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Abstract—Energy storage systems (ESS) are penetrating 
into various sections of power system through different 
applications. ESS can be used either as a buffer for 
intermittent renewable energy sources or as a stand-alone 
distributed storage for load shifting. ESS use different 
types of storage devices such as lead-acid batteries, 
lithium ion batteries, flow batteries, and super-capacitors. 
Hybrid ESS consisting of few types of storage devices are 
also common in practice. Determining the load demand of 
such ESSs at various instances (charging profile) 
accurately is indispensable in most of the cases. Capacity 
loss is common phenomenon that occurs in all types of 
storage devices because of ageing. Capacity loss has to be 
accounted while determining the charging profile of 
storage devices for better accuracy. Data-driven modeling 
is an attractive approach for determining the load 
demand of ESS due to the availability of valuable data 
from smart grid technologies. In this paper, the 
application of different types of data-driven models to 
predict the current charging profile of the ESS based on 
previous charging profiles is examined. The proposed 
method can leverage on the existing data from smart grid 
and is a black box modeling approach. 

Keywords—energy storage systems; charging profile; 
capacity loss; data-driven modeling 

I. INTRODUCTION 
The prolific growth in the penetration of energy storage 

systems (ESS) into distribution network in the recent past can 
be attributed to climate change policies of many countries 
including Singapore [1, 2]. The Singaporean government has 
released tenders for installing more solar PV systems and it is 
estimated that solar PVs will be installed in many Housing 
Development Board (HDB) blocks and Public Sector 
buildings by 2017 [3]. However, large-scale integration of 
such intermittent renewable energy sources will affect the 
reliability and stability of the distribution network [4-9]. 
Utilizing ESS as a buffer for intermittent renewable energy 
sources will reduce the variability in power output of such 
sources and hence the impact on reliability and stability [10-
12]. Using ESS provide a multitude of benefits to utilities 
including peak load management, load shifting applications 
(peak shaving and valley filling), voltage regulation and 
power quality improvement [13]. The ESS are to be operated 

both as source and load while executing functions such as 
load shifting. Apart from these applications, most modern day 
mobile devices are equipped with ESS. Determining load 
demand/charging profile of appliances having large storage 
devices such as electric vehicles (EVs) is also critical [14, 15]. 
The charging profile of a storage device varies based on 
various parameters such as initial State Of Charge (SOC), 
final desired SOC, storage device type and 
charging/discharging cycles (corresponds to capacity loss) 
completed. Accurately determining the charging profiles of 
such storage devices connected to a distribution network will 
enable various energy management applications such as 
maximum demand prediction, load scheduling and demand 
response management.  

II. RELATED WORK 
The charging of any storage devices is a nonlinear process 

and changes regularly due to the change in chemical 
composition of the device [16, 17]. Capacity loss due to 
ageing process is an important factor that affects the charging 
profiles of any storage device [16, 17].  The authors of [16-
20] have studied the ageing process of lithium ion and 
vanadium flow batteries. They have proposed ageing models 
that were based on accelerated ageing. The models can be 
utilized for determining the capacity fade and could be 
combined with the charging power model proposed in [15] for 
determining the theoretical charging power of the whole 
charging process of any ESS. However, the constants derived 
based accelerated ageing process may not match the practical 
values due to differences in various operating parameters such 
as temperature, usage pattern, location of the device etc. This 
disadvantage could be eliminated by updating the parameters 
online after certain number of cycles. However, storage 
devices employed in smart grids have the inherent advantage 
that the power consumption data is continuously monitored. 
In such cases data-driven modeling could be used to 
determine the charging profiles of energy storage devices [14, 
15] (a black box approach). In this paper, data-driven models 
based on different methods are used determine the charging 
profiles of ESS used for different applications. The existing 
models from the accelerated ageing experiments are used for 
determining the charging profiles and the values of the ESS 
parameters are varied to portray the variations in actual 
scenarios. The accuracy of the model to predict the charging 
profiles is subsequently evaluated. The models are also 
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applied to predict the charging profiles of an 1100mAh, 3.6V 
lithium iron phosphate battery, charging profiles were 
collected over complete life cycle (~3500 cycles) for non-
accelerated ageing study. It is to be noted that the contribution 
of the paper pertains to the approaches used for determining 
charging profile/load demand of energy storage devices rather 
than the data-driven models. Leveraging on the existing data 
is an important aspect that would add value to the smart grid 
infrastructure. To summarize the contributions of the paper, 
the paper studies the application and comparison of different 
types of data-driven models that can be used for ESS and 
evaluates the approach of using generalized data-driven 
models for ESS used in different applications. A black box 
modeling approach is used for the application similar to the 
studies in authors’ previous work [21]. 

III. DATA REQUIRED FOR MODELING 

A. Simulated Data:  

The capacity fade model for lithium iron phosphate 
batteries proposed in [17] and charging power model 
proposed in [15] are used to obtain the charging profiles (for 
the whole life cycle) ESS in following applications 

a) ESS in a Personal EV:  
An EV with a 24kWh battery capacity (representing 

Nissan Leaf) is considered for the study. The mean distance 
travelled in a day is taken as 55km [22-24] and standard 
deviation of 10km is considered. Based on a stochastic model 
and average energy consumption/km, the energy required per 
day and initial SOC on each day is computed. This 
application also represents other types of ESS with CC 
charging/CV charging that is used for devices with mobility. 
E.g., Laptop PCs, tablets, mobile phones, emergency lamps, 
emergency power supply (power banks for mobile 
applications) etc. ESS without any mobility but needing fixed 
charging operations such as emergency power supply ESS 
for residential/commercial buildings, ESS used for peak 
shaving/peak shifting applications etc. can also be 
categorized under such charging pattern.   

b) ESS used for a typical solar photovoltaic (PV) 
application:  

An ESS with 24kWh battery energy capacity and 48kW 
power capacity for typical roof top PV of 70kWpeak is 
considered for the study (sizing of the ESS is not within the 
scope). The power/energy consumption and corresponding 
SOCs are obtained using solar irradiance data for a period of 
1 year (2010). The charging profile is determined for the 
application wherein the PV uses the ESS to maintain the 
average power supplied throughout the day (9am-5:30pm). 
The charging/discharging power is obtained from the 
difference between the actual output of solar PV and the 
average output. The difference from the previous application 

is that the charging power is not a constant value and it varies 
based on the PV output. This application also represents ESS 
used for other type renewable energy sources and ESS used 
for frequency regulation etc.  

B. Experimental Data:  

The charging profiles of 1100mAh, 3.6 V, lithium iron 
phosphate battery are collected for complete life cycle 
(~3500 cycles). The battery is cycled using a constant 
discharging at 1500 mA and charging with 1500 mA in CC 
and decreasing current to maintain the voltage in CV mode. 
In this case, the cycle depth is fixed and the SOC is 
calculated using coulomb counting. However, the data serves 
as an excellent base for understanding the capability of the 
proposed method to predict the charging profiles with 
minimal input parameters in practical applications. 
Furthermore, the data is collected for normal operation 
without any accelerated ageing and hence demonstrates the 
flexibility of the proposed method. 

IV. DATA-DRIVEN MODELS 

Upspring of smart grid facilitated the availability of huge 
data on various power-consuming devices. The available data 
may be utilized for various purposes and prediction of load 
demand is an important application for the available data. 
Data-driven modeling has always been an attractive method 
due to one of its critical feature; namely ability to update 
model parameters to capture the changes due to ageing. 
Furthermore, scaling up or down the system is effortless in 
most of the cases. Data-driven modeling has been extensively 
utilized [25-27] for data-driven simulations and data-driven 
controller design. In this paper, different data-driven models 
that are suitable for predicting the charging profiles of energy 
storage systems (based on previous charging profiles) are 
examined. Since data-driven models have the ability to learn, 
it can easily adapt to changes in the charging profiles of 
energy storage system. Energy Storage Models based on 
Artificial Neural Network (ANN) with feed-forward network 
and Ensemble Learning (boosting) are adopted from authors’ 
previous work [21]. Energy Storage Model based on 
Quadratic Polynomial Curve Fitting is presented below.  

The charging profile of the ESS can be represented using 
quadratic polynomial equations. Quadratic polynomial curve 
fitting can be used as a simple solution, because a simple 
empirical model for characterizing the data is sufficient. 
Linear polynomial equations could be used for ESS without 
CV modes. However, for a generalized model that could fit 
all types of ESS, a Quadratic Polynomial model is essential. 
Polynomial models for curves are given by, ݕ = ∑ ௜ܲ௡ାଵ௜ୀଵ  ௡ାଵି௜               (8)ݔ
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Fig. 5. Charging profile of the same EV/ESS for 251st cycle with 
different values of ‘∅’ = 2.5, 2, 1.5, and 1.0 

 
Fig. 4(a). Charging profiles of the EV over its life-time for ‘∅’ = 2.5 
 

 
Fig. 4(b). Initial SOC and energy required of the EV over its life-time 
for ‘∅’ = 2.5 

where, the order of the polynomial is given by n + 1 and the 
degree of the polynomial is given by n. ‘y’ represents the 
charging power and ‘x’ represents the SOC of the ESS. 
Piecewise polynomials based on non-parametric fitting can 
also be used for maximizing the flexibility of the fit. 
Reasonable flexibility for simple data, linearity, and simple 
fitting process are the advantages. Instability for high-degree 
fits and wild divergence outside certain data-range are the 
disadvantages. The inputs required are obtained from 
previous charging profiles. However, in the proposed 
application, extrapolation outside the data set is not required 
and hence quadratic polynomial curve fitting can be applied 
without any limitations. 

V. SIMULATION RESULTS 

1) Case Study 1-Energy Storage Systems in a Personal EV:  

Based on the scenario explained for application ‘A’ in 
Section III, the simulated charging profiles of the EV over its 
life time for ‘∅’ = 2.5 [21] is illustrated in Fig. 4(a) (until the 
capacity reaches 80% of the original value for the conditions 
explained in Section III (A)). The observation shows that the 
charging time in CV region decreases with an increase in the 
number of cycles and vice versa in CC region. It is an 
expected phenomenon as a consequence of capacity fade and 
the use of same charger for charging the EV. The 
phenomenon clearly demonstrates the capacity fading effect 
altering the charging profile of EVs considerably. Fig. 4(b) 
provides further proof on the impact due to ageing. It can be 
observed that although the energy required (distribution) 
remains almost constant, the initial SOC decreases 
consistently with the increase in number of cycles (the 
charging SOC window gets wider). Furthermore, the 
charging profile of the same EV/ESS changes significantly 
for same number of charging cycles with different values of 
‘∅’ [21] and can be inferred from Fig. 5. With increase in 
ageing factor (decrease in ‘∅ ’) the charging time in CC 
region increases and vice versa in CV region. Changes in ‘∅’ 
represent the changes in different driving cycles as well as 
difference in driving behavior. Hence, capturing the changes 
due to ageing factors is critical for accurately determining the 
charging profiles.  

  The prediction of charging profile is carried out for the 
51st and 1501th charging cycle of the EV with ‘∅’ = 2.5 using 
all the ESS models. The results are presented in Fig. 6(a), (b) 
and (c). Notably the number of previous charging profiles 
used has a minimal impact (ranging from 10-50), and hence 
ignored. The number of previous charging profiles is fixed at 
‘10’. From Fig. 6(a), it is evident that ANN generates a better 
prediction for the complete charging period, whereas curve 
fitting results in an inferior prediction performance. The 
performance of ensemble model is similar to ANN in the 
constant current region, however, the error increases in the 
constant voltage region. In case of ensemble model, the 
performance is similar to ANN in CC region however, the 

error1 increases in the CV region. ANN provides a better 
performance in the CV region.  
 The trend remains identical for the 1501th cycle and can be 
deduced from Fig. 6 (b). Hence, the number of charging 
cycles the ESS has undergone does not affect the prediction 
accuracy. In Fig. 6(c), the ability of the ANN (other models 
are not presented owing to the better performance of ANN) 
to predict the charging profiles under different ageing factors 
is demonstrated. It can be observed that irrespective of the 
value of ‘∅’ (2.5 and 1.0 [21]) the ANN accurately predicts 
the charging power. It is to be noted that the ‘Power 
Available’ from the distribution system is set to maximum 
value and does not have any significance in applications such 
as EV battery charging. This is attributed to the lack of 
control on the power supplied to the ESS is in such 
applications and the charging will be completely interrupted 
as a part of any scheduling algorithms. 

                                                           
1 Error analysis is carried out only for the case where experimental profiles 
are used. 
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Fig. 6(b). Predicted charging profile for 1501th cycle with ‘∅’ = 2.5. 

 
Fig. 6(c). Predicted charging profile of the same EV/ESS for 251st cycle 
with different values of ‘∅’ = 2.5 and ‘1’ using ANN based model 
 

 
Fig. 7. Comparison of charging/discharging power available due to the 
intermittency of solar PV and charging/discharging profile of the ESS 
on 130th day of the year with ‘∅’ = 2.5 

 
Fig. 6(a). Predicted charging profile for 51st cycle with ‘∅’ = 2.5. 

 
Fig. 8. Charging/discharging profile of the ESS on 131st day of the year 
with ‘∅’ = 2.5 

2) Case Study 2- Energy Storage System used for a typical 
solar photovoltaic (PV) application: 

 Fig. 7 illustrates the difference between 
charging/discharging power available due to the 
intermittency of solar PV and the actual charging/discharging 
profile of the ESS due to the limitations imposed by equation 
(3). It can be clearly observed that even when higher power is 
available for charging/discharging the actual 
charging/discharging charging power depends on the SOC of 
the ESS. The charging power reduces when SOC is greater 

than 80% and discontinues when SOC is 100%. When the 
SOC reaches 20%, no discharging is permitted. This clearly 
demonstrates the need for predicting the actual 
charging/discharging profile of ESS based on their SOC to 
activate other demand response management to balance the 
mismatch.  
 Based on the scenario explained for application ‘B’ in 
Section III, the charging/discharging profiles are simulated 
for ‘∅’ = 2.5 [21]. The profiles are used for training the data-
driven models that were explained in Section IV. The 
predicted charging/discharging profiles using different 
models are shown along with the actual profile in Fig. 8. 
‘Charging/discharging’ profiles of the 10 previous days are 
used for training the models.  The inference from Fig. 8 is 
that the ANN performs better than other two methods and 
generates a better prediction (similar to application ‘A’).  
However, there is a fixed error at the extreme end of the 
SOCs i.e., 100% SOC and 20% SOC. The error could be 
eliminated with a simple saturation block. It was observed 
that increasing the number of charging profiles used for 
training the models did not have impact on this fixed error or 
did not result in rectification of the resulting error. 
  

VI. RESULTS WITH EXPERIMENTAL DATA 
The charging profile of 1100mAh, 3.6 V, lithium iron 

phosphate battery after 50 cycles, 1000 cycles and 3500 
cycles is shown in Fig. 9. The capacity decade i.e., reduction 
charging time and energy consumed over the life span can be 
observed similar to the simulated profiles in Fig.4.  
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Fig. 9 Charging profiles of the battery over its life-time. 

 
Fig. 11 (a). RSE plot for comparing the accuracy of the three models at 51st 
cycle 

 
Fig. 11 (b). RSE plot for comparing the accuracy of the ANN at different 
cycle ANN based model 
  

Fig. 10 (a). Predicted charging profile for 51st cycle 

 
Fig. 10 (b). Predicted charging profile of the battery for 51st cycle, 1001st 
cycle, 3501st cycle using ANN based model 

 
Fig. 12. Charging/discharging profile of the ESS on 131st day of the 
year with ‘∅’ = 2.5 

Fig. 10 (a) shows the charging profile (51st) predicted 
with models described in Section IV. As in Section V, 10 
previous charging profiles are used for training. It is clearly 
evident from the Fig. 10(a), that ANN provides a better 
prediction in comparison to other methods. In Fig. 10(b) the 
actual and charging profiles predicted using ANN for 51st 
cycle, 1001st cycle, 3501st cycle are shown. Similar to Section 
V, the performance of the model is not affect due to ageing of 
the battery. A root square error (RSE) plot for comparing the 
accuracy of the three models at 51st cycle is shown in Fig. 
11(a) and a root square error (RSE) plot  for comparing the 

accuracy of the ANN at different cycle is presented in Fig. 
11(b). It can be observed from Fig. 11(a) that overall RSE of 
ANN based model is lower than other two methods. It can be 
observed from Fig. 11(b) that the RSE in some cases of CV 
region is higher irrespective the cycle number, otherwise the 
RSE is relatively lower. However, the mean absolute 
percentage error (MAPE) is 1.33%, 4.77% and 2.67% 
respectively for 51st cycle, 1001st cycle and 3501st cycle. 
Similar to the case of simulated profiles, the error is 
significantly higher in CV region than in CC region.  

The impact of number of neurons in the hidden layer on 
the errors is shown in Fig.12. It can be observed that when 
the number of neurons in hidden layer increases from ‘5’ to 
‘20’, the errors decreases with the increase in number of 
neurons. However, when the number of neurons in hidden 
layer is more than 20 neurons, no significant change could be 
observed and it is evident from the case where 50 neurons are 
used in the hidden layer.  
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VII. CONCLUSION 

In this paper, application of different types of data-driven 
models namely ANN, Quadratic Polynomial curve fitting and 
Ensemble learning to predict the current charging profile of 
ESS based on previous charging profiles was examined. A 
methodology for utilizing such models was also proposed. 
The proposed method can leverage on the existing data from 
smart grid, hence does not need any additional investment or 
infrastructure. Furthermore, the data available could be used 
effectively and increases the value of the investment in smart 
grid infrastructure. The proposed method was applied to two 
different types of applications namely, applications where 
fixed power charging is employed and applications where 
variable power charging is employed. The models were also 
applied to predict the charging profiles of an 1100mAh, 3.6V 
lithium iron phosphate battery, for which the charging 
profiles were collected over complete life cycle (~3500 
cycles). It was observed that the data-driven models 
especially ANN was able to predict the charging profile of 
ESS accurately, irrespective of the variations in different 
parameters. The proposed method could be deployed for 
various load management functions. The proposed approach 
needs minimal input such as initial SOC (only for mobile 
ESS) and smart meter data that would be available without 
any additional resources/infrastructure.  
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