uniform (7000, 15000)   

 ~Uniform (1000, 2000)  α ~ Uniform (10, 20) 

 ~Uniform (1000, 5000)  ~ Uniform (0.15, 0.2) 

 ~Uniform (10,30)  ~ N(0, Uniform (10, 25)) 

 ~Uniform (15, 30)   ~ Uniform (20, 30) 

 ~Uniform (10, 30)  60  

 ~Uniform (20, 35)  0.7 

 ~Uniform (10, 30)  0.95 

 ~Uniform (15, 30)  0.4 

 ~Uniform (10, 20)  0.4 
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Table 4  323 

Characteristics of test problems. 4 test cases are generated for each small, medium, and large test 324 

problems. Each test case has a specific distinction to the other cases. 325 
Size of test 
problems 

ID  

 
       

 
 

Small 

1 4 8 8 10 15 10 2 20 12 
2 4 8 8 10 15 10 2 40 12 
3 5 10 10 12 15 12 2 20 12 
4 5 10 10 12 15 12 2 40 12 

 
 

Medium  

5 8 18 12 18 15 15 2 20 12 
6 8 18 12 18 15 15 2 40 12 
7 10 20 12 20 15 15 2 20 12 
8 10 20 12 20 15 15 2 40 12 

 
 

Large  

9 15 40 30 40 15 20 2 20 12 
10 15 40 30 40 15 20 2 40 12 
11 20 60 40 60 15 20 2 20 12 
12 20 60 40 60 15 20 2 40 12 

 326 
As shown in table 4, in order to investigate performance of accelerated BD, test problems vary 327 

in size. These size leads to better understanding of accelerated BD power versus classic BD. In large 328 
scale problems as number of binary variables increases, solving the model with BD become more 329 
time consuming. Table 5, demonstrate the number of binary and continues variables of generated test 330 
problems. 331 

Table 5 332 
Number of variables and constraints in each test problem 333 

ID Number of Variables No. of 
constraints 

No. of 
scenarios Binary Continues 

1 44 117,213 35,116 20 
2 44 234,333 70,156 40 

3 55 169,316 43,532 20 
4 55 338,516 86,972 40 
5 90 358,747 67,586 20 
6 90 717,307 135,026 40 
7 102 433,183 75,682 20 
8 102 866,143 151,364 40 
9 195 1,439,176 143,584 20 

10 195 2,877,976 287,167 40 
11 280 2,750,921 202,516 20 
12 280 5,501,321 405,032 40 

Test problems are solved with accelerated BD, classic BD, and CPLEX solver. We limit the 334 
solving time to 3h and BD iterations to 40 for small scale problems where for medium size, time was 335 
limited to 5h and BD iterations to 70 and for large scale problems the time limit was 10h and the BD 336 
iteration was 100. If a solution approach reached any of mentioned-limitation, the solution process 337 
should be stopped. Table 6 illustrates the optimality gap and CPU time of solving each test problem 338 

i l C C′ r d S Tj
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with these methods. Accelerated BD, solve the large scale problems better than classic BD with 339 
acceptable optimality gap. In small scale problems the difference is not considerable. CPLEX only 340 
solve four small scale test problems in an admissible time. 341 

Table6 342 
A comparison of proposed accelerated BD to classic BD and CPLEX for small, medium, and 343 

large size test problems. 344 

  CPLEX  Classic BD  Accelerated BD  

ID Optimality 
gap  

CPU(s)  Optimalit
y gap  

CPU(s)  Optimality 
gap  

CPU(s)  

1 0 210 4.2310 330.12 0.8197 320.64 
2 0 721.18 7.3141 645.56 0.4826 642.61 

3 0 400.50 11.8911 400.50 0.5528 393.76 

4 -- >1h 15.0164 779.74 0.8998 780.02 

5 0 2751.16 11.4512 1312.51 1.3446 1268.44 

6 -- >5h 14.7121 2669.98 1.5875 2618.37 

7 -- >5h  15.1241 1591.56  2.6123 1540.67 

8 -- >5h  16.0195 3090.12  3.4303 3089.33 

9 -- >10h  15.9184 5093.42  4.9106 5009.21 

10 -- >10h  17.4120 10274.84  7.2837 10121.71 

11 -- >10h 18.1027 7421.12 6.2287 7021.13 
12 -- >10h 19.8193 14573.69 8.5850 14011.87 

 345 
By comparing proposed accelerate BD with classic BD, one can realize that valid inequalities 346 

cause a faster convergence of lower and upper bound. Moreover, classic BD is initialized from empty 347 
subset s of extreme rays and extreme points where valid inequalities cause an initial value for lower 348 
bound of accelerated BD and lead to faster convergence of the upper and lower bounds. 349 

5. Conclusions  350 

In today’s competitive business environment, the design and management of an integrated 351 
forward/ reverse supply chain network is one of the most important and difficult problems that 352 
managers encounter. To this aim, we propose a generic multi-stage, multi-period, single commodity 353 
and capacitated IFRLN design. To deal with uncertainty, demand of products (new and recovered 354 
product) and return of product from resellers are considered as stochastic parameters.  Moreover 355 
we consider push/pull strategy and risk pooling strategy in the model. To solve the proposed two-356 
stage stochastic programming model, Benders’ Decomposition approach is used. Due to slow 357 
convergence of lower and upper bound in large scale problems, a number of valid inequalities are 358 
applied to master problem. Test problem results represents that accelerated BD have dominant 359 
optimality gap in comparison with classic BD in acceptable CPU time.  360 

In the context of IFRLN a few papers solve their model with exact approaches specially BD. We 361 
believe this paper provides a good starting point in this research area. 362 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 October 2017                   doi:10.20944/preprints201710.0132.v1

Peer-reviewed version available at Logistics 2017, 1, 11; doi:10.3390/logistics1020011

http://dx.doi.org/10.20944/preprints201710.0132.v1
http://dx.doi.org/10.3390/logistics1020011


 21 of 22 

 

It is suggested to extend the model for multi-commodity configuration. There are other 363 
stochastic parameters that are appropriate to consider in the model such as quality of products, raw 364 
material price, return rate, and recoverable rate of products. We propose base stock level as inventory 365 
policy where other non-linear inventory policy such as (S,S) and (R,Q) policies can investigate 366 
through the extended model. Moreover, since the refurbished and new products should have 367 
different prices, we believe taking pricing policies and guarantee regulations into account, will be the 368 
major future research area. 369 

In the context of solution approach, other accelerating approaches of BD such as Lagrangian 370 
Relaxation (LR) or Meta Heuristics can be applied and verify the differences of these methods.  371 

 372 
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