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11 Abstract: Multi-cameras system is widely applied in 3D computer vision especially when multiple
12 cameras are distributed on both sides of the measured object. The calibration methods of multi-
13 cameras system are critical to the accuracy of vision measurement and the key is to find an
14 appropriate calibration target. In this paper, a high-precision camera calibration method for multi-
15 cameras system based on transparent glass checkerboard and ray tracing is described, which is used
16 to calibrate multiple cameras distributed on both sides of the glass checkerboard. Firstly, the
17 intrinsic parameters of each camera is obtained by Zhang’s calibration method. Then, multiple
18 cameras capture several images from the front and back of the glass checkerboard with different
19 orientations, and all images contain distinct grid corners. As the cameras on one side are not affected
20 by the refraction of glass checkerboard, extrinsic parameters can be directly calculated. However,
21 the cameras on another side are influenced by the refraction of glass checkerboard, and the direct
22 use of projection model will produce calibration error. A multi-cameras calibration method using
23 refractive projection model and ray tracing is developed to eliminate this error. Furthermore, both
24 synthetic and real data are employed to validate the proposed approach. The experimental results
25 of refractive calibration show that the error of the 3D reconstruction is smaller than 0.2 mm, the
26 relative errors of both rotation and translation are less than 0.014%, and the mean and standard
27 deviation of reprojection error of 4-cameras system are 0.00007 and 0.4543 pixel. The proposed
28 method is flexible, high accurate, and simple to carry out.

29 Keywords: camera calibration; multi-cameras system; ray tracing; glass checkerboard; bundle

30 adjustment
31

32  1.Introduction

33 Multi-cameras system (MCS) have many merits over single camera because they can cover a
34 wider and overall field of view (FOV), which makes MCS increasingly prevalent in industrial vision
35 measurement [1,2], visual navigation [3,4], security monitoring [5], etc. With the advantages of
36  flexibility, cost performance and high precision, industrial vision measurement using MCS has been
37  widely studied in many applications, such as car body-in-white inspections [6], deformation and
38  displacement measurement [7,8]. The measurement of dimension, shape, and deformation is a
39  dynamic process, so all cameras should observe the part surface from different viewpoints
40  simultaneously (one-shot image acquisition) and dynamically reconstruct the 3D shape of the whole
41  object. This kind of MCS includes multiple cameras sharing an overlapping FOV at different
42 orientations. In the special case, these cameras are distributed in the opposite direction. Accurate
43 calibration of multi-cameras is quite significant [9], since the calibration results determine the
44 mapping relationship between world points and their image projections. Generally speaking, the
45  overall performance of the MCS strongly depends on the accuracy of the camera calibration.
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46 The calibration methods of MCS are divided into two categories: metric calibration and self-
47  calibration. The proposed method, using knowledge of the scene such as calibration pattern to
48  calculate stable and accurate calibration results, belongs to the metric approaches rather than self-
49  calibration. Several patterns were proposed for multi-cameras metric calibration, which can be
50  grouped into three main categories: 3D calibration target, planar target, and one-dimensional target.
51 A representative calibration scenario of multi-cameras begins by placing calibration target in the
52 overlapping FOV of the cameras to provide a projection relationship between image and world points
53 [10]. The standard calibration target is a planar pattern, such as checkerboard. Zhang [11] proposed
54 aflexible new technique to easily calibrate single camera using a planar pattern, which had been used
55 in other multi-cameras calibration [12-15]. Dong [12] presented an extrinsic calibration method for a
56  non-overlapping camera network based on close range photogrammetry. This method calibrated the
57  extrinsic parameter of multi-cameras using a vast number of encoded targets pasted on the wall.
58  Baker [13] used textures printed on either side of a board to calibrate dozens of cameras. One side of
59  theboard was printed by a set of lines, while the other side of the board was printed by a set of boxes
60  with one missing in the middle. Belden [14] described refractive calibration procedure applied to
61  calibrate MCS for fluid experiments. This method contributed to volumetric multi-camera fluid
62  experiments, where it was desirable to avoid tedious alignment of calibration grids in multiple
63  locations and a premium was placed on accurately locating world points. In reference [15], a MCS
64  had been developed to measure the shape variations and the 3D displacement field of a sheet metal
65  part during a Single Point Incremental Forming operation. The calibration of the multi-cameras
66  determining camera parameters were described in their paper using planar calibration target. The
67  planar calibration pattern limits the distribution of multiple cameras, especially, when multiple
68  cameras distributed on both sides of planar pattern. The uneven printed pattern can also affect the
69  accuracy of camera calibration.

70 In addition, 1D calibration target and 3D calibration target are also widely used in the calibration
71 of MCS, such as Figures 1 and 2. 1D target-based camera calibration was firstly proposed by Zhang
72 [16]. Compared with conventional 2D or 3D target-based camera calibration, the main advantage of
73 1D target-based camera calibration is that it doesn’t need to know the 2D or 3D coordinates of
74  markers, which significantly simplifies the manufacturing process of calibration targets. More
75  importantly, without self-occlusion problem, the 1D calibration target can be observed by all cameras
76 in the MCS. The advantage is that all cameras are calibrated simultaneously, which avoids the
77 accumulation of errors when multi-cameras calibration is performed in steps or groups. Therefore,
78  this camera calibration method has been widely used by many MCS [10,17-21]. However, the
79  disadvantages of 1D calibration target including [21]: 1) In the construction of the 1D pattern, it is not
80  possible to guarantee the exact linearity of the points, hurting one of the main assumptions of the
81  adopted model. 2) Another source of error is the tool used to extract the points of the calibration
82  pattern, which cannot achieve the same accuracy of corner extraction in 2D target-based camera
83  calibration.

84 A typical 3D calibration target is composed of multiple 1D patterns. Shen [10] presented a
85  complete calibration methodology using a novel nonplanar target for rapid calibration of inward-
86  looking visual sensor networks. The calibration target consists of a large central sphere with smaller
87  spheres of different colors mounted on support rods. A flexible method constructing a global
88  calibration target with circular targets was proposed by Gong [2]. Shin [22] described a multi-cameras
89  calibration method using a 3-Axis frame and wand. In this study, the calibration parameters were
90  estimated using the direct linear transform (DLT) method from the three-axis calibration frame.
91  However, the main source of error in this kind of 3D calibration target is attributed to errors of ellipse
92  fitting caused by image noise and lighting conditions. The accuracy of center extraction cannot
93 achieve the same accuracy of corner extraction in planar pattern [21]. This type of 3D calibration
94 target has the same disadvantage as the 1D calibration target. Another kind of 3D calibration target
95  consists of multiple planar pattern, such as the works of Long [23] and Xu [24]. Unfortunately, in
96  MCS like Figure 2, it is hard to use this calibration target, which can’t be viewed by all the cameras
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simultaneously. This 3D calibration target limits the distribution of multiple cameras, which restricts
its application.

In order to overcome the shortcomings of the foregoing methods, and guarantee high-accuracy
and convenience of the multi-cameras calibration, we propose a novel method of global calibration
for multiple cameras with overlapping FOVs. This method adopts a planar calibration target made
of transparent glass, and the checkerboard pattern is printed on one side of the glass panel. Multiple
cameras are distributed on both sides of the calibration target and towards the calibration target
(Figure 5). This kind of configuration is useful to get one-shot 3D shape of the whole object. The
cameras in front of the calibration target are not affected by the refraction, and the traditional Zhang's
method can be used to calibrate the intrinsic and extrinsic camera parameters. But, the cameras in the
rear of the calibration target are influenced by refraction, and the direct use of Zhang’s method will
cause calibration error. The refraction of glass will affect the accuracy of multi-cameras calibration
results. This proposed method uses refractive projection model and ray tracking to eliminate the error
of refraction. Based on the 3D position accuracy of the corner point on the glass checkerboard being
as high as 0.0015mm, the proposed multi-cameras calibration in this paper can achieve high-accuracy
and flexibility.

The remainder of this paper is organized as follows: Section 2 introduces the basic mathematical
model of MCS and ray tracking. In Section 3, the proposed calibration method of multi-cameras based
on refractive projection model and ray tracing is described. Section 4 presents a series of experiments
(synthetic and real data) to verify the feasibility and accuracy of the proposed approach. Single-
camera experiment verifies feasibility of the refractive projection model and calibration of extrinsic
camera parameters. Two-camera experiment confirms the accuracy of calibration of extrinsic camera
parameters and refractive index. Four-camera experiment verifies the performance of our method
used in the actual MCS. The conclusions are indicated in Section 5.

2. Mathematical Model of Camera and Ray Tracking
This section briefly introduces the basic concepts used in the calibration of single camera and
MCS. Then, the refractive projection model and ray tracking used in this paper will be described.

2.1. Camera Model

An ideal camera is modeled by the pinhole imaging. The relationship between a 3D point in
world coordinate and the same point in camera coordinate is approximated by means of the rotation
matrix and transformation matrix, as shown in Equation (1).

X, X
Y. |=R*P+T=R*| Y |+T (1)
Z. Z

The projection of the point in camera coordinate on the image is p = [u,v]", which obeys
Equation (2).

u Xe fo vy
Av|=K| Y, | with K=| 0 f v, )
1 Z. 0o 0 1

where, P = [X,Y,Z]" are the world coordinates of a 3D point and [X, Y., Z;]" are its camera
coordinates, and [u,v]” are its pixel image coordinates. 1 denotes a nonzero scale factor. [ug, v]"
denote the principal point in the imaging plane with the unit of pixel. K is the matrix of intrinsic
parameter. f, and f, represent the focal length in pixels along the image axes u and v, while y is
the skew coefficient defining the angle between the u and v pixel axes. R and T, called the
extrinsic parameters, are the rotation matrix and the translation vector from world coordinate frame
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137 Figure 1. Multi-cameras system without overlapping FOV. Figure 2. Multi-cameras system
138 with overlapping FOV.
139

140 to camera coordinate frame, respectively.

141 However, the real camera projection is not ideal, particularly when a commercial lens is used.

142 Therefore, the lens distortion on the imaging has to been taken into account. Commonly, only first-
143 order or second-order distortion model is adopted to correct the radial distortion [11,25,26]. More
144 rigorously, the radial distortion and tangential distortion should be adopted to correct the lens
145  distortion [9,27]. After considering the lens distortion, the new normalized point coordinates
146 [x4,y4]" are defined as follows.

147 The distortion-free and the distorted normalized image coordinates are [x,y]” and [x4,y4]",
148  respectively.

x| | X./Z,
= 3)
y] LY/Z
& } =(+kr” +k,r* +kg®)x, +dx (4)
| Va
[ 2k yxy +k, (7 +2x°
a2 .
K (rm+2y7) + 2k, xy

149 where, 1+ ky7r% + k,r* + ksr® is radial distortion and dx is the tangential distortion. ky, k;, ks
150 are the coefficients of radial distortion, and ks, k, are the coefficients of tangential distortion. We
151  willuse D = [ky, ko, k3, k4, ks] to represent the vector of distortion coefficients in this paper.

152
——  pinhole

———  refractive

air

glass calibration plate

153

154 Figure 3. Schematic of imaging through glass using pinhole and refractive projection model.
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Figure 4. Schematic of ray tracking method

Based on the descriptions above, a 3D point P in the world coordinate system (WCS)can be
projected to a 2D point p in the image coordinate system using the following projection equation:

p=f(K,R,T,D,P) (6)

2.2. Refractive Projection and Ray Tracking

Usually, the aforementioned pinhole model can meet the requirements of the camera calibration,
but the transparent glass checkerboard is applied in our method. The direct application of the pinhole
model between world and image points is erroneous as the refraction of light must be considered in
our MCS. As shown in Figure 3, if the rays emanating from the world points are drawn along the
path taken in the glass (red line), they do not meet in a single point in the air. In this case, the accurate
pinhole model will also lead to error that is exacerbated for cameras when image planes are not
parallel to the glass checkerboard. In Belden’s work [14], the image plane is angled relative to the
interface, which results in relatively high calibration error when the pinhole model is applied. The
reprojection error using pinhole model in the experiment of our paper is also the same order of
magnitude. The non-ignorable error keeps us from adopting the pinhole model for multi-cameras
calibration using glass checkerboard.

In order to eliminate the calibration error caused by refraction, the refraction in the optical paths
must be appropriately considered for when projecting 3D points into cameras through glass. We need
to find the intersection of each ray with the refractive interface between glass and air, and project the
intersection points to pinhole camera. In this paper, we adopt the ray tracking method proposed by
Muslow that initializes the intersection points using an alternating forward ray tracing (AFRT)
method [28]. To calculate the intersection of rays with glass surfaces, the points that simultaneously
satisfy the equation of a line and the plane equation defining the surface geometry of glass should be
solved. A point on a line along the direction of a given ray f is defined in the Equation (7).

X(@)=X,+mr ?)

The refractive index of air and glassis n,; and n, (n, > n;). Assume that the refractive index of

air is equal to one, and the relative refractive index of glass (n = Z—Z =mn,) is one of the optimized
1

parameters. The thickness of glass is d. f; and N denote the direction of the incident ray and the
normal vector of refractive surface, respectively. The direction of the refracted ray f; is given by:

ft:nfiJ{nﬁl-fi—\/1—n2[1—(—N~fi)2ﬂN )

Figure 4 depicts the algorithm of ray tracing in order to find the intersection of rays with planar
glass surface. The procedure of ray tracing is described as follows:

d0i:10.20944/preprints201710.0077.v1
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1. The procedure is initialized by k = 1. 7{ denotes the direction of the line connecting the
camera center X. and the 3D point P. We could find the intersection of 7f and S, at the
point Xl-kl.

2. Whenn, and n, have been known, we could find the ¥ using the Equation (8), which
intersects S, at the point X .

3. The ray —r¥

direction.

is projected from P to interface S;, and parallel to r¥ but opposite in

Finally, the ray —r; is intersected with Sj, resulting the point X;*.
If the distance AX, lli =X lkl - X 1’1k between the X/ and X;* is larger than the tolerance,
the above procedures would be reiterated, and the point at % (XE + X[¥) is defined as X[**.

Otherwise, the optimal solution of the intersection of rf and S, is found.

In addition to the intrinsic and extrinsic parameters of the camera, the main parameters affecting
the projective ray include the refractive index and thickness of refraction glass. The thickness of the
glass can be accurately measured, while refractive index of different glass is slightly different, and
most glass refractive index is unknown. Through the above discussion, the Equation (6) can be
converted to the Equation (9) with refraction.

p, =/ (K,D,R,T,P,n) )

where, p, and f, represent the image points generated by the refraction and the refractive
projection model, respectively.

3. The Proposed Calibration Method

3.1. Multi-camera Calibration Based on Refractive Projection

In the previous section, we introduced the camera model and the refractive projection, which
are combined to calibrate the MCS in this section. In our work, the single camera model is extended
to the modeling and calibration of a MCS made up of more than two cameras. Without loss of
generality, the MCS will be explained by the particular case of a 4-cameras system, which is also used
in the calibration experiments described in the present paper. The MCS is shown in Figure 5, and the
object in the center is the glass calibration plate. One side of the glass is printed with a checkerboard
pattern, which can be seen from both sides of the calibration plate. Four cameras are distributed on
both sides of the calibration plate. These cameras are grouped into two pairs, pair I including cameras
1 and 2, and pair Il including cameras 3 and 4. The cameras of pair I directly project the 3D point on
calibration plate to image without refraction (Equation 6), while the cameras of pair II for imaging
through the reflection of glass (Equation 9), which can lead to calibration errors. The errors can be
eliminated by the above refractive projection model and the ray tracing method. Because each camera
need to calculate the initial estimation of extrinsic parameters respectively, the major WCS (red) fixed
on the upper left corner of the pattern of non-refractive side, and the auxiliary WCS (blue) fixed on
the other side of the pattern with refraction. R and T’ denote the rotation and translation between
the two WCS.

For a MCS, during the calibration procedure, m (i = 1,2,...,m) images of the calibration plate
are taken from each camera at different orientations. For each image, n (j = 1,2,...,n) object points
are recognized by the program. In this system, [ (k = 1,2,...,1) represents the number of cameras.
K, and Dy, respectively represent the intrinsic camera parameters and distortion coefficients of the
kth camera. Ry; and Tj; denote the rotation matrix and translation vector of the ith position of
calibration plate relative to the kth camera. p*¥ is the projection of the jth 3D point on the ithimage
of the kth camera without refraction. pi”/ denotes the projection of the jth 3D point on the ith
image of the kth camera with refraction. The imaging functions are shown as follow.

p" =f(K,,D.,R,.T,,P) (10)

d0i:10.20944/preprints201710.0077.v1
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p;{qj :f;(Kk’Dk’Rki’T;ci’Pj’n) (11)

230 The cameras distributed on both sides of calibration plate use two projection model to solve their
231  extrinsic camera parameters, which are relative to the major WCS or auxiliary WCS. The rotation and
232 translation of each camera need to be aligned to the major WCS. Camera 1 is set as the master camera.
233 The rotation and translation of each camera relative to the master camera is obtained as follows:
W _
R =R, *R,

' (without refraction) (12)
1k 1k
T =T, ~R*+T,

R*"=R,*(R,*R)"
T =Tki_R1k (R, *T +1T,)

i

(with refraction) (13)

234 Ry, Ty; are the extrinsic parameters of the master camera and R'¥, T'¥ are the relative extrinsic
235  parameters of other cameras relative to the master camera.

236 3.2. Solving Intrinsic Camera Parameters and Initial Estimation of Extrinsic Camera Parameters

237 The intrinsic parameters of MCS are obtained by Zhang’s method. Because the positioning
238  accuracy of the 3D point of calibration target is as high as 0.0015mm, the calibration results are
239  relatively accurate. Before the extrinsic parameters of the system are optimized, it requires an initial
240 estimation of extrinsic camera parameters, which can be obtained using the DLT method described
241 by Hartley [29] or the theory of multi-layer flat refractive geometry presented by Agrawal [30]. The
242 DLT method can only be used when the thickness of glass is relatively small, otherwise the initial
243 estimation of extrinsic parameters will deviate significantly from the truth. The initial estimation of
244  extrinsic parameters gives no considerations to lens distortion and glass refraction, so nonlinear
245  refinement must be applied to the initial estimation aiming at improving accuracy. The best estimate
246  of the camera parameters can be obtained by nonlinear refinement based on the maximum likelihood
247  criterion, such as the Levenberg-Marquardt algorithm. The maximum likelihood estimate for our

248  proposed method can be written as the Equation (14).
249

Glass calibration
plate

Image Plane

250 Cam 1 Cam 2

251 Figure 5. The rotation and translation of 4-cameras system
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I m n 5 )

min 1_w‘x'a‘f_ 97wl = po )
Rl,,ni,le,rlk,nZk:Z;(( ) p r TP (14)
252 Equation (14) shows minimizing of the sum of the reprojection error, which is 2D Euclidean
253 distance between the projected points based on Equations (10) (11) and the actual image points. xkil,
kij  kij

254  p*kU are the measured image point and the predicted image point without refraction, and, x,”, p;
255  are the measured image point and the predicted image point with refraction. w is the refraction flag.
256  The value 0 of w indicates the projection without refraction, while 1 means the projection with
257  refraction.

258 A 3D point and corresponding image point can provide two independent equations. Assuming
259  a l-camera system is applied, each camera takes m image of calibration target, and the calibration
260  object contains j known 3D points. The parameters of the equation (14) that need to be solved
261 include 6 *m rotation and translation parameters of the master camera, 6 * (I — 1) rotation and
262  translation parameters of each camera relative to the master camera, and the refractive index of the
263  glass calibration target. Therefore, 6 * (m + [ — 1) + 1 parameters are solved by 2lmn equations,
264  which leads to an over determined system. Taking 4-cameras system as an example, the calibration
265  target contains 182 known 3D points, and each camera captures 20 images. A total of 29120 equations
266  are solved for 139 variables. Assume that the image points are corrupted by independent and
267  identically distributed noise, and the maximum likelihood solution of these variables is obtained.
268 The nonlinear optimization algorithms commonly employed in bundle adjustment routines
269  require evaluation of the Jacobian matrix of the projection function, defined in Equation (10) and (11).
270  Individual camera is independent of other cameras and calibration points. Therefore, the Jacobian
271  matrix tends to be a very sparse matrix. The sparse structure can be exploited in the minimization
272 routine to improve computational performance.

273 The quality of the camera calibration is evaluated by computing the mean and the standard
274  deviation of the individual reprojection errors, which is the residual that exists after minimizing
275  Equation (14). Assuming that the individual reprojection error is d and N is the number of
276  equations, the evaluation parameter can be set as follows.

- 1
d :ﬁzk:dk (15)

1 & —
o, = \/NZ(dk -dy’ (16)
k

277  3.3. Summary

278 The proposed method combines conventional Zhang’s method and refractive projection model
279  torealize the calibration of MCS. The global calibration process works as follows:
280 1. Multiple cameras are installed and their FOV covers the same area of calibration target

281 simultaneously. Intrinsic camera parameters and distortion coefficients of each camera are
282 calibrated independently.

283 2. In the overlapping FOV of MCS, multiple cameras acquire the image of the calibration target
284 from different orientations. Images captured by each camera contain the front or back of the
285 calibration target.

286 3. Using the DLT method or the theory of multi-layer flat refractive geometry to obtain the extrinsic
287 camera parameters of each camera relative to their WCS, the extrinsic camera parameters of each
288 camera are unified to the master WCS. The rotation and translation of each camera relative to the
289 master camera is obtained as Equation (12) and (13).

290 4. The extrinsic camera parameters of the system and the refractive index of the glass are optimized
291 by the bundle adjustment method and the refractive projection model.
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292 4. Experiments and Discussion

293 The accuracy and robustness of the algorithm discussed in this paper are analyzed using both
294  synthetic and real data. Multiple cameras are usually distributed on both sides of the glass
295  checkerboard and towards the calibration target, so both the direct projection model and refractive
296  projection model are adopted in the proposed calibration method. Since the direct projection model
297  has been verified and applied by many scholars, this article will not discuss it. The experiments
298  mainly analyze the refractive projection model, and the two models are simultaneously applied in
299  the calibration of MCS. In practice, one camera or multiple cameras (such as two cameras) may be
300  deployed on one side of the measured object. In the experiments of synthetic data and real data, we
301  analyze the accuracy of the refractive projection model, which is applied to acquire the refractive
302  index and the extrinsic parameters of single camera and multiple cameras. The extrinsic parameters
303  of each camera are estimated by the DLT method from images of the planar pattern.

304 4.1 Synthetic Data

305 The intrinsic parameters and extrinsic parameters of the camera are obtained through the 3D
306  points of the calibration target and corresponding image points. The image points are obtained by
307  the corner detection algorithm in the real data experiment, but the experiment of synthetic data does
308  not need to verify corner detection algorithm. We directly generate the intrinsic and extrinsic
309  parameters of the camera and space points, and obtain the ideal image points using direct projection
310  model (Equation 10) and refractive projection model (Equation 11). The actual image points have the
311  error of corner detection, and the error is simulated by random error of normal distribution. The
312  random error is added to the ideal image point to simulate the real image point.

313 The simulated camera’s image size is 2592x2048 pixels with the principal point at (1296.5, 1024.5)
314  pixels. The focal length along the u and v direction is f, = 2604 pixels and f, = 2604 pixels,
315  respectively. All the distortion coefficients are zero. The skew factor is set to zero. The calibration
316  targetis a glass checkerboard with 182 corners (14x13) uniformly distributed and the point interval
317  is 12 mm. The glass checkerboard has a thickness of 4 mm and the refractive index of glass is 1.5. In
318  the generation of the synthetic data, all the images are captured randomly in the range constrained
319 by the distance between object and camera being 300-400 mm and the angles between camera
320  coordinate and world coordinate being a = (180 + 15)°, 8 = (90 + 15)°, y = (0 £ 15)°. The world
321  coordinate frame is set on the checkerboard. The basic parameters of the synthetic experiment are
322 basically consistent with the real experiment.

323 In order to evaluate the robustness of our method with respect to noise, some simulations have
324 been performed, in which noise is added to the ideal image points ranging from 0 to 0.4 pixels. For
325  each noise level, we perform 100 independent trials and each trial contains 20 images. The estimated
326  camera parameters using simulative image points are compared with the ground truth. In this
327 section, the mean relative error of rotation and translation vector is used to assess the calibration
328  accuracy.
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331 Figure 6. The relative error of extrinsic parameters for one camera without refraction estimation.
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337 Figure 7. The relative error of extrinsic parameters for one camera with refraction estimation. (a)
338 Relative error for rotation vector; (b) Relative error for translation vector; (c) Relative error for
339 refraction index.
340

341 If the rotation vector is v = Rodrigues(R), the relative errors of rotation and translation vector are
342 |vvl/llvll and |VT|/IITI.

343 In practice, the thickness of the glass plate is known, while the refractive index is unknown,
344  approximately being equal to 1.5. The smaller change of refractive index has less influence on the
345  image projection, and the refractive effect on the calibration result is relative small compared to the
346  noise. The extrinsic parameters of the single camera are estimated to be divided into two scenarios:
347  with refractive index estimation and without refractive index estimation.

348 As shown in Figures 6 and 7, whether the refractive index is estimated, the errors of rotation and
349  translation vector for single camera gradually increase with the noise level. The relative error of
350  rotation vectorisless than 1.5 x 107® and translation error is less than 1 x 107® when the refraction
351  indexisnotestimated (u = 1.5). The error of extrinsic parameters using fixed refractive index is more
352  consistent and stable than the error using estimated refractive index. It can be saw from the Figure
353 7a, b that the calibration results in all directions are inconsistent. The growth rate of the error in y
354  direction is inconsistent with the x and z direction. The results are shown in Figure 7c¢, the error of
355  refractive index increases dramatically, which can be considered incorrect. There is reason to believe
356  that this result is due to an incorrect estimation of refractive index. When the thickness of glass is
357  small, a single camera cannot accurately estimate the refractive index. The main cause of this problem
358 s that the ray direction is less restrictive. If the cameras can be added in different orientations, the
359  estimated accuracy of refractive index can be improved. Meanwhile, we can also find in Figures 6
360  and 7 that the extrinsic parameters of the camera are accurate in both cases. When the extrinsic
361  parameters of single camera are estimated, the fixed refractive index can obtain higher accuracy.
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368 Figure 8. The relative error of extrinsic parameters for binocular camera with refraction
369 estimation. (a) Relative error for rotation vector of left camera; (b) Relative error for translation
370 vector of left camera; (c) Relative error for rotation vector of left and right camera; (b) Relative
371 error for translation vector of left and right camera;(e) Relative error for refraction index.
372
373 In addition to the synthetic experiment of one camera, we have carried out a simulation

374  experiment on multiple cameras using the refractive projection model (taking binocular camera as an
375  example). This experiment is the same as a universal binocular camera because the left camera is a
376  reference camera. The optimized parameters include the rotation and translation of the left camera
377 relative to the world coordinate frame, and the rotation and translation of the right camera relative
378  to the left camera. Meanwhile, the refractive index of glass is estimated and compared with single
379  camera.

380 For binocular camera, Gaussian noise (mean = 0, std = 0-0.4) is also added to the images of left
381  and right camera, respectively, then the calibration is conducted with these independent images for
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Figure 9. The 4-cameras system. / Figure 10. The glass calibration target.

100 times. Figure 8 shows the relative error of the extrinsic parameters of binocular camera and the
refractive index. It can be seen from the figures that the rotation vector is more accurate than that of
single camera. At the same time, the translation accuracy of binocular camera is lower than single
camera. Due to the ray constraints of multiple direction of the binocular camera, the precision of
estimated refractive index of binocular camera is significantly improved compared with single
camera. Meanwhile, the accuracy of rotation and translation are relatively high.

4.2 Real Data

For the experiments with real data, all CMOS cameras (Basler acA2500-60uc) have the same
configuration. The focal length of lens is 12.5mm and the image resolution of the camera is 2590x2048
pixels. The 4-cameras system is presented in Figure 9. As shown in Figure 10, the calibration target is
a planar checkerboard with 14x13 corner points uniformly distributed. The size of the checkerboard
is 200x200 mm? and the distance between the adjacent points is 12 mm in the horizontal and the
vertical directions. The checkerboard pattern is printed on one side of glass calibration plate with
position accuracy of 0.0015 mm.

Because it's possible to install one camera or multiple camera on one side of the measured object.
Similar to the synthetic experiment, the experiments of real data will verify the calibration accuracy
of one camera, binocular camera and 4-cameras system. Four cameras are used to perform these
experiments using refractive projection model. Meanwhile, reflection and overlapping FOV of all
cameras can lead to the restriction of positioning the calibration target and the inconvenience of
operating the calibration target in the actual application. In order to improve the accuracy and
convenience of the proposed method, the intrinsic parameters of all camera are calibrated first and
then the extrinsic parameters are calibrated using the proposed calibration method. In the calibration
process of intrinsic parameters, the cameras are fixed according to the size of the object and 21 images
are taken from different orientations. Table 1 shows the intrinsic parameters of camera 1-4 obtained
through Zhang's flexible calibration method [19]. As Table 1 illustrated, only the distortion
coefficients k; and k, are listed.

The extrinsic parameters of one camera and multiple cameras, and refractive index of glass are
solved by using the proposed method. We use the reprojection error of corner point to evaluate the
accuracy of camera calibration. Figures 11-12 and 14 display the bivariate histogram of the
unoptimized and optimized reprojection error of one camera, binocular cameras and four cameras.
The reprojection errors of one camera (camera 4) are shown in Figures 11. It is obviously that the
reprojection errors improve significantly through the nonlinear optimization. The mean value and
the standard deviation of the initial reprojection errors are 0.0011 pixel and 0.1452 pixel, respectively.
After the optimization, the mean value of the reprojection errors is -0.00003 pixel and the standard
deviation is 0.0949 pixel. The calibration result of binocular camera (camera 3, 4) is shown in Figure
12. The comparison between the results of refractive calibration and the initial value shows that the
bundle adjustment with refractive projection model is more reliable and more accurate. The mean
value and standard deviation of reprojection errors change from 0.2842 and 0.6791 pixel to -0.0005
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423 and 0.2213 pixel. The optimized extrinsic parameters of binocular camera are used to calculate the 3D
424 position of the corner point. Then the position error is calculated based on the 3d position and the
425  theoretical value. As shown in the Figure 13, the position error of optimized extrinsic parameters has
426  been reduced to half of the unoptimized one.

427 In one camera and binocular camera system, we only use the refractive projection model. Four
428  cameras are distributed on both sides of the glass calibration plate, which simultaneously uses the
429  direct projection model and the refractive projection model. The 4-cameras system is used to verify
430  the practicability of our presented method. Figure 14 shows the reprojection error of the 4-cameras
431  system. The mean value and standard deviation of reprojection error change from -0.3378 and 2.9542
432 pixel to 0.00007 and 0.4543 pixel. We can discover that the standard deviation of reprojection errors
433 is basically linear to the number of cameras. The optimized calibration results indicate that the
434  stability and accuracy of our proposed method in real data experiments. The relative extrinsic
435  parameters of 4-cameras system are reported in Table 2.

436 Table 1. The intrinsic parameters of four cameras.
Camera 1 Camera 2 Camera 3 Camera 4
Focal
Leneth [2618.29 [2625.76 2617.17] [2620.34
& 2618.20 2625.61 2616.88 2620.35
Principal
oint [1290.91 1286.45 1255.36] [1293.70
p 1014.72 1001.44 1026.86 1006.56
Distortion [—0.1338 [—0.1356 —0.1332] [—0.1324
(ky k) 0.1326 0.1462 0.1360 0.1344
437
438 Table 2. The relative extrinsic parameters of 4-cameras system.
Camera 2-1 Camera 3-1 Camera 4-1
Rotation 0.0892 0.1479 0.0212
Vector 0.7389 3.0076 —2.3761
0.0365 0.2330 —0.1040
Translation —248.9713 —4.3414 2749126
vector 1.0768 —81.7511 —42.0589
93.0314 766.3633 641.0544
439 4.3 Discussion
440 The above experiments based on synthetic and real data verify the accuracy and effectiveness of

441  the proposed method. This method is applicable to the multi-cameras measurement system which
442 can perform a one-shot measurement of the dynamic shape of whole part. The typical MCS is shown
443 in Figure 5, and the cameras are distributed both sides of the glass calibration plate. Several patterns
444  were designed for multi-cameras calibration, which can be grouped into three categories: 1D pattern,
445 3D target consisted of 1D patterns, and planar pattern. Compared with planar pattern, the
446  disadvantage of other two calibration targets is that’s hard to guarantee the exact linearity and the
447  extraction accuracy of the points. However, the opaque planar pattern is difficult to complete multi-
448  cameras calibration and it is easy to generate cumulative errors. With the help of the precision
449  manufacturing technique, transparent glass calibration target can overcome the above limitations and
450  complete the calibration of MCS. The position accuracy of corner point on commercial glass
451  calibration plate can reach 0.0015 mm, so it can satisfy the precision requirement of multi-cameras
452 calibration. The extrinsic parameters can be optimized in the global coordinates, and the refractive
453  projection model is used to eliminate the refractive effect.
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However, the proposed method also shows some limitations. Due to the reflection of glass, the
camera's distribution and the calibration accuracy of multiple cameras are affected. In the calibration
process of this paper, a few reprojection error can occur with abnormal value, which is caused by the
reflection. Fortunately, the number of these outliers are very small and have little impact on the
calibration results. Alternatively, we can delete these outliers and reduce the impact on the calibration
results. It can also improve the reflection from the production process. In addition, the calibration
method cannot be applied to the multi-cameras calibration without overlapping FOV.
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476 5. Conclusions

477 One typical MCS is installed on both sides of the measured object, which makes it difficult to
478  calibrate the system using the existing camera calibration methods. In this paper, a novel multi-
479  cameras calibration method based on glass calibration plate and ray tracing is proposed. Based on
480  the traditional direct projection model, the refractive projection model is developed and the model is
481  applied for multi-cameras calibration. Firstly, the mathematical models of refractive projection and
482  bundle adjustment are established with introduction of ray tracing. Then, the intrinsic parameters of
483  each camera is obtained by Zhang’s calibration method and direct linear transformation is used to
484  obtain the initial extrinsic parameters. Finally, the modified bundle adjustment method is applied to
485  optimize the extrinsic parameters of MCS and the refractive index of glass calibration target. The
486  experimental results of refractive calibration show that the error of the 3D reconstruction is smaller
487 than 0.2 mm, the relative errors of both rotation and translation are less than 0.014%, and the mean
488  and standard deviation of reprojection error of 4-cameras system are 0.00007 and 0.4543 pixel. The
489  experiments performed on synthetic and real data indicate that our proposed method has high-

490  accuracy and feasibility.
491
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