- 1 Article
- 2 Multi Component Reactions under Increased
- 3 **Pressure: On the Mechanism of Formation of**
- 4 Pyridazino[5,4,3-de][1,6]naphthyridine Derivatives
- 5 from Reaction of Malononitrile, Aldehyde and
- 6 2-Oxoglyoxalarylhydrazones in Q-Tubes
- Majdah A. AL-Johani ¹, Khadijah M. Al-Zaydi ^{1,*}, Sameera M. Mousally ¹, Norah F. Alqahtani ¹
 and Mohamed H. Elnagdi ²
- 9 ¹ Department of Chemistry, Faculty of Sciences AL Faisaliah, King Abdulaziz University, Jeddah, P.O. Box
 50918, Jeddah 21533, Kingdom Saudi Arabia; moon98.1@hotmail.com (M.A.A);
- 11 smousally@kau.edu.sa (S.M.M); nfa14@case.edu (N.F.A)
- 12 ² Emeritus Professor; Cairo University and Kuwait University and a free science writer;
- 13 m.h.elnagdi@outlook.com
- 14 * Correspondence: kalzaydi@kau.edu.sa; Tel.: +00966505678719

15 Abstract: The considerable biological and medicinal activities of pyridazines has stimulated 16 considerable research on efficient syntheses of these derivatives. In the last decade, microwave 17 irradiation has generally been used for the energy source. As demonstrated in recent studies, 18 pressure reactor "Q-tubes" may be used to accelerate several of these reactions in a more optimal 19 and safer manner (compared to microwaves). In these studies there has been postulated a pathway 20 for the formation of pyridazino[5,4,3-de][1,6]naphthyridine derivatives . In this paper we consider 21 this pathway, and an alternate pathway, for several reactions. Contrary to the suggestion in these 22 studies the pathway in which initial dimerization of malononitrile was postulated could be 23 excluded based on chemical evidence. The reactions performed were the reaction of 24 arylhydrazonals 1a,b with benzylidinemalononitrile which afforded in Q-tube the 3-acyl-4-aryl-1-25 phenyl-6-amino-1,4-dihydropyridazines, and the reaction of arylhydrazonals 1a,b, malononitrile 9 26 and aromatic aldehydes 10a-g in Q-tubes which afforded the tricyclic systems 12a-n whose structure 27 could be established by X-ray crystal structure determination. In conclusion, we have added to the 28 work of the recent studies by excluding a reaction pathway for one of their reaction products.

Keywords: X-ray; arylhydrazones; 2-amino-1,1,3-propenetricarbonitrile; pyridazines; rate enhance
 under pressure

32 1. Introduction

(i) (ii)

33 The considerable biological and medicinal activities of pyridazines stimulated considerable 34 research on efficient syntheses of these derivatives in past years [1-4]. Some time ago we reported 35 synthesis of 2-amino-1,4-dihydropyridazine, isoelectronic derivative of 1,4-dihydropyrimidines of 36 established biological activities [5-8], via 3+3 atom combination of 1a and 2 [9] (Scheme 1). Subsequent 37 studies [10,11] however on this novel route revealed that it is of limited scope as reaction product 38 proved dependent on the nature of reacting the aryl group in the aldehyde hydrazones and 4 were 39 the sole product from reaction of aldehyde hydrazones **1a-c** with α,β -functionally substituted 40 cinnamonitriles. In recent article Abdelhamid et al. [12] have reported that the reaction of 41 arylhydrazone **1f** with α,β -unsaturated nitriles **2** form pyrazolo[4',3'-5,6]pyrimido[2,1-a]phthalazine-42 9-carbonitrile derivative 7, rather than the expected product 6 (Scheme 1).

43

45

Scheme 1: The reactivity of aryl hydrazones **1** towards α , β -functionally substituted cinnamonitriles.

We in the last decades have generally utilized microwaves irradiations as energy source [13-16]. However, we noted that microwaves technology is expensive to scale up [17]. The technique that renders the organic reaction under pressure, can be easily scaled up utilizing presser reactor "Qtubes" to accelerate several reactions in a more optimal and safer manner, compared to Microwaves [18].

51 We reported on the efficient synthesis of benzo[c]chromen-6-one and phenanthridin-6(5H)-one 52 derivatives in a four-component reaction in Q-Tube [19].

53 Recently, Moustafa et al. have developed a novel synthesis of tricyclic system 11 via reacting 54 ethyl-3-oxo-2-(2-phenylhydrazono) pentanoate 8a with malononitrile 9 and aromatic aldehyde 55 derivatives 10 in Q-Tube [20] (Scheme 2). Very recently Sadek and Elnagdi [21] reported the 56 formation of 12 upon reacting arylhydrazonal with malononitrile and aromatic aldehydes in Q-tube 57 but evidence for proposed structure looked debatable. In the present article, we report on the 58 multicomponent reaction of aldehyde hydrazone 1, aromatic aldehydes and malononitrile, where we 59 observed that under pressure in a Q-tube the reaction products different than those conducted by 60 conventional heating as a result of apparent volume effect on the first step transition state of this

61 multicomponent reaction (Scheme 2).

- 63 Scheme 2: novel synthesis of tricyclic system 11 via reacting ethyl-3-oxo-2-(2-phenylhydrazono) pentanoate 8a
- 64 with malononitrile **9** and aromatic aldehyde derivatives **10** in Q-Tube
- 65

66 2. Results

- Reacting 1a with 2a in Q-tube afforded 3. Compound 3 has also been obtained earlier by Elnagdi
 et al [9]. However reaction of 2-oxo-2-arylhydrazonals 1a,b with aromatic aldehydes 10a-g and
 malononitrile 9 afforded in dioxane in presence of piperidine in Q-Tube (*cf.* Fig.1) at 150 °C and 20
- psi, the tricyclic system **12** is formed in 72%-85 % yield (Scheme 3, Table 1).
- 71

72

73 Scheme 3 A new reaction path for aldehyde hydrazone with malononitril and aldehydes.

- 74
- 75 76

Table 1: Synthesis of pyridazino[5,4,3-de][1,6]naphthyridine derivatives 12a-n.

Entry	R	Ar	Yield	Time (min)
			%	
12a	Н	Ph	85	60
12b	Н	$4-ClC_6H_4$	75	60
12c	Н	$2-ClC_6H_4$	80	120
12d	Н	$4-CH_3C_6H_4$	77	60
12e	Н	$2-CH_3C_6H_4$	73	120
12f	Н	$4-O_2NC_6H_4$	82	60
12g	Н	2-furyl	86	120
12h	CH ₃	Ph	83	60
12j	CH ₃	$4-ClC_6H_4$	78	60
12k	CH ₃	$4-CH_3C_6H_4$	80	60
121	CH ₃	$2-CH_3C_6H_4$	72	120
12m	CH ₃	$4-O_2NC_6H_4$	82	60
12n	CH ₃	2-furyl	86	120

Fig. 1: X-ray crystallography of compound 12a [22].

Fig. 2: X-ray crystallography of compound 12m [23].

- 83
- 84 85

Fig. 3: X-ray crystallography of compound 12n [24].

The structure of the reaction products could be established to be pyridazino[5,4,3de][1,6]naphthyridine derivatives 12a-n *via* X-ray crystal structure determination of products 12a,
12m and 12n (Fig. 1-3).

89

90 3. Discussion

91

Two mechanistic pathways seem possible (Scheme 4). Initial dimerization of malononitrile to yield **13** dimer, that then condense with the acyl carbonyl yielding **14** that cyclize to form **15** (rout A), as has been suggested by Moustafa *et al.* [20] could be readily eliminated. As in our hand arylhydrazonals **1a**, **b** did not condense with malononitrile dimer **13** under a variety of rustic conditions.

97 Moustafa et al. [20] also reported that the dimer 13 alone reacts with their arylhydrazone 1a,b 98 yielding pyridazino[5,4,3-de][1,6]naphthyridine derivatives, not condensed with pyridazine 99 derivatives. Thus, it is almost certain that the initial step leading to formation of 12 is the condensation 100 of malononitrile 9 with acyl carbonyl 18. The product 19 can then either cyclize into 20 then 21 (rout 101 C) or condense aromatic aldehyde to give 22 then 23(rout D), neither rout (C, D) can be completely 102 ruled out. Although we believe that aromatic aldehyde condenses initially with 19 then subsequent 103 reaction leading to 22 and then react with malononitrile 9 to form 23 which cyclize to the final product 104 12 that taking place in rout D (Scheme 4).

105

106

107 **Scheme 4:** A suggested mechanism for the formation of pyridazino[5,4,3-de][1,6]naphthyridine derivatives

- 108 12a-n.
- 109

110 4. Experimental Section

111 *4.1 General*

Q-tube assisted reactions were performed in a Q-tube safe pressure reactor from Q Labtech, equipped with a cap/sleeve, pressure adapter (120 psi), needle adapter/needle, borosilicate glass tube, Teflon septum, and catch bottle. All reactions were monitored by using TLC with 1:1 ethyl acetatepetroleum ether as eluent and were carried out until starting materials were completely consumed. Melting points are reported uncorrected and were determined with a Sanyo (Gallaenkamp) instrument. Infrared spectra were recorded using KBr pellets and a Jasco FT–IR 6300 instrument and

absorption bands are reported in cm⁻¹. ¹H- and ¹³C-NMR spectra were determined by using a Bruker

119 DPX instrument at 400 MHz or 600 MHz for ¹H-NMR and 100 MHz for ¹³C-NMR and either CDCl₃

120 or DMSO-d6 solutions with TMS as internal standards. Chemical shifts are reported in ppm. Mass 121 spectra and accurate mass measurements were made using a GCMS DFS Thermo spectrometer with

spectra and accurate mass measurements were made using a GCMS DFS Thermo spectrometer with
 the EI (70 EV) mode. X-ray crystallographic structure determinations were performed by using

123 Rigaku Rapid II and Bruker X8 Prospector single crystal X-ray Diffractometers. All X-ray crystal

structure data can be obtained free of charge from the Cambridge Crystallographic Data Centre [21-

- 125 24] via <u>www.ccdc.cam.ac.uk.</u>
- 126

127 4.2 General Procedures for Q-Tube-Assisted Synthesis of 12a-n

128 2-oxo-2-arylhydrazonals (1a,b) (0.01 mol), aromatic aldehydes (13a-g) (0.01 mol) and 129 malononitrile (14) (0.02 mol) in presence of piperidine (1 mL) and dioxin (20 mL) as solvent were 130 sequentially added in a 35 mL Q-tube pressure tube, furnished by Q Labtech. A Teflon septum was 131 placed on the top of the tube, and an appropriate cap was used. The mixture was heated in an oil 132 bath at 150 °C. After about 60 min, the reaction mixture was monitored by TLC. The mixture was 133 cooled and poured into ice-water. The solid was collected by filtration and purified by column 134 chromatography utilizing appropriate solvents mixture to give crystals of compounds 12a-n.

135 136

8-Amino-1,5-diphenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12a)

137Dark yellow crystals, Yield 85%; mp. 314-315 °C; Anal. Calcd for C22H14N6 (362.13): C, 72.92; H,1383.89; N, 23.19. Found: C, 72.83; H, 3.79; N, 23.25. EI-HRMS: m/z = 362.12 (MH+); C22H14N6 requires: m/z139= 362.13 (MH+); IR: 3467, 3449 (NH2), 2199 (CN); ¹H NMR (400 MHz, DMSO-d6): $\delta = 7.06$ (br, 2H, NH2,140D2O exchangeable), 7.44-7.66 (m, 9H, Ph-H, CH), 8.19-8.22 (m, 2H, Ph-H), 8.38 (s, 1H, CH); ¹³C NMR141(100 MHz, DMSO-d6): $\delta = 162.0$, 161.2, 154.5, 150.9, 141.7, 138.7, 137.8, 133.2, 130.3, 128.8 (2C), 128.7142(2C), 128.1, 127.1 (2C), 126.3 (2C), 116.8, 108.8, 104.6, 73.3. MS: m/z (%) 362.2 (M+, 100), 334 (10), 181143(10), 77 (5).

8-amino-5-(4-chlorophenyl)-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-

144

145

146 *carbonitrile* (12b)

147Green crystals, yield 75%; mp. 340-341 °C; Anal. Calcd for C22H13ClN6 (396.06): C, 66.59; H, 3.30;148N, 21.18. Found: C, 66.70; H, 3.35; N, 21.20. EI-HRMS: m/z = 396.08 (MH⁺); C22H13N635Cl requires: m/z149969= 396.06 (MH⁺); IR: 3463, 3328 (NH2), 2203 (CN); ¹H NMR (400 MHz, DMSO-d6): $\delta = 7.10$ (br, 2H,150NH2, D2O exchangeable), 7.45-7.66 (m, 8H, Ph-H, CH), 8.22-8.24 (m, 2H, Ph-CH), 8.38 (s, 1H, CH); ¹³C151NMR (100 MHz, DMSO-d6): $\delta = 162.1$, 160.0, 154.6, 151.0, 141.7, 138.7, 136.7, 133.4, 130.3, 129.1 (2C),152128.9 (2C), 128.2, 126.6 (2C), 124.6 (2C), 118.0, 109.1, 104.6, 56.0. MS: m/z (%) 396.1 (M⁺, 100), 368 (10),153198 (10), 166 (5), 77 (5).

154 155

8-amino-5-(3-chlorophenyl)-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-

156 *carbonitrile* (12c)

157Green crystals, yield 80%; mp. 314-316 °C; Anal. Calcd for C22H13ClN6 (396.06): C, 66.59; H, 3.30;158N, 21.18. Found: C, 66.57; H, 3.33; N, 21.12. EI-HRMS: m/z = 396.08 (MH⁺); C22H13N635Cl requires: m/z159= 396.06 (MH⁺); IR: 3488, 3347 (NH2), 2213 (CN); ¹H NMR (400 MHz, DMSO-d6): $\delta = 7.11$ (br, 2H, NH2,160D2O exchangeable), 7.27 (s, 1H, CH), 7.45-7.67 (m, 9H, Ph-H), 8.45 (s, 1H, CH); ¹³C NMR (100 MHz,161DMSO-d6): $\delta = 162.2$, 162.0, 154.6, 151.1, 141.7, 138.8, 138.5, 132.4, 131.4, 131.0, 130.6, 129.9 (2C), 128.8,162128.2, 127.4, 126.4 (2C), 116.8, 108.9, 108.8, 73.1. MS: m/z (%) 396.1 (M⁺, 100), 361 (15), 334 (5), 198 (10),163166 (5), 77 (5).

164

165 8-amino-1-phenyl-5-p-tolyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12d)

Faint green crystals, yield 77%; mp. 340-341 °C; *Anal*. Calcd for C₂₃H₁₆N₆ (376.14): C, 73.39; H,
4.28; N, 22.33. Found: C, 73.34; H, 4.30; N, 22.28. EI-HRMS: *m/z* = 376.14 (MH⁺); C₂₃H₁₆N₆ requires: *m/z*

167 4.28; N, 22.33. Found: C, 73.34; H, 4.30; N, 22.28. EI-HRMS: m/z = 376.14 (MH⁺); C₂₃H₁₆N₆ requires: m/z168 = 376.14 (MH⁺); IR: 3470, 3343 (NH₂), 2199 (CN); ¹H NMR (400 MHz, DMSO-*d*6): δ = 2.39 (s, 3H, CH₃), 1697.05 (br, 2H, NH2, D2O exchangeable), 7.34-7.65 (m, 8H, Ph-H, CH), 8.09-8.29 (m, 2H, Ph-H), 8.36 (s,1701H, CH); ¹³C NMR (100 MHz, DMSO-d6): δ = 162.2, 161.2, 154.4, 150.9, 141.7, 140.2, 138.8, 135.1, 133.2,171129.4 (2C), 128.8 (2C), 128.1, 127.1 (2C), 126.3 (2C), 116.9, 108.7, 104.2, 73.3, 20.9. MS: *m/z* (%) 376.2 (M⁺,172100), 348 (10), 188 (10), 77 (5).

173 174

8-amino-1-phenyl-5-m-tolyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12e)

175Green crystals, yield 73%; mp. 280-281 °C; Anal. Calcd for C23H16N6 (376.14): C, 73.39; H, 4.28; N,17622.33. Found: C, 73.38; H, 4.27; N, 22.31. EI-HRMS: m/z = 376.14 (MH⁺); C23H16N6 requires: m/z = 376.14177(MH⁺); IR: 3450, 3338 (NH2), 2197 (CN); ¹H NMR (400 MHz, DMSO-d6): $\delta = 2.43$ (s, 3H, CH3), 7.07 (br,1782H, NH2, D2O exchangeable), 7.18 (s, 1H, CH), 7.34-7.66 (m, 9H, Ph-H), 8.40 (s, 1H, CH); ¹³C NMR179(100 MHz, DMSO-d6): δ = 165.2, 162.0, 154.3, 151.1, 141.7, 139.6, 138.7, 135.8, 133.7, 130.8, 129.3, 128.9,180128.2 (2C), 128.1, 126.3 (2C), 125.9, 116.9, 108.3, 108.2, 73.3, 20.3. MS: m/z (%) 376 (M⁺, 50), 375 (100),181348 (10), 255 (10), 187 (10), 77 (5).

182 183

184

8-amino-5-(4-nitrophenyl)-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12f)

185Dark brown crystals, yield 82%; mp. 397-398 °C; Anal. Calcd for C22H13N7O2 (407.11): C, 64.86; H,1863.22; N, 24.07. Found: C, 64.75; H, 3.10; N, 24.12. EI-HRMS: m/z = 407.11 (MH+); C22H13O2N7 requires:187m/z = 407.11 (MH+); IR: 3433, 3334 (NH2), 2199 (CN); ¹H NMR (400 MHz, DMSO-d6): δ = 7.18 (br, 2H,188NH2, D2O exchangeable), 7.48-8.48 (m, 10H, Ph-H, CH), 9.20 (s, 1H, CH). MS: m/z (%) 407.2 (M+, 100),189361 (20), 334 (10), 180 (10), 77 (5).

190 191

192

8-amino-5-(furan-2-yl)-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12g)

193Dark green crystals, yield 86%; mp. 345-346 °C; Anal. Calcd for C20H12N6O (352.11): C, 68.18; H,1943.43; N, 23.85. Found: C, 68.21; H, 3.52; N, 23.77. EI-HRMS: m/z = 352.10 (MH⁺); C20H12O1N6 requires:195m/z = 352.11 (MH⁺); IR: 3460, 3329 (NH2), 2203 (CN); ¹H NMR (400 MHz, DMSO-d6): $\delta = 6.74-6.75$ (m,1961H, furayl-H), 7.05 (br, 2H, NH2, D2O exchangeable), 7.24-7.97 (m, 8H, Ph-H, furyl-H, CH), 8.42 (s,1971H, CH); ¹³C NMR (100 MHz, DMSO-d6): $\delta = 162.0, 154.6, 153.2, 152.7, 150.8, 145.6, 141.7, 138.6, 133.2,$ 198128.8 (2C), 128.2, 126.3 (2C), 116.8, 112.7, 11.8, 108.6, 102.7, 73.0. MS: m/z (%) 352.1 (M⁺, 100), 324 (5),199176 (10), 77 (5).

200 201

202

8-amino-4-methyl-1,5-diphenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-carbonitrile (12h)

203 Yellow crystals, yield 83%; mp. 364-365 °C; *Anal*. Calcd for C₂₃H₁₆N₆ (376.14): C, 73.39; H, 4.28; 204 N, 22.33. Found: C, 73.35; H, 4.15; N, 22.41. EI-HRMS: m/z = 376.14 (MH⁺); C₂₃H₁₆N₆ requires: m/z =205 376.14 (MH⁺); IR: 3482, 3341 (NH₂), 2198 (CN); ¹H NMR (400 MHz, DMSO-*d*6): δ = 2.34 (s, 3H, CH₃), 206 6.95 (br, 2H, NH₂, D₂O exchangeable), 7.45-7.66 (m, 10H, Ph-H, CH), 8.56 (s, 1H, CH); ¹³C NMR (100 207 MHz, DMSO-*d*6): δ = 164.5, 161.6, 152.3, 150.6, 141.8, 140.0, 136.9, 131.0, 129.0 (2C), 128.8 (2C), 128.5, 208 128.2, 128.0 (2C), 126.3 (2C), 117.1, 114.1, 108.9, 72.6, 13.9. MS: m/z (%) 376.2 (M⁺, 100), 368 (10), 348 (5), 209 255 (5), 188 (10), 97 (10), 57 (5).

210

2118-amino-5-(4-chlorophenyl)-4-methyl-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-212carbonitrile (12j)

213 Dark yellow crystals, yield 78%; mp. 345-346 °C; *Anal*. Calcd for C₂₃H₁₅ClN₆ (410.1): C, 67.24; H, 214 3.68; N, 20.45. Found: C, 67.27; H, 3.56; N, 20.45. EI-HRMS: m/z = 410.10 (MH⁺); C₂₃H₁₅N₆³⁵Cl requires: 215 m/z = 410.1 (MH⁺); IR: 3479, 3332 (NH₂), 2201 (CN); ¹H NMR (400 MHz, DMSO-*d*6): $\delta = 2.35$ (s, 3H, 216 CH₃), 6.90 (br, 2H, NH₂, D₂O exchangeable), 7.45-7.66 (m, 9H, Ph-H, CH), 8.58 (s, 1H, CH); ¹³C NMR 217 (100 MHz, DMSO-*d*6): $\delta = 163.8$, 162.1, 156.4, 151.1, 142.3, 139.4, 137.3, 134.0, 132.5, 131.7, 131.3 (2C), 218 129.3 (2C), 128.6 (2C), 126.7 (2C), 117.2, 114.8, 109.7, 73.5, 14.3. MS: m/z (%) 410.1 (M⁺, 100), 374 (10), 219 346 (5), 255 (5), 205 (5), 187 (10), 173 (5), 97 (5), 77 (5).

221	8-amino-4-methyl-1-phenyl-5-p-tolyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-
222	carbonitrile (12k)
223	Dark orange crystals, Yield 80%; mp. 370-371 °C; Anal. Calcd for C24H18N6 (390.16): C, 73.83; H,
224	4.65; N, 21.52. Found: C, 73.88; H, 4.59; N, 21.60;. EI-HRMS: $m/z = 390.15$ (MH ⁺); C ₂₄ H ₁₈ N ₆ requires:
225	$m/z = 390.16 \text{ (MH}^+\text{)}; \text{ IR: } 3426, 3320 \text{ (NH}_2\text{)}, 2206 \text{ (CN)}; ^1\text{H NMR (} 400 \text{ MH}z, \text{DMSO-}d6\text{)}: \delta = 2.36 \text{ (s, 3H, } 1000 \text{ (s, 2H)}; \delta = 2.36 (s$
226	CH3), 2.41 (s, 3H, CH3), 6.93 (br, 2H, NH2, D2O exchangeable), 7.34-7.67 (m, 9H, Ph-H, CH), 8.56 (s,
227	1H, CH); 13 C NMR (100 MHz, DMSO- <i>d6</i>): δ = 163.9, 161.6, 152.4, 150.7, 141.8, 140.2, 137.2, 129.0 (2C),
228	128.8 (2C), 128.6 (2C), 127.1, 126.3 (2C), 129.1, 124.5, 119.1, 114.8, 109.7, 72.6, 20.8, 14.0. MS: <i>m/z</i> (%)
229	390.2 (M ⁺ , 100), 375 (5), 269 (5), 187 (5), 77 (5).
230	
231	8-amino-4-methyl-1-phenyl-5-m-tolyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-
232	carbonitrile (12l)
233	Yellow crystals, yield 72%; mp. 284-285 °C; Anal. Calcd for C24H18N6 (390.16): C, 73.83; H, 4.65;
234	N, 21.52. Found: C, 73.81; H, 4.68; N, 21.55. EI-HRMS: <i>m/z</i> = 390.15 (MH ⁺); C ₂₄ H ₁₈ N ₆ requires: <i>m/z</i> =
235	390.16 (MH ⁺); IR: 3489, 3336 (NH ₂), 2200 (CN); ¹ H NMR (400 MHz, DMSO- <i>d</i> 6): δ = 2.08 (s, 3H, CH ₃),
236	2.11 (s, 3H, CH ₃), 6.96 (br, 2H, NH ₂ , D ₂ O exchangeable), 7.19-7.66 (m, 9H, Ph-H, CH), 8.53 (s, 1H, CH);
237	¹³ C NMR (100 MHz, DMSO- <i>d</i> 6): δ = 165.5, 161.5, 152.4, 150.7, 141.8, 139.8, 136.9, 134.8, 130.6, 130.0,
238	128.9 (2C), 128.2 (2C), 126.3 (2C), 125.6 (2C), 117.1, 114.7, 109.0, 72.6, 19.0, 13.0. MS: <i>m/z</i> (%) 390.2 (M ⁺ ,
239	50), 375 (100), 346 (5), 255 (5), 195 (5), 187 (15), 173 (10), 129 (5), 77 (5).
240	
241	8-amino-4-methyl-5-(4-nitrophenyl)-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-
242	carbonitrile (12m)
243	Dark yellow crystals, yield 82%; mp. 368-369 °C; Anal. Calcd for C23H15N7O2 (421.13): C, 65.55; H,
244	3.59; N, 23.27. Found: C, 65.59; H, 3.63; N, 23.31. EI-HRMS: <i>m/z</i> = 421.12 (MH ⁺); C ₂₃ H ₁₅ O ₂ N ₇ requires:
245	<i>m/z</i> = 421.13 (MH ⁺); IR: 3464, 3350 (NH ₂), 2198 (CN); ¹ H NMR (400 MHz, DMSO- <i>d</i> 6): δ = 2.37 (s, 3H,
246	CH ₃), 6.82 (br, 2H, NH ₂ , D ₂ O exchangeable), 7.47-8.38 (m, 9H, Ph-H, CH), 8.58 (s, 1H, CH). MS: <i>m/z</i>
247	(%) 421.2 (M ⁺ , 100), 390 (15), 374 (25), 348 (10), 255 (5), 187 (10), 77 (5).
248	
249	8-amino-5-(furan-2-yl)-4-methyl-1-phenyl-1H-pyridazino[5,4,3-de][1,6]naphthyridine-7-
250	carbonitrile (12n)
251	Dark green crystals, yield 86%; mp. 368-369 °C; Anal. Calcd for C21H14N6O (366.12): C, 68.84; H,
252	3.85; N, 22.94. Found: C, 68.89; H, 3.78; N, 22.88. EI-HRMS: <i>m/z</i> = 366.12 (MH ⁺); C ₂₁ H ₁₄ O ₁ N ₆ requires:
253	<i>m/z</i> = 366.12 (MH ⁺); IR: 3470, 3330 (NH ₂), 2203 (CN); ¹ H NMR (400 MHz, DMSO- <i>d</i> 6): δ = 2.50 (s, 3H,
254	CH ₃), 6.72-6.73 (m, 1H, furayl-H), 6.91 (br, 2H, NH ₂ , D ₂ O exchangeable), 7.19-7.97 (m, 7H, Ph-H, furyl-
255	H), 8.52 (s, 1H, CH); ¹³ C NMR (100 MHz, DMSO- <i>d</i> 6): <i>δ</i> = 161.6, 153.0, 152.4, 152.2, 150.4, 145.1, 141.8,
256	136.8, 131.8, 128.9 (2C), 128.2, 126.3 (2C), 117.0, 114.3, 113.2, 112.0, 108.8, 72.3, 13.2. MS: <i>m/z</i> (%) 366.1
257	(M ⁺ , 100), 337 (5), 311 (5), 183 (5), 77 (10).
258	5. Conclusions
259	Under pressure MCRs change their sequence and initial steps change sequence as a result of
260	preference of formation of products of least activation volume. Reactions under pressure can be more
261	easily and much less expensively scaled up on it is thus recommend to expand this technique
262	Ethics approval and consent to participate
263	The authors approve the ethics and consent to participate
264	Consent for publication

- 265 The authors approve publication.
- 266 Availability of data and material
- 267 The data and material are available in the Supplementary material and manuscript.
- 268 Supplementary material is attached as PDF format and submitted along with the manuscript.
- 269 Competing interests

- 270 The authors declare that they have no competing interests.
- 271 Funding
- 272 This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University,
- 273 Jeddah, under grant No. (2-363-36-RG). The authors, therefore, acknowledge with thanks DSR
- technical and financial support.
- 275 Authors' contributions
- 276 The main part of the work was carried out by Majdah A. AL-Johani and Sameera M. Mousally, with
- 277 the direct supervision of Khadijah M. Al-Zaydi and Norah F.Alqahtani. Conceptually the work was
- 278 designed by Mohamed H. Elnagdi, Khadijah M. Al-Zaydi and Norah F.Alqahtani .All authors read
- and approved the final manuscript.
- 280 Acknowledgements
- 281 This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University,
- 282 Jeddah, under grant No. (2-363-36-RG). The authors, therefore, acknowledge with thanks DSR
- technical and financial support.

284 References

- 2851. Asif M. Some Recent Approaches of Biologically Active Substituted Pyridazine and286Phthalazine Drugs. Curr. Med. Chem. 2012, 19,2984-2991, DOI: 10.2174/092986712800672139
- Singh, A. K.; Hegde, G.L.; Khanum, S.A.; Shashikanth, S. Synthesis and Pharmacological
 Activity of 4-Aryl-Thieno-(2, 3-d)-Pyridazines. *Indian J. Pharm. Sci.* 2005, 67,210-215.
- Tucaliuc, R. A.; Cotea, V. V.; Niculaua, M.; Tuchilus, C.; Mantu, D.; Mangalagiu, I. I. New pyridazine–fluorine derivatives: Synthesis, chemistry and biological activity. *Eur. J. Med. Chem.* 2013, 67, 367-372. DOI: 10.1016/j.ejmech.2013.04.069
- Gao, Q.; Zhu, Y.; Lian, M.; Liu, M; Yuan, J.; Yin, G.; Wu. A. Unexpected C–C Bond Cleavage:
 A Route to 3, 6-Diarylpyridazines and 6-Arylpyridazin-3-ones from 1, 3-Dicarbonyl
 Compounds and Methyl Ketones. J. Org. Chem. 2012, 77, 9865–9870. DOI: 10.1021/jo301751e
- Kessler, S. N.; Wegner. H. A. One-Pot Synthesis of Phthalazines and Pyridazino-aromatics:
 A Novel Strategy for Substituted Naphthalenes. *Org. Lett.* 2012, 14(13), 3268-3271, DOI:
 10.1021/ol301167q
- Poschenrieder H.; Stachel, H-D. Synthesis of pyrrolo [3, 4-c] pyridazines. J. Heterocyclic
 Chem. 1995, 32, 1457-1460, DOI: 10.1002/jhet.5570320507
- 300
 7. Behbehani, H.; Ibrahim. H. M. Microwave-Assisted Synthesis in Water: First One-Pot
 301
 302
 303
 304
 305
 305
 305
 306
 306
 307
 307
 308
 308
 309
 309
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 301
 301
 302
 302
 302
 303
 304
 304
 305
 305
 306
 307
 307
 308
 308
 308
 309
 309
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300</
- 303 8. Elnagdi, M. H; Moustafa, M. S; Sadek. K. U. Green Synthesis of Biologically Relevant
 304 Azoles and Azines Derivatives. *Lap Lambert Acadimic Publishing*, 2014.
- 305
 9. Ghozlan, S. A.S.; Abdelhamid, I. A; Hassaneen, H. M.; Elnagdi. M. H. Studies with
 306
 307
 and their Condensed Derivatives. *J. Heterocyclic Chem.* 2007, 44, 105-108.
- 30810. Al-Mousawi, S. M.; Moustafa, M. S.; Abdelhamid, I. A.; Elnagdi. M. H. Reassignment of the309Structures of Condensation Products of α -keto α '-formylarylhydrazones with Ethyl310Cyanoacetate: A Novel Route to ethyl 5-arylazo-2-hydroxynicotinates. *Tetrahedron Lett.* 2011,31152(2), 202-204.
- 312 11. Elshalkamy, R. M.Sc. thesis Cairo University, **2008**.

313	12.	Ghozlan, S. A. S.; Abdelmoniem, A. M.; Butenschon, H.; Abdelhamid. I. A. Discrepancies
314		in The Reactivity Pattern of Azaenamines towards Cinnamonitriles: Synthesis of Novel aza-
315		steroid Analogues. Tetrahedron. 2015, 71, 1413-1418.
316	13.	Al-Zaydi. K.M. Microwave Assisted Synthesis, Part 1: Rapid Solventless Synthesis of 3-
317		Substituted Coumarins and Benzocoumarins by Microwave Irradiation of the
318		Corresponding Enaminones. Molecules, 2003, 8, 541-555.
319	14.	Al-Zaydi, K. M.; Borik, R. M.; Elnagdi. M. H. Arylhydrazononitriles as Precursors to 2-
320		Substituted 1, 2, 3-triazoles and 4-amino-5-cyano-pyrazole Derivatives Utilizing Microwave
321		and Ultrasound Irradiation. Green Chemistry Letters and Reviews, 2012, 5, 241-250.
322	15.	Al-Zaydi, K. M.; Nhari, L. M.; Borik, R. M.; Elnagdi. M. H. Green Technologies in Organic
323		Synthesis: Self-Condensation of Enamines, Enaminones and Enaminoesters Under
324		Microwave Irradiation in Ionic Liquid. <i>Green Chemistry Letters and Reviews</i> , 2010 , 3, 93-99.
325	16.	Al-Zaydi, K. M.; Borik, R. M.; Elnagdi. M.H. 2-Arylhydrazonopropanals as Building Blocks
326		in Heterocyclic Chemistry: Microwave Assisted Condensation of 2-Aryl-
327		hydrazonopropanals with Amines and Active Methylene Reagents. Molecules, 2003, 8, 910-
328		923. DOI: 10.3390/81200910
329	17.	Kappe, C. O.; Stadler. A. Microwaves in Organic and Medicinal Chemistry. Wiley-VCH,
330		<i>Weinheim</i> , 2005 .
331	18.	Kappe, C. O.; Dallinger, D.; Murphree, S. S. Practical Microwave Synthesis for Organic
332		Chemists—Strategies. Instruments, and Protocols, Wiley-VCH, Weinheim, 2009.
333	19.	Alzaydi, K. M.; Abojabal, N. S.; Elnagdi. M. H. Multicomponent Reactions in Q-Tubes™:
334		One-Pot Synthesis of Benzo[c]chromen-6-one and phenanthridin-6(5H)-one Derivatives in a
335		Four-Component Reaction. Tetrahedron Letters, 2016, 57, 3596-3599.
336		DOI10.1016/j.tetlet.2016.05.035
337	20.	Moustafa, M. S.; Al-Mousawi, S. M.; Abdelhamid, I. A.; Elnagdi. M. H. Use of A Novel
338		Multicomponent Reaction Under High Pressure for The Efficient Construction of A New
339		Pyridazino[5,4,3-de][1,6]naphthyridine Tricyclic System. RSC Adv., 2016, 93, 90840-90845.
340		DOI: 10.1039/C6RA19535K
341	21.	Sadek, K. U.; Selim, M. A.; .Alnajjar, A.; Atallah, M.; Elnagdi. M. H. Multicomponent
342		Reactions under Increased Pressure: On the Reaction of Arylhydrazonals, Aromatic
343		Aldehydes and Malononitrile in Q-Tube. Chem. Eur. J., 2016, 7 (4), 468-472. DOI:
344		http://dx.doi.org/10.5155/eurjchem.7.4.468-472.1508
345	22.	A single crystal of compound 12a was obtained by slow evaporation from a mixture of
346		ethanol:DMF (2:1). The crystal structure was solved and refined using maxus (nonius, Deflt
347		and MacScience, Japan). Crystallographic data (excluding structure factors) for the structure
348		in this paper have been deposited with the Cambridge Crystallographic Data Centre as
349		supplementary publication number CCDC 1434604 Copies of the data can be obtained, free
350		of charge, on application to CCDC, 12 Union, Road, Cambridge CB2 1EZ, UK. [fax: 144
351		(0)1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].
352	23.	A single crystal of compound $\mathbf{12m}$ was obtained by slow evaporation from a mixture of
353		ethanol:DMF (2:1). The crystal structure was solved and refined using maxus (nonius, Deflt
354		and MacScience, Japan). Crystallographic data (excluding structure factors) for the structure
355		in this paper have been deposited with the Cambridge Crystallographic Data Centre as

- supplementary publication number CCDC 1434605 Copies of the data can be obtained, free
 of charge, on application to CCDC, 12 Union, Road, Cambridge CB2 1EZ, UK. [fax: 144
 (0)1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].
- A single crystal of compound 12n was obtained by slow evaporation from a mixture of ethanol:DMF (2:1). The crystal structure was solved and refined using maxus (nonius, Deflt and MacScience, Japan). Crystallographic data (excluding structure factors) for the structure in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1493165 Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union, Road, Cambridge CB2 1EZ, UK. [Fax: 144 (0)1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].