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Abstract—Energy storage systems (ESS) are penetrating
into various sections of power system through different
applications. ESS can be used either as a buffer for
intermittent renewable energy sources or as a stand-alone
distributed storage for load shifting. ESS use different
types of storage devices such as lead-acid batteries,
lithium ion batteries, flow batteries, and super-capacitors.
Hybrid ESS consisting of few types of storage devices are
also common in practice. Determining the load demand of
such ESSs at various instances (charging profile)
accurately is indispensable in most of the cases. Capacity
loss is common phenomenon that occurs in all types of
storage devices because of ageing. Capacity loss has to be
accounted while determining the charging profile of
storage devices for better accuracy. Data-driven modeling
is an attractive approach for determining the load
demand of ESS due to the availability of valuable data
from smart grid technologies. In this paper, the
application of different types of data-driven models to
predict the current charging profile of the ESS based on
previous charging profiles is examined. The proposed
method can leverage on the existing data from smart grid
and is a black box modeling approach.

Keywords—energy storage systems, charging profile;
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I INTRODUCTION

The prolific growth in the penetration of energy storage
systems (ESS) into distribution network in the recent past can
be attributed to climate change policies of many countries
including Singapore [1, 2]. The Singaporean government has
released tenders for installing more solar PV systems and it is
estimated that solar PVs will be installed in many Housing
Development Board (HDB) blocks and Public Sector
buildings by 2017 [3]. However, large-scale integration of
such intermittent renewable energy sources will affect the
reliability and stability of the distribution network [4-9].
Utilizing ESS as a buffer for intermittent renewable energy
sources will reduce the variability in power output of such
sources and hence the impact on reliability and stability [10-
12]. Using ESS provide a multitude of benefits to utilities
including peak load management, load shifting applications
(peak shaving and valley filling), voltage regulation and
power quality improvement [13]. The ESS are to be operated
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both as source and load while executing functions such as
load shifting. Apart from these applications, most modern day
mobile devices are equipped with ESS. Determining load
demand/charging profile of appliances having large storage
devices such as electric vehicles (EVs) is also critical [14, 15].
The charging profile of a storage device varies based on
various parameters such as initial State Of Charge (SOC),
final  desired SOC, storage device type and
charging/discharging cycles (corresponds to capacity loss)
completed. Accurately determining the charging profiles of
such storage devices connected to a distribution network will
enable various energy management applications such as
maximum demand prediction, load scheduling and demand
response management.

II.  RELATED WORK

The charging of any storage devices is a nonlinear process
and changes regularly due to the change in chemical
composition of the device [16, 17]. Capacity loss due to
ageing process is an important factor that affects the charging
profiles of any storage device [16, 17]. The authors of [16-
20] have studied the ageing process of lithium ion and
vanadium flow batteries. They have proposed ageing models
that were based on accelerated ageing. The models can be
utilized for determining the capacity fade and could be
combined with the charging power model proposed in [15] for
determining the theoretical charging power of the whole
charging process of any ESS. However, the constants derived
based accelerated ageing process may not match the practical
values due to differences in various operating parameters such
as temperature, usage pattern, location of the device etc. This
disadvantage could be eliminated by updating the parameters
online after certain number of cycles. However, storage
devices employed in smart grids have the inherent advantage
that the power consumption data is continuously monitored.
In such cases data-driven modeling could be used to
determine the charging profiles of energy storage devices [14,
15] (a black box approach). In this paper, data-driven models
based on different methods are used determine the charging
profiles of ESS used for different applications. The existing
models from the accelerated ageing experiments are used for
determining the charging profiles and the values of the ESS
parameters are varied to portray the variations in actual
scenarios. The accuracy of the model to predict the charging
profiles is subsequently evaluated. The models are also
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applied to predict the charging profiles of an 1100mAh, 3.6V
lithium iron phosphate battery, charging profiles were
collected over complete life cycle (~3500 cycles) for non-
accelerated ageing study. It is to be noted that the contribution
of the paper pertains to the approaches used for determining
charging profile/load demand of energy storage devices rather
than the data-driven models. Leveraging on the existing data
is an important aspect that would add value to the smart grid
infrastructure. To summarize the contributions of the paper,
the paper studies the application and comparison of different
types of data-driven models that can be used for ESS and
evaluates the approach of using generalized data-driven
models for ESS used in different applications. A black box
modeling approach is used for the application similar to the
studies in authors’ previous work [21].

III. DATA REQUIRED FOR MODELING

A. Simulated Data:

The capacity fade model for lithium iron phosphate
batteries proposed in [17] and charging power model
proposed in [15] are used to obtain the charging profiles (for
the whole life cycle) ESS in following applications

a) ESS in a Personal EV:

An EV with a 24kWh battery capacity (representing
Nissan Leaf) is considered for the study. The mean distance
travelled in a day is taken as 55km [22-24] and standard
deviation of 10km is considered. Based on a stochastic model
and average energy consumption/km, the energy required per
day and initial SOC on each day is computed. This
application also represents other types of ESS with CC
charging/CV charging that is used for devices with mobility.
E.g., Laptop PCs, tablets, mobile phones, emergency lamps,
emergency power supply (power banks for mobile
applications) etc. ESS without any mobility but needing fixed
charging operations such as emergency power supply ESS
for residential/commercial buildings, ESS used for peak
shaving/peak shifting applications etc. can also be
categorized under such charging pattern.

b) ESS wused for a typical solar photovoltaic (PV)
application:

An ESS with 24kWh battery energy capacity and 48kW
power capacity for typical roof top PV of 70kWpea is
considered for the study (sizing of the ESS is not within the
scope). The power/energy consumption and corresponding
SOCs are obtained using solar irradiance data for a period of
1 year (2010). The charging profile is determined for the
application wherein the PV uses the ESS to maintain the
average power supplied throughout the day (9am-5:30pm).
The charging/discharging power is obtained from the
difference between the actual output of solar PV and the
average output. The difference from the previous application

is that the charging power is not a constant value and it varies
based on the PV output. This application also represents ESS
used for other type renewable energy sources and ESS used
for frequency regulation etc.

B. Experimental Data:

The charging profiles of 1100mAh, 3.6 V, lithium iron
phosphate battery are collected for complete life cycle
(~3500 cycles). The battery is cycled using a constant
discharging at 1500 mA and charging with 1500 mA in CC
and decreasing current to maintain the voltage in CV mode.
In this case, the cycle depth is fixed and the SOC is
calculated using coulomb counting. However, the data serves
as an excellent base for understanding the capability of the
proposed method to predict the charging profiles with
minimal input parameters in practical applications.
Furthermore, the data is collected for normal operation
without any accelerated ageing and hence demonstrates the
flexibility of the proposed method.

IV. DATA-DRIVEN MODELS

Upspring of smart grid facilitated the availability of huge
data on various power-consuming devices. The available data
may be utilized for various purposes and prediction of load
demand is an important application for the available data.
Data-driven modeling has always been an attractive method
due to one of its critical feature; namely ability to update
model parameters to capture the changes due to ageing.
Furthermore, scaling up or down the system is effortless in
most of the cases. Data-driven modeling has been extensively
utilized [25-27] for data-driven simulations and data-driven
controller design. In this paper, different data-driven models
that are suitable for predicting the charging profiles of energy
storage systems (based on previous charging profiles) are
examined. Since data-driven models have the ability to learn,
it can easily adapt to changes in the charging profiles of
energy storage system. Energy Storage Models based on
Atrtificial Neural Network (ANN) with feed-forward network
and Ensemble Learning (boosting) are adopted from authors’
previous work [21]. Energy Storage Model based on
Quadratic Polynomial Curve Fitting is presented below.

The charging profile of the ESS can be represented using
quadratic polynomial equations. Quadratic polynomial curve
fitting can be used as a simple solution, because a simple
empirical model for characterizing the data is sufficient.
Linear polynomial equations could be used for ESS without
CV modes. However, for a generalized model that could fit
all types of ESS, a Quadratic Polynomial model is essential.
Polynomial models for curves are given by,

y = Z Pyt ®)
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where, the order of the polynomial is given by n + 7 and the
degree of the polynomial is given by n. ‘y’ represents the
charging power and ‘x’ represents the SOC of the ESS.
Piecewise polynomials based on non-parametric fitting can
also be used for maximizing the flexibility of the fit.
Reasonable flexibility for simple data, linearity, and simple
fitting process are the advantages. Instability for high-degree
fits and wild divergence outside certain data-range are the
disadvantages. The inputs required are obtained from
previous charging profiles. However, in the proposed
application, extrapolation outside the data set is not required
and hence quadratic polynomial curve fitting can be applied
without any limitations.

V. SIMULATION RESULTS

1) Case Study 1-Energy Storage Systems in a Personal EV:

Based on the scenario explained for application ‘A’ in
Section III, the simulated charging profiles of the EV over its
life time for ‘@’ = 2.5 [21] is illustrated in Fig. 4(a) (until the
capacity reaches 80% of the original value for the conditions
explained in Section III (A)). The observation shows that the
charging time in CV region decreases with an increase in the
number of cycles and vice versa in CC region. It is an
expected phenomenon as a consequence of capacity fade and
the use of same charger for charging the EV. The
phenomenon clearly demonstrates the capacity fading effect
altering the charging profile of EVs considerably. Fig. 4(b)
provides further proof on the impact due to ageing. It can be
observed that although the energy required (distribution)
remains almost constant, the initial SOC decreases
consistently with the increase in number of cycles (the
charging SOC window gets wider). Furthermore, the
charging profile of the same EV/ESS changes significantly
for same number of charging cycles with different values of
‘@’ [21] and can be inferred from Fig. 5. With increase in
ageing factor (decrease in ‘@’) the charging time in CC
region increases and vice versa in CV region. Changes in ‘@’
represent the changes in different driving cycles as well as
difference in driving behavior. Hence, capturing the changes
due to ageing factors is critical for accurately determining the
charging profiles.

The prediction of charging profile is carried out for the
51t and 1501™ charging cycle of the EV with ‘@’ = 2.5 using
all the ESS models. The results are presented in Fig. 6(a), (b)
and (c). Notably the number of previous charging profiles
used has a minimal impact (ranging from 10-50), and hence
ignored. The number of previous charging profiles is fixed at
‘10’. From Fig. 6(a), it is evident that ANN generates a better
prediction for the complete charging period, whereas curve
fitting results in an inferior prediction performance. The
performance of ensemble model is similar to ANN in the
constant current region, however, the error increases in the
constant voltage region. In case of ensemble model, the
performance is similar to ANN in CC region however, the
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Fig. 4(a). Charging profiles of the EV over its life-time for ‘@’ =2.5
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Fig. 5. Charging profile of the same EV/ESS for 251* cycle with

different values of ‘@> =2.5,2, 1.5, and 1.0
error! increases in the CV region. ANN provides a better
performance in the CV region.

The trend remains identical for the 1501™ cycle and can be
deduced from Fig. 6 (b). Hence, the number of charging
cycles the ESS has undergone does not affect the prediction
accuracy. In Fig. 6(c), the ability of the ANN (other models
are not presented owing to the better performance of ANN)
to predict the charging profiles under different ageing factors
is demonstrated. It can be observed that irrespective of the
value of ‘@’ (2.5 and 1.0 [21]) the ANN accurately predicts
the charging power. It is to be noted that the ‘Power
Available’ from the distribution system is set to maximum
value and does not have any significance in applications such
as EV battery charging. This is attributed to the lack of
control on the power supplied to the ESS is in such
applications and the charging will be completely interrupted
as a part of any scheduling algorithms.

! Error analysis is carried out only for the case where experimental profiles
are used.
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Fig. 6(b). Predicted charging profile for 1501" cycle with ‘@’ =2.5.
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Fig. 6(c). Predicted charging profile of the same EV/ESS for 251% cycle

with different values of ‘@’ = 2.5 and ‘1’ using ANN based model

2) Case Study 2- Energy Storage System used for a typical
solar photovoltaic (PV) application:

Fig. 7 illustrates the difference between
charging/discharging power available due to the
intermittency of solar PV and the actual charging/discharging
profile of the ESS due to the limitations imposed by equation
(3). It can be clearly observed that even when higher power is
available for charging/discharging the actual
charging/discharging charging power depends on the SOC of
the ESS. The charging power reduces when SOC is greater

: 17 October 2017

than 80% and discontinues when SOC is 100%. When the
SOC reaches 20%, no discharging is permitted. This clearly
demonstrates the need for predicting the actual
charging/discharging profile of ESS based on their SOC to
activate other demand response management to balance the
mismatch.

Based on the scenario explained for application ‘B’ in
Section III, the charging/discharging profiles are simulated
for ‘@’ = 2.5 [21]. The profiles are used for training the data-
driven models that were explained in Section IV. The
predicted charging/discharging profiles using different
models are shown along with the actual profile in Fig. 8.
‘Charging/discharging’ profiles of the 10 previous days are
used for training the models. The inference from Fig. 8 is
that the ANN performs better than other two methods and
generates a better prediction (similar to application ‘A’).
However, there is a fixed error at the extreme end of the
SOCs i.e., 100% SOC and 20% SOC. The error could be
eliminated with a simple saturation block. It was observed
that increasing the number of charging profiles used for
training the models did not have impact on this fixed error or
did not result in rectification of the resulting error.
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Fig. 8. Charging/discharging profile of the ESS on 131* day of the year
with ‘9> =2.5

intermittency of solar PV and charging/discharging profile of the ESS
on 130" day of the year with ‘@’ =2.5

VI. RESULTS WITH EXPERIMENTAL DATA

The charging profile of 1100mAh, 3.6 V, lithium iron
phosphate battery after 50 cycles, 1000 cycles and 3500
cycles is shown in Fig. 9. The capacity decade i.e., reduction
charging time and energy consumed over the life span can be
observed similar to the simulated profiles in Fig.4.
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Fig. 9 Charging profiles of the battery over its life-time.

Fig. 10 (a) shows the charging profile (51%) predicted
with models described in Section IV. As in Section V, 10
previous charging profiles are used for training. It is clearly
evident from the Fig. 10(a), that ANN provides a better
prediction in comparison to other methods. In Fig. 10(b) the
actual and charging profiles predicted using ANN for 51%
cycle, 1001 cycle, 3501 cycle are shown. Similar to Section
V, the performance of the model is not affect due to ageing of
the battery. A root square error (RSE) plot for comparing the
accuracy of the three models at 51% cycle is shown in Fig.
11(a) and a root square error (RSE) plot for comparing the
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Fig. 10 (b). Predicted charging profile of the battery for S1st cycle, 1001st
cycle, 3501st cycle using ANN based model

accuracy of the ANN at different cycle is presented in Fig.
11(b). It can be observed from Fig. 11(a) that overall RSE of
ANN based model is lower than other two methods. It can be
observed from Fig. 11(b) that the RSE in some cases of CV
region is higher irrespective the cycle number, otherwise the
RSE is relatively lower. However, the mean absolute
percentage error (MAPE) is 1.33%, 4.77% and 2.67%
respectively for 51% cycle, 1001% cycle and 3501% cycle.
Similar to the case of simulated profiles, the error is
significantly higher in CV region than in CC region.

org) | NOT PEER-REVIEWED | Posted: 17 October 2017

The impact of number of neurons in the hidden layer on
the errors is shown in Fig.12. It can be observed that when
the number of neurons in hidden layer increases from 5’ to
20°, the errors decreases with the increase in number of
neurons. However, when the number of neurons in hidden
layer is more than 20 neurons, no significant change could be
observed and it is evident from the case where 50 neurons are
used in the hidden layer.
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Fig. 11 (a). RSE plot for comparing the accuracy of the three models at 51*
cycle
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Fig. 11 (b). RSE plot for comparing the accuracy of the ANN at different
cycle ANN based model
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Fig. 12. Charging/discharging profile of the ESS on 131* day of the
year with ‘@’ =2.5
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VII. CONCLUSION

In this paper, application of different types of data-driven
models namely ANN, Quadratic Polynomial curve fitting and
Ensemble learning to predict the current charging profile of
ESS based on previous charging profiles was examined. A
methodology for utilizing such models was also proposed.
The proposed method can leverage on the existing data from
smart grid, hence does not need any additional investment or
infrastructure. Furthermore, the data available could be used
effectively and increases the value of the investment in smart
grid infrastructure. The proposed method was applied to two
different types of applications namely, applications where
fixed power charging is employed and applications where
variable power charging is employed. The models were also
applied to predict the charging profiles of an 1100mAh, 3.6V
lithium iron phosphate battery, for which the charging
profiles were collected over complete life cycle (~3500
cycles). It was observed that the data-driven models
especially ANN was able to predict the charging profile of
ESS accurately, irrespective of the variations in different
parameters. The proposed method could be deployed for
various load management functions. The proposed approach
needs minimal input such as initial SOC (only for mobile
ESS) and smart meter data that would be available without
any additional resources/infrastructure.
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