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Abstract: Object detection in synthetic aperture radar (SAR) images, which is a fundamental but 10 
challenging problem in the field of satellite image interpretation, plays an important role for a wide 11 
range of applications and is receiving significant attention in recent years. Recently, the ability of 12 
human visual system to detect targets with visual saliency is extraordinarily fast and reliable. 13 
However, visual computational modeling of SAR image scene still remains a challenge. This paper 14 
designs a visual attention model for SAR images. Firstly, we propose a novel approach for 15 
computing the local texture coarseness of the input image, then our model constructs the 16 
corresponding feature maps. Next a new mechanism of feature fusion is adopted to replace the 17 
linear additive mechanism of classical models to obtain the final saliency map. Moreover, the gray 18 
values of focus of attention (FOA) in all feature maps are taken into account, our model chooses the 19 
best saliency representation, the filter and threshold segmentation of saliency maps can be used to 20 
extract the salient regions accurately through the multi-scale competition strategy, thereby 21 
completing this operation for visual saliency detection in SAR images. Finally, the paper gives the 22 
framework based on classical ITTI model. In the paper, several types of satellite data, such as 23 
TerraSAR-X (TS-X) and Radarsat-2, are used to evaluate the performance of visual models. The 24 
results show that our model provides superior performance than classical models. By further 25 
contrasting with classical visual models, our model reduce the false alarm caused by speckle noise, 26 
its detection speed is greatly improved, and it is increased by 25% to 45%. 27 

Keywords: SAR image; Visual attention model; Texture saliency; Feature map; Focus of attention 28 
 29 

1. Introduction 30 

Synthetic aperture radar (SAR), known as a kind of advanced active microwave sensors, with 31 
its all-weather, all-day, multi-polarization advantages, has been increasingly paid attention to by all 32 
countries seeking detection technology in remote sensing [1]. As the basis of its classification and 33 
identification, targets detection in SAR images is an important aspect of SAR application [2]. 34 

SAR images have the characteristics of low contrast, low signal-to-noise ratio and limited gray 35 
level, and so on. These characteristics cause targets in SAR images to be subject to noise interference, 36 
and the contrast between the target and the surrounding environment becomes low. This bring 37 
difficulties to target detection. What’s more, with the successful launch of TerraSAR-X (TS-X), 38 
Radarsat-2 and other next-generation SAR sensors, SAR is gradually evolving towards higher 39 
resolution and larger width directions. The quality of SAR image is getting closer to the optical 40 
images, and the features of SAR images are complex. Traditional detection system cannot interpret 41 
and analyze complex features of high-resolution SAR images timely and effectively [3, 4]. In a word, 42 
since there is a contradiction between the large amount of information in SAR images and the limited 43 
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computer processing power, the research for target detection technology in SAR images is currently 44 
a serious problem [5]. 45 

However, in the face of complex scenarios, the human visual system can quickly focus on several 46 
interesting targets, known as visual attention mechanism [6,7]. Some scholars have made great 47 
progress in human visual intelligence, and have adopted visual attention mechanism to select useful 48 
information from rich and complex information to complete target detection, which greatly improves 49 
the efficiency of processing. Consequently, scholars try to put forward the mathematical model to 50 
simulate human visual system. 51 

At present, the study of visual attention models mainly includes two aspects: (1) The data-driven 52 
visual model, which can be divided into visual model based on image time domain and visual model 53 
based on image frequency domain. The visual model proposed by Itti simulated firstly the "attention" 54 
concept of the human eye in the mathematical level [8], and established the visual attention model 55 
based on the time domain; The visual model based on frequency domain transforms the processing 56 
level of the image from time domain to frequency domain. For example, the visual model based on 57 
the spectral residual presented by Hou et al. [9], Hou Model uses the fast Fourier transform of the 58 
amplitude spectrum as the significant representation of the image, and then returns to the time 59 
domain to obtain saliency map. The visual model proposed by Yu, which combined the discrete 60 
cosine transform [10], is also widely used. Although such models can obtain salient regions in a 61 
simple way, there are many false alarms in the saliency map. (2) The purpose-driven visual model, 62 
the most representative of which is the function model based on the psychological threshold 63 
proposed by Itti [11,12] and the visual model proposed by Oliva et al. based on Bayesian learning 64 
[13]. The shortcoming of such models is lack of self-adaptability. 65 

Currently, commonly used visual model are ITTI model, AIM model and spectral residual 66 
model [14]. Recently, the ITTI attention model has been widely used in the field of computer vision, 67 
because the ITTI visual model has imitated the formation of the bottom-up saliency in the human 68 
visual system, so as to realize the saliency detection of the image. 69 

Although the research of computer vision has made great progress in recent years, and a series 70 
of achievements have been obtained, the ability of human eye to process and to analyze information 71 
on the realistic scene is still more efficient. Recently, most of these existing visual attention models 72 
are designed for the nature scene image, and these models can obtain the saliency maps and extract 73 
the regions of interest. However, there are significant differences between SAR image and natural 74 
scene image. For instance, the characteristics of speckle noise in the background and targets are 75 
similar in SAR images [15]. The phenomenon makes the classical visual models difficult to get 76 
accurate results when the object regions are extracted from this type of SAR image. 77 

The difficulties mainly include the following aspects: (1) Extraction of the underlying early 78 
visual features. The selected features in the classical ITTI model are local features such as brightness, 79 
color and orientation, but the global features of the target regions are not considered. Therefore, the 80 
model cannot accurately deal with the regions of interest whose local features are not obvious in the 81 
detected image. Among them, the texture, shape and other important features of targets in SAR image 82 
are not considered in ITTI model, which is also the reason for the poor performance of the model. (2) 83 
Strategy of feature fusion: In ITTI model, the fusion strategy of feature maps is linear combination. 84 
Usually, the model get the total saliency map by adding the feature maps linearly directly, ignoring 85 
the priority relationships of different features, which leads to the weakening of a dominant feature 86 
map in the merge process, so leads to a missed detection of the target areas. In conclusion, the ITTI 87 
model has no adaptability to the extraction of salient regions of SAR image.  88 

Motivated by this, we propose an improved visual attention model for SAR images based on 89 
texture saliency. Firstly, we need to calculate and extract the texture and other features that can 90 
describe the SAR image better. In this step, we design a new calculation method for local texture 91 
coarseness. Then we construct the corresponding saliency maps of features. What’s more, a new 92 
mechanism of feature fusion is adopted to replace the linear additive mechanism of classical models 93 
to obtain the overall saliency map, and a measurement method of the texture saliency is given. 94 
Finally, the gray-scale values of focus of attention in saliency maps of features are taken into account. 95 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 October 2017                   doi:10.20944/preprints201710.0093.v1

http://dx.doi.org/10.20944/preprints201710.0093.v1


 3 of 17 

 

Our model choose the best significant representation. Through the multi-scale competition strategy, 96 
the filter and threshold segmentation of the saliency maps can be used to accurately select the salient 97 
regions, thereby completing this operation for the visual saliency detection in SAR images. 98 

The paper is organized as follows. We provide a review of the existing computational models to 99 
visual attention with a brief description of their strengths and shortcomings in Section 1. And the 100 
motivation leading to the current improved work is described in the second part of Section 1. The 101 
proposed model is described by means of a pseudo-code and a graphical illustration in Section 2. In 102 
Section 3, we analyze and evaluate the performance of our calculation method for local texture 103 
coarseness through mathematical derivation and experiments; In Section 4, we describe the 104 
experiments carried out to validate the performance of the proposed method for the task of salient 105 
regions detection. Finally, we conclude this work by highlighting its current shortcomings with a 106 
brief discussion about the future directions of the current work in Section 5. 107 

2. Design of Visual Model Based on Texture Saliency 108 

2.1. Measurement of Texture Saliency 109 

Under normal circumstances, local features are used to distinguish the target pixels and 110 
neighborhood pixels, and the global features can calculate the saliency of similar areas in the image 111 
from the perspective of global saliency, further highlighting the target areas. Considering these 112 
above, this paper takes the texture and shape features which is the dominant position in SAR image 113 
into the visual feature extraction category. Human beings have the perfect texture sensing 114 
mechanism, which can distinguish the fine texture difference. The features used by humans to 115 
distinguish textures include: coarseness, contrast, complexity, orientation, etc. 116 

Texture feature is one of the important properties which are used to identify the target and 117 
region of interest [16]. The texture feature exists on the surface of every object, and contains the 118 
important information of the object's surface structure arrangement and their connection to the 119 
surrounding environment. Texture reflects the visual features of homogeneity, and is independent of 120 
the color or brightness in images [17]. Therefore, the visual attention model based on texture saliency 121 
is of great significance. 122 

In the paper, four operational factors of features are designed, they include the local coarseness, 123 
standard deviation, orientation, and global contrast feature of SAR image. 124 

2.1.1. Local texture coarseness 125 

Tamura et al. proposed the expression of Tamura texture feature based on the psychological 126 
research on the human visual perception of texture, which has been widely used in image recognition 127 
and image retrieval in recent years [18,19]. The Tamura texture feature includes six properties that 128 
correspond to the texture features in the psychological point of view: coarseness, contrast, orientation, 129 
linearity, regularity and roughness. Among them, the coarseness is the most basic and important 130 
texture feature. From the narrow point of view, the texture is coarseness.  131 

Coarseness feature is a quantity that reflects the granularity of texture, when the two texture 132 
patterns are only different in the dimension of element. The pattern with a larger dimension of 133 
element and fewer repetition units is more cruder [20]. The calculation of texture coarseness can be 134 
divided into the following steps: 135 

(1) Calculate the average intensity of pixels in the activity window in the image. The size of the 136 
activity window is 2k×2k. Assuming I(i,j) is the input image; the average intensity value is: 137 

 
11

1 1

2 12 1
2

2 2

( , ) ( , ) 2
kk

k k

yx
k

k
i x j y

A x y I i j
−−

− −

+ −+ −

= − = −

=     (1) 138 

Among that, k=0,1,2,∙∙∙, Lmax; Lmax is the maximum window scale; 139 
(2) For each pixel in the image, the average intensity difference between the non-overlapping  140 

windows in horizontal and vertical directions is calculated separately:  141 

 1 1
, ( , ) ( 2 , ) ( 2 , )k k

k h k kE x y A x y A x y− −= + − −  (2a) 142 
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 1 1
, ( , ) ( , 2 ) ( , 2 )k k

k v k kE x y A x y A x y− −= + − −  (2b) 143 

(3) The size of the maximum average intensity difference is set to optimum size at each pixel: 144 
 max , ,max( , )k k h k vE E E E= =  (3) 145 
 2 k

optZ =  (4) 146 
Where: Zopt is the optimum size at current pixel. If there is k>kmax; Ek>t·Emax, then, kmax=k; in the original, 147 
t takes the empirical value 0.9; 148 

(4) Calculate the mean value of Zopt at every pixel, that is Zopt(x,y). The coarseness of the input 149 
image (Fcrs) is gotten: 150 

 
1 1

1 ( , )
M N

crs opt
x y

F Z x y
M N = =

=
×   (5) 151 

It can be seen that, Tamura coarseness is a measurement of texture coarseness in a global 152 
perspective, and it can only extract coarseness from an entire image or a larger image block, but 153 
cannot accurately measure local texture coarseness. Due to the limitation of Tamura’s algorithm, a 154 
new local texture coarseness calculation algorithm with more general noise robustness is proposed. 155 

We put the principle of Tamura’s algorithm shown in figure 1(a). A spike with a width of d is 156 
arranged in a spaced D cycles. The optimum output size of each pixel is shown in figure 1(b). As can 157 
be seen from the figure 1(b), the optimal size is the expression associated with d and D, and the final 158 
output result is Fcrs=(3d+D)/4. The results are in line with the facts, when the value of d and D is larger. 159 
The element dimension is larger, the repeating unit is lesser, and the texture coarseness is greater. 160 

Normally, complex texture feature is composed of some simple texture elements [21]. However, 161 
the texture element is still a vague concept. There is lack of a good mathematical model to describe it 162 
[22]. In this section, we construct mathematical models to analyze these problems. The general texture 163 
element in the image has a uniform gray image block, and we can think the image block is just an 164 
isolated pixel. The image of figure 1(a) can also be considered as two texture elements with two 165 
different dimensions and gray values, and their dimensions are d and D. If the image only includes 166 
a texture element, the optimal size is Zopt(x,y); The output is shown in figure 1(c). When M=N=1, there 167 
is Fcrs=Zopt. Therefore, the optimal size of Zopt(x,y) is used to calculate the local texture coarseness of 168 
the pixel point (x,y). The output of Zopt(x,y) should be figure 1(d). 169 

    

Zopt

(D+2d)/2

d

d/2

 170 
(a)                                           (b) 171 

Zopt

D/2

            

Zopt

D

 172 
(c)                                           (d) 173 

Fig.1  Analysis of local texture coarseness 174 
In summary, the local coarseness is the largest at the center of texture element. The local texture 175 

coarseness are minimal at the boundary points of texture element; The pixels between the center and 176 
the boundary points have a middle-value local coarseness. the more far away from the center, the 177 
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smaller the local coarseness. For different texture elements, the greater the dimension, the greater the 178 
coarseness at the center of the texture element. Therefore local texture coarseness can be measured 179 
by the optimal size of pixels. 180 

Now the pseudo code for the calculation is given. 181 

Algorithm 1: Measurement of The Local Texture Coarseness. 182 

Input:  (1) I(i,j)—The gray value of input pixel in (i,j) of SAR image 183 
   (2) M×N—The size of the input SAR image 184 
   (3) 4k×4k—The size of active windows 185 
   (4) Lmax—The maximum window scale 186 
   (5) 1c , 2c —Two parameters for adjusting thresholds (T2,T3) 187 
Output:   Fcrs—The local texture coarseness 188 
Method 189 
Step 1:   Calculate the average intensity value of pixels in the activity window in the image 190 
   if k=0 191 
     The size of active windows is set to 3×3 192 
   else end 193 
   for k=1 to Lmax 194 

     
11

1 1

2 12 1
2

2 2

( , ) ( , ) (4 )
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k k
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i x j y

A x y I i j k
−−

− −

+ −+ −

= − = −

=    195 

   end-k 196 
Step 2:   Calculate the deviation scale of the two windows (Lb) 197 
   if Lmax≥5 198 
     α =3 199 
   else maxmin(2, 1)Lα = −  200 
   end-Lmax 201 
   maxbL L α= −  202 
Step 3:  Calculate the eccentricity of the two windows ( ) 203 
   ' max( ,0)bk k L= −  204 
   2 ' 1kρ = +  205 
Step 4:  For each pixel in the image, the average intensity difference between the non-over- 206 
   lapping windows in horizontal and vertical directions is calculated separately 207 
   for x=1 to M 208 
   for y=1 to N 209 
     , '( , ) ( , ) ( , )k h k kE x y A x y A x yρ= + −  210 

     , '( , ) ( , ) ( , )k v k kE x y A x y A x yρ= + −  211 
   end-x 212 
   end-y 213 
Step 5:   Calculate the optimum size at each pixel 214 
   for x=1 to M 215 
   for y=1 to N 216 
     max( , ) 4optZ x y k= ×  217 
     , ,( , ) max( ( , ), ( , ))k k h k vE x y E x y E x y=  218 
   end-x 219 
   end-y 220 
   max max( ( , ))kE E x y=  221 
   min min( ( , ))kE E x y=  222 
Step 6:   There is a parameter kmax, which is determined by the following methods: it is divid- 223 
  ed into three situations: The pixel points in the boundary, the pixel points within 224 
   the larger and smaller dimensional texture elements. 225 
   if k=0 226 
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     Get the mean of the local non-zero maxima of all the pixels of E0,that is T1, 227 
     if Ek(x,y)>T1 228 
       kmax=0 229 
     else end 230 
   else end-k 231 
   In this situation, the current pixel is the point on the boundary of the texture element; 232 
   min min( )E mean E=  233 

   Experiment on many texture images, and found the values of T2, T3 are related to minE  234 

   2 min 1T E c=  235 

   3 min 2T E c= ⋅  236 
   1k k kDE E E −= −  237 
   if Emax<T3 238 
     if Numel(DEk<T2)=Lmax-1 239 
       kmax = Lmax 240 
     else end 241 
   In this situation, the current pixel is the point within the larger dimensional element; 242 
   else kmax = argmax(Ek) 243 
   In this situation, the current pixel is the point within the smaller dimensional element; 244 
   end 245 
Step 7:   Calculate the local coarseness of the pixel point according to the optimal size of each  246 
  pixel in the image 247 
   To increase the contrast, we put the power transformation to Zopt 248 
   for x=1 to M 249 
   for y=1 to N 250 
     ( , ) ( , )crs optF x y Z x y γ=  251 
   end-x 252 
   end-y 253 

d

k

(x,y)

k     

d

k'

(x,y)

k 254 
      (a)                            (b) 255 

Fig.2  The windows used to make a difference  (a) is the window of Tamura’s algorithm, which 256 
has the same size. In our model, The two windows that make the difference are the eccentric 257 

overlapping windows. There is a deviation in the size of windows, as shown in Fig.2 (b). 258 
Moreover, our model have completed the measurement of local texture coarseness, it is: 259 

 ( , ) ( , )n
crs optF x y Z x y γ=  (6) 260 

After the normalization operation and significant treatment of the feature matrix, the feature 261 
map is as follows: 262 
 ( )( ),n

crscrsS N F x y=  (7) 263 

In the formula and later formulas, N( • )is the normalization operation: the feature maps of the 264 
model will be normalized to the range [0,N], N is any gray value within the gray range of the input 265 
image, this process will reduce the saliency of background, the feature maps after the norm- 266 
alization operation is F’; And then we multiply F’ and a coefficient;  267 
 2( ) 'S M m F= − ⋅  (8) 268 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 October 2017                   doi:10.20944/preprints201710.0093.v1

http://dx.doi.org/10.20944/preprints201710.0093.v1


 7 of 17 

 

Where: M is the global maximum of F’, and M is the average gray value of remaining pixels except 269 
the pixels with the gray value of M in F’. S is the initial saliency map of current feature. 270 

2.1.2. Standard deviation 271 

Normally, standard deviation can effectively reflect local features of images, such as the edge 272 
and shape features. The SAR images have rich edge information, and the target edge and contour 273 
information can be enhanced by extracting the standard deviation of the image, and realize detecting 274 
targets from the background [23]. Standard deviation can guarantee the difference between targets 275 
and background in a low computational complexity. 276 

The standard deviation is calculated by sliding the filter in the detection image. The size of the 277 
filter sliding window used here is related to this balance, which is used to coordinate the relationship 278 
between the time consumed by the model and the effectiveness of the saliency inhibition of the 279 
background. Assuming I(i,j) is the input image, the size of the filter is N×N, the central coordinate of 280 
the filter is (m,n), the formulas for standard deviation are derived as follows: 281 

Firstly, we need to calculate out the average value of the local areas in the image, that is mx(i,j), 282 
M is a parameter related to the size of the filter, M=0.5×(N-1). 283 

 2
1( , ) ( , )

(2 1)

n M m M

x
i n M j m M

m i j I i j
M

+ +

= − = −

=
+    (9) 284 

Standard deviation (Fstd) can be obtained: 285 

 ( )( ) ( )2 2
2

1, ( , ) ( , )
(2 1)

n M m M

std x
i n M j m M

F n m I i j m i j
M

+ +

= − = −

 
= − +  

   (10) 286 

Pixels on the boundary of target areas is larger than pixels in their adjacent field, so the STD 287 
values calculated are larger, which are the highlights in the feature map. From the perspective of 288 
image comprehension, the corresponding Fstd values of each pixels constitute the feature matrix of 289 
standard deviation. Moreover, after the normalization operation and significant treatment of the 290 
feature matrix, the feature map of standard deviation is obtained. The calculation is as follows: 291 
 ( )( ),std stdS N F n m=   (11) 292 

2.1.3. Orientation 293 

The orientation feature usually is used to represent the targets with different directions [24]. In 294 
our model, the orientation features of pixels in the input image are extracted by Gabor filter, and the 295 
filter is shown in the formula: 296 

 ( )
2 2 21, , , , , exp exp

2
k k k

k

x y ix
H x y θ θ θπ

θ λ α β π
παβ α β λ

       = − +              
 (12) 297 θk is the orientation of the sine wave; and λ is the wavelength of the sine wave; α and β refer to the 298 

standard deviation of the Gaussian function in the X-axis and the Y-axis, respectively. 299 
The orientation the sine wave (θk) can be obtained by the formula: 300 

 ( )1 , 1,2, ,k k k n
n
πθ = − = …  (13) 301 

Normally, the orientations of the sine wave are periodic, our model selects four orientations 302 
(n=4), they are 0° , 45° , 90° ,135° ; The calculation of the parameters (consist of

k
xθ and

k
yθ ) is: 303 

 
cos( ) sin( )
sin( ) cos( )

k

k

k k

k k

x x
y y

θ

θ

θ θ
θ θ

 
⋅ −

   
=   

    
 (14) 304 

Then our model substitutes the obtained parameters into the filter formula. We get the Gabor 305 
filters in four orientations, so we get the feature maps based on these four orientations. They are Fori(0), 306 
Fori(45), Fori(90), Fori(135). 307 
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Last but not least, since our model does not build the Gaussian pyramid structure, the final 308 
feature map of orientation (Sori) is obtained by the linear addition of four feature maps. The 309 
calculation is as follows: 310 
 

{ }
( )( )

0,45,90,135
ori oriS N F

θ
θ

∈
= ⊕  (15) 311 

2.1.4. Global contrast 312 

Global contrast is a quantification of the difference between the current local region and the 313 
whole image [25]. Generally, the gray value of target areas in the SAR image is relatively high, and 314 
the saliency map of the global contrast feature can be used to enhance the difference of the target and 315 
the background, so as to highlight the significance of targets. The calculation processes of the global 316 
contrast feature based on pixel level are shown as follows. 317 

Assuming I(i,j) is the input image, the size of the input image is M×N. The feature value of global 318 
contrast (val(i,j)) is calculate by the formula: 319 

 ( ) ( ) ( )1, , ,
i N j M

val i j I i j I i j
M N ∈ ∈

= −
×   (16) 320 

Next, the binarization result of the feature is obtained by a criterion: 321 

 ( ) ( ) ( )
( )

, , ,
,

0, ,
val i j val i j

g i j
val i j

γ
γ

 ≥=  <
  (17) 322 

Among that, g(i,j) refers to the final feature value of global contrast for the current pixel. γ is an 323 
experience parameter associated with grayscale. Last but not least, normalize it. 324 
 ( )( ),globalS N g i j=  (18) 325 

In the formula, Sglobal represents the feature map of global contrast. 326 

2.2. Calculation of Saliency Map 327 

In most cases, the visual models end up with a saliency map that is a synthesis of all the feature 328 
maps. The meaning of different feature maps corresponds to the different channels of "attention" [21]. 329 
The magnitude of the response of the feature maps corresponding to silent regions is quite different. 330 
Some feature maps correspond to more than one silent regions with strong responses. Some feature 331 
maps may include only one silent region with relatively weak. Therefore, the mechanism of feature 332 
fusion needs to be completed based on the significant levels of the features, rather than the simple 333 
linear addition. 334 

According to the features extracted from SAR image in the last section, the feature maps are 335 
obtained. The fusion strategy of multiple features used in our model is: first of all, the feature maps 336 
of the local coarseness, standard deviation and orientation are adopted in a linear additive way and 337 
normalization operation, the saliency of the silent areas in the image has been enhanced by this step. 338 
And then we can eliminate the inconspicuous regions in the feature map of global contrast by the 339 
multiplication operation, at the same time to strengthen the saliency of the silent regions contained 340 
in local feature maps and the global feature map. We calculate the weighted sum of feature maps, 341 
after its normalization and we can get a coefficient, and then multiply it by the global feature map, 342 
then the total saliency map is calculated as follows: 343 

 
2

crsstd ori
global

S S c SS N S
c

+ + ⋅ = ⋅ + 
 (19) 344 

Among that, the parameter can be understood as sample weight, c is an empirical adjustment 345 
parameter that ranges between 1.5 and 2.2. 346 

2.3. Saliency Detection 347 

Our model optimizes the competition strategy in the ITTI classic model and uses multi-scale 348 
segmentation in the saliency map to realize the detection and extraction of silent regions. 349 

2.3.1. Determination of FOA 350 
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Focus of Attention (FOA) is the focus of visual attention. In general, FOA is the pixel that has the 351 
maximum value of the grayscale in the saliency map S. If there are more than one pixels with the 352 
maximum gray value at the same time, our model mimics the mechanism of the human visual system 353 
to deal with multiple regions of interest, and regards the region nearest to the center of the image as 354 
the most significant area of visual attention. In this situation, the calculation formulas of 355 
the focus of attention are as follows. 356 

Firstly, we need to determine the distance from the center of the image to the current pixel;  357 

 ( ) ( ) ( ) ( )2 2
0 0 0 0, , ,dis x y x y x x y y= − + −    (20) 358 

Among that, the coordinates of the center of the input image are (x0,y0); the coordinates of FOA are 359 
(x,y); Finally, FOA is calculated as follows: 360 
 ( ) ( )( )0 0min , , ,FOA dis x y x y=     (21) 361 

2.3.2. Acquisition of binarization template 362 

According to the method for determining FOA, our model calculates the FOA of the saliency 363 
map S, and then we can obtain four pixels corresponding to this FOA point in four feature maps, and 364 
take the feature map with the maximum gray value among the four pixels as the next saliency map 365 
(S’) for detecting silent regions, and the binarization operation is carried out by using the FOA of the 366 
saliency map S’ as the center. Last but not least, in the binarization operation, the global threshold 367 
segmentation is realized by the traditional Otsu method. The judgment criterion of binarization is: 368 

 ( )
( )

( )
0

0

,
1

,
,

0

S x y
T

sValB x y
S x y

T
sVal


≥

′
= 



′
<



，

，

  (22) 369 

Among that, sVal is the gray value of the FOA pixel in S’, and T0 is the threshold for image 370 
segmentation; B(x,y) is the result of binarization. 371 

The model performs the following two steps on the binarization results obtained above. First of 372 
all, Gaussian filtering is performed in the binary image. The parameters of the filter need to be 373 
determined according to the prior knowledge of targets. The size of the filter in this article is set as 374 
the estimate value of the pixels of the actual target in the image. In the second phase, our model is 375 
used to judge the regions after Gaussian filtering. 376 

Assuming that Num’ is the number of pixels in the regions to be detected; and N’×M’ is the size 377 
of the input image. The proportional parameter needed to be used in the judgment process is ratio; it 378 
is calculated by the formula. 379 

 'Numratio
N M′× ′

=  (23) 380 β is the ratio between the estimated value of the actual pixel and the number of all pixels in the 381 
image, and the criterion are as follows: 382 

 
The current region belongs to the target area          

he current region belongs to the background area
ratio
ratio

β
β

≥
 <

，

，T
 (24) 383 

Finally, the binary image judged to be the target area is saved. 384 

2.3.3. The multi-scale acquisition of silent regions 385 

In order to avoid the process of finding the next silent region entering into the cycle of death, an 386 
operation of “inhibition of return” (IOR) is done. The specific operation is that when the binarization 387 
template in a silent region is obtained, this silent region is set to zero, and then the operation of the 388 
next FOA is started until the retrieval of all silent regions is completed. The detection result of silent 389 
regions is obtained through the above operations. 390 

The optimization and improvement of competitive strategy in our model is mainly reflected in 391 
the following aspects.  392 

(1) Comparing and analyzing the gray value of FOA in each saliency map, the best saliency 393 
representation of every positions are selected; 394 
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(2) Then the filtering and image segmentation of saliency map is accomplished from several 395 
aspects. Finally, our model realizes the accurate screening of the silent regions. 396 

This paper analyzes the classic ITTI model and considers the features of targets in SAR images. 397 
In order to improve the accuracy of saliency detection and the edge sharpness of targets in the image, 398 
our model draws lessons from the framework of classical ITTI model. Firstly, our model extracts 399 
some new different underlying early primary features from the input image. Then we use a new 400 
mechanism of feature fusion to get the saliency map. Finally, a new multi-scale competition strategy 401 
is adopted to further complete the extraction of salient regions from the input image, as shown in 402 
figure 3. 403 
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 404 
Fig.3  The flow of visual attention model algorithm 405 

3. Evaluation of Texture Saliency Extraction Algorithm 406 

A new method is proposed to measure the texture saliency. In this section, the extraction 407 
algorithm is discussed from the following two aspects. 408 

3.1. Complexity Analysis of Algorithm 409 

In terms of the operation process, this algorithm does not need to do the construction of Gaussian 410 
pyramid structure. The ITTI model uses the nine-story pyramid structure to simulate the human 411 
visual attention system, so as to realize multi-scale representation of images. However, the areas of 412 
ships and other targets in SAR image that occupy the detected images are relatively small. Excessive 413 
down sampling makes the target information in the detected image missing. It makes no sense to 414 
calculate saliency maps in the fuzzy Gaussian pyramid sub-image. 415 

      416 
(a)                   (b)               (c)          (d)        (e)      (f) 417 

Fig.4  Results of Gaussian pyramid structure  418 
The figure 4 (a) is the original SAR image. (b) to (f) are the sub-image obtained by Gauss 419 

pyramid. In figure (c) to (f), we can clearly see that these sub-image become blurred, and the target 420 
information is missing, and feature extraction on them to build saliency map have no practical 421 
significance, it also can cause the waste of time. 422 

In terms of the time complexity, our algorithm deals with pixels in two categories. The pixels in 423 
the image can be divided into points in texture boundary and points inside the texture elements. 424 

For the interior point of the texture element, the current window size (k) is less than the texture 425 
dimension, and it satisfies Ek≈0; When k is larger than the dimension of the texture element, it is clear 426 
that Ek≫0, and the maximum value is Emax, then kmax=k; When the size of the texture element is very 427 
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large, the values of all Ek are small and they are similar. At this point, kmax=Lmax. Use the constraint 428 
conditions: Numel(DEk<T2)=Lmax-1 and Emax<T3 to judge. 429 

For the boundary points, Ek is larger and Ek≫0. At this point, set kmax=0. Because E0 contains the 430 
information of original texture boundary, so we use the condition: E0>T3 to judge the boundary points. 431 
The value of T3 is set as the average of all local non-zero maximums in pixels of E0. we can get: k=0, 432 
E0<T3. 433 

In a word, it is fast and effective to distinguish the internal points of the affected texture elements 434 
from the boundary points. 435 

3.2. Noise Robustness 436 

3.2.1. The mathematical model 437 

The image is disturbed by noise in the process of acquisition and propagation. The extraction 438 
algorithm proposed in this paper is applied to SAR images, while the SAR image has higher noise 439 
than the general optical image. Therefore, the noise robustness of algorithms must be considered. 440 

Considering the additive noise n(i,j), the intensity value of pixel (i,j) in SAR image (I(i,j)) is 441 
changed into f(i,j): ( ) ( ) ( ) ,  ,  ,f i j I i j n i j= + .Then, there are: 442 

 '

' '

,
( , ) ( , )'

( , ) ( , ) ( , ) ( , )' '

1 1( , ) ( , )

1 1 1 1( , ) ( , ) ( , ) ( , )

k k

k k k k

k h
i j A i j Ak k

i j A i j A i j A i j Ak k k k

E f i j f i j
N N

I i j I i j n i j n i j
N N N N

∈ ∈

∈ ∈ ∈ ∈

= −

= − + −

 

   
 (25) 443 

Nk is the total number of pixels in the window area (Ak). When the area Ak and Ak’ are in the same 444 
texture element, we can get: 445 

 
'

,
( , ) ( , )'

1 1( , ) ( , )
k k

k h
i j A i j Ak k

E n i j n i j
N N∈ ∈

= −   (26) 446 

There is a condition: when the radius of the probability distribution of n(i,j) is small, that is r, the 447 
values of Nk and Nk’ are greater than the value of r, considering Wiener-khinchin law of large 448 
numbers, we can get: 449 

 
1

1lim 1
N

iN i
P a

N
μ ε

→∞ =

 
− < = 

 
  (27) 450 

Then we can derive the following formulas: 451 

 
'( , )'

1 ( , )
k

n
i j Ak

n i j
N

μ
∈

≈  (28a) 452 

 
( , )

1 ( , )
k

n
i j Ak

n i j
N

μ
∈

≈  (28b) 453 

Among that, nμ is the mean of the noise n(i,j). Then we can get: 454 
 , 0k hE ≈ ; , 0k vE ≈  (29a) 455 
 0kE ≈  (29b) 456 

Considering the values of Nk and Nk’ are greater than the value of r, we can get: 457 

 
'

,
( , ) ( , )'

1 1( , ) ( , )
k k

k h
i j A i j Ak k

E I i j I i j
N N∈ ∈

= −   (30a) 458 

 
'

,
( , ) ( , )'

1 1( , ) ( , )
k k

k v
i j A i j Ak k

E I i j I i j
N N∈ ∈

= −   (30b) 459 

Obviously, the bigger the value of Nk is, the better the condition is met, the noisy suppression 460 
effect. In fact, after the calculation of average intensity difference in the first few steps of the 461 
algorithm, Ek,h and Ek,v is the intensity difference after the mean filtering of the original image, and  462 
theoretically the algorithm also should have good anti-noise ability. 463 
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3.2.2. Analysis of simulation experiments 464 

In order to prove the effectiveness of the extraction algorithm, the algorithm has carried on the 465 
experimental analysis to some images. Experimental images include images in Brodatz’s texture 466 
library and some natural scene images, and the results are compared with Novianto’s algorithm 467 
based on local fractal dimension [22].In order to show the consistency of the coarseness feature map 468 
obtained by the two methods, the coarseness feature map of fractal dimension method is inverted. 469 
Figure 5 is the processing result of the natural scene texture image from the Brodatz’s texture library, 470 
and the original size of the image is 320×320 pixels. 471 

           472 
a                            b                            c 473 

      474 
d                            e 475 

Fig.5  Texture extraction of natural scene image  (a) is the original image; (b) is the feature map of 476 
texture saliency in the original image; (c) is the feature map of the image after adding the Gaussian 477 

white noise with the variance of 10; (d) and (e) are the results of fractal dimension method 478 

       479 
a                           b                           c  480 

    481 
d                           e 482 

Fig.6  Texture extraction of SAR image  The annotation of each image is the same as Fig. 5. 483 
From the coarseness feature map extracted by the proposed algorithm we can see that the value 484 

of each pixel point corresponds to the value of the local coarseness of the image, and then the texture 485 
coarseness distribution of the original image is given accurately. Compared with the fractal 486 
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dimension algorithm, the proposed algorithm is as effective as fractal dimension method. When the 487 
Gaussian white noise is added to the original image whose variance is 10, we can get two coarseness 488 
feature maps by these methods. It is easy to see that the noise has little impact on the result of the 489 
algorithm proposed in the paper, but has a bad impact on the result of fractal dimension method. In 490 
the experiments, we found that, even if we use the 5×5 window instead of the 3×3 window in fractal 491 
dimension algorithm, the feature map is still influenced by noise greatly, and we can't use simple 492 
post-processing such as median filtering to filter noise. 493 

In a word, our algorithm have a good noise robustness. 494 

4. Evaluation of Salient Regions Extraction 495 

This section carries out the saliency detection experiments on the basis of visual saliency and the 496 
design theory of the proposed model. The results of the model are given for SAR images. Considering 497 
TS-X image is a typical high-resolution SAR image, several representative TS-X images are selected. 498 
Compared with classical models, the advantages and disadvantages of our model are analyzed. 499 

4.1. Evaluation Index of Detection Results 500 

In order to verify whether the model is valid to SAR images, a TS-X image is selected as the 501 
experimental data, whose pixels are 4015×3616. The imaging area is Strait of Gibraltar, the sampling 502 
rate of the image is 1.25 meters, and the polarization mode is HH polarization. The distribution of sea 503 
in this area is complex and there are a lot of ships and strong speckle noise, and the area contains a 504 
certain region of non-uniform ocean background. In this area, combining with GPS and AIS data 505 
analysis, we collect and sort out the geographical information of the Strait of Gibraltar, and determine 506 
the number and location of ships in SAR image data, and improve the objectivity of evaluation in 507 
experimental results. For better evaluation of detection algorithms, define the detection rate (Pt) and 508 
the Figures of Merit (FoM) [26]: 509 

 100%tt
t

gt

N
P

N
= ×  (31) 510 

 tt

fa gt

N
FoM

N N
=

+
 (32) 511 

Among that, Ntt is the number of targets detected by current algorithm; Nfa is the number of false 512 
alarm; Ngt is the number of actual targets. 513 

The experiment data used in the paper is shown in Figure 7 (a), which contains a large number 514 
of non-uniform sea background and different sizes of ship targets. Figure 7 (b) is the image after 515 
marking targets, and the actual number of ships in the experimental image is 15. 516 

              517 
     a. The original image        b. The image after marking targets 518 

Fig.7  Experimental simulation image 519 

4.2. Analysis of Experimental Results 520 

According to the model proposed in this paper, the image is processed and the feature maps are 521 
obtained. The parameters settings in the process of calculating feature maps include in the input 522 
image: the size of sliding window in the standard deviation feature is set as 5×5; The parameter γ in 523 
global contrast feature is 200. 524 
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    525 
a. Local coarseness     b. Standard deviation         c. Orientation           d. Global contrast 526 

Fig.8  The feature maps of our model 527 
As can be seen in Figure 8, the feature maps shown in this paper are of better clarity. 528 
First of all, as can be seen from the feature map of texture coarseness, the method of measuring 529 

texture coarseness presented in this paper has a relatively accurate measurement output. The feature 530 
map can even provide us with all the accurate target information. And the standard deviation can 531 
correspond to the edge and texture features of targets in SAR image. The feature map of orientation 532 
characterizes and distinguishes the targets with different orientations. In the feature map of global 533 
contrast, the little stronger target information in the complex background is enhanced from a global 534 
perspective. 535 

              536 
 a. The saliency map               b. The detection result  537 

Fig.9  The results of silent regions in our model 538 

Figure 9 shows the simulation results of the experimental data. (a) is the final saliency map of 539 
the input image; (b) is the detection result of silent regions. Figure 10 shows the results of two classical 540 
visual models. In this paper, three models are analyzed based on the quantitative analysis of 541 
performance indexes. 542 

    543 
a                       b                       c                        d 544 

Fig.10  The detection results of two classical models  (a) is the saliency map of the Hou’s model, 545 
(b) is the detection result of the model; (c) and (d) are the classical ITTI model 546 

Table.1  Comparison of three detection results of the visual models in the TS-X image 547 
Model Ntt Nfa Detection time Pt FoM Detail analysis 

ITTI model 11 0 45.63s 73.3% 0.733 The silent regions are fuzzy and contain part of the 
background areas 

HOU model 15 3 70.13s 100% 0.833 Some target areas are missing 
Our model 15 1     30.24s 100% 0.938 The edge details of the result are relatively good 

Table 1 shows the comparison of the performance of our model and two other traditional visual 548 
attention models. Among them, the evaluation indexes include the number of targets detected, the 549 
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number of false alarms and the number of missing targets and detection time. Compared with classic 550 
ITTI model and HOU model, the target detection algorithm in SAR images proposed in this paper 551 
has a low leakage number and a low false alarm number, which guarantees the accuracy of target 552 
detection. That is because the algorithm takes texture features of image into account. Combining the 553 
location with the contrast information of target can effectively enhance the target saliency and inhibit 554 
the saliency of the background region at the same time. It provides the guarantee for accurate 555 
detection target. 556 

    557 
a                                          b 558 

    559 
c                                         d 560 

Fig.11  The detection results complex scene SAR image  (a) is a complex scene SAR image, (b) is 561 
the saliency detection result of the ITTI model; (c) is the saliency map of the Hou’s model; and (d) is 562 

the saliency detection result of our model. 563 

Fig.11 is the result of a simulation experiment of a complex scene SAR image. The regions of 564 
targets and background in the SAR image are relatively similar, and the background is very complex. 565 
A saliency map of the image using the ITTI model is shown in the figure 11 (b), and it includes a 566 
higher missed rate and false alarm rate; (c) is a saliency map obtained by using Hou model, which 567 
cannot distinguish the target region and background clutter region, so that the obtained saliency map 568 
is meaningless, and the model fails. According to the saliency map obtained by the model and 569 
proposed in the paper, that is (d), our model has a better detection effect, and can inhibit the saliency 570 
of background clutter, filter the features of background, highlight the target contour shape, and 571 
enhance the saliency of targets. 572 

5. Conclusions 573 

Considering the characteristics of SAR image, this paper analyzed the basic theory of classical 574 
visual models. We focus on the problem of their poor performance when the classical visual models 575 
are applied to SAR images with complex background. A new visual model for detecting targets in 576 
SAR images is presented in the paper. Firstly, our model extracts several special features which can 577 
describe the SAR image better. After a series of calculations, the feature maps are obtained; Secondly, 578 
the model combines the feature maps to obtain the final saliency map by a new mechanism of feature 579 
fusion; Finally, the extraction of silent regions is achieved through a multi-scale competition strategy, 580 
so as to realize the saliency detection of SAR image. 581 

In the end, the performance of our visual model and classical visual models are simulated in the 582 
uniform clutter environment. A number of experiments were performed in TS-X images with a 583 
complex background. The results show that our model has a better performance: the lower false 584 
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alarm rate and the better contour shape. Our model has a great advantage in the saliency detection 585 
of targets in SAR image. 586 

The research of next phase is: (1) When we complete the extraction of visual features, how do 587 
we combine the attributes of targets to select a feature? how to select and extract features which can 588 
represent the targets accurately with a small amount of calculation as a prerequisite? (2) How to 589 
establish a new mechanism of feature fusion, which can adaptively adjust the proportion of each 590 
feature? (3) When carrying out the calculation of feature maps, it is necessary to further improve the 591 
parameters setting of these filters. 592 
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