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Abstract: We propose a quantum version of the well known minimum distance classification model1

called Nearest Mean Classifier (NMC). In this regard, we presented our first results in two previous2

works. In [34] a quantum counterpart of the NMC for two-dimensional problems was introduced,3

named Quantum Nearest Mean Classifier (QNMC), together with a possible generalization to arbitrary4

dimensions. In [33] we studied the n-dimensional problem into detail and we showed a new5

encoding for arbitrary n-feature vectors into density operators. In the present paper, another6

promising encoding of n-dimensional patterns into density operators is considered, suggested by7

recent debates on quantum machine learning. Further, we observe a significant property concerning8

the non-invariance by feature rescaling of our quantum classifier. This fact, which represents a9

meaningful difference between the NMC and the respective quantum version, allows to introduce a10

free parameter whose variation provides, in some cases, better classification results for the QNMC.11

The experimental section is devoted to: i) compare the NMC and QNMC performance on different12

datasets; ii) study the effects of the non-invariance under uniform rescaling for the QNMC.13

Keywords: quantum formalism applications; minimum distance classification; rescaling parameter14

1. Introduction15

In the last few years, many efforts to apply the quantum formalism to non-microscopic contexts16

have been made [1,24,26,32,37,41]. The idea is that the powerful predictive properties of quantum17

mechanics, used for describing the behavior of microscopic phenomena, turn out to be particularly18

beneficial also in non-microscopic domains. Indeed, the real power of quantum computing consists in19

exploiting the strength of particular quantum properties in order to implement algorithms which are20

much more efficient and faster than the respective classical counterpart. At this purpose, several non21

standard applications involving the quantum mechanical formalism have been proposed, in research22

fields such as game theory [8,27], economics [11], cognitive sciences [2,40], signal processing [9], and23

so on. Further, particular applications, interesting for the specific topics of the present paper, concern24

the areas of machine learning and pattern recognition.25

Quantum machine learning is an emerging research field which can use the advantages of26

quantum computation in order to find new solutions to pattern recognition and image understanding27

problems. About this, some attempts which connect quantum information to pattern recognition can28

be found in [31], while an exhaustive survey and bibliography of the developments regarding the use29

of quantum computing techniques in artificial intelligence are provided in [23,45].30

In this context, there exist different approaches involving the use of quantum formalism in31

pattern recognition and machine learning. We can find for instance procedures which exploit quantum32

properties without presupposing the help of a quantum computer [13,19,38] or techniques supposing33

the existence of a quantum computer in order to perform in an inherently parallel way all the required34

operations, taking advantage of quantum mechanical effects and providing high performance in terms35

of computational efficiency [5,28,44].36

One of the main aspects of pattern recognition is focused on the application of quantum37

information processing methods [20] to solve classification and clustering problems [5,12,39].38

The use of quantum states for representing patterns has a twofold motivation: as already39

discussed, first of all it gives the possibility of exploiting quantum algorithms to boost the40
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computational efficiency of the classification process. Secondly, it is possible to use quantum-inspired41

models in order to reach some benefits with respect to classical problems.42

Even if the state-of-art approaches suggest possible computational advantages of this sort [3,21,22],43

the main problem to find a more convenient encoding from classical to quantum objects is nowaday44

an open and interesting matter of debate [23,31]. Here, our contribution consists in constructing a45

quantum version of a minimum distance classifier in order to reach some convenience, in terms of46

the error in pattern classification, with respect to the corresponding classical model. We have already47

proposed this kind of approach in two previous works [33,34], where a “quantum counterpart” of the48

well known Nearest Mean Classifier (NMC) has been presented.49

In both cases, the model is based on the introduction of two main ingredients: first, an appropriate50

encoding of arbitrary patterns into density operators; second, a distance measure between density51

operators, representing the quantum counterpart of the Euclidean distance in the “classical” NMC.52

The main difference between the two previous works is the following one: i) in the first case [34],53

we tested our quantum classifier on two-dimensional datasets and we proposed a generalization to54

arbitrary dimension from a theoretical point of view only; ii) in the second case [33], a new encoding55

for arbitrary n-dimensional patterns into quantum states has been proposed, and it was tested on56

different real-world and artificial two-class datasets. Anyway, in both cases we observed a significant57

improvement of the accuracy in the classification process. In addition, we found that, by using the58

encoding proposed in [33] and for two-dimensional problems only, the classification accuracy of our59

quantum classifier can be further improved by performing a uniform rescaling of the original dataset.60

In this work we propose a new encoding of arbitrary n-dimensional patterns into quantum61

objects, extending both the thoretical model and the experimental results to multi-class problems,62

which preserves information about the norm of the original pattern. This idea has been inspired by63

recent debates on quantum machine learning [31], according to which it is crucial to avoid loss of64

information when a particular encoding of real vectors into quantum states is considered. Such an65

approach turns out to be very promising in terms of classification performance with respect to the66

classical version of the NMC. Further, differently from the NMC, our quantum classifier is invariant67

under uniform rescaling. More precisely, the accuracy of the quantum classifier changes by rescaling68

(of an arbitrary real number) the coordinates of the dataset. Consequently, we observe that, for69

several datasets, the new encoding exhibits a further advantage that can be gained by exploiting the70

non-invariance under rescaling, also for n-dimensional problems (conversely to the previous works).71

At this purpose, some experimental results have been presented.72

The paper is organized as follows: in Section 2 we briefly describe the classification process73

and, in particular, the formal structure of the NMC for multi-class problems. Section 3 is devoted74

to the definition of a new encoding of real patterns into quantum states. In Section 4 we introduce75

the quantum version of the NMC, called Quantum Nearest Mean Classifier (QNMC), based on the76

new encoding previously described. In Section 5 we compare the NMC and the QNMC on different77

datasets showing that, in general, the QNMC exhibits a better performance (in terms of accuracy and78

other significant statistical quantities) with respect to the NMC. Further, starting from the fact that,79

differently from the NMC, the QNMC is not invariant under rescaling, we also show that for some80

datasets it is possible to provide a benefit from this non-invariance property. Some conclusions and81

possible further developments are proposed at the end of the paper. 1
82

1 The present work is an extended version of the paper presented at the conference Quantum and Beyond 2016, Vaxjo, 13-16
June 2016 [30], significantly enlarged in theoretical discussion, experimental section and bibliography.
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2. Minimum distance classification83

Pattern recognition [7,43] is the scientific discipline which deals with theories and methodologies84

for designing algorithms and machines capable of automatically recognizing “objects” (i.e. patterns) in85

noisy environments.86

Here, we deal with supervised learning, i.e. learning from a training set of correctly labeled objects.87

In other words, this is the case in which examples of input-output relations are given to a computer88

and it has to infer a mapping from there. The most important task is pattern classification, whose goal is89

to assign input objects to different classes.90

More precisely, each object can be characterized by its features; hence, a d-feature object can be91

naturally represented by a d-dimensional real vector, i.e. ~x = [x(1), . . . , x(d)] ∈ X , where X ⊆ Rd is92

generally a subset of the d-dimensional real space representing the feature space. Consequently, any93

arbitrary object is represented by a vector ~x associated to a given class of objects (but, in principle, we94

do not know which one). Let Y = {1, . . . , L} be the class label set. A pattern is represented by a pair95

(~x, y), where ~x is the feature vector representing an object and y ∈ Y is the label of the class which ~x is96

associated to. The aim of the classification process is to design a function (classifier) that attributes (in97

the most accurate way) to any unlabeled object the corresponding label (where the label attached to an98

object represents the class which the object belongs to), by learning about the set of objects whose class99

is known. The training set is given by Str = {(~xn, yn)}N
n=1, where ~xn ∈ X , yn ∈ Y (for n = 1, . . . , N)100

and N is the number of patterns belonging to Str. Finally, let Nl be the cardinality of the training set101

associated to the l-th class (for l = 1, 2, . . . , L) such that ∑L
l=1 Nl = N.102

We now introduce the well known Nearest Mean Classifier (NMC) [7], which is a particular kind of103

minimum distance classifier widely used in pattern recognition. The strategy consists in computing the104

distances between an object ~x (to classify) and other objects chosen as prototypes of each class (called105

centroids). Finally, the classifier associates to ~x the label of the closest centroid. So, we can resume the106

NMC algorithm as follows:107

1. computation of the centroid (i.e. the sample mean [15]) associated to each class, whose
corresponding feature vector is given by:

~µl =
1
Nl

Nl

∑
n=1

~xn, l = 1, 2, . . . , L, (1)

where l is the label of the class;108

2. classification of the object ~x, provided by:

argminl=1,...LdE(~x,~µl), with dE(~x,~µl) = ‖~x−~µl‖2, (2)

where dE is the standard Euclidean distance.2.109

Depending on the particular distribution of the dataset patterns, it is possible that a pattern110

belonging to a given class is closest to the centroid of another class. In this case, if the algorithm would111

be applied to this pattern, it would fail. Hence, for an arbitrary object ~x whose class is a priori unknown,112

the output of the above classification process has the following four possibilities [10]: i) True Positive113

(TP): pattern belonging to the l-th class and correctly classified as l; ii) True Negative (TN): pattern114

belonging to a class different than l, and correctly classified as not l; iii) False Positive (FP): pattern115

belonging to a class different than l, and uncorrectly classified as l; iv) False Negative (FN): pattern116

belonging to the l-th class, and uncorrectly classified as not l.117

2 We remind that, given a function f : X → Y, the argmin (i.e. the argument of the minimum) over some subset S of X is
defined as: argminx∈S⊆X f (x) = {x|x ∈ S ∧ ∀y ∈ S : f (y) ≥ f (x)}. In this framework, the argmin plays the role of the
classifier, i.e. a function that associates to any unlabeled object the correspondent label.
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In order to evaluate the performance of a certain classification algorithm, the standard procedure118

consists in dividing the original labeled dataset S of N′ patterns, into a training set Str of N patterns119

and a set Sts of (N′ − N) patterns (i.e. S = Str ∪ Sts). This set Sts of patterns is called test set [7] and it120

is defined as Sts = {(~xn, yn)}N′
n=N+1.121

As a consequence, by applying the NMC to the test set, it is possible to evaluate the classification122

algorithm performance by considering the following statistical measures associated to each class l123

depending on the quantities listed above:124

• True Positive Rate (TPR): TPR = TP
TP+FN ;125

• True Negative Rate (TNR): TNR = TN
TN+FP ;126

• False Positive Rate (FPR): FPR = FP
FP+TN = 1− TPN;127

• False Negative Rate (FNR): FNR = FN
FN+TP = 1− TPR.128

Further, other standard statistical coefficients [10] used to establish the reliability of a classification129

algorithm are:130

• Classification error (E): E = 1− TP
N′−N ;131

• Precision (P): P = TP
TP+FP ;132

• Cohen’s Kappa (K): K = Pr(a)−Pr(e)
1−Pr(e) , where133

Pr(a) = TP+TN
N′−N , Pr(e) = (TP+FP)(TP+FN)+(FP+TN)(TN+FN)

(N′−N)2 .134

In particular, the classification error represents the percentage of misclassified patterns, the135

precision is a measure of the statistical variability of the considered model and the Cohen’s Kappa136

represents the degree of reliability and accuracy of a statistical classification and it can assume values137

ranging from −1 to +1 (K= +1 corresponds to a perfect classification procedure while K= −1138

corresponds to a completely wrong classification). Let us note that these statistical coefficients have139

to be computed for each class. Then, the final value of each statistical coefficient related to the140

classification algorithm is the weighted sum of the statistical coefficients of each class.141

3. Mapping real patterns into quantum states142

As already discussed, quantum formalism turns out to be very useful in non-standard scenarios,143

in our case to solve for instance classification problems on datasets of classical objects. At this purpose,144

in order to provide our quantum classification model, the first ingredient we have to introduce is an145

appropriate encoding of real patterns into quantum states. Quoting Schuld et al. [31], “in order to146

use the strengths of quantum mechanics without being confined by classical ideas of data encoding,147

finding ‘genuinely quantum’ ways of representing and extracting information could become vital for148

the future of quantum machine learning.”149

Generally, given a d-dimensional feature vector, there exist different ways to encode it into a
density operator [31]. In [34], the proposed encoding was based on the use of the stereographic
projection [6]. In particular, it allows to unequivocally map any point~r = (r1, r2, r3) on the surface of a
radius-one sphere S2 (except for the north pole) into an arbitrary point ~x = [x(1), x(2)] in R2, i.e.

SP : (r1, r2, r3) 7→
( r1

1− r3
,

r2

1− r3

)
= [x(1), x(2)]. (3)

The inverse of the stereographic projection is given by:

SP−1 : [x(1), x(2)] 7→
[ 2x(1)

||~x||2 + 1
,

2x(2)

||~x||2 + 1
,
||~x||2 − 1
||~x||2 + 1

]
= (r1, r2, r3), (4)
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where ||~x||2 = [x(1)]2 + [x(2)]2. By imposing that r1 = 2x(1)
||~x||2+1 , r2 = 2x(2)

||~x||2+1 , r3 = ||~x||2−1
||~x||2+1 , if we

consider r1, r2, r3 as Pauli components3 of a density operator ρ~x ∈ Ω2
4, the density operator associated

to the pattern ~x = [x(1), x(2)] can be written as:

ρ~x =
1
2

(
1 + r3 r1 − ir2

r1 + ir2 1− r3

)
=

1
||~x||2 + 1

(
||~x||2 x(1) − ix(2)

x(1) + ix(2) 1

)
. (5)

The advantage in using this encoding consists in the fact that it provides an easy visualization of150

an arbitrary two-feature vector on the Bloch sphere [34]. In the same work, we also introduced a151

generalization of our encoding to the d-dimensional case, allowing to express arbitrary d-feature152

vectors as points on the hypersphere Sd by writing a density operator ρ as a linear combination of the153

d-dimensional identity and d2 − 1 (d× d)-square matrices {σi} (i.e. generalized Pauli matrices [4,17]).154

At this purpose, we introduced the generalized stereographic projection [16], which maps any
point~r = (r1, . . . , rd+1) ∈ Sd into an arbitrary point ~x = [x(1), . . . , x(d)] ∈ Rd, i.e.:

SP : (r1, . . . , rd+1) 7→
( r1

1− rd+1
,

r2

1− rd+1
, . . . ,

rd
1− rd+1

)
= [x(1), . . . , x(d)]. (6)

However, even if it is possible to map points on the d-hypersphere into d-feature patterns, such points155

do not generally represent density operators and the one-to-one correspondence between them and156

density matrices is guaranteed only on particular regions [14,17,18].157

An alternative encoding of a d-feature vector ~x into a density operator was proposed in [33].
It is obtained: i) by mapping ~x ∈ Rd into a (d + 1)-dimensional vector ~x′ ∈ Rd+1 according to the
generalized version of Eq. (4), i.e.

SP−1 : [x(1), . . . , x(d)] 7→ 1
||~x||2 + 1

[
2x(1), . . . , 2x(d), ||~x||2 − 1

]
= (r1, . . . , rd+1), (7)

where ||~x||2 = ∑d
i=1[x

(i)]2; ii) by considering the projector ρ~x = ~x′ · (~x′)T .158

In this work we propose a different version of the QNMC based on a new encoding again and we159

show that this exhibits interesting improvements also by exploiting the non-invariance under rescaling160

of the features.161

Accordingly with [21,28,31], when a real vector is encoded into a quantum state, in order to avoid162

a loss of information it is important that the quantum state keeps some information about the norm of163

the original real vector. In light of this fact, we introduce the following alternative encoding.164

Let ~x = [x(1), . . . , x(d)] ∈ Rd be an arbitrary d-feature vector.165

1. We maps the vector ~x ∈ Rd into a vector ~x′ ∈ Rd+1, whose first d features are the components of
the vector ~x and the (d + 1)-th feature is the norm of ~x. Formally:

~x = [x(1), . . . , x(d)] 7→ ~x′ = [x(1), . . . , x(d), ||~x||]. (8)

2. We obtain the vector ~x′′ by dividing the first d components of the vector ~x′ for ||~x||:

~x′ 7→ ~x′′ =
[ x(1)

||~x|| , . . . ,
x(d)

||~x|| , ||~x||
]
. (9)

3 We consider the representation of an arbitrary density operator as linear combination of Pauli matrices.
4 The space Ωd of density operators for d-dimensional systems consists of positive semidefinite matrices with unitary trace.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2017                   doi:10.20944/preprints201710.0100.v1

Peer-reviewed version available at Entropy 2017, 19, 659; doi:10.3390/e19120659

http://dx.doi.org/10.20944/preprints201710.0100.v1
http://dx.doi.org/10.3390/e19120659


6 of 14

3. We consider the norm of the vector ~x′′, i.e. ||~x′′|| =
√
||~x||2 + 1 and we map the vector ~x′′ into

the normalized vector ~x′′′ as follows:

~x′′ 7→ ~x′′′ =
~x′′

||~x′′|| =
[ x(1)

||~x||
√
||~x||2 + 1

, . . . ,
x(d)

||~x||
√
||~x||2 + 1

,
||~x||√
||~x||2 + 1

]
. (10)

Now, we provide the following definition.166

Definition 1 (Density Pattern) Let ~x = [x(1), . . . , x(d)] be an arbitrary d-feature vector and (~x, y) the
corresponding pattern. Then, the density pattern associated to (~x, y) is represented by the pair (ρ~x, y),
where the matrix ρ~x, corresponding to the feature vector ~x, is defined as:

ρ~x
.
= ~x′′′ · (~x′′′)†, (11)

where the vector ~x′′′ is given by Eq. (10) and y is the label of the original pattern.167

Hence, this encoding maps real d-dimensional vectors ~x into (d + 1)-dimensional pure states ρ~x.168

In this way, we obtain an encoding that takes into account the information about the initial real vector169

norm and, at the same time, allows to easily encode also arbitrary real d-dimensional vectors.170

4. Density Pattern Classification171

In this section we introduce a quantum counterpart of the NMC, named Quantum Nearest Mean172

Classifier (QNMC). It can be seen as a particular kind of minimum distance classifier between quantum173

objects (i.e. density patterns). The use of this new formalism could lead not only to achieve the well174

known advantages related to the quantum computation with respect to the classical one (mostly related175

to the speed up of the computational process), but also to make a full comparison between NMC and176

QNMC performance by using a classical computer only.177

In order to provide a quantum counterpart of the NMC, we need: i) an encoding from real patterns
to quantum objects (already defined in the previous section); ii) a quantum counterpart of the classical
centroid (i.e. a sort of quantum class prototype), that will be named quantum centroid; iii) a suitable
definition of quantum distance between density patterns, that plays the same role as the Euclidean
distance for the NMC. In this quantum framework, the quantum version Sq of the dataset S is given
by:

Sq = Sq
tr ∪ S

q
ts, Sq

tr = {(ρ~xn , yn)}N
n=1, Sq

ts = {(ρ~xn , yn)}N′
n=N+1,

where (ρ~xn , yn) is the density pattern associated to the pattern (~xn, yn). Consequently, Sq
tr and Sq

ts178

represent the quantum versions of training and test set respectively, i.e. the sets of all the density179

patterns obtained by encoding all the elements of Str and Sts. Now, we naturally introduce the180

quantum version of the classical centroid ~µl , given in Eq. (1), as follows.181

Definition 2 (Quantum Centroid) Let Sq be a labeled dataset of N′ density patterns such that Sq
tr ⊆ Sq

is a training set composed of N density patterns. Further, let Y = {1, 2, . . . , L} be the class label set.
The quantum centroid of the l-th class is given by:

ρl =
1
Nl

Nl

∑
n=1

ρ~xn , l = 1, . . . , L (12)

where Nl is the number of density patterns of the l-th class belonging to Sq
tr, such that ∑L

l=1 Nl = N.182

Notice that the quantum centroids are generally mixed states and they are not obtained by
encoding the classical centroids ~µl , i.e.

ρl 6= ρ~µl
, ∀l ∈ {1, . . . , L}. (13)
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Accordingly, the definition of the quantum centroid leads to a new object that is no longer a pure183

state and does not have any classical counterpart. This is the main reason that establishes, even in a184

fundamental level, the difference between NMC and QNMC. In particular, it is easy to verify [34] that,185

unlike the classical case, the expression of the quantum centroid is sensitive to the dataset dispersion.186

In order to consider a suitable definition of distance between density patterns, we recall the well187

known definition of trace distance between quantum states (see, e.g. [25]).188

Definition 3 (Trace Distance) Let ρ and ρ′ be two quantum density operators belonging to the same
dimensional Hilbert space. The trace distance between ρ and ρ′ is given by:

dT(ρ, ρ′) =
1
2

Tr|ρ− ρ′|, (14)

where |A| =
√

A† A.189

Notice that the trace distance is a true metric for density operators, that is, it satisfies: i) dT(ρ, ρ′) ≥190

0 with equality iff ρ = ρ′ (positivity), ii) dT(ρ, ρ′) = dT(ρ
′, ρ) (symmetry) and iii) dT(ρ, ρ′) + dT(ρ

′, ρ′′) ≥191

dT(ρ, ρ′′) (triangle inequality). The use of the trace distance in our quantum framework is naturally192

motivated by the fact that it is the simplest possible choice among other possible metrics in the193

density matrix space [36]. Consequently, it can be seen as the “authentic” quantum counterpart of194

the Euclidean distance, which represents the simplest choice in the starting space. However, the trace195

distance exhibits some limitations and downsides (in particular, it is monotone but not Riemannian196

[29]). On the other hand, the Euclidean distance in some pattern classification problems is not enough197

to fully capture for instance the dataset distribution. For this reason, other kinds of metrics in the198

classical space are adopted to avoid this limitation [7]. At this purpose, as a future development of199

the present work, it could be interesting to compare different distances in both quantum and classical200

framework, able to treat more complex situations (we will deepen this point in the conclusions).201

We have introduced all the ingredients we need to describe the QNMC process, that, similarly to202

the classical case, consists in the following steps:203

• constructing the quantum training and test sets Sq
tr, S

q
ts by applying the encoding introduced in204

Definition 1 to each pattern of the classical training and test sets Str, Sts;205

• calculating the quantum centroids ρl (∀l ∈ {1, . . . L}), by using the quantum training set Sq
tr,206

according to Definition 2;207

• classifying an arbitrary density pattern ρ~x ∈ Sq
ts accordingly with the following minimization

problem:
argminl=1,...,LdT(ρ~x, ρl), (15)

where dT is the trace distance introduced in Definition 3.208

5. Experimental results209

This section is devoted to show a comparison between the NMC and the QNMC performances210

in terms of the statistical coefficients introduced in Section 2. We use both classifiers to analyze211

twenty-seven datasets, divided into two categories: artificial datasets (Gaussian (I), Gaussian (II),212

Gaussian (III), Moon, Banana) and the remaining ones which are real-world datasets, extracted both213

from the UCI and KEEL repositories5. Further, among them we can find also imbalanced datasets,214

whose main characteristic is that the number of patterns belonging to one class is significantly lower215

than those belonging to the other classes. Let us note that, in real situations, we usually deal with data216

whose distribution is unknown, then the most interesting case is the one in which we use real-world217

5 http://archive.ics.uci.edu/ml, http://sci2s.ugr.es/keel/datasets.php
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datasets. However, the use of artificial datasets following known distribution, and in particular218

Gaussian distributions with specific parameters, can help to catch precious information.219

5.1. Comparison between QNMC and NMC220

In Table 1 we summarize the characteristics of the datasets involved in our experiments. In221

particular, for each dataset we list the total number of patterns, the number of patterns belonging to222

each class and the number of features. Let us note that, although we mostly confine our investigation223

to two-class datasets, our model can be easily extended to multi-class problems (as we show for the224

three-class datasets Balance, Gaussian (III), Hayes-Roth, Iris).225

In order to make our results statistically significant, we apply the standard procedure which226

consists in randomly splitting each dataset into two parts, the training set (representing the 80% of the227

original dataset) and the test set (representing the 20% of the original dataset). Finally, we perform ten228

experiments for each dataset, where the splitting is every time randomly taken.229

Table 1. Characteristics of the datasets used in our experiments. The number of patterns in each class
is shown between brackets.

Data set Class Size Features (d)
Appendicitis 106 (85+21) 7

Balance 625 (49+288+288) 4
Banana 5300 (2376+2924) 2
Bands 365 (135+230) 19

Breast Cancer (I) 683 (444+239) 10
Breast Cancer (II) 699 (458+241) 9

Bupa 345 (145+200) 6
Chess 3196 (1669+1527) 36

Gaussian (I) 400 (200+200) 30
Gaussian (II) 1000 (100+900) 8
Gaussian (III) 2050 (50+500+1500) 8
Hayes-Roth 132 (51+51+30) 5

Ilpd 583 (416+167) 9
Ionosphere 351 (225+126) 34

Iris 150 (50+50+50) 4
Iris0 150 (100+50) 4
Liver 578 (413+165) 10
Monk 432 (204+228) 6
Moon 200 (100+100) 2

Mutagenesis-Bond 3995 (1040+2955) 17
Page 5472 (4913+559) 10
Pima 768 (500+268) 8
Ring 7400 (3664+3736) 20

Segment 2308 (1979+329) 19
Thyroid (I) 215 (180+35) 5
Thyroid (II) 215 (35+180) 5

TicTac 958 (626+332) 9

In Table 2, we report the QNMC and NMC performance for each dataset, evaluated in terms of230

mean value and standard deviation (computed on ten runs) of the statistical coefficients, discussed in231

the previous section. For the sake of semplicity, we omit the values of FPR and FNR because they can232

be easily obtained by TPR and TNR values (i.e. FPR = 1 - TNR, FNR = 1 - TPR).233

We observe, by comparing QNMC and NMC performances (see Table 2), that the first provides a234

significant improvement with respect to the standard NMC in terms of all the statistical parameters we235

have considered. In several cases, the difference between the classification error for both classifiers236

is very high, up to 22% (see Mutagenesis-Bond). Further, the new encoding, for two-feature datasets,237

provides better performance than the one considered in [34] (where the QNMC error with related238
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standard deviation was 0.174± 0.047 for Moon and 0.419± 0.015 for Banana) and it generally exhibits a239

quite similar performance with respect to the one in [33] for multi-dimension datasets or a classification240

improvement of about 5%, generally.241

The artificial Gaussian datasets may deserve a brief comment. Let us discuss the way in which242

the three Gaussian datasets have been created. Gaussian (I) [35] is a perfectly balanced dataset (i.e.243

both classes have the same number of patterns), patterns have the same dispersion in both classes,244

and only some features are correlated [42]. Gaussian (II) is an unbalanced dataset (i.e. classes have a245

very different number of patterns), patterns do not exhibit the same dispersion in both classes and246

features are not correlated. Gaussian (III) is composed of three classes and it is an unbalanced dataset247

with different pattern dispersion in all the classes, where all the features are correlated.248

For these Gaussian datasets, the NMC is not the best classifier [7] because of the particular249

characteristics of the class dispersion. Indeed, the NMC does not take into account data dispersion.250

Conversely, by looking at Table 2, the improvements of the QNMC seem to exhibit some kind of251

sensitivity of the classifier with respect to the data dispersion. A detailed description of this problem252

will be addressed in a future work.253

Further, we can note that the QNMC performance is better also for imbalanced datasets (the most254

significant cases are Balance, Ilpd, Segment, Page, Gaussian (III)), which are usually difficult to deal with255

standard classification models. At this purpose, we can note that the QNMC exhibits a classification256

error much lower than the NMC, up to a difference of about 12%. Another interesting and surprising257

result concerns the Iris0 dataset, which represents the imbalanced version of the Iris dataset: as we can258

observe looking at Table 2, our quantum classifier is able to perfectly classify all the test set patterns,259

conversely to the NMC.260

As a remark, it is important to remind that, even if it is possible to establish whether a classifier is261

“good” or “bad” for a given dataset by the evaluation of some a priori data characteristics, generally it262

is no possible to establish an absolute superiority of a given classifier for any dataset, according to the263

well known No Free Lunch Theorem [7]. Anyway, the QNMC seems to be particularly convenient when264

the data distribution is difficult to treat with the standard NMC.265

5.2. Non-invariance under rescaling266

The final experimental results that we present in this paper regard a significant difference between
NMC and QNMC. Let us suppose that all the components of the feature vectors ~xn (∀n = 1, . . . , N′)
belonging to the original dataset S are multiplied by the same parameter γ ∈ R, i.e. ~xn 7→ γ~xn. Then,
the whole dataset is subjected to an increasing dispersion (for |γ| > 1) or a decreasing dispersion (for
|γ| < 1) and the classical centroids change according to ~µl 7→ γ~µl (∀l = 1, . . . , L). Consequently, the
classification problem for each pattern of the rescaled test set can be written as

argminl=1,...,LdE(γ~xn, γ~µl) = γargminl=1,...,LdE(~xn,~µl), ∀n = N + 1, . . . , N′.

For any value of the parameter γ it can be proved [33] that, while the NMC is invariant under267

rescaling, for the QNMC this invariance fails. Interestingly enough, it is possible to consider the failure268

of the invariance under rescaling as a resource for the classification problem. In other words, by a269

suitable choice of the rescaling factor is possible, in principle, to get a decreasing of the classification270

error. At this purpose, we have studied the variation of the QNMC performance (in particular of the271

classification error) in terms of the free parameter γ and in Fig. 1 the results for the datasets Appendicitis,272

Monk and Moon are shown. In the figure, each point represents the mean value (with corresponding273

standard deviation represented by the vertical bar) over ten runs of the experiments. Finally, we have274

considered, as an example, three different ranges of the rescaling parameter γ for each dataset. We can275

observe that the resulting classification performance strongly depends on the γ range. Indeed, in all276

the three cases we consider, we obtain completely different classification results based on different277

choices of the γ values. As we can see, in some situations we observe an improvement of the QNMC278
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Comparison between NMC and QNMC performance in terms of the classification error for
the datasets (a)-(c) Appendicitis, (d)-(f) Monk, (g)-(i) Moon. In all the subfigures, the simple dashed line
represents the QNMC classification error without rescaling, the dashed line with points represents the
NMC classification error (which does not depend on the rescaling parameter), points with related error
bars (red for Appendicitis, blue for Monk and green for Moon) represent the QNMC classification error
for increasing values of the parameter γ.

performance with respect to the unrescaled problem (subfigures (b), (c), (f), (h)), in other cases we get279

worse classification results (subfigures (a), (e), (g), (i)) and sometimes the rescaling parameter does not280

offer any variation of the classification error (subfigure (d)).281

In conclusion, the range of the parameter γ for which the QNMC performance improves, is282

generally not unique and strongly depends on the considered dataset. As a consequence, we do not283

generally get an improvement in the classification process for any γ ranges. On the contrary, there284

exist some intervals of the parameter γ where the QNMC classification performance is worse than285

the case without rescaling. Then, each dataset has specific and unique characteristics (in completely286

accord to the No Free Lunch Theorem) and the incidence of the non-invariance under rescaling in the287

decreasing of the error, in general, should be determined by empirical evidences.288

289

6. Conclusions and future work290

In this work a quantum counterpart of the well known Nearest Mean Classifier has been proposed.291

We have introduced a quantum minimum distance classifier, called Quantum Nearest Mean Classifier,292
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obtained by defining a suitable encoding of real patterns, i.e. density patterns, and by recovering the293

trace distance between density operators.294

A new encoding of real patterns into a quantum objects have been proposed, suggested by recent295

debates on quantum machine learning according to which, in order to avoid a loss of information296

caused by encoding a real vector into a quantum state, we need to normalize the vector mantaining297

some information about its norm. Secondly, we have defined the quantum centroid, i.e. the pattern298

chosen as the prototype of each class, which is not invariant under uniform rescaling of the original299

dataset (unlike the NMC) and seems to exhibit a kind of sensitivity to the data dispersion.300

In the experiments, both classifiers have been compared in terms of significant statistical301

coefficients. In particular, we have considered twenty-seven different datasets having different nature302

(real-world and artificial). Further, the non-invariance under rescaling of the QNMC has suggested to303

study the variation of the classification error in terms of a free parameter γ, whose variation produces304

a modification of the data dispersion and, consequently, of the classifier performance. In particular we305

have showed as, in the most of cases, the QNMC exhibits a significant decreasing of the classification306

error (and of the other statistical coefficients) with respect to the NMC and, for some cases, the307

non-invariance under rescaling can provide a positive incidence in the classification process.308

Let us remark that, even if there is not an absolute superiority of QNMC with respect to the NMC,309

the method we have introduced allows to get some relevant improvements of the classification when310

we have an a priori knowledge about the distribution of the dataset we have to deal with.311

In light of such considerations, further developments of the present work will be focused on:312

i) finding out the encoding (from real vectors to density operators) that guarantees the optimal313

improvement (at least for a finite class of datasets) in terms of the classification process accuracy; ii)314

obtain a general method to find the suitable rescaling parameter range we can apply to a given dataset315

in order to get a further improvement of the accuracy; iii) understanding for which kind of distribution316

the QNMC performs better than the NMC. Further, as discussed in Section 4, in some situations the317

standard NMC is not very useful as classification model, especially when the dataset distribution is318

quite complex to deal with. In pattern recognition, in order to address such problems, other kinds of319

classification techniques are used instead of the NMC, for instance the well known Linear Discriminant320

Analysis (LDA) or Quadratic Discriminant Analysis (QDA) classifiers, where different distances between321

patterns are considered, taking into account more precisely the data distribution [7]. At this purpose,322

an interesting development of the present work could regard the comparison between the LDA or323

QDA models and the QNMC based on the computation of more suitable and convenient distances324

between density patterns [36].325
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Table 2. Comparison between QNMC and NMC performances.

QNMC
Dataset E TPR TNR P K

Appendicitis 0.124 ± 0.058 0.876 ± 0.058 0.708 ± 0.219 0.886 ± 0.068 0.553 ± 0.223
Balance 0.148 ± 0.018 0.852 ± 0.018 0.915 ± 0.014 0.862 ± 0.022 0.767 ± 0.029
Banana 0.316 ± 0.017 0.684 ± 0.017 0.660 ± 0.017 0.684 ± 0.018 0.350 ± 0.034
Bands 0.394 ± 0.053 0.606 ± 0.053 0.528 ± 0.071 0.606 ± 0.058 0.133 ± 0.112
Breast Cancer (I) 0.386 ± 0.038 0.614 ± 0.038 0.444 ± 0.045 0.583 ± 0.044 0.062 ± 0.069
Breast Cancer (II) 0.040 ± 0.015 0.946 ± 0.023 0.986 ± 0.016 0.993 ± 0.009 0.912 ± 0.033
Bupa 0.389 ± 0.044 0.610 ± 0.044 0.641 ± 0.052 0.359 ± 0.052 0.066 ± 0.044
Chess 0.256 ± 0.017 0.744 ± 0.017 0.747 ± 0.016 0.748 ± 0.016 0.488 ± 0.033
Gaussian (I) 0.274 ± 0.051 0.726 ± 0.051 0.728 ± 0.049 0.745 ± 0.048 0.452 ± 0.099
Gaussian (II) 0.210 ± 0.025 0.790 ± 0.025 0.744 ± 0.061 0.900 ± 0.019 0.308 ± 0.058
Gaussian (III) 0.401 ± 0.036 0.599 ± 0.036 0.558 ± 0.026 0.654 ± 0.041 0152 ± 0.043
Hayes-Roth 0.413 ± 0.039 0.588 ± 0.039 0.780 ± 0.025 0.602 ± 0.063 0.339 ± 0.060
Ilpd 0.351 ± 0.037 0.649 ± 0.037 0.705 ± 0.056 0.734 ± 0.041 0.292 ± 0.073
Ionosphere 0.165 ± 0.049 0.835 ± 0.049 0.764 ± 0.059 0.842 ± 0.051 0.624 ± 0.105
Iris 0.047 ± 0.031 0.953 ± 0.031 0.977 ± 0.014 0.957 ± 0.028 0.929 ± 0.045
Iris0 0 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Liver 0.342 ± 0.037 0.607 ± 0.057 0.783 ± 0.059 0.870 ± 0.039 0.318 ± 0.061
Monk 0.132 ± 0.034 0.869 ± 0.034 0.885 ± 0.030 0.891 ± 0.025 0.738 ± 0.065
Moon 0.156 ± 0.042 0.857 ± 0.063 0.831 ± 0.066 0.841 ± 0.066 0.683 ± 0.085
Mutagenesis-Bond 0.266 ± 0.021 0.734 ± 0.021 0.281 ± 0.017 0.662 ± 0.040 0.023 ± 0.021
Page 0.154 ± 0.009 0.846 ± 0.009 0.471 ± 0.039 0.869 ± 0.010 0.274 ± 0.035
Pima 0.304 ± 0.030 0.696 ± 0.030 0.690 ± 0.044 0.720 ± 0.030 0.365 ± 0.066
Ring 0.098 ± 0.006 0.902 ± 0.006 0.903 ± 0.006 0.905 ± 0.006 0.805 ± 0.012
Segment 0.194 ± 0.017 0.807 ± 0.017 0.718 ± 0.045 0.864 ± 0.015 0.401 ± 0.041
Thyroid (I) 0.078 ± 0.040 0.922 ± 0.040 0.747 ± 0.148 0.923 ± 0.043 0.695 ± 0.153
Thyroid (II) 0.081 ± 0.034 0.919 ± 0.034 0.754 ± 0.122 0.923 ± 0.035 0.684 ± 0.121
Tic Tac 0.410 ± 0.032 0.590 ± 0.032 0.597 ± 0.039 0.629 ± 0.036 0.172 ± 0.061

NMC
Dataset E TPR TNR P K

Appendicitis 0.218 ± 0.086 0.782 ± 0.086 0.724 ± 0.167 0.835 ± 0.070 0.423 ± 0.201
Balance 0.267 ± 0.038 0.733 ± 0.038 0.969 ± 0.014 0.925 ± 0.025 0.686 ± 0.034
Banana 0.453 ± 0.019 0.548 ± 0.019 0.552 ± 0.020 0.556 ± 0.020 0.098 ± 0.038
Bands 0.435 ± 0.048 0.565 ± 0.048 0.582 ± 0.055 0.605 ± 0.054 0.135 ± 0.092
Breast Cancer (I) 0.442 ± 0.037 0.558 ± 0.037 0.464 ± 0.046 0.551 ± 0.039 0.022 ± 0.076
Breast Cancer (II) 0.042 ± 0.015 0.973 ± 0.015 0.931 ± 0.032 0.963 ± 0.017 0.908 ± 0.033
Bupa 0.530 ± 0.029 0.470 ± 0.029 0.625 ± 0.030 0.620 ± 0.036 0.066 ± 0.044
Chess 0.307 ± 0.018 0.693 ± 0.018 0.707 ± 0.016 0.714 ± 0.016 0.393 ± 0.033
Gaussian (I) 0.322 ± 0.042 0.679 ± 0.042 0.680 ± 0.043 0.685 ± 0.042 0.355 ± 0.085
Gaussian (II) 0.320 ± 0.032 0.680 ± 0.032 0.588 ± 0.102 0.860 ± 0.032 0.129 ± 0.055
Gaussian (III) 0.530 ± 0.029 0.470 ± 0.029 0.625 ± 0.030 0.620 ± 0.036 0.066 ± 0.044
Hayes-Roth 0.503 ± 0.066 0.497 ± 0.066 0.689 ± 0.063 0.514 ± 0.075 0.180 ± 0.121
Ilpd 0.470 ± 0.037 0.530 ± 0.037 0.757 ± 0.041 0.761 ± 0.037 0.193 ± 0.051
Ionosphere 0.323 ± 0.051 0.677 ± 0.051 0.676 ± 0.051 0.680 ± 0.051 0.351 ± 0.102
Iris 0.110 ± 0.052 0.890 ± 0.052 0.946 ± 0.033 0.904 ± 0.041 0.831 ± 0.087
Iris0 0.023 ± 0.021 0.977 ± 0.021 0.990 ± 0.009 0.980 ± 0.018 0.946 ± 0.050
Liver 0.472 ± 0.048 0.388 ± 0.057 0.891 ± 0.055 0.905 ± 0.045 0.193 ± 0.060
Monk 0.224 ± 0.022 0.776 ± 0.022 0.775 ± 0.022 0.779 ± 0.022 0.550 ± 0.043
Moon 0.234 ± 0.065 0.772 ± 0.089 0.762 ± 0.085 0.771 ± 0.091 0.528 ± 0.130
Mutagenesis-Bond 0.481 ± 0.013 0.519 ± 0.013 0.525 ± 0.029 0.630 ± 0.020 0.034 ± 0.029
Page 0.215 ± 0.013 0.785 ± 0.013 0.205 ± 0.028 0.809 ± 0.014 -0.010 ± 0.024
Pima 0.375 ± 0.033 0.625 ± 0.033 0.546 ± 0.045 0.622 ± 0.037 0.173 ± 0.075
Ring 0.238 ± 0.011 0.763 ± 0.011 0.761 ± 0.011 0.768 ± 0.011 0.524 ± 0.022
Segment 0.311 ± 0.022 0.689 ± 0.022 0.824 ± 0.041 0.870 ± 0.014 0.286 ± 0.038
Thyroid (I) 0.134 ± 0.042 0.867 ± 0.042 0.739 ± 0.150 0.887 ± 0.040 0.545 ± 0.139
Thyroid (II) 0.134 ± 0.048 0.866 ± 0.048 0.777 ± 0.159 0.897 ± 0.046 0.542 ± 0.157
Tic Tac 0.439 ± 0.031 0.561 ± 0.031 0.571 ± 0.042 0.606 ± 0.036 0.119 ± 0.063

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 October 2017                   doi:10.20944/preprints201710.0100.v1

Peer-reviewed version available at Entropy 2017, 19, 659; doi:10.3390/e19120659

http://dx.doi.org/10.20944/preprints201710.0100.v1
http://dx.doi.org/10.3390/e19120659

	Introduction
	Minimum distance classification
	Mapping real patterns into quantum states
	Density Pattern Classification
	Experimental results
	Comparison between QNMC and NMC
	Non-invariance under rescaling

	Conclusions and future work
	References

