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Abstract: Various distance metrics and their induced norms are employed in the quantitative 12 
modeling of evolutionary dynamics. Minimization of these distance metrics when applied to 13 
evolutionary optimization are hypothesized to result in different outcomes. Here, we apply the 14 
different distance metrics to the evolutionary trait dynamics brought about by the interaction 15 
between two competing species infected by parasites (exploiters). We present deterministic cases 16 
showing the distinctive selection outcomes under the Manhattan, Euclidean and Chebyshev norms. 17 
Specifically, we show how they differ in the time of convergence to the desired optima (e.g., no 18 
disease), and in the egalitarian sharing of carrying capacity between the competing species. 19 
However, when randomness is introduced to the population dynamics of parasites and to the trait 20 
dynamics of the competing species, the distinctive characteristics of the outcomes under the three 21 
norms become indistinguishable. Our results provide theoretical cases when evolutionary dynamics 22 
using different distance metrics exhibit similar outcomes. 23 
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 26 

1. Introduction 27 
Parasitism-induced coevolution has been one of the interesting topics in evolutionary biology, 28 

as parasites can drive biodiversity and balance in communities [1-4]. Specifically, parasite infection 29 
greatly influences the population dynamics of species in a competitive environment [5,6]. Species 30 
maximize their fitness but resources are limited, leading to the competition for share in the 31 
environmental carrying capacity [6,7]. If one species wins, parasites could drive the winner to be 32 
loser, giving other species the opportunity to dominate [5-8]. Both competition and parasitism arise 33 
as two candidate biotic factors for explaining the evolution of traits in populations [9]. 34 

The evolution of traits has been modeled using various mathematical techniques (e.g., game 35 
theory, dynamical systems and probability theory). One of which is the selection gradient in 36 
differential equation form [10-15]. In this model, if the selection gradient results in a positive change 37 
in fitness value, then the trait becomes more favored and further improved. If it is negative, then the 38 
trait is reduced. Similarly, we use in this study the idea of selection ascent towards fitness 39 
maximization. The trait of a population is represented numerically, and the changes in the trait is 40 
modeled using difference equations. The quantitative trait dynamics is governed by the goal of the 41 
population (here, termed as evolutionary objective) and by the existent population dynamics of the 42 
species modeled using Lotka-Volterra-type equations. We study the population dynamics since the 43 
effect of evolution in species are often reflected in their population densities [16-18]. 44 
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The evolutionary objective is represented by mathematical metrics [19-23]. A metric is a measure 45 
of distance between the desired goal and the instantaneous condition of the population. For example, 46 
if the evolutionary objective is to reach the maximum population density normalized to 1 and the 47 
current population density is , then the metric can be represented by ‖1 − ‖. Here, three common 48 
distance metrics are studied, namely the Manhattan norm (also known as Taxicab or 1-norm), the 49 
Euclidean norm (least squares or 2-norm) and the Chebyshev norm (supremum, uniform or infinity 50 
norm) [24,25]. We investigate the differences in the effect of the three metrics to the resulting trait 51 
dynamics of competing populations. 52 

The distance metric used in obtaining the desired evolutionary outcome is hypothesized to have 53 
significant effect on the trait and population dynamics of species. Predicting the population dynamics 54 
of species could be subject to the metric used in data analysis and simulations. This has crucial 55 
implications on formulating ecological conclusions. For this reason, it is imperative to determine the 56 
advantages and limitations of the metrics. We identify the distinctive characteristics of the resulting 57 
trait dynamics under the Manhattan, Euclidean and Chebyshev norms. We also investigate if these 58 
characteristics are robust under stochastic noise. Our results provide an answer to the question “Does 59 
the choice of measure for adaptation success matter in a stochastic environment?” 60 

The study of evolutionary dynamics encompasses different dimensions. As in the concept of 61 
inclusive inheritance, information transfer and changes in traits can happen in genetic, epigenetic, 62 
ecological and cultural levels [26]. The changes in traits can be transgenerational (e.g., genetic 63 
inheritance from parents to offspring) or intra-generational (e.g., cultural information transfer within 64 
the same generation). In this paper, we assume that novel traits of two competing species are selected 65 
to adapt or defend against parasites [27-32]. The novel traits may arise in different evolutionary 66 
dimensions. As such, our results can be interpreted not only in the perspective of genetics, but also 67 
in the perspective of cultural societies where parasites are characterized by exploiters. 68 

2. The Mathematical Model 69 
Two competing species (  and ) maximize their population densities with respect to the 70 

environmental carrying capacity. In order to maximize their population, the two competing host 71 
species minimize the effect of antagonistic parasites ( ) by changing the host defense trait. This can 72 
be done through minimizing the parasitism exploitation coefficient  (represented by  and  in 73 
our model). However, as the host species compete for available resources in the environment, they 74 
cooperatively assure that there is egalitarian (equal) sharing of resources. Our model represents 75 
competitive-cooperative interaction of two species that is evolving to defend against the negative 76 
influence of parasitism or exploitation [33,34].  77 

We assume that the two competing host species have equal characteristics. This allows our 78 
analysis to focus on the effect of the different metrics to the evolutionary objective rather than on the 79 
differences between the two species. Without losing generality in our conceptual study, we use a 80 
basic Lotka-Volterra-type model [6, 35-38] (with time step ℎ<<1) for population dynamics with basal 81 
growth rate  as follows: 82 ( + ℎ) = ( ) + ℎ ( ) × 1 − ( ) − ( ) − ( ) × ( )  (1)( + ℎ) = ( ) + ℎ ( ) × 1 − ( ) − ( ) − ( ) × ( )  (2)( + ℎ) = ( ) + ℎ ( ) × ( ) + ( ) − ( ) +  (3)

where = , = 1,2. The parameter  is the ratio between the parasitism numerical response 83 
coefficient ( ) and the parasitism exploitation coefficient ( ). When >  ( < ), the parasites 84 
produce more (less) offspring compared to the number of parasitized hosts. 85 

The evolutionary trait dynamics using Manhattan 1-norm, |1 − ( )| + |1 − ( )|, is modeled 86 
by: 87 ( + ℎ) = ( ) − ℎ |1 − ( )| + |1 − ( )|max ( ), 10 +  (4) 
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( + ℎ) = ( ) − ℎ |1 − ( )| + |1 − ( )|max ( ), 10 + . (5) 

Using Euclidean 2-norm, 1 − ( ) + 1 − ( ) , the evolutionary trait dynamics is 88 
represented as: 89 

( + ℎ) = ( ) − ℎ 1 − ( ) + 1 − ( )max ( ), 10 +  (6) 

( + ℎ) = ( ) − ℎ 1 − ( ) + 1 − ( )max ( ), 10 + . (7) 

For the Chebyshev infinity-norm, max |1 − ( )|, |1 − ( )| , the model is: 90 ( + ℎ) = ( ) − ℎ max |1 − ( )|, |1 − ( )|max ( ), 10 +  (8) 

( + ℎ) = ( ) − ℎ max |1 − ( )|, |1 − ( )|max ( ), 10 + . (9) 

For comparison, we also consider a model where the competing species evolve independently of each 91 
other. We use a model that follows a non-cooperative optimization with no assured egalitarian 92 
sharing of resources (refer to Equation A5 and A6 in Appendix A: Methods).  93 

3. Simulation Results and Discussion 94 
Deterministic Case. Without stochastic noise, the population densities of the evolving competing 95 

host species converge to a stable equilibrium point (Figure 1). The evolutionary objective is to drive 96 
the parasitism exploitation coefficient  to zero as well as to reach the maximum population density 97 
(Figures 1a and 1b). We expect that the convergence to the desired evolutionary outcome is faster 98 
when using Manhattan, then Euclidean and lastly, the Chebyshev norm (Figures 1a, 1b and 2). This 99 

is because |1 − ( )| + |1 − ( )| ≥ 1 − ( ) + 1 − ( ) ≥ max |1 − ( )|, |1 − ( )| . 100 
In a biological or social context, this behavior implies that we may consider the Manhattan or 101 
Euclidean norm as the metric when time of convergence is essential in evolutionary optimization 102 
(e.g., during crisis and catastrophes). 103 

To understand the extent of the regularity of the trait dynamics convergence, we investigate the 104 
pattern of convergence under different parameter values of  and  (Figures 2). The parameter  is 105 
the speed of evolutionary adaptation, which reflects the effect of the distance metric to the trait 106 
dynamics in one generation. In Figure 2, the speed of convergence of the trait dynamics following 107 
non-cooperative optimization is slowest in the cases when = 10  to 10  compared to the trait 108 
dynamics that utilize the Manhattan, Euclidean and Chebyshev norms. In the cases = 10  to 109 10 , the trait dynamics following non-cooperative optimization is fastest. In most cases, when  110 
and  are varied, the convergence of the trait dynamics with Manhattan norm is faster than the 111 
Euclidean norm, and the convergence of the trait dynamics with Euclidean norm is faster than the 112 
Chebyshev norm.  113 
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(a)  

114 

(b) 

 115 
Figure 1. Effect of using different norms in the evolutionary objective under deterministic case. (a) 116 
Effect on lowering the parasitism exploitation coefficient ( ). The parameter 1 and 2 in the figure 117 
are the parasitism exploitation coefficients using non-cooperative optimization for the competing 118 
species 1 and 2, respectively. The parameters 1 , 1  and 1  ( 2 , 119 2  and 2 ) are the parasitism exploitation coefficients for species 1 (species 2) using 120 
Manhattan, Euclidean and Chebyshev norms, respectively. The figure shows which method 121 
converges faster to the desired value = 0 (no disease). (b) In the figure, = 1 + 2 (for non-122 
cooperative optimization), = 1 + 2 , = 1 + 2  123 
and = 1 + 2 .  The sums represent the carrying capacity of the 124 
environment where species 1 and 2 compete for the available resources. The desired goal is to 125 
maximize the utilization of the resources (sum equals 1). Note that the variables 1 and 2 are the 126 
population densities of species 1 and 2 using non-cooperative optimization, respectively. The 127 
variables 1 , 1  and 1  ( 2 , 2  and 2 ) are the 128 
population densities for species 1 (species 2) using Manhattan, Euclidean and Chebyshev norms, 129 
respectively. 130 
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 131 

Figure 2. Convergence time to the evolutionary objective under deterministic case. In this figure, 132 
‘stop’ means time of convergence towards the evolutionary objective for non-cooperative 133 
optimization, and ‘stop’ with index means time of convergence towards the evolutionary objective 134 
using the corresponding mathematical norm. The parameter  denotes the ratio between the 135 
numerical response coefficient ( ) and parasitism exploitation coefficient ( ), and  is the speed of 136 
evolutionary adaptation. The larger the , the larger the effect of the distance metric to the trait 137 
dynamics in one generation. Here, we consider = 0.5 which means  as half of , = 1 which 138 
means  equals , and = 2 which means  as double of . The numerals 1 to 4 and letters A 139 
to D represent the ranking of convergence, where 1 and A denote fastest convergence while 4 and D 140 
denote slowest convergence. We took the mean and the mean plus standard deviation (sd) of 1000 141 
numerical simulations with random population initial conditions. 142 

In terms of egalitarian sharing of resources, each of the distance metric provides opportunity for 143 
the competing species to maintain nearly equal sharing of available resources even though the species 144 
maximize their population densities in a zero-sum game. If the difference between the population 145 
densities of the competing species is near zero then it means that the competition system is 146 
egalitarian. The effect of the trait dynamics can be observed from the population densities of the 147 
competing species (Figure 3a). The population densities of the competing species following the trait 148 
dynamics with non-cooperative optimization can converge faster to the evolutionary objective. 149 
However, the outcome may not be egalitarian, that is, there is large difference between the population 150 
densities of the competing species (Figure 3b).  151 
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(a) 

 152 

(b) 

 153 
Figure 3. Effect of using different norms in the population dynamics of the host species under 154 
deterministic case. (a) Effect on the population densities (  and ). The variables 1 and 2 in 155 
the figure are the population densities of species 1 and 2 using non-cooperative optimization, 156 
respectively. The variables 1 , 1  and 1  ( 2 , 2  and 157 2 ) are the population densities for species 1 (species 2) using Manhattan, Euclidean and 158 
Chebyshev norms, respectively. (b) In the figure, | | = | 1 − 2|, | | =159 | 1 − 2 | , | | = | 1 − 2 |  and | | =160 | 1 − 2 |. Here, we can see what method provides opportunity for the competing 161 
species to maximize each of their population densities while maintaining equal sharing of the 162 
available resources. If the difference is near zero then it means that the competition system is 163 
egalitarian. 164 

When varying the parameter values of  and , the trait dynamics with non-cooperative 165 
optimization is ranked with very low egalitarian sharing of resources (Figure 4). In most cases in 166 
Figure 4, the degree of being egalitarian of the population dynamics with Euclidean norm falls 167 
between that with Manhattan and Chebyshev norms. The dynamics with Chebyshev norm shows 168 
very high degree of egalitarianism (rank 1 in most cases in Figure 4) when = 10  to 10 . This 169 
means that when speed of adaptation is fast (e.g., trait evolution significantly affects current or 1st 170 
generation of offspring), the dynamics with Chebyshev norm may result in almost equal population 171 
densities. In most cases, when = 10  to 10 , the dynamics with Manhattan norm is the first in 172 
rank (Figure 4). That is, when the consequence of evolution is exhibited mostly in 2nd or later 173 
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generations, the dynamics with Manhattan norm results in higher degree of egalitarianism. However, 174 
when = 2, this pattern may not be always the case. A parameter > 1 indicates that infection of 175 
host leads to high reproduction rate of parasites.  176 

 177 

Figure 4. Absolute difference between the population densities of host species 1 and 2. In this figure, 178 | | = | 1 − 2|  (for non-cooperative optimization), | | = | 1 −179 2 | , | | = | 1 − 2 |  and | | = | 1 −180 2 |. If the difference is near zero then it means that the competition system is egalitarian. The 181 
parameter  denotes the ratio between the numerical response coefficient ( ) and parasitism 182 
exploitation coefficient ( ), and  is the speed of evolutionary adaptation. The larger the , the larger 183 
the effect of the distance metric to the trait dynamics in one generation. Here, we consider = 0.5 184 
which means  as half of , = 1 which means  equals , and = 2 which means  as 185 
double of . The numerals 1 to 4 and letters A to D represent the ranking of the degree of 186 
egalitarianism, where 1 and A denote most egalitarian while 4 and D denote least egalitarian. We took 187 
the mean and the mean plus standard deviation (sd) of 1000 numerical simulations with random 188 
population initial conditions. 189 

The trait dynamics using Manhattan and Euclidean norms have advantages over the Chebyshev 190 
norm. Nevertheless, the speed of convergence entails evolutionary trade-off. The trait dynamics with 191 
Manhattan norm requires higher energy cost compared to that with Euclidean norm. Also, the trait 192 
dynamics with Euclidean norm requires more energy cost than that with Chebyshev norm. More so 193 
in the stochastic case, the distinctive advantages of the three metrics become indistinguishable. 194 

Stochastic Case. Random perturbations, such as uncertain environmental noise, are frequent in 195 
biological and social systems [39,40]. The presence of randomness can be disadvantageous in 196 
predicting future events when perturbations do not follow the regularity posted by known 197 
probability distributions. However, randomness can also pose benefits to populations, and drive 198 
diversity in biological and social systems. A dominant species can lose its competitive advantage over 199 
its competitor because of environmental noise, resulting in the switching of winners [6,39].  200 
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We have introduced a degree of stochastic noise to the population dynamics of parasites 201 
(Equation 3) and to the trait dynamics of the competing species (Equations 4-9). It is observable that 202 
the distinctive characteristics of the outcomes under the Manhattan, Euclidean and Chebyshev norms 203 
become indistinguishable (Figure 5a). The patterns of convergence to the desired evolutionary 204 
outcomes which is to drive the parasitism exploitation coefficient  to zero (Figure 5a) and to reach 205 
the maximum population density (Figure 5b) become almost similar for the trait dynamics under the 206 
three norms.  207 

(a)  

208 

(b) 

 209 
Figure 5. Effect of using different norms in the evolutionary objective under stochastic case. The 210 
distinctive characteristics of the outcomes under the Manhattan, Euclidean and Chebyshev norms 211 
become homogenous. (a) Effect on lowering the parasitism exploitation coefficient ( ). The 212 
parameters 1 , 1  and 1  ( 2 , 2  and 2 ) are the 213 
parasitism exploitation coefficients for species 1 (species 2) using Manhattan, Euclidean and 214 
Chebyshev norms, respectively. (b) In the figure, = 1 + 2 , =215 1 + 2  and = 1 + 2 . The sums represent the carrying 216 
capacity of the environment where species 1 and 2 compete for the available resources. The desired 217 
goal is to maximize the utilization of the resources (sum equals 1). 218 

The patterns of egalitarian sharing of resources becomes indistinguishable when randomness is 219 
introduced (Figure 6). That is, the stochastic population dynamics with trait dynamics using 220 
Manhattan, Euclidean and Chebyshev norms are similar in many cases (Figure 6a). We cannot 221 
determine what norm could result in an observable higher degree of egalitarianism (Figure 6b). 222 
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Moreover, randomness can result in negative frequency-dependent selection as shown by the 223 
population fluctuations in Figure 6a. This reveals that randomness can drive switching of winners 224 
(dominant populations). We have also simulated a case where  and  are the evolving traits, and 225 
the result shows that there are only minute differences in the population densities using Manhattan, 226 
Euclidean and Chebyshev norms (Figure B1 in Appendix B).  227 

(a) 

 228 

(b) 

 229 
Figure 6. Effect of using different norms in the population dynamics of the host species under 230 
stochastic case. Oscillations arise due to stochasticity, and the temporal patterns of egalitarian sharing 231 
of resources becomes indistinguishable. (a) Effect on the population densities (  and ). The 232 
variables 1 , 1  and 1  ( 2 , 2  and 2 ) are the 233 
population densities for species 1 (species 2) using Manhattan, Euclidean and Chebyshev norms, 234 
respectively. (b) In the figure, | | = | 1 − 2 |, | | =235 | 1 − 2 | and | | = | 1 − 2 |. If the difference is near 236 
zero then it means that the competition system is egalitarian. 237 

4. Conclusions 238 
Our results provide theoretical cases when evolutionary dynamics using different distance 239 

metrics exhibit distinguishable outcomes. However, random perturbations could mask the effect of 240 
using different evolutionary measures. This has two important implications. First, the use of different 241 
metrics entails employing different strategies but whatever metric is used, the outcomes may be 242 
indistinguishable in a stochastic environment. Consequently, a simpler metric can be used rather than 243 
using a metric that is too costly to implement in evolutionary dynamics. Second, when data are 244 
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available, the intrinsic and extrinsic noise may lead to difficulty in tracking the evolutionary measure 245 
that was utilized during evolutionary events. In investigating evolutionary strategies of populations, 246 
it is advisable to clear the data of randomness such as by compressing the data to reflect only the 247 
deterministic trends. 248 
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Appendix A: Methods 258 
The deterministic evolutionary trait dynamics using a mathematical norm ‖1 − ‖ is modeled 259 

by:  260 ( + ℎ) = ( ) − ℎ ‖1 − ‖max , 10 . (A1)

The parameter  is the speed of evolutionary adaptation. The quantitative trait  will increase when 261 
the expression ‖ ‖, < 0. On the other hand, the quantitative trait  will decrease when the 262 
expression ‖ ‖, > 0. The evolutionary effect of ‖1 − ‖  is regulated by the density of the 263 
population (max , 10 ), where the number 10  is introduced to avoid division by zero during 264 
numerical simulations. Here, low population size facilitates trait evolution. 265 

The stochasticity in the model are represented by the following: 266 
   = √ℎ (0,1) (A2)= √ℎ (0,1) (A3)  = √ℎ (0,1) (A4)  

where  is the amplitude of the noise, and (0,1) is a normally distributed random number. The 267 
expression  characterizes density-dependent noise in parasite population, where a large parasite 268 
population leads to homogeneity. In the numerical simulations, it is assured that all state variables 269 
( ) and the quantitative trait ( ) are nonnegative.  270 

The non-cooperative optimization model that we have considered is:  271 ( + ℎ) = ( ) − ℎ( ( ) × max(| ( ) − ( − 100)|, 10 )) (A5)( + ℎ) = ( ) − ℎ( ( ) × max(| ( ) − ( − 100)|, 10 )).  (A6)  

In this model,  is directly independent of . Also,  is directly independent of .  272 
In the figures, we have used the following values: (0) = (0) = 1, ℎ =  0.01, = 10 . , 273 

and = 10 . Lower values of  and  may result in approximately deterministic case. The 274 
initial values for the 1000 simulation runs are uniformly distributed random numbers between 0 and 275 
1 per host and parasite population state variables.  276 

Appendix B 277 
We have also simulated a case where  and  are the evolving traits with = = 1. The 278 

quantitative trait evolution equations are 279 
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( + ℎ) = ( ) − ℎ ‖1 − ‖max ( ), 10 +  (B1)

( + ℎ) = ( ) − ℎ ‖1 − ‖max ( ), 10 +  (B2)  

where ‖1 − ‖ represents the corresponding mathematical norm. Figure B1 shows sample paths of 280 
the population dynamics with = 10  and = 0.  281 
 282 

 283 
Figure B1. Effect of using different norms in the population dynamics of the host species under 284 
stochastic case with  and  as the evolving traits. The variables 1 , 1  and 285 1  ( 2 , 2  and 2 ) are the population densities for species 1 (species 2) 286 
using Manhattan, Euclidean and Chebyshev norms, respectively. 287 
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