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11 Abstract: In this paper, a two-stage stochastic programming modelling is proposed to design a
12 multi-period, multistage, and single-commodity integrated forward/reverse logistics network
13 design problem under uncertainty. The problem involves both strategic and tactical decision levels.
14 The first stage deals with strategic decisions, which are the number, capacity, and location of
15 forward and reverse facilities. At the second stage tactical decisions such as base stock level as an
16 inventory policy is determined. The generic introduced model consists of suppliers, manufactures,
17 and distribution centers in forward logistic and collection centers, remanufactures, redistribution,
18 and disposal centers in reverse logistic. The strength of proposed model is its applicability to various
19 industries. The problem is formulated as a mixed-integer linear programming model and is solved
20 by using Benders” Decomposition (BD) approach. In order to accelerate the Benders” decomposition,
21 a number of valid inequalities are added to the master problem. The proposed accelerated BD is
22 evaluated through small-, medium-, and large-sized test problems. Numerical results reveal that
23 proposed solution algorithm increases convergence of lower bound and upper bound of BD and is
24 able to reach an acceptable optimality gap in a convenient CPU time.

25 Keywords: integrated forward/reverse logistics network; accelerated benders” decomposition; two-
26 stage stochastic programming

27

28 1. Introduction

29 The main purpose of Supply Chain Management (SCM) is to integrate entities including
30  suppliers, manufacturers, distribution centers, and retailers in order to acquire raw materials,
31  transform raw materials to finished products and distribute products to customers in an efficient way
32 [1]. Achieving success in supply chain management involves decisions relating to flow of
33 information, products, and funds. Above-mentioned decisions fall into three levels; those are supply
34 chain design, - planning, and —operations [2]. In general, a Supply Chain Network Design (SCND)
35  problem includes long-term decisions (strategic level) such as facilities’” location, number, capacity
36  level, and technology selection; mid-term decisions (tactical level) that usually contain the production
37  quantity and the volume of transportation between entities; and finally short-term decisions
38  (operational level) where all material flows are scheduled based on decisions made in the two other
39  levels [3].

40 Over the last decade, the intensity of environmental regulations and guarantee commitments
41  lead manufactures to adopt activities associated with returned product, such as collection, recovery,
42 remanufacturing, refurbishing, and disposal of used products that generally called Reverse Logistics
43 (RL) [4]. RL literature is divided in two groups; those which considered forward and reverse flows
44  simultaneously and those that fully concentrate on reverse flows. Actually the integrated forward
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and reverse flow networks, such as Closed-Loop Supply Chain (CLSC), have more complexity in
design and planning.

Many researchers have investigated supply networks design in deterministic environment. In
comparison with forward supply chains that consider uncertainties in customers demand, price, and
resource capacity levels, RL operations are confronted with a higher degree of uncertainty such as
collection rates, availability of recycled production inputs, disposal and recycling rates[5].
Nevertheless, the majority of studies assume that the operational characteristics and design
parameters of RL networks are deterministic.

In recent years, a number of reviewing papers have been published on reverse logistics. Ackali
et al [6] presented a critical review on RL and Integrated Forward/Reverse Logistic Network (IFRLN)
problems, and discussed the main characteristic of models and solution methods proposed in the
literature. Chanintrakul et al. [7] reviewed open loop and closed-loop supply chain models with
considering the impact of uncertainty in recent researches. They argued the fact that few researches
deals with demand and return uncertainty in terms of quality and quantity. And moreover, tactical
decisions should be resolved along with strategic decisions in which previous researches have not
effectively investigated.

In the context of RL various models have been developed in the last decade (e.g. [8-10]). For
integrated forward/reverse logistic network design one of the first stochastic models was presented
by Listes [11] and later Listes et al. [12]. The model explores one echelon forward network combined
with two echelon reverse network. The uncertainty is handled in a stochastic formulation by means
of discrete alternative scenarios. Matthew et al. [13] studies a network design problem for carpet
recycling in the US where supply and demand parameters were stochastic. Later Salema et al. [14]
extended the Fleischmann’s model [15] to a capacitated multi-product stochastic CLSC applied to an
office document company in Spain.

Most of articles in stochastic IFRLN literature are single-period (e.g. [16-21]). Lee et al. [22]
introduce a multi-period, multi-product dynamic location and allocation model under demand
uncertainty. To solve the model an integrated sampling Average Approximation (SAA) method with
a simulated annealing (SA) algorithm is developed.

The literatures that studied stochastic IFRLN network design problem considering inventory
policy are few. Lieckens et al. [23] extends a closed-loop supply Mixed-Integer Linear Programming
(MILP) model combined with queuing characteristics using a G/G/m model which increase the
dynamic aspects like Lead Time and inventory position of the basic model. Since combining RL with
queuing model intensifies the computational complexity of the model, they restrict to a single-level,
single-product network design problem that covers a single-period. The new MINLP is solved with
the differential evolution technique (DE). El-Sayed et al. [24] proposed a MILP multi-period, multi-
echelon forward and reverse logistic network design model under uncertainty. The problem is
formulated to maximize the total expected profit under risk. To achieve a generic model of CLSC
authors incurred various costs such as transportation, materials, remanufacturing, recycling,
disposal, non-utilized capacity, storage, shortage, recycling, and inventory holding cost.

To structure the literature review specifically on closed loop supply chain and integrated
forward/reverse logistic network design problem under uncertainty, we give a systematic review of
existing studies presented in Table 2. To facilitate the structure of Table 2, characteristics of networks
are coded and demonstrated in Table 1. As shown in Table 2, most of the papers are those that are
single-period and single-product. A few papers solve their model with exact optimization approach
where utilizing commercial solvers are more common.

d0i:10.20944/preprints201710.0132.v1
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Table 1
Modeling approach codes
Category Detail Code Category Detail Code
Cost minimization CM Period
Model | Profit maximization PM Single-period S
objectives | Responsiveness R Multi-period M
Quality Q Features of | Facility capacity
Other oT model Uncapacitated U
Stochastic parameters Capacitated C
Quantity of demand D Capacity expansion CE
Quantity of returns R Single sourcing SS
Quality of returns RQ Mixed Integer Linear MILP
Recovery rate RR Model Programming
Recovery cost RC Mixed Integer Non- MINL
Features Transportation cost TC Linear Programming P
of model Lead time LT Inventory decisions I
Income In Decision Facility capacity Fc
Other OT | variables of | Demand satisfaction D
Product commodity model Transportation values TV
Single-commodity S Location/allocation LA
Multi-commodity M Transportation mode ™
selection
Solution Technology selection TS
methodology | Exact solution method EX
Heuristic solution HE
method
Table 2
Summary of Stochastic integrated forward/reverse logistic network design
Ref. Model Stoch. Product | Period | Facility | Model D.V. Sol. Solution
obj. param. com. cap. method approach
[11] PM R S S C MILP TV,LA EX B&C
[13] PM D M M C MILP | TV, LA, Fc, TM - AIMMS
[12] PM R,In M S C MILP TV, LA -- CPLEX
[25] PM D,R S S C MILP TV, LA,SS EX | Integer L-Shape
Method
[14] CM TC, D, M S C MILP TV,LA, D - CPLEX
R
[23] PM LT S S C MINL | TV, LA, Fc,1 HE Differential
P Evaluation (DE)
[22] CM D.R M M C MILP TV, LA HE SAA with SA
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[17] CM, TC,R, C MILP | TV,LA,TS - CPLEXI10
oT oT
[21] CM TC, D, C MILP TV, LA -- LINGO
R, RQ
[18] PM D,R C MILP TV, LA -- CPLEX
[20] CM D,R MILP TV, LA EX SAA with
CPLEX
[16] CM RQ MILP LA EX SAA
[26] CM, D,R, C,SS MILP TV, LA, Fc - Commercial
R,Q RC, OT Solver
[19] CM D,R MILP TV, LA - CPLEX
[24] PM D,R C MILP TV, LA, 1 - XpressSp
Our CM D,R C MILP TV, LA, 1 EX Accelerated BD
paper
99
100 In this paper, we first develop a MILP model for a multi-period, single-product, and capacitated

101  integrated forward/reverse logistic network design. Due to uncertainty of various parameters in real
102 problems, demand and return quantity of products are considered to be stochastic. The model is
103 formulated with a two-stage stochastic programming approach. In the first stage, the strategic
104 decisions are determined, which are the number, capacity, and location of collection, plants and
105  distribution centers as well as amount of wholesale contract. Tactical decisions are made in the second
106  stage (e.g. base stock level). We utilize Latin Hypercube Sampling to make scenarios from input data
107 by considering correlations between each market. The model is solved with an accelerating Benders’
108  Decomposition (BD) approach. Numerical tests investigate the power of accelerated BD in handling
109  with uncertainty and solving the problem with an acceptable optimal gap.

110 In summary, Major contributions to this research are: (1) designing a new multi-period
111  integrated forward/reverse logistic network design amenable for forward and reverse flow in
112 integrated scheme (2) taking tactical decisions into account by considering an inventory policy for
113 distribution centers and raw material stocks (3) Applying risk pooling strategy as well as push/pull
114 mechanism to the model (4) Solving the introduced two stage stochastic programming model with
115  an accelerate BD where some valid inequalities are added to the master problem equations in order
116  to avoid infeasibility of problem solution space.

117 The remainder of the paper is organized as follows. In the next section, we present a
118  mathematical formulation of proposed IFRLN design. The solution method is introduced in section3,
119  followed by analysis of computational result in section4. Finally, in section5, we conclude by
120 reviewing contributions of this research and offer some issues for future researches.

121 2. Problem definition

122 2.1. Model description

123 The general structure of proposed IFRLN is illustrated in Figure 1. In forward direction, the new
124 product is manufactured in plants by raw material provided from different suppliers, i.e. whole sale
125  contract, spot market, and recycled material. The product is conveyed from plants to customers
126  through distribution centers within certain safety stock level. In backward direction, returned
127 product is transferred from product sellers to collection centers for testing and inspecting. After
128  classification, returned product is conveyed to distribution centers, remanufacturing plants, and
129  disposals with respect to amount of repair. In any circumstances, the remanufactured product is
130 transferred to second market customers through certain distribution centers. The model is proposed
131 with generic nature, but it can encompass various industries such as digital, equipment, and vehicle
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industries. As a matter of fact, the model is more appropriate for industries with high return rate of

products where these products can be selling up later as refurbished products in second markets.

r

@ v i > i / LEGEND

7 — Forward flow A Distribution centers
Contract 4 j / — 7 Backward flow

; c Q Suppliers v Re-Distribution centers

Recycled . g ! Hybrid distribution/

mafeiia] |:| New product plants redistribution centers
; N j / :: Remanufactured ollection/Inspection centers

product plants

O Customers/Sellers of product

~ i - Hybrid plants
e _@._.._.._.._\.._.‘.G ’ @ ep \_/ Disposal centers
N 4

Figure 1.The proposed integrated forward/reverse logistic network model consisting suppliers, manufacturers,

distribution centers, collection/inspection centers and disposal centers.

The introduced model is a multi-stage, multi-period, capacitated, single commodity IFRLN

under uncertainty. Our specifications of model are listed as below:

The periodic review policy is used for the distribution centers and manufactures in which the
inventory levels are reviewed at certain intervals and the appropriate orders are placed after
each review. The inventory level of raw material should meet a specific amount in each period.
The production and shipment from the manufacturers to the distribution centers take place to
raise the inventory level of distribution centers to the base-stock level (S) at the beginning of each
period. This concept is referred to as the push strategy in the related literature. On the other
hand, 6 the customer demands are met with the inventory kept by the distribution centers. The
customers only place the orders to the distribution centers. This system is known as a pull-based
system.
A Hybrid concept for production plants is considered. Due to fact that Locating manufacture
and remanufacture plants in a same potential place will reduce fixed costs, we are interested in
locating hybrid plants.
In distribution centers, risk pooling strategy is considered where both new and remanufactured
product is held simultaneously. The “risk-pooling” strategy is as an efficient ways to manage
demand uncertainty, for which inventory needs to be centralized at distribution centers (DC’s)
arriving to a convenient service levels. Each DC use base stock level inventory policy to satisfy
demands from retailers as well as safety stock to cope with the variability of the customer
demands at retailers to achieve “‘risk-pooling” benefits.
As mentioned above, inventory level of raw material should meet a specific amount in each
period. To this aim, raw material is provided through wholesale contract, spot market and
recycled material. Wholesale contract is a long term agreement with suppliers to convey certain
proportion of raw material in the beginning of each period. If amount of provided raw material
by wholesale contract and recycled material do not meet the base stock level in each period,
shortage of raw material compensates with buying from spot market but in higher price.

To specify the study scope, assumptions and limitations in the proposed model formulation are

as follows.

A single-product, multi-stage, multi-period supply chain network is given.

We assume there are a finite set of facilities, i.e. manufacturers and distribution centers, should
be opened.

There is no limitation on the capacity of the material flow through the network.
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e  We face with the uncertainty on the demand of the customers to the distribution centers and
return of used products to collection centers.

e  Transportation cost is linearly dependent on the distance between stages.

e  Distribution centers and raw material stock at manufactures incur inventory holding costs at the
end of each period.

e All of the returned products must be collected, but, shortage is allowed for satisfying the
demands of second market’s customers.

e  Customers’ locations are known and fixed.

2.2. Model formulation

According to Birge et al. [27], in a stochastic optimization model the decisions could be taken in
two stages. In the first stage, strategic decisions are determined as here-and-now decisions that
should be made before the demand and return realization and the tactical decisions should be made
in the secondstage as wait and see decisions. Moreover, the second-stage in our model considers
multi-periods in which the tactical costs can be efficiently captured. This would be advantageous
specifically for those supply chain networks whose demands differ from one period to another
period. The following notations are used for the mixed integer linear programming (MILP) of the
proposed model:

Sets:
I Set of potential manufacturer locations i,i’ € [
J Set of potential distribution center locations j€ J
T Set of periods in planning horizon ¢, keT
Set of customers for new product c€ C
’ Set of customers for used product el
l Set of potential collection center locations /€ L
D Setof disposal locations d € D
R Set of seller product? € R
S Set of scenarios S € S

Parameters, constants, and coefficients:

FiM Fixed cost of locating manufacturer at location i

ERM Fixed cost of locating remanufacturer at location i

F ch Fixed cost of locating distribution center for new product at location j

F ch’ Fixed cost of locating distribution center for used product at location j

F ZCI Fixed cost of locating collection center at location [

s? Saving cost of locating a hybrid manufacture/ remanufacture facility at location i
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Saving cost of locating a hybrid distribution center facility at location j

Cost for capacity of manufacturer i per unit of product

Cost for capacity of remanufacturer 7 per unit of product

Cost for capacity of distribution center j per unit of new product

Cost for capacity of distribution center j per unit of used product

Cost for capacity of collection center [ per unit of returned product

Maximum available capacity of manufacturing at location i

Maximum available capacity of remanufacturing at location i

Maximum available capacity for new product at distribution center j

Maximum available capacity for second hand product at distribution center j

Maximum available capacity of collection center at location !

Maximum available capacity for production facilities at location i

Maximum available capacity for distributing center facilities at location j

Cost of transporting per unit of product between manufacturer p and distribution center j
Cost of transporting per unit of new product between distribution center j and customer ¢
Cost of transporting per unit of used product between distribution center j and customer cu’
Cost of transporting per unit of product between seller r and collection center /

Cost of transporting per unit of product between collection center [ and disposal d

Cost of transporting per unit of recycled product between disposal 4 and manufacture i
Cost of transporting per unit of product between collection center / and distribution center j

Cost of transporting per unit of product between collection center [ and manufacture i

d0i:10.20944/preprints201710.0132.v1
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M-R . . . .
Te, ™ Cost of transporting per unit of product between manufacture i and remanufacture i’
I Cj-)c Cost of holding per unit of inventory in distribution center j
[ciM Cost of holding per unit of inventory in manufacture i
DCC; Product demand of customer c in scenario s at period ¢
Rs Product returns of seller r in scenario s at period ¢
Pr, Probability of scenario s
BOM The quantity of raw material needed for one unit of a product
C,, Cost of buying raw material from spot market
B Rate of raw materials shipped from disposal center to raw material stock
A Rate of new product shipped from manufacture centers to distribution centers
7 Rate of product shipped from collection centers to distribution centers
7 Rate of product shipped from collection centers to disposal centers
M A large number
N, Number of periods
Decision variables:
xl-M Binary variable equals to 1 if a manufacturer is located at location i, 0 otherwise
xiR M Binary variable equals to 1 if a remanufacturer is located at location i, 0 otherwise
De Binary variable equals to 1 if a distribution center for new product is located at location j, 0
v
’ otherwise
' De Binary variable equals to 1 if a distribution center for used product is located at location j, 0
’ otherwise
» Binary variable equals to 1 if a manufacture and remanufacture located at location i, 0
x5
: otherwise
Des Binary variable equals to 1 if a new product distribution center and used product
V;
/ distribution center located at location j, 0 otherwise
z Binary variable equals to 1 if a collection center is located at location /, 0 otherwise

we Quantity committed in wholesale contract
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r, Quantity committed in contract to manufacture 7 at period ¢
Smif Quantity bought from spot market for manufacture 7 in scenario s at period ¢
qu Quantity of production in manufacture 7 in scenario s at period ¢
ciM Capacity of manufacture i
cl.RM Capacity of remanufacture i
CJL-)C Capacity of distribution center j for new product
CJ-DC Capacity of distribution center j for used product
¢/ Capacity of collection center [
D L . . .
b i ‘ Base-stock level of distribution center j at the beginning of each period
bl.M Base-stock level of manufacture i at the beginning of each period
invig Inventory level of manufacture i at the end of period t in scenario s
i D e . . . .
mny j; Inventory level of distribution center j for new products at the end of period ¢ in scenario s
b Inventory level of distribution centerj for second market products at the end of period ¢ in
inv,
g scenario s
; M-De flow of production in manufacture i transported to distribution center j at period ¢ in
"y
” scenario s
dﬁ‘;‘M flow of material from disposal d transported to manufacture i at period ¢ in scenario s
- D flow of remanufactured product in remanufacture i transported to distribution center j in
ijst

scenario s at period ¢

. . . -/ . . .
f M—Rm flow of production in manufacture i transported to remanufacture ¢ inscenario s at period
ii'st

t
ClRm flow of returned product from collection center [ transported to remanufacture i in scenario
list .

s at period ¢
CloD¢ flow of returned product from collection center I transported to distribution center j at
ljst . . .

period t in scenario s
Cl-Di flow of returned product from collection center [ transported to disposal d at period f in

ldst .
scenario s
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flow of new product from distribution center j transported to customer c¢ at period ¢ in

Jier |
scenario s
r De—Cit’ flow of used product from distribution center | transported to customer ¢ at period t in
est scenario s
Sl Flow of returned product from sellers r transported to collection center I at period t in
Tra scenario s
187
188 It should be noted that the uncertain demand and return in our mathematical formulation is

189  introduced by . ¢ is a given realization of uncertain parameters and E, represents the expected

190  value with respectto ¢ .
191  According to [27] the actual value of { becomes known in the second stage in which recourse
192 decisions can be calculated. Therefore, decisions related to the first-stage are made by taking the

193 future uncertain effects into account. These effects are measured by the recourse function,

194 O(xwb) =E;(Q(X,W,b,§4 )) , where Q(x,w,b)is the value of the second-stage for a given realization of

195  the demand and return.

M
minWZleMFiM + inRMFiRM + ny.’chD" + Zyj[.’c F> + ZZZCIFIC’ + ZciMVciM + ZciRMVciRM
i i J J 1 i i
+Zcf5ch)” +chl.)”’chDcl +Zl:c,aVc,C1 + W MN, —le.psip —ny’”sf“ +0O(x, w,b)
J J i J
Subject to:
M Sx;\lx(cap;\lax—M) Viel 2)
CiRM < xiRM X(CapiMax—RM) Viel 3)
x4+ x> 2% xS Viel ()
cl.M + ciRM < (Cale“x_P )x xiP Viel ©)
M <x 41 Viel ©)
C (4 ax—pDc . 7
e <y} (Cap)) Ve J 7)
D¢’ D¢’ Max—-Dc’ : (8)
c; =Y, (Capj ) VieJ
yﬁ)c +ijc' szyj)cv V_]E J (9)
(10)

e +cf”’ < (CapM”x’D“ )yp VjeJ

J J J
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Y+ b < yre+1 Vie J (1)
' < 2% x Cap™=c! Vie L (12)
b?" < cf" VieJ (13)
:Z’”nM VteT (14)

where QO(x,w,b) bring the solution of the following second-stage problem:

ST T T Y e
+ZZZ Rm DcT RM-Dc’ +zzzf”1\ft RmTCM —Rm
t i 7
DIWNFRLIEE WD WAL
MinQ(x,w,b):Eg(Q(x,w,b,é‘S)):zPrA b (15)
s +ZZZ Cl DCT Cl-Dc’ +ZZZ ?; CuT Dc—Cu
t Jj c
DOIDWERL TN IR

+ ZSmm C, + ZZTZVM Ic" + ZvaD‘IcD‘ + vam IcDC

Jst Jst

Subject to:
- u VteT,Vie INse S (16)
ZZ dzsk +Zrk +Zsmtsk ZBOMquisk
k=1
e , VieT,VjeJVses 17
;z c ;Zf/c:k Cu
[ VteT,Vie I,Vsce Sc (18)
lst Zz dlsk + Z’; + Zsmlsk ZBOMqulsk
d k=1 k=1 k=1
Z fpe Z foec VteT,Vje J,Vse § (19
jS[ zjs cs
k=l i k=l ¢
VieT,VjeJ,Vses 0
S WIS DN e W W
i k=l I
(21)

b” > BOMxqp VieT,Vie I,Vse S
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i i
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csk
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Dc Cu
CS[

Sr Cl
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Relation (1) is the objective function that minimizes the sum of the first-stage costs and the
expected second-stage costs. The first-stage costs represent the costs of locating and capacity of the
manufacturers, remanufactures, distribution centers for new and used products and collection
centers along with wholesale contract amount and base stock level. Finally, saving costs of locating
hybrid facilities are subtracted from the above-mentioned objective function. The second-stage
objective function, i.e. Relation (15), includes two types of costs: firstly, the transportation costs, and
secondly, the inventory holding costs.

Constraints (2-6), (7-11) and (12) ensure that the capacity restrictions for each production plants,
distribution center facilities, and collection centers respectively. Constraints (4-6) deal with the hybrid
strategy of locating manufacturing and remanufacturing plants. Constraint (13) guarantees that the
capacity of each distribution center should be greater than base-stock level amount. Relation (14)
assures that the amount of raw material provided to every manufactures in each period by wholesale
contract should be equal to wholesale contract amount. Relations (16-20) are balance constraints that
calculate base stock level at the beginning and inventory level at the end of each period. To be more
specific relation (16) shows base stock level of each plant is equal with amount of raw material
transported from all disposals, bought from spot market and assigned from wholesale contract in
each period. These constraints refer to the push-based strategy concept in aforementioned
mathematical formulation.

Relation (18) assesses Inventory of each plant in each scenario and period equals to sum of input
raw materials subtracted from quantity of material used in production in that period. Relation (19)
calculates the inventory level at the end of period t by subtracting the total output flow of new
product to the customers in scenario s from all input flows to each distribution center until period t.
Constraint (23) assures that products are not produced more than manufacturers’ capacities in each
scenario and period, while constraint (24) assures that used products will not carry more than the
capacity of its DCs. Constraint (29) ensures the demands of all retailers are satisfied in scenario s at
period t. relation (30) show that used product quantity in DCs is equal to customer’s demand of it in
each period and scenario. Rests of the constraints are mostly flow constraints between stages and
facilities.

3. A Benders’ decomposition-based solution algorithm

Benders” Decomposition (BD) algorithm is a classical solution approach for combinatorial
optimization problems, which was firstly presented to solve MILP problems by Benders[28] . This
method is one of wide commonly used techniques in the SCND problems (see for example[2] ,[29],
[30]). In CLSC literature, Uster et al. [31] explore a multi-product network design problem and solve
the model using Benders’ Decomposition where multiple Benders’ cuts are generated.

Benders’ algorithm decomposes the main problem into two parts. The first part, called master
problem (MP), solves a relaxed version of the problem to obtain values for a subset of the variables.
The second part, called subproblem (SP), obtains the values of remaining variables while fixing
variables of master problem, and utilizes these to generate cuts for the MP. The MP and SP are solved
iteratively until the algorithm is converged. It should be note that there are two types of cuts:

S
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feasibility cut and optimality cut. Feasibility cut is added to the MP when the SP becomes infeasible,
otherwise optimality cut is needed to be embedded in the MP.

BD is computationally very time-consuming if a large number of scenarios are used to
characterize the randomness. To face with this problem in stochastic optimization problems, various
techniques of accelerating Benders” decomposition have been proposed in recent decade. Research
has mainly focused on either reducing the number of integer relaxed master problems being solved
or on accelerating the solution of the relaxed master problem. In fact these techniques commonly
generated stronger lower bounds and promoted faster convergence opposed to the classical Benders’
approach. Multi-cut [32], local branching [33], valid inequalities [34, 35], alpha covering-bundling
cuts, Magnanti [36], and combination of Meta heuristic approaches [37] are the most popular
accelerating BD techniques. None of these approaches are a generic solution to accelerate BD and
they mostly deal with very limited and specific problems.

In this paper, due to the nature of our problem, we apply valid inequalities to accelerate Benders’
decomposition algorithm for solving the developed optimization problem.

Valid inequalities are some constraints that should be added to MP constraints. These constraints
can strengthen the LP relaxation of the problem. They can also improve convergence of lower and
upper bound by helping the relaxed MP to find close to optimal solutions. Indeed, because the
iterative algorithm is initialized from empty subset s of extreme rays and extreme points, the relaxed
MP initially contains only the integrality constraints. As a result, several iterations must be performed
before enough information is transferred to the MP. Introducing valid inequalities in the MP can thus
dramatically reduce the number of cuts that will have to be generated from extreme points and
extreme rays of the dual SP polyhedron.

A pseudo-code of the proposed Benders” decomposition algorithm is presented as follows:

Benders’ decomposition algorithm

Step 0. Initialization

iU

.e Lower __
ii. 2 =—

iii. k=0.
iv. Solve the initial master problem to obtain

RM M Dc D¢’ Dc M Cl c

While (20 - z}over 5 ¢

Step 1. Solving the sub-problems

For each s €S
Solve the sub-problems by determined
ARM AM ADc ADc pDc pM ACl ~c
{ j j,bj,b,.,,,w}
End for
Step 2. Updating the lower and upper bounds

. zgpper:zprs(zﬁfz)ww{aﬁ[zwﬂsﬂ

ses seS
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ses seS
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Step 3. Solving the master problem
i. Add optimality cuts to the master problem for each scenario.

RM M
' P ¢ A kM D M M
0 275 +3 1 W — i)+ D 7 X(C} —Cisk J+ e X(cl. —Ciskj
t i i

D AD¢ De ADe pPe ADe
C D Ci D i D
+Q X C; —Cjsk +27r/:k X| ¢/ =ik +Z”,-fk X| b =bjw |+
j J J

J
M M M a a A
D LIS (e
: 7

ii. k=k+1.

iii. Solve the master problem to obtain

RM M Dc Dc’ Dc M Cl c
{ci ,C e e b b e w }

End while

3.1. Valid inequalities

As mentioned, we have added some valid inequalities equations to MP constraints in order to
improve the convergence rate by hopefully reducing the associated feasible solution of MP. Using
these valid inequalities reduces solution space of MP and avoids infeasibility of SP solution in each
iterations. As a result only an optimal cut is generated to apply to MP. In our problem, following
constraints can be added to the MP to ensure the feasibility of the sub-problems:

bepc ZZC:DC‘S VteT,Vse S (39)
(40)

[Zb;”j/BOM 2(be”]/l

i J

ZZ:CICI 2 Rs,, VieT,Vses @
(42)

e z[ij’CJ/,i

i J
(43)
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267 Constraint (39) guarantees that total base stock level of all DCs should be greater than or equal
268  to the summation of customers’ demand in each period and scenario. Constraint (40) indicates the
269  relation between base stock level of manufacturers and DCs. Like constraint (39), constraint (41)
270  guarantees that summation of returned products from all sellers cannot exceed total capacity of all
271  collection centers. Constraints (42-45) addressing the relation between facilities capacities and base
272 stocklevels. For instance constraint (45) illustrates that capacity of each manufacturer must be at least

273 equal to provided new product.
274

275  Lemma 1. Adding Constraint (39) to the mathematical formulation has no effect on the optimal value of the
276 objective function.
277  Proof of Lemma 1. When the feasible solution for the addressed problem is available, the Constraints

278  (17) and (30) are satisfied. Therefore, we can rewrite these constraints for the first period as follows:

279 b = 22 fon e —iz Lo = b = =D S Vse S,Vte T (D)
J i ¢ J

k=l i k=l ¢

280 Y for“ =D, oYY for“ 2> D, VseS,VieT (I
J c j ¢

281 () and (II) lead to Constrainthch 2 chts . Since we show that Constraint (39) is constructed
] C

282  using the constraints of the SP, adding it to the mathematical formulation do not change the feasible
283  space. So, the optimal value of the objective function remains unchanged. ©

284  Lemma 2. Adding constraint (40) to the mathematical formulation has no effect on the optimal value of the
285 objective function.

286  Proof of Lemma 2. The same as proof of Lemma 1, when the feasible solution for the addressed
287  problem is available, the constraints (21) and (32) are satisfied. Therefore, we can rewrite these

288 constraints as follows:

b 2 BOMxgplt — > b 2 BOMXY gplt

289
(ZbZMj/BOMz D agpy Vse S,¥ieT (1)
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291 Since bf)c = ZZ fyﬁ_Dc - Zz fjgck_cu obviously it can be inferred thatbf)c > ZZ fﬁ_Dc :

k=l i k=l ¢ =l

J

292 (I) and (1I) lead to constraint [z b j / BOM > (Z b jPC J / A . Since we show that Constraint (41) is

293 constructed using the constraints of the SP, adding it to the mathematical formulation do not change
294 the feasible space. So, the optimal value of the objective function remains unchanged. o

295  Lemma 3. Adding constraint (41) to the mathematical formulation has no effect on the optimal value of the
296 objective function.

297  Proof of Lemma 3. The same as proof of previous Lemmas, when the feasible solution for the
298  addressed problem is available, the constraints (25) and (31) are satisfied. Therefore, we can rewrite

299  these constraints as follows:

300 D fu <o oYY fr < e Vse S,Vie T (1)
r I r 1

301 Rs, =) [ 5D Rs, =D fi " Vse S,Vee T (II)
! r ro

302 (I) and (II) lead to constraint ZCZC > ZRSrts . Since we show that Constraint (41) is constructed
) r

303  using the constraints of the SP, adding it to the mathematical formulation do not change the feasible

304  space. So, the optimal value of the objective function remains unchanged. o

305 4. Computational results

306 To evaluate the performance of the proposed Benders’ decomposition algorithm in terms of the
307  solution quality, we performed some numerical experiments on a set of randomly generated problem
308  instances. The algorithm was implemented in GAMS using CPLEX solver. All experiments were run
309  with an Intel Pentium IV dual core 2.1 GHz CPU PC at 1 GB RAM under a Microsoft Windows XP
310  environment.

311 4.1. Data generation for parameters and settings

312 The required data for random generation of problem instances drawn from the probability
313 distributions and equations are shown in Table 3. Afterward, using the generated parameters, twelve
314  problem instances with different sizes are constructed. Table 4 specifies the features of problem
315  instances used to evaluate proposed solution approach.

316
317
318
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319
320 Table 3
321 Nominal values of the model parameters. For most of the parameters a uniform distribution is utilized. For
322 demand and return an autoregressive time series (AR) is used.
Parameter Range Parameter Range
FM ~Uniform (1000000, 4000000) | Tc=*" ~ Uniform (10, 25)
F™ ~Uniform (500000,1500000) | Tcy' ™ ~ Uniform (10, 20)
FP ~Uniform (500000,2500000) | Ze ™ ~ Uniform (20, 25)
Fre ~Uniform (400000, 600000) I ~ Uniform (30, 40)
FS ~Uniform (300000,900000) | D! AR() Dy, =@+ BiD o+ Eppe
ve ~Uniform (1000, 1800) a ~ Uniform (20, 40)
RM . ﬂ .
Ve, ~Uniform(2000,2800) i ~ Uniform (0.15, 0.2)
Vel ~Uniform (1500, 3000) Eavtse _ N(0, Uniform (20, 35))
V Dc . Cu
Cj ~Un1f0rm (900,1500) cu,t=l,sc _ Uniform (30 50)
Cap ™ | ~Uniform (7000, 15000) Rs,, AR():Rs,, , =0+ PRs, | +E,,.
Cap ™| ~Uniform (1000, 2000) a ~ Uniform (10, 20)
Cap;"™" | ~Uniform (1000, 5000) Bi - Uniform (0.15, 0.2)
M -Dc T £
Tc; Uniform (10,30) eut:5¢ N0, Uniform (10, 25))
Dc—Cu . R
TC Jje ~Ul’11f0rm (15, 30) Ssr,t—l,sc - Uniform (20, 30)
Dc’-Cu .
Tc . ~Uniform (10, 30) M 60
Tel™ ~Uniform (20, 35) ys; 0.7
Tel™ ~Uniform (10, 30) A 0.95
Te5@ ~Uniform (15, 30) Y 0.4
rl ’ 1 .
Te =P ~Uniform (10, 20) 7, 0.4
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Table 4
Characteristics of test problems. 4 test cases are generated for each small, medium, and large test

problems. Each test case has a specific distinction to the other cases.

Size of test 1D i J / C o4 r d S T

problems

1 4 10 15 10 2 20 12

2 4 10 15 10 2 40 12

Small 3 5 10 10 12 15 12 2 20 12

4 5 10 10 12 15 12 2 40 12

5 8 18 12 18 15 15 2 20 12

6 8 18 12 18 15 15 2 40 12

Medium 7 10 20 12 20 15 15 2 20 12

8 10 20 12 20 15 15 2 40 12

9 15 40 30 40 15 20 2 20 12

10 15 40 30 40 15 20 2 40 12

Large 11 20 60 40 60 15 20 2 20 12

12 20 60 40 60 15 20 2 40 12

As shown in table 4, in order to investigate performance of accelerated BD, test problems vary
in size. These size leads to better understanding of accelerated BD power versus classic BD. In large
scale problems as number of binary variables increases, solving the model with BD become more
time consuming. Table 5, demonstrate the number of binary and continues variables of generated test

problems.
Table 5
Number of variables and constraints in each test problem
ID Number of Variables No. of No. of
Binary Continues  constraints scenarios

1 44 117,213 35,116 20

2 44 234,333 70,156 40

3 55 169,316 43,532 20

4 55 338,516 86,972 40

5 90 358,747 67,586 20

6 90 717,307 135,026 40

7 102 433,183 75,682 20

8 102 866,143 151,364 40

9 195 1,439,176 143,584 20
10 195 2,877,976 287,167 40
11 280 2,750,921 202,516 20
12 280 5,501,321 405,032 40

Test problems are solved with accelerated BD, classic BD, and CPLEX solver. We limit the
solving time to 3h and BD iterations to 40 for small scale problems where for medium size, time was
limited to 5h and BD iterations to 70 and for large scale problems the time limit was 10h and the BD
iteration was 100. If a solution approach reached any of mentioned-limitation, the solution process
should be stopped. Table 6 illustrates the optimality gap and CPU time of solving each test problem


http://dx.doi.org/10.20944/preprints201710.0132.v1
http://dx.doi.org/10.3390/logistics1020011

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 October 2017

339
340
341

342
343
344

345
346
347
348
349

350

351
352
353
354
355
356
357
358
359
360
361
362

20 of 22

with these methods. Accelerated BD, solve the large scale problems better than classic BD with
acceptable optimality gap. In small scale problems the difference is not considerable. CPLEX only
solve four small scale test problems in an admissible time.
Table6
A comparison of proposed accelerated BD to classic BD and CPLEX for small, medium, and
large size test problems.

Accelerated BD Classic BD CPLEX

CPU(s) Optimality CPU(s)  Optimalit CPU(s)  Optimality ID

gap y gap gap

320.64 0.8197 330.12 4.2310 210 0

642.61 0.4826 645.56 7.3141 721.18 0 2

393.76 0.5528 400.50 11.8911 400.50 0 3

780.02 0.8998 779.74 15.0164 >1h - 4
1268.44 1.3446 1312.51 11.4512 2751.16 0 5
2618.37 1.5875 2669.98 14.7121 >5h - 6
1540.67 2.6123 1591.56 15.1241 >5h - 7
3089.33 3.4303 3090.12 16.0195 >5h - 8
5009.21 49106 5093.42 15.9184 >10h - 9
10121.71 7.2837 10274.84 17.4120 >10h - 10
7021.13 6.2287 7421.12 18.1027 >10h - 11
14011.87 8.5850 14573.69 19.8193 >10h - 12

By comparing proposed accelerate BD with classic BD, one can realize that valid inequalities
cause a faster convergence of lower and upper bound. Moreover, classic BD is initialized from empty
subset s of extreme rays and extreme points where valid inequalities cause an initial value for lower
bound of accelerated BD and lead to faster convergence of the upper and lower bounds.

5. Conclusions

In today’s competitive business environment, the design and management of an integrated
forward/ reverse supply chain network is one of the most important and difficult problems that
managers encounter. To this aim, we propose a generic multi-stage, multi-period, single commodity
and capacitated IFRLN design. To deal with uncertainty, demand of products (new and recovered
product) and return of product from resellers are considered as stochastic parameters. Moreover
we consider push/pull strategy and risk pooling strategy in the model. To solve the proposed two-
stage stochastic programming model, Benders’” Decomposition approach is used. Due to slow
convergence of lower and upper bound in large scale problems, a number of valid inequalities are
applied to master problem. Test problem results represents that accelerated BD have dominant
optimality gap in comparison with classic BD in acceptable CPU time.

In the context of IFRLN a few papers solve their model with exact approaches specially BD. We
believe this paper provides a good starting point in this research area.

d0i:10.20944/preprints201710.0132.v1
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It is suggested to extend the model for multi-commodity configuration. There are other
stochastic parameters that are appropriate to consider in the model such as quality of products, raw
material price, return rate, and recoverable rate of products. We propose base stock level as inventory
policy where other non-linear inventory policy such as (5,S) and (R,Q) policies can investigate
through the extended model. Moreover, since the refurbished and new products should have
different prices, we believe taking pricing policies and guarantee regulations into account, will be the
major future research area.

In the context of solution approach, other accelerating approaches of BD such as Lagrangian
Relaxation (LR) or Meta Heuristics can be applied and verify the differences of these methods.
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