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Abstract: Multi-cameras system is widely applied in 3D computer vision especially when multiple 11 
cameras are distributed on both sides of the measured object. The calibration methods of multi-12 
cameras system are critical to the accuracy of vision measurement and the key is to find an 13 
appropriate calibration target. In this paper, a high-precision camera calibration method for multi-14 
cameras system based on transparent glass checkerboard and ray tracing is described, which is used 15 
to calibrate multiple cameras distributed on both sides of the glass checkerboard. Firstly, the 16 
intrinsic parameters of each camera is obtained by Zhang’s calibration method. Then, multiple 17 
cameras capture several images from the front and back of the glass checkerboard with different 18 
orientations, and all images contain distinct grid corners. As the cameras on one side are not affected 19 
by the refraction of glass checkerboard, extrinsic parameters can be directly calculated. However, 20 
the cameras on another side are influenced by the refraction of glass checkerboard, and the direct 21 
use of projection model will produce calibration error. A multi-cameras calibration method using 22 
refractive projection model and ray tracing is developed to eliminate this error. Furthermore, both 23 
synthetic and real data are employed to validate the proposed approach. The experimental results 24 
of refractive calibration show that the error of the 3D reconstruction is smaller than 0.2 mm, the 25 
relative errors of both rotation and translation are less than 0.014%, and the mean and standard 26 
deviation of reprojection error of 4-cameras system are 0.00007 and 0.4543 pixel. The proposed 27 
method is flexible, high accurate, and simple to carry out. 28 

Keywords: camera calibration; multi-cameras system; ray tracing; glass checkerboard; bundle 29 
adjustment 30 

 31 

1. Introduction 32 
Multi-cameras system (MCS) have many merits over single camera because they can cover a 33 

wider and overall field of view (FOV), which makes MCS increasingly prevalent in industrial vision 34 
measurement [1,2], visual navigation [3,4], security monitoring [5], etc. With the advantages of 35 
flexibility, cost performance and high precision, industrial vision measurement using MCS has been 36 
widely studied in many applications, such as car body-in-white inspections [6], deformation and 37 
displacement measurement [7,8]. The measurement of dimension, shape, and deformation is a 38 
dynamic process, so all cameras should observe the part surface from different viewpoints 39 
simultaneously (one-shot image acquisition) and dynamically reconstruct the 3D shape of the whole 40 
object. This kind of MCS includes multiple cameras sharing an overlapping FOV at different 41 
orientations. In the special case, these cameras are distributed in the opposite direction. Accurate 42 
calibration of multi-cameras is quite significant [9], since the calibration results determine the 43 
mapping relationship between world points and their image projections. Generally speaking, the 44 
overall performance of the MCS strongly depends on the accuracy of the camera calibration. 45 
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The calibration methods of MCS are divided into two categories: metric calibration and self-46 
calibration. The proposed method, using knowledge of the scene such as calibration pattern to 47 
calculate stable and accurate calibration results, belongs to the metric approaches rather than self-48 
calibration. Several patterns were proposed for multi-cameras metric calibration, which can be 49 
grouped into three main categories: 3D calibration target, planar target, and one-dimensional target. 50 

A representative calibration scenario of multi-cameras begins by placing calibration target in the 51 
overlapping FOV of the cameras to provide a projection relationship between image and world points 52 
[10]. The standard calibration target is a planar pattern, such as checkerboard. Zhang [11] proposed 53 
a flexible new technique to easily calibrate single camera using a planar pattern, which had been used 54 
in other multi-cameras calibration [12-15]. Dong [12] presented an extrinsic calibration method for a 55 
non-overlapping camera network based on close range photogrammetry. This method calibrated the 56 
extrinsic parameter of multi-cameras using a vast number of encoded targets pasted on the wall. 57 
Baker [13] used textures printed on either side of a board to calibrate dozens of cameras. One side of 58 
the board was printed by a set of lines, while the other side of the board was printed by a set of boxes 59 
with one missing in the middle. Belden [14] described refractive calibration procedure applied to 60 
calibrate MCS for fluid experiments. This method contributed to volumetric multi-camera fluid 61 
experiments, where it was desirable to avoid tedious alignment of calibration grids in multiple 62 
locations and a premium was placed on accurately locating world points. In reference [15], a MCS 63 
had been developed to measure the shape variations and the 3D displacement field of a sheet metal 64 
part during a Single Point Incremental Forming operation. The calibration of the multi-cameras 65 
determining camera parameters were described in their paper using planar calibration target. The 66 
planar calibration pattern limits the distribution of multiple cameras, especially, when multiple 67 
cameras distributed on both sides of planar pattern. The uneven printed pattern can also affect the 68 
accuracy of camera calibration. 69 

In addition, 1D calibration target and 3D calibration target are also widely used in the calibration 70 
of MCS, such as Figures 1 and 2. 1D target-based camera calibration was firstly proposed by Zhang 71 
[16]. Compared with conventional 2D or 3D target-based camera calibration, the main advantage of 72 
1D target-based camera calibration is that it doesn’t need to know the 2D or 3D coordinates of 73 
markers, which significantly simplifies the manufacturing process of calibration targets. More 74 
importantly, without self-occlusion problem, the 1D calibration target can be observed by all cameras 75 
in the MCS. The advantage is that all cameras are calibrated simultaneously, which avoids the 76 
accumulation of errors when multi-cameras calibration is performed in steps or groups. Therefore, 77 
this camera calibration method has been widely used by many MCS [10,17-21]. However, the 78 
disadvantages of 1D calibration target including [21]: 1) In the construction of the 1D pattern, it is not 79 
possible to guarantee the exact linearity of the points, hurting one of the main assumptions of the 80 
adopted model. 2) Another source of error is the tool used to extract the points of the calibration 81 
pattern, which cannot achieve the same accuracy of corner extraction in 2D target-based camera 82 
calibration. 83 

A typical 3D calibration target is composed of multiple 1D patterns. Shen [10] presented a 84 
complete calibration methodology using a novel nonplanar target for rapid calibration of inward-85 
looking visual sensor networks. The calibration target consists of a large central sphere with smaller 86 
spheres of different colors mounted on support rods. A flexible method constructing a global 87 
calibration target with circular targets was proposed by Gong [2]. Shin [22] described a multi-cameras 88 
calibration method using a 3-Axis frame and wand. In this study, the calibration parameters were 89 
estimated using the direct linear transform (DLT) method from the three-axis calibration frame. 90 
However, the main source of error in this kind of 3D calibration target is attributed to errors of ellipse 91 
fitting caused by image noise and lighting conditions. The accuracy of center extraction cannot 92 
achieve the same accuracy of corner extraction in planar pattern [21]. This type of 3D calibration 93 
target has the same disadvantage as the 1D calibration target. Another kind of 3D calibration target 94 
consists of multiple planar pattern, such as the works of Long [23] and Xu [24]. Unfortunately, in 95 
MCS like Figure 2, it is hard to use this calibration target, which can’t be viewed by all the cameras 96 
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simultaneously. This 3D calibration target limits the distribution of multiple cameras, which restricts 97 
its application. 98 

In order to overcome the shortcomings of the foregoing methods, and guarantee high-accuracy 99 
and convenience of the multi-cameras calibration, we propose a novel method of global calibration 100 
for multiple cameras with overlapping FOVs. This method adopts a planar calibration target made 101 
of transparent glass, and the checkerboard pattern is printed on one side of the glass panel. Multiple 102 
cameras are distributed on both sides of the calibration target and towards the calibration target 103 
(Figure 5). This kind of configuration is useful to get one-shot 3D shape of the whole object. The 104 
cameras in front of the calibration target are not affected by the refraction, and the traditional Zhang’s 105 
method can be used to calibrate the intrinsic and extrinsic camera parameters. But, the cameras in the 106 
rear of the calibration target are influenced by refraction, and the direct use of Zhang’s method will 107 
cause calibration error. The refraction of glass will affect the accuracy of multi-cameras calibration 108 
results. This proposed method uses refractive projection model and ray tracking to eliminate the error 109 
of refraction. Based on the 3D position accuracy of the corner point on the glass checkerboard being 110 
as high as 0.0015mm, the proposed multi-cameras calibration in this paper can achieve high-accuracy 111 
and flexibility. 112 

The remainder of this paper is organized as follows: Section 2 introduces the basic mathematical 113 
model of MCS and ray tracking. In Section 3, the proposed calibration method of multi-cameras based 114 
on refractive projection model and ray tracing is described. Section 4 presents a series of experiments 115 
(synthetic and real data) to verify the feasibility and accuracy of the proposed approach. Single-116 
camera experiment verifies feasibility of the refractive projection model and calibration of extrinsic 117 
camera parameters. Two-camera experiment confirms the accuracy of calibration of extrinsic camera 118 
parameters and refractive index. Four-camera experiment verifies the performance of our method 119 
used in the actual MCS. The conclusions are indicated in Section 5. 120 

2. Mathematical Model of Camera and Ray Tracking 121 
This section briefly introduces the basic concepts used in the calibration of single camera and 122 

MCS. Then, the refractive projection model and ray tracking used in this paper will be described. 123 

2.1. Camera Model 124 
An ideal camera is modeled by the pinhole imaging. The relationship between a 3D point in 125 

world coordinate and the same point in camera coordinate is approximated by means of the rotation 126 
matrix and transformation matrix, as shown in Equation (1).  127 
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The projection of the point in camera coordinate on the image is ݌ = ,ݑ] ்[ݒ , which obeys 128 
Equation (2). 129 
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where, ܲ = [ܺ, ܻ, ܼ]்  are the world coordinates of a 3D point and [ܺ஼, ஼ܻ, ܼ஼]்  are its camera 130 
coordinates, and [ݑ, ,଴ݑ] .denotes a nonzero scale factor ߣ .are its pixel image coordinates ்[ݒ  ଴]் 131ݒ
denote the principal point in the imaging plane with the unit of pixel. ܭ is the matrix of intrinsic 132 
parameter. ௨݂ and ௩݂ represent the focal length in pixels along the image axes ݑ and ݒ, while ߛ is 133 
the skew coefficient defining the angle between the ݑ  and ݒ  pixel axes. ܴ  and ܶ , called the 134 
extrinsic parameters, are the rotation matrix and the translation vector from world coordinate frame  135 
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         136 
Figure 1. Multi-cameras system without overlapping FOV.    Figure 2. Multi-cameras system 137 

with overlapping FOV. 138 
 139 
to camera coordinate frame, respectively. 140 

However, the real camera projection is not ideal, particularly when a commercial lens is used. 141 
Therefore, the lens distortion on the imaging has to been taken into account. Commonly, only first-142 
order or second-order distortion model is adopted to correct the radial distortion [11,25,26]. More 143 
rigorously, the radial distortion and tangential distortion should be adopted to correct the lens 144 
distortion [9,27]. After considering the lens distortion, the new normalized point coordinates 145 [ݔௗ,  ௗ]் are defined as follows. 146ݕ

The distortion-free and the distorted normalized image coordinates are [ݔ, ்[ݕ  and [ݔௗ,  ௗ]், 147ݕ
respectively. 148 
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where, 1 + ݇ଵݎଶ + ݇ଶݎସ + ݇ହݎ଺  is radial distortion and ݀ݔ is the tangential distortion. ݇ଵ , ݇ଶ , ݇ହ 149 
are the coefficients of radial distortion, and ݇ଷ, ݇ସ are the coefficients of tangential distortion. We 150 
will use D = [݇ଵ, ݇ଶ, ݇ଷ, ݇ସ, ݇ହ] to represent the vector of distortion coefficients in this paper. 151 

 152 

 153 
Figure 3. Schematic of imaging through glass using pinhole and refractive projection model. 154 
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 155 
Figure 4. Schematic of ray tracking method 156 

 157 
Based on the descriptions above, a 3D point ܲ in the world coordinate system (WCS)can be 158 

projected to a 2D point ݌ in the image coordinate system using the following projection equation: 159 

( , , , , )p f K R T D P=  (6)

2.2. Refractive Projection and Ray Tracking 160 
Usually, the aforementioned pinhole model can meet the requirements of the camera calibration, 161 

but the transparent glass checkerboard is applied in our method. The direct application of the pinhole 162 
model between world and image points is erroneous as the refraction of light must be considered in 163 
our MCS. As shown in Figure 3, if the rays emanating from the world points are drawn along the 164 
path taken in the glass (red line), they do not meet in a single point in the air. In this case, the accurate 165 
pinhole model will also lead to error that is exacerbated for cameras when image planes are not 166 
parallel to the glass checkerboard. In Belden’s work [14], the image plane is angled relative to the 167 
interface, which results in relatively high calibration error when the pinhole model is applied. The 168 
reprojection error using pinhole model in the experiment of our paper is also the same order of 169 
magnitude. The non-ignorable error keeps us from adopting the pinhole model for multi-cameras 170 
calibration using glass checkerboard. 171 

In order to eliminate the calibration error caused by refraction, the refraction in the optical paths 172 
must be appropriately considered for when projecting 3D points into cameras through glass. We need 173 
to find the intersection of each ray with the refractive interface between glass and air, and project the 174 
intersection points to pinhole camera. In this paper, we adopt the ray tracking method proposed by 175 
Muslow that initializes the intersection points using an alternating forward ray tracing (AFRT) 176 
method [28]. To calculate the intersection of rays with glass surfaces, the points that simultaneously 177 
satisfy the equation of a line and the plane equation defining the surface geometry of glass should be 178 
solved. A point on a line along the direction of a given ray ܚො is defined in the Equation (7). 179 

0 ˆ( )X t X t= + r  (7)

The refractive index of air and glass is ݊ଵ and ݊ଶ (݊ଶ > ݊ଵ). Assume that the refractive index of 180 
air is equal to one, and the relative refractive index of glass (݊ = ௡మ௡భ = ݊ଶ) is one of the optimized 181 
parameters. The thickness of glass is ݀. ܚොܑ  and ۼ෡ denote the direction of the incident ray and the 182 
normal vector of refractive surface, respectively. The direction of the refracted ray ܚොܜ is given by: 183 

2 2ˆ ˆ ˆˆ ˆ ˆ ˆ1 1 ( )n n n  = + ⋅ − − − − ⋅   t i i ir r N r N r N  (8)

Figure 4 depicts the algorithm of ray tracing in order to find the intersection of rays with planar 184 
glass surface. The procedure of ray tracing is described as follows: 185 
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1. The procedure is initialized by k =  ଵ௞ denotes the direction of the line connecting the 186ݎ .1
camera center X஼ and the 3D point ܲ. We could find the intersection of ݎଵ௞ and ଵܵ at the 187 
point ௜ܺభ௞ . 188 

2. When ݊ଵ and ݊ଶ have been known, we could find the ݎଶ௞ using the Equation (8), which 189 
intersects ܵଶ at the point ௜ܺమ௞  . 190 

3. The ray ଶ௞ݎ−   is projected from P to interface Sଵ , and parallel to ݎଶ௞  but opposite in 191 
direction. 192 

4. Finally, the ray −ݎଶ is intersected with ଵܵ, resulting the point ௜ܺభᇱ௞. 193 
5. If the distance ∆ ௜ܺభ௞ = ห ௜ܺభ௞ − ௜ܺభᇱ௞ห between the ௜ܺభ௞  and ௜ܺభᇱ௞ is larger than the tolerance, 194 

the above procedures would be reiterated, and the point at ଵଶ ൫ ௜ܺభ௞ + ௜ܺభᇱ௞൯ is defined as ௜ܺభ௞ାଵ. 195 
Otherwise, the optimal solution of the intersection of ݎଵ௞ and ଵܵ is found. 196 

In addition to the intrinsic and extrinsic parameters of the camera, the main parameters affecting 197 
the projective ray include the refractive index and thickness of refraction glass. The thickness of the 198 
glass can be accurately measured, while refractive index of different glass is slightly different, and 199 
most glass refractive index is unknown. Through the above discussion, the Equation (6) can be 200 
converted to the Equation (9) with refraction. 201 

( , , , , )r rp f K D R T P n= ,  (9)

where, ݌௥  and ௥݂  represent the image points generated by the refraction and the refractive 202 
projection model, respectively. 203 

3. The Proposed Calibration Method 204 

3.1. Multi-camera Calibration Based on Refractive Projection 205 
In the previous section, we introduced the camera model and the refractive projection, which 206 

are combined to calibrate the MCS in this section. In our work, the single camera model is extended 207 
to the modeling and calibration of a MCS made up of more than two cameras. Without loss of 208 
generality, the MCS will be explained by the particular case of a 4-cameras system, which is also used 209 
in the calibration experiments described in the present paper. The MCS is shown in Figure 5, and the 210 
object in the center is the glass calibration plate. One side of the glass is printed with a checkerboard 211 
pattern, which can be seen from both sides of the calibration plate. Four cameras are distributed on 212 
both sides of the calibration plate. These cameras are grouped into two pairs, pair I including cameras 213 
1 and 2, and pair II including cameras 3 and 4. The cameras of pair I directly project the 3D point on 214 
calibration plate to image without refraction (Equation 6), while the cameras of pair II for imaging 215 
through the reflection of glass (Equation 9), which can lead to calibration errors. The errors can be 216 
eliminated by the above refractive projection model and the ray tracing method. Because each camera 217 
need to calculate the initial estimation of extrinsic parameters respectively, the major WCS (red) fixed 218 
on the upper left corner of the pattern of non-refractive side, and the auxiliary WCS (blue) fixed on 219 
the other side of the pattern with refraction. ܴᇱ and ܶᇱ denote the rotation and translation between 220 
the two WCS. 221 

For a MCS, during the calibration procedure, ݉ (݅ = 1,2, . . . , ݉) images of the calibration plate 222 
are taken from each camera at different orientations. For each image, ݊ (݆ = 1,2, . . . , ݊) object points 223 
are recognized by the program. In this system, ݈ (݇ = 1,2, . . . , ݈) represents the number of cameras. 224 ܭ௞ and ܦ௞ respectively represent the intrinsic camera parameters and distortion coefficients of the 225 ݇th camera. ܴ௞௜  and ௞ܶ௜  denote the rotation matrix and translation vector of the ݅th position of 226 
calibration plate relative to the ݇th camera. ݌௞௜௝ is the projection of the ݆th 3D point on the ݅th image 227 
of the ݇th camera without refraction. ݌௥௞௜௝  denotes the projection of the ݆th 3D point on the ݅th 228 
image of the ݇th camera with refraction. The imaging functions are shown as follow. 229 

( , , , , )kij
k k ki ki jp f K D R T P=  (10)
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( , , , , , )kij
r r k k ki ki jp f K D R T P n=  (11)

The cameras distributed on both sides of calibration plate use two projection model to solve their 230 
extrinsic camera parameters, which are relative to the major WCS or auxiliary WCS. The rotation and 231 
translation of each camera need to be aligned to the major WCS. Camera 1 is set as the master camera. 232 
The rotation and translation of each camera relative to the master camera is obtained as follows: 233 

1
1

1 1
1

k
ki i

k k
ki i

R R R
T T R T
 = ∗
 = − ∗

(without refraction) (12)

1 ' 1
1

1 1 '
1 1

( * )
( * )

k
ki i

k k
ki i i

R R R R
T T R R T T

− = ∗
 = − ∗ +

(with refraction) (13)

ܴଵ௜, ଵܶ௜ are the extrinsic parameters of the master camera and ܴଵ௞, ܶଵ௞ are the relative extrinsic 234 
parameters of other cameras relative to the master camera. 235 

3.2. Solving Intrinsic Camera Parameters and Initial Estimation of Extrinsic Camera Parameters 236 
The intrinsic parameters of MCS are obtained by Zhang’s method. Because the positioning 237 

accuracy of the 3D point of calibration target is as high as 0.0015mm, the calibration results are 238 
relatively accurate. Before the extrinsic parameters of the system are optimized, it requires an initial 239 
estimation of extrinsic camera parameters, which can be obtained using the DLT method described 240 
by Hartley [29] or the theory of multi-layer flat refractive geometry presented by Agrawal [30]. The 241 
DLT method can only be used when the thickness of glass is relatively small, otherwise the initial 242 
estimation of extrinsic parameters will deviate significantly from the truth. The initial estimation of 243 
extrinsic parameters gives no considerations to lens distortion and glass refraction, so nonlinear 244 
refinement must be applied to the initial estimation aiming at improving accuracy. The best estimate 245 
of the camera parameters can be obtained by nonlinear refinement based on the maximum likelihood 246 
criterion, such as the Levenberg-Marquardt algorithm. The maximum likelihood estimate for our 247 
proposed method can be written as the Equation (14). 248 

 249 

 250 
Figure 5. The rotation and translation of 4-cameras system 251 
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( )1 1
1 1

2 2

, , , ,
min (1 ) kij kij kij kij

k k
i i

l m n

r rR T R T n k i j
w x p w x p− − + −  (14)

Equation (14) shows minimizing of the sum of the reprojection error, which is 2D Euclidean 252 
distance between the projected points based on Equations (10) (11) and the actual image points. ݔ௞௜௝, 253 ݌௞௜௝ are the measured image point and the predicted image point without refraction, and, ݔ௥௞௜௝, ݌௥௞௜௝ 254 
are the measured image point and the predicted image point with refraction. ݓ is the refraction flag. 255 
The value 0 of w indicates the projection without refraction, while 1 means the projection with 256 
refraction.  257 

A 3D point and corresponding image point can provide two independent equations. Assuming 258 
a ݈-camera system is applied, each camera takes ݉ image of calibration target, and the calibration 259 
object contains ݆  known 3D points. The parameters of the equation (14) that need to be solved 260 
include 6 ∗ ݉ rotation and translation parameters of the master camera, 6 ∗ (݈ − 1) rotation and 261 
translation parameters of each camera relative to the master camera, and the refractive index of the 262 
glass calibration target. Therefore, 6 ∗ (݉ + ݈ − 1) + 1 parameters are solved by 2݈݉݊ equations, 263 
which leads to an over determined system. Taking 4-cameras system as an example, the calibration 264 
target contains 182 known 3D points, and each camera captures 20 images. A total of 29120 equations 265 
are solved for 139 variables. Assume that the image points are corrupted by independent and 266 
identically distributed noise, and the maximum likelihood solution of these variables is obtained. 267 

The nonlinear optimization algorithms commonly employed in bundle adjustment routines 268 
require evaluation of the Jacobian matrix of the projection function, defined in Equation (10) and (11). 269 
Individual camera is independent of other cameras and calibration points. Therefore, the Jacobian 270 
matrix tends to be a very sparse matrix. The sparse structure can be exploited in the minimization 271 
routine to improve computational performance. 272 

The quality of the camera calibration is evaluated by computing the mean and the standard 273 
deviation of the individual reprojection errors, which is the residual that exists after minimizing 274 
Equation (14). Assuming that the individual reprojection error is ݀  and ܰ  is the number of 275 
equations, the evaluation parameter can be set as follows. 276 

1 N

k
k

d d
N

=   (15)

21 ( )
N

d k
k

d d
N

σ = −  (16)

3.3. Summary 277 
The proposed method combines conventional Zhang’s method and refractive projection model 278 

to realize the calibration of MCS. The global calibration process works as follows: 279 
1. Multiple cameras are installed and their FOV covers the same area of calibration target 280 

simultaneously. Intrinsic camera parameters and distortion coefficients of each camera are 281 
calibrated independently. 282 

2. In the overlapping FOV of MCS, multiple cameras acquire the image of the calibration target 283 
from different orientations. Images captured by each camera contain the front or back of the 284 
calibration target. 285 

3. Using the DLT method or the theory of multi-layer flat refractive geometry to obtain the extrinsic 286 
camera parameters of each camera relative to their WCS, the extrinsic camera parameters of each 287 
camera are unified to the master WCS. The rotation and translation of each camera relative to the 288 
master camera is obtained as Equation (12) and (13). 289 

4. The extrinsic camera parameters of the system and the refractive index of the glass are optimized 290 
by the bundle adjustment method and the refractive projection model. 291 
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4. Experiments and Discussion 292 
The accuracy and robustness of the algorithm discussed in this paper are analyzed using both 293 

synthetic and real data. Multiple cameras are usually distributed on both sides of the glass 294 
checkerboard and towards the calibration target, so both the direct projection model and refractive 295 
projection model are adopted in the proposed calibration method. Since the direct projection model 296 
has been verified and applied by many scholars, this article will not discuss it. The experiments 297 
mainly analyze the refractive projection model, and the two models are simultaneously applied in 298 
the calibration of MCS. In practice, one camera or multiple cameras (such as two cameras) may be 299 
deployed on one side of the measured object. In the experiments of synthetic data and real data, we 300 
analyze the accuracy of the refractive projection model, which is applied to acquire the refractive 301 
index and the extrinsic parameters of single camera and multiple cameras. The extrinsic parameters 302 
of each camera are estimated by the DLT method from images of the planar pattern. 303 

4.1 Synthetic Data 304 
The intrinsic parameters and extrinsic parameters of the camera are obtained through the 3D 305 

points of the calibration target and corresponding image points. The image points are obtained by 306 
the corner detection algorithm in the real data experiment, but the experiment of synthetic data does 307 
not need to verify corner detection algorithm. We directly generate the intrinsic and extrinsic 308 
parameters of the camera and space points, and obtain the ideal image points using direct projection 309 
model (Equation 10) and refractive projection model (Equation 11). The actual image points have the 310 
error of corner detection, and the error is simulated by random error of normal distribution. The 311 
random error is added to the ideal image point to simulate the real image point. 312 

The simulated camera’s image size is 2592x2048 pixels with the principal point at (1296.5, 1024.5) 313 
pixels. The focal length along the ݑ  and ݒ  direction is ௨݂ = 2604  pixels and ௩݂ = 2604  pixels, 314 
respectively. All the distortion coefficients are zero. The skew factor is set to zero. The calibration 315 
target is a glass checkerboard with 182 corners (14×13) uniformly distributed and the point interval 316 
is 12 mm. The glass checkerboard has a thickness of 4 mm and the refractive index of glass is 1.5. In 317 
the generation of the synthetic data, all the images are captured randomly in the range constrained 318 
by the distance between object and camera being 300-400 mm and the angles between camera 319 
coordinate and world coordinate being α = (180 ± ߚ ,°(15 = (90 ± ߛ ,°(15 = (0 ± 15)°. The world 320 
coordinate frame is set on the checkerboard. The basic parameters of the synthetic experiment are 321 
basically consistent with the real experiment.  322 

In order to evaluate the robustness of our method with respect to noise, some simulations have 323 
been performed, in which noise is added to the ideal image points ranging from 0 to 0.4 pixels. For 324 
each noise level, we perform 100 independent trials and each trial contains 20 images. The estimated 325 
camera parameters using simulative image points are compared with the ground truth. In this 326 
section, the mean relative error of rotation and translation vector is used to assess the calibration 327 
accuracy.  328 

    329 
(a)                                           (b) 330 
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Figure 6. The relative error of extrinsic parameters for one camera without refraction estimation. 331 
(a) Relative error for rotation vector; (b) Relative error for translation vector 332 

    333 
(a)                                          (b)   334 

 335 
(c) 336 

Figure 7. The relative error of extrinsic parameters for one camera with refraction estimation. (a) 337 
Relative error for rotation vector; (b) Relative error for translation vector; (c) Relative error for 338 
refraction index. 339 
 340 

If the rotation vector is ݒ = Rodrigues(ܴ), the relative errors of rotation and translation vector are 341 |∇ݒ‖/|ݒ‖ and |∇ܶ|/‖ܶ‖. 342 
In practice, the thickness of the glass plate is known, while the refractive index is unknown, 343 

approximately being equal to 1.5. The smaller change of refractive index has less influence on the 344 
image projection, and the refractive effect on the calibration result is relative small compared to the 345 
noise. The extrinsic parameters of the single camera are estimated to be divided into two scenarios: 346 
with refractive index estimation and without refractive index estimation. 347 

As shown in Figures 6 and 7, whether the refractive index is estimated, the errors of rotation and 348 
translation vector for single camera gradually increase with the noise level. The relative error of 349 
rotation vector is less than 1.5 × 10ି଺ and translation error is less than 1 × 10ି଺ when the refraction 350 
index is not estimated (ߤ = 1.5). The error of extrinsic parameters using fixed refractive index is more 351 
consistent and stable than the error using estimated refractive index. It can be saw from the Figure 352 
7a, b that the calibration results in all directions are inconsistent. The growth rate of the error in 353 ݕ 
direction is inconsistent with the ݔ and ݖ direction. The results are shown in Figure 7c, the error of 354 
refractive index increases dramatically, which can be considered incorrect. There is reason to believe 355 
that this result is due to an incorrect estimation of refractive index. When the thickness of glass is 356 
small, a single camera cannot accurately estimate the refractive index. The main cause of this problem 357 
is that the ray direction is less restrictive. If the cameras can be added in different orientations, the 358 
estimated accuracy of refractive index can be improved. Meanwhile, we can also find in Figures 6 359 
and 7 that the extrinsic parameters of the camera are accurate in both cases. When the extrinsic 360 
parameters of single camera are estimated, the fixed refractive index can obtain higher accuracy. 361 
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 362 
(a)                                        (b) 363 

  364 
(c)                                        (d) 365 

 366 
(e) 367 

Figure 8. The relative error of extrinsic parameters for binocular camera with refraction 368 
estimation. (a) Relative error for rotation vector of left camera; (b) Relative error for translation 369 
vector of left camera; (c) Relative error for rotation vector of left and right camera; (b) Relative 370 
error for translation vector of left and right camera;(e) Relative error for refraction index. 371 

 372 
In addition to the synthetic experiment of one camera, we have carried out a simulation 373 

experiment on multiple cameras using the refractive projection model (taking binocular camera as an 374 
example). This experiment is the same as a universal binocular camera because the left camera is a 375 
reference camera. The optimized parameters include the rotation and translation of the left camera 376 
relative to the world coordinate frame, and the rotation and translation of the right camera relative 377 
to the left camera. Meanwhile, the refractive index of glass is estimated and compared with single 378 
camera. 379 

For binocular camera, Gaussian noise (mean = 0, std = 0-0.4) is also added to the images of left 380 
and right camera, respectively, then the calibration is conducted with these independent images for 381 
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    382 
Figure 9. The 4-cameras system.               Figure 10. The glass calibration target. 383 

 384 
100 times. Figure 8 shows the relative error of the extrinsic parameters of binocular camera and the 385 
refractive index. It can be seen from the figures that the rotation vector is more accurate than that of 386 
single camera. At the same time, the translation accuracy of binocular camera is lower than single 387 
camera. Due to the ray constraints of multiple direction of the binocular camera, the precision of 388 
estimated refractive index of binocular camera is significantly improved compared with single 389 
camera. Meanwhile, the accuracy of rotation and translation are relatively high. 390 

4.2 Real Data 391 
For the experiments with real data, all CMOS cameras (Basler acA2500-60uc) have the same 392 

configuration. The focal length of lens is 12.5mm and the image resolution of the camera is 2590x2048 393 
pixels. The 4-cameras system is presented in Figure 9. As shown in Figure 10, the calibration target is 394 
a planar checkerboard with 14x13 corner points uniformly distributed. The size of the checkerboard 395 
is 200x200 mm2 and the distance between the adjacent points is 12 mm in the horizontal and the 396 
vertical directions. The checkerboard pattern is printed on one side of glass calibration plate with 397 
position accuracy of 0.0015 mm.  398 
 Because it's possible to install one camera or multiple camera on one side of the measured object. 399 
Similar to the synthetic experiment, the experiments of real data will verify the calibration accuracy 400 
of one camera, binocular camera and 4-cameras system. Four cameras are used to perform these 401 
experiments using refractive projection model. Meanwhile, reflection and overlapping FOV of all 402 
cameras can lead to the restriction of positioning the calibration target and the inconvenience of 403 
operating the calibration target in the actual application. In order to improve the accuracy and 404 
convenience of the proposed method, the intrinsic parameters of all camera are calibrated first and 405 
then the extrinsic parameters are calibrated using the proposed calibration method. In the calibration 406 
process of intrinsic parameters, the cameras are fixed according to the size of the object and 21 images 407 
are taken from different orientations. Table 1 shows the intrinsic parameters of camera 1-4 obtained 408 
through Zhang’s flexible calibration method [19]. As Table 1 illustrated, only the distortion 409 
coefficients ݇ଵ and ݇ଶ are listed. 410 

The extrinsic parameters of one camera and multiple cameras, and refractive index of glass are 411 
solved by using the proposed method. We use the reprojection error of corner point to evaluate the 412 
accuracy of camera calibration. Figures 11-12 and 14 display the bivariate histogram of the 413 
unoptimized and optimized reprojection error of one camera, binocular cameras and four cameras. 414 
The reprojection errors of one camera (camera 4) are shown in Figures 11. It is obviously that the 415 
reprojection errors improve significantly through the nonlinear optimization. The mean value and 416 
the standard deviation of the initial reprojection errors are 0.0011 pixel and 0.1452 pixel, respectively. 417 
After the optimization, the mean value of the reprojection errors is -0.00003 pixel and the standard 418 
deviation is 0.0949 pixel. The calibration result of binocular camera (camera 3, 4) is shown in Figure 419 
12. The comparison between the results of refractive calibration and the initial value shows that the 420 
bundle adjustment with refractive projection model is more reliable and more accurate. The mean 421 
value and standard deviation of reprojection errors change from 0.2842 and 0.6791 pixel to -0.0005 422 
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and 0.2213 pixel. The optimized extrinsic parameters of binocular camera are used to calculate the 3D 423 
position of the corner point. Then the position error is calculated based on the 3d position and the 424 
theoretical value. As shown in the Figure 13, the position error of optimized extrinsic parameters has 425 
been reduced to half of the unoptimized one.  426 

In one camera and binocular camera system, we only use the refractive projection model. Four 427 
cameras are distributed on both sides of the glass calibration plate, which simultaneously uses the 428 
direct projection model and the refractive projection model. The 4-cameras system is used to verify 429 
the practicability of our presented method. Figure 14 shows the reprojection error of the 4-cameras 430 
system. The mean value and standard deviation of reprojection error change from -0.3378 and 2.9542 431 
pixel to 0.00007 and 0.4543 pixel. We can discover that the standard deviation of reprojection errors 432 
is basically linear to the number of cameras. The optimized calibration results indicate that the 433 
stability and accuracy of our proposed method in real data experiments. The relative extrinsic 434 
parameters of 4-cameras system are reported in Table 2. 435 

Table 1. The intrinsic parameters of four cameras. 436 

 Camera 1 Camera 2 Camera 3 Camera 4
Focal  

Length 
 

ቂ2618.292618.20ቃ ቂ2625.762625.61ቃ ቂ2617.172616.88ቃ ቂ2620.342620.35ቃ 
Principal 

point 
 

ቂ1290.911014.72ቃ ቂ1286.451001.44ቃ ቂ1255.361026.86ቃ ቂ1293.701006.56ቃ 
Distortion 

(݇ଵ ݇ଶ) 
ቂ−0.13380.1326 ቃ ቂ−0.13560.1462 ቃ ቂ−0.13320.1360 ቃ ቂ−0.13240.1344 ቃ 

 437 

Table 2. The relative extrinsic parameters of 4-cameras system. 438 

 Camera 2-1 Camera 3-1 Camera 4-1 
Rotation  
Vector 

 
൥0.08920.73890.0365൩ ൥0.14793.00760.2330൩ ൥ 0.0212−2.3761−0.1040൩ 

Translation 
vector 

 
൥−248.97131.076893.0314 ൩ ൥ −4.3414−81.7511766.3633൩ ൥274.9126−42.0589641.0544൩ 

4.3 Discussion 439 
The above experiments based on synthetic and real data verify the accuracy and effectiveness of 440 

the proposed method. This method is applicable to the multi-cameras measurement system which 441 
can perform a one-shot measurement of the dynamic shape of whole part. The typical MCS is shown 442 
in Figure 5, and the cameras are distributed both sides of the glass calibration plate. Several patterns 443 
were designed for multi-cameras calibration, which can be grouped into three categories: 1D pattern, 444 
3D target consisted of 1D patterns, and planar pattern. Compared with planar pattern, the 445 
disadvantage of other two calibration targets is that’s hard to guarantee the exact linearity and the 446 
extraction accuracy of the points. However, the opaque planar pattern is difficult to complete multi-447 
cameras calibration and it is easy to generate cumulative errors. With the help of the precision 448 
manufacturing technique, transparent glass calibration target can overcome the above limitations and 449 
complete the calibration of MCS. The position accuracy of corner point on commercial glass 450 
calibration plate can reach 0.0015 mm, so it can satisfy the precision requirement of multi-cameras 451 
calibration. The extrinsic parameters can be optimized in the global coordinates, and the refractive 452 
projection model is used to eliminate the refractive effect. 453 
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However, the proposed method also shows some limitations. Due to the reflection of glass, the 454 
camera's distribution and the calibration accuracy of multiple cameras are affected. In the calibration 455 
process of this paper, a few reprojection error can occur with abnormal value, which is caused by the 456 
reflection. Fortunately, the number of these outliers are very small and have little impact on the 457 
calibration results. Alternatively, we can delete these outliers and reduce the impact on the calibration 458 
results. It can also improve the reflection from the production process. In addition, the calibration 459 
method cannot be applied to the multi-cameras calibration without overlapping FOV. 460 
 461 

 462 
(a)                                            (b) 463 

Figure 11. The reprojection error of one camera. (a) unoptimized (b) optimized 464 
 465 

 466 
(a)                                            (b) 467 

Figure 12. The reprojection error of binocular camera. (a) unoptimized (b) optimized 468 
 469 

 470 
(a)                                            (b) 471 

Figure 13. The 3D position error using binocular camera. (a) unoptimized (b) optimized 472 
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 473 
(a)                                            (b) 474 

Figure 14. The reprojection error of one camera. (a) unoptimized (b) optimized 475 

5. Conclusions 476 
One typical MCS is installed on both sides of the measured object, which makes it difficult to 477 

calibrate the system using the existing camera calibration methods. In this paper, a novel multi-478 
cameras calibration method based on glass calibration plate and ray tracing is proposed. Based on 479 
the traditional direct projection model, the refractive projection model is developed and the model is 480 
applied for multi-cameras calibration. Firstly, the mathematical models of refractive projection and 481 
bundle adjustment are established with introduction of ray tracing. Then, the intrinsic parameters of 482 
each camera is obtained by Zhang’s calibration method and direct linear transformation is used to 483 
obtain the initial extrinsic parameters. Finally, the modified bundle adjustment method is applied to 484 
optimize the extrinsic parameters of MCS and the refractive index of glass calibration target. The 485 
experimental results of refractive calibration show that the error of the 3D reconstruction is smaller 486 
than 0.2 mm, the relative errors of both rotation and translation are less than 0.014%, and the mean 487 
and standard deviation of reprojection error of 4-cameras system are 0.00007 and 0.4543 pixel. The 488 
experiments performed on synthetic and real data indicate that our proposed method has high-489 
accuracy and feasibility. 490 
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