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Abstract: A growing area in neurosciences is focused on the modeling and analysis the complex1

system of connections in neural systems, i.e. the connectome. Here we focus on the representation of2

connectomes by using graph theory formalisms. The human brain connectomes are usually derived3

from neuroimages; the analyzed brains are co-registered in the image domain and brought to a4

common anatomical space. An atlas is then applied in order to define anatomically meaningful5

regions that will serve as the nodes of the network - this process is referred to as parcellation. Recently,6

it has been proposed to perform atlas-free random brain parcellation into nodes and align brains in7

the network space instead of the anatomical image space to define network nodes of individual brain8

networks. In the network domain, the question of comparison of the structure of networks arises.9

Such question is tackled by modeling the comparison of brain network as a network alignment (NA)10

problem. In this paper, we first defined the NA problem formally, then we applied three existing state11

of the art of multiple alignment algorithms (MNA) on diffusion MRI-derived brain networks and we12

compared the performances. The results confirm that MNA algorithms may be applied in cases of13

atlas-free parcellation for a fully network-driven comparison of connectomes.14
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1. Introduction16

The human brain is a complex organ organized into a dense system of connections, also known as17

connectome. Recent studies have shown that this system of connections is responsible for the brain18

activity, and an alteration of connections (decreased or increased connectivity) can led to the insurgence19

of neurological diseases [1,2]. For this reasons, many researches in neuroscience have been focused20

on mapping and analysis of the human brain connectome [3]. Connectome may be analyzed using21

different zoom, e.g. by focusing on single components, i.e. neurons and axons, or grouping them into22

regions. Usually the analysis of single components is defined to as anatomic connectivity, while the23

analysis of regions is called functional connectivity because regions are in general perfoming different24

functions. Tipically, the human brain connectome can be mapped using neuroimaging techniques,25

such as Magnetic Resonance Imaging (MRI), Electroencephalography (EEG), and Electromyography26

(MEG) enabling to take a picture of the brain connections of patients [4]. Among the others, the main27

source for deriving information about connectomes is Magnetic Resonance Imaging (MRI) [5] able to28

achieve both informations about anatomic connectivity and functional connectivity.29

Once obtained, the connectome data need to be characterized through sophisticated analytic30

strategies. A useful strategy is based on graph theory [6], that ensures the modeling of such data31

into a network model. Different studies have used the network models to extract clinically relevant32

information [7,8] due to the capability to summarize the characteristics of a complex network with33

few measures and to understand the organization of both entire networks and individual network34

elements [6].35

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 October 2017                   doi:10.20944/preprints201710.0073.v1

©  2017 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201710.0073.v1
http://creativecommons.org/licenses/by/4.0/


2 of 13

Graph theoretical approaches model the human brain as set of nodes linked by edges. The36

nodes typically represent region of interest (ROI) and the edges represent functional or anatomical37

connections. A typical MRI experiment produces a series of images, either from intra-subject or38

inter-subject, then the MRI images are modeled as networks. A further step consists of the coregistration39

among the network and a brain atlas in order to obtain anatomically meaningful regions [9]. Recently,40

Tymofiyeva et al. [10] proposed an alternative method based on the application of atlas-free parcellation41

and on the construction of individual connectomes only in the network space. In the network domain,42

an appropriate analytic strategy consists of the comparison of studied networks by recurring to43

network alignment (NA) approaches. The techniques for the alignment of biological networks fall into44

sub-categories: local alignment, to find small conserved motifs across networks, and global alignment,45

which attempts to find a best mapping between all nodes of the two networks or pairwise alignment46

to align two networks and multiple alignment that align multiple networks. Different studies have47

widely usad the NA approaches for the analysis of biological networks. In previous works [11,12] we48

explored the possibility to apply the NA methods for the analysis of to MRI connectomics. At first we49

tested different global alignment algorithms to build the alignments among the diffusion MRI-derived50

brain networks. Then, we analyzed the alignment results in term of topological quality measures51

and according to these analyses, we identified the best alignment algorithm to align the diffusion52

MRI-derived brain networks. However, recent studies have demonstrated in an independent way53

that the multiple alignment algorithms are able to exact deeper information than pairwise alignment54

algorithm when these one are applied to molecular biology analysis [13].55

According to these studies, we choose to apply multiple alignment algorithms on MRI56

connectomics. Here, we selected three existing state of the art multiple alignment algorithms to57

build the alignment of diffusion MRI-derived brain networks. The algorithms tested here are58

MultiMAGNA++ [13], GEDEVO-M [14] and IsoRankN [15]. The algorithms are applied to build59

the multiple alignment among the diffusion MRI-derived brain networks. After the alignments were60

built, we compared the performance of these algorithms.61

2. Methodology for Brain Network Analysis62

In this section, we present the workflow of analysis that can be preformed on the brain network63

starting from the building of connectome from MRI images. The Figure 1 shows a workflow of64

Methodology for the Brain Network Analysis from the building of representative network from65

experimental data to the comparison of brain network applying multiple alignment algorithm.66

2.1. Building a Brain Network67

The building of brain network starts with a set of anatomical or physiological observations [16],68

then the structural and functional connectivity data are processed into network model exploiting graph69

theory.70

However, the application of graph theory to the study of connectomes presents some challenges71

related to the description of nodes and edges [17]. For example, an ideal definition of nodes should72

group a set of neurons according to maximal functional homogeneity within nodes and the maximal73

functional heterogeneity among different nodes. According to this, there is no clear evidence for the74

optimal definition of both nodes and edges. A common approach to define the nodes of a brain network75

consists of the subdivision of the brain into homogeneous, non-overlapping and large-scale, regions76

respect to information provided, generally, by techniques based on magnetic resonance imaging (MRI)77

[18], also known as “parcellation process”. Especially, MRI has allowed to obtain information about78

anatomical connectivity, functional connectivity, or task-related activation.79

Currently, there exist three different approaches applied to parcellation of connectome:80

1. Parcellation of the brain by using predefined anatomical templates that consists of the81

registration of the structural images from MRI to anatomical atlas based on the Brodmann82
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Figure 1. Building a representative network from experimental data: example of a workflow. Diffusion
or functional MRI images are acquired for a subject according to the study to be conducted. The MRIs
are used to perform whole-brain parcellation by selecting a suitable method. Starting from the parcelled
whole brain the computation of connections is performed the connectivity matrix is constructed. Then,
the resulting brain network is obtained. This process is preformed for each studied subject. A MNA
algorithms takes as input the brain networks and produces aligned node clusters between more than
two networks.

areas [19]. This approach enables to subdivide the whole brain into labeled regions according to83

the different labels regions of the templates;84

2. Parcellation of the brain by using randomly generated templates [20] that ensures to divide the85

whole brain into parcels (brain region) of roughly equal size;86

3. Connectivity-based parcellations that aim to delineate brain regions according to the similarities87

in structural or functional connectivity patterns.88

Due to the different approach, the choice of a parcellation scheme is fundamental for subsequent89

analysis on brain network. In fact, each parcellation method presents some pitfalls.90

For example, the parcellation of the brain by using predefined anatomical template raises the91

question of the accuracy of mapping. Since atlas based on the Brodmann areas are originally defined92

using cytoarchitectural differences between brain regions, in the registration step a mismatch among93

the cortical surface analyzed and the borders of the Brodmann areas may occurs [10].Thus, this94

approach is limited by inter-subject variability and can be especially problematic in the context of brain95

maturation. In this paper, we focus on the random, atlas-free definition of nodes in individual subjects96

(see [12] for a deep description), which can allow for a fully network-driven way of looking at the97

brain and comparing brains of different subjects and, potentially, species [10].98

The definition of the edges is also currently an open challenge related to a) the type of connectivity99

measured, and b) the method used to quantify it. As mentioned above, brain connectivity can refer100

to different aspects of brain organization including (i) anatomical connectivity consisting of axonal101

fibers connecting cortical and subcortical regions inferred from diffusion imaging, and (ii) functional102

connectivity defined as the observed statistical correlations of the BOLD signal between brain regions.103

Once the nodes and the edges are defined, the pattern of connections between brain regions104

(nodes) can be stored into the Connectivity Matrix [21]. The Connectivity Matrix is symmetric matrix105

where rows and columns represent different brain regions, and the entries correspond to connection106
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(edge) between the regions. This representation lends itself to be mapped to a graphical model which107

ensures to quantify different topological aspects of the connectome.108

2.2. Comparison of Brain Network: Network Alignment109

A crucial point in the connectome analysis regards the comparison of the brain networks. Thus,110

the detection of an correct node mapping between atlas-free networks may uncover significant aspcets111

on the comparison of brains or structure of groups of subjects, such as healthy versus diseased subjects.112

Many different network alignment methods have been proposed in biological fields [22].113

Formally, a graph G is defined as G = {V, E}, where V is a finite set of nodes and E is a finite set of114

edges. Let G1 = {V1, E1} and G2 = {V2, E2} be two graphs, where V1,2 are sets of nodes and E1,2 are sets115

of edges, a graph alignment is the mapping between the nodes of the input networks that maximizes116

the similarity between mapped entities. From a theoretical point of view, the graph alignment problem117

consists of finding an alignment function (or a mapping) f : V1 → V2 that maximizes a cost function118

Q. The similarity between the graphs is defined by a cost function, Q(G1, G2, f ), also known as the119

quality of the alignment. Let f be an alignment between two graphs G1 and G2, given a node u from120

G1, f (u) is the set of nodes from G2 that are aligned under f to u. Q expresses the similarity among121

two input graphs with respect to a specific alignment f and the formulation of Q strongly influences122

the mapping strategy.123

There exist different formulations of Q that fall into following the classes:124

Topological Similarity: Graphs are aligned by considering only edge topology, so that the perfect125

alignment is reached when input graphs are isomorphic.126

Node Similarity: Such function considers the similarity among mapped nodes. Nodes of the127

aligned graphs can be more or less similar to each other. Thus the alignment should align each node of128

one graph to the most similar node of the other one given a node similarity functions, s(v1, v2)→ R,129

v1 ∈ V1, v2 ∈ V2.130

Hybrid approaches: Some recent formulations of Q take into account of both of the approaches131

by linear combination.132

The network alignment problem can be formulated according to: i) the kind of input, pairwise or133

multiple alignment and ii) the scope of node mapping required, local or global alignment. In general, the134

network alignment can be classified as local alignment or global alignment. The local alignment typically135

finds multiple and unrelated regions of isomorphism among the input networks, each region implying136

a mapping independently of the others. Therefore, the computed correspondences may involve137

overlapping subgraphs. The output of local network alignment is a set of pairs of possibly overlapping138

subgraphs of the input networks. The literature contains many algorithms that address local graph139

alignment problem. For example, AlignNemo [23] and AlignMCL [24] algorithms. The global alignment140

aims to find a mapping that should cover all of the nodes of the input networks. Global alignment141

returns a unique overall alignment between the input networks, such that a one-to-one correspondence142

is found between of a network with one node of the other network. Most popular existing methods of143

global alignment are MAGNA [25], NETAL [26], GHOST [27], WAVE [28]. For a complete review on144

global and local network alignment algorithms and their advantages or disadvantages see [29].145

Also, the network alignment methods can be pairwise or multiple alignment.146

The pairwise network alignment (PNA) aligns two networks at a time and produces aligned node147

pairs between two networks. The multiple network alignment (MNA) aligns three or more networks148

to each other at once and produces aligned node clusters. PNA and MNA can be local or global, with149

one-to-one or many-to-many node mappings. The difference between one-to-one and many-to-many150

mapping in the pairwise alignment refers the previous discussion on global and local alignment. The151

PNA can search the similar small subnetworks exploiting many-to-many mapping between nodes of152

the compared network or can look for the best overlap of the whole compared networks exploiting153

one-to-one node mapping. MNAs are one-to-one MNA methods when produce an aligned cluster154
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containing at most one node per network, whereas MNAs are many-to-many MNA methods when an155

aligned cluster contains more than one node from a single network.156

In literature, both PNA and MNA are applied to built the alignment protein interaction networks157

(PINs) [30]. Since, MNA can capture functional knowledge that is common to multiple species,158

it was detected that MNA leads to deeper biological information than PNA. However, MNA is159

computationally much harder than PNA because the complexity of the network alignment problem160

increases exponentially with the number of analyzed networks.161

There exist different proposed multiple network alignment algorithms in literature such as162

MultiMAGNA++ [13], GEDEVO-M [14] and IsoRankN [15].163

In this work, three multiple alignment algorithms were chosen to built the multiple alignment of164

brain networks. We give hereafter a short conceptual description.165

A popular existing method of multiple alignment is MultiMAGNA++ [13]. MultiMAGNA++ is a166

a global one-to-one MNA aligner that simulates a population of alignments that evolves over time167

by applying a genetic algorithm and a function for the crossover of two alignments into a superior168

alignment. Since the genetic algorithm simulates the evolutionary process guided by the survival169

of the fittest principle, only alignments, i.e. those that conserve the most edges, survive. Thus,170

MultiMAGNA++ proceeds to the next generation, until the alignment accuracy cannot be optimized171

further.172

The second multiple aligner is GEDEVO-M [14] a global one-to-one MNA aligner. GEDEVO-M is173

an extension of GEDEVO [31] tool for efficient global graph alignment. Underlying the GEDEVO-M174

method is the Graph Edit Distance model (GED), where a graph is transferred into another one with a175

minimal number of edge insertions and deletions. Thus, GEDEVO-M uses the GED as optimization176

model for finding the best alignments and then minimizes the sum of GEDs between every pair of177

input networks.178

The last multiple aligner is IsoRankN [15], a global many-to-many MNA alignment tool based a179

spectral clustering method to find dense and clique modules when the global alignment of multiple180

networks is computed.181

3. Results182

3.1. Dataset183

The dataset consisted of 24 diffusion MRI-derived structural networks of human brain: 12184

networks with a number of nodes equal to 95 and the 12 networks with a number of nodes equal to185

1000. The brain networks are related to three different stages of development by including newborns186

(NE), six-month-old infants (6M), and adults (AD). See Materials and Methods Section for a complete187

description.188

3.2. Building of brain network multiple alignment189

We built the multiple alignment of all networks with 95 and 1000 nodes (for convenience we call190

the two dataset networks95 and networks1000 ) related to same growth stages (NE, 6M, AD) by applying191

MultiMAGNA++ [13], GEDEVO-M [14] and IsoRankN [15].192

We ran all MNA methods on the same Linux machine with Intel Core i5 and 4GB of RAM. We193

selected the following MultiMAGNA++ parameters: CIQ as measure of Edge Conservation, the α194

parameter equal to 0, in order to consider only topology, whereas the population size, number of195

generation, fraction of elite members were set to default values. We tested different parameters and196

obtained best results with the default parameters for GEDEVO-M: pop parameter that controls the197

number of new individuals per iteration set equal to 1000 and maxsame that controls the stop after N198

iterations without any score improvement were equal to 3000. To build the multiple alignment with199

IsoRankN we set: the max number of iterations K equals to 30, the threshold thresh equals to 1e− 4,200

maxveclen equals to 1000000 and the α parameter equal to 1 in order to consider only network data.201
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The Table 1 reports the execution time of MultiMAGNA++, GEDEVO-M and IsoRankN to build the202

multiple alignment on the networks with 95 nodes and on the networks with 1000 nodes.203

Table 1. Execution Time to build the multiple alignment with MultiMAGNA++, GEDEVO-M and
IsoRankN for the networks with 95 nodes and the networks with 1000 nodes

Execution Time for
network with 95 nodes

Execution Time for
network with 95 nodes

Processor Memory

MultiMAGNA++ 5 seconds 7 seconds Intel Core i5 4 GB
GEDEVO-M 8 seconds 11 seconds Intel Core i5 4GB
IsoRankN 6 seconds 10 seconds Intel Core i5 4 GB

3.3. Topological alignment quality evaluation204

Here, we aim to evaluate the quality of the multiple alignments built with MultiMAGNA++,205

GEDEVO-M and IsoRankN algorithms. The topological quality is related to two alignment algorithm206

capability as the reconstruction of the true node mapping and the conservation of as much as possible207

edges. Typically, the Node Correctness (NC) is the measure widely used to evaluate how an alignment208

reconstructs the true node mapping correctly. Instead, different measures are used to evaluate how209

well the edges are conserved on an alignment, such as EC, ICS or S3 (see the previous Section). In210

general, the Edge Correctness is defined as the number of edges conserved under an alignment f with211

respect to the total number of edges of input networks. Thus, once the multiple alignments were built,212

we performed an evaluation of alignment quality by comparing the Edge Correctness (EC) [25] related213

to the alignments built with MultiMAGNA++, GEDEVO-M and IsoRankN.214

The Table 2 and Table 3 report the global Edge Correctness computed on the multiple alignment215

of all networks with 95 nodes and with 1000 nodes related to same growth stages NE, 6M, AD by216

applying MultiMAGNA++, GEDEVO-M and IsoRankN algorithms.217

Table 2. Comparison the Edge Correctness of the multiple alignments built with MultiMAGNA++,
GEDEVO-M and IsoRankN.

Edge Correctness NE 6M AD
MultiMAGNA++ 0.5 0.55 0.49
GEDEVO-M 0.441 0.441 0.48
IsoRankN 0.477 0.477 0.485

Table 3. Comparison the Edge Correctness of the multiple alignments built with MultiMAGNA++,
GEDEVO-M and IsoRankN.

Edge Correctness NE 6M AD
MultiMAGNA++ 0.14 0.16 0.19
GEDEVO-M 0.089 0.091 0.099
IsoRankN 0.095 0.099 0.1

Figure 2 shows an overview of edge conservation comparison on networks95 whereas Figure218

3 shows an overview of edge conservation comparison on networks1000. We note that the best219

results in terms of edge conservation were obtained when applying MultiMAGNA++ as global220

aligner both on networks95 and networks1000. In fact, the mean edge correctness values are higher221

on the alignments built with MultiMAGNA++ than mean edge correctness scores on alignments222

obtained with GEDEVO-M and IsoRankN. The reason is related to the strategy of MultiMAGNA++ to223

construct the multiple alignment. In fact, MultiMAGNA++ is the unique multiple aligner that directly224

optimizes edge conservation in addition to node conservation by using a genetic algorithm, whereas225

the MNA algorithms optimize node conservation only. In this way, the quality of alignment built with226
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MultiMAGNA++ results improved. This entails an inferior behavior of GEDEVO-M and IsoRankN227

compared to the MultiMAGNA++.228

We also note that values of EC for networks95 are higher than EC for networks1000.229

Figure 2. The topological evaluation of alignments built with MultiMAGNA++ (red marker),
GEDEVO-M (blue marker), IsoRankN (green marker). The Figure shows the mean Edge Correctness
scores of alignments built among the networks with 95 nodes by applying the selected three multiple
aligners.

4. Discussion230

The brain connectivity refers to different aspects of brain organization including i) anatomical231

connectivity consisting of axonal fibers across cortical regions and ii) functional connectivity defined232

as the observed statistical correlations of the BOLD signal between regions of interest. Understanding233

brain connectivity can shed light on the brain cognitive functioning that occurs via the connections234

and interaction between neurons. Brain connectivity can be modeled and quantified with a large235

number of techniques. A useful formalism to represent the brain connectivity derives from graph236

theory. The graph theoretical modeling of the human connectome has enabled important discoveries237

by comparing the brain networks of studied subjects. In this study we proposed to apply three multiple238

alignment algorithms MultiMAGNA++, GEDEVO-M and IsoRankN to align atlas-free human brain239

networks at three developmental stages. We decided to apply MNA algorithms to the study of brain240

networks because, in previous studies conducted on PINs, MNA were able to lead to deeper biological241

compared to PNA, by capturing conserved network regions between multiple networks. We analyzed242

the multiple alignment results in term of topological quality measures, by comparing the EC related to243

each alignment. According to these analyses, MultiMAGNA++ resulted in the best alignment. The244

reason is related to the strategy underlying MultiMAGNA++ to construct the multiple alignment245

by optimizing simultaneously the edge conservation and node conservation. Our ongoing study is246

focused on the implementation of an ad hoc algorithm for connectome alignment. Since there are247

many conditions in which the classical parcellation is not useful, we retain that this seminal work may248

open the way for the use of multiple network alignment in atlas-free parcellation.249
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Figure 3. The topological evaluation of alignments built with MultiMAGNA++ (red marker),
GEDEVO-M (blue marker), IsoRankN (green marker). The Figure shows the mean Edge Correctness
scores of alignments built among the networks with 1000 nodes by applying the selected three multiple
aligners.

5. Materials and Methods250

5.1. Dataset251

The dataset consisted of diffusion MRI-derived structural networks of human brain at different252

stages of development, starting with neonates [10]. Acquisition of the MRI data was compliant with253

the Health Insurance Portability and Accountability Act (HIPAA) and the study was approved by254

the Committee on Human Research (CHR) of the University of California, San Francisco. Three age255

groups were included: 4 neonates imaged in the first 4-5 days of life (NE), 4 six-month-old infants256

(6M), and 4 adults (age 24-31 years) (AD). The two pediatric groups had transient encephalopathy257

at birth, but none of the patients had clinical or imaging evidence of brain injury. The subjects were258

scanned on a 3T GE MR scanner using a spin echo (SE) echo planar imaging (EPI) diffusion tensor259

imaging DTI sequence with parameter described in [10]. Tensor calculation, tractography, cortical260

parcellation into N equal-area nodes (Figure ??), and construction of the connectivity matrices was261

performed as described previously [10]. All networks were binarized with a threshold of 1 streamline.262

Starting from the images we obtained two different datasets. The first dataset consist of 12 networks263

with number of nodes equal to 95 depending on parcellation step. For convenience we call this dataset264

networks95. Table 4 shows the networks parameters. About the second dataset, the 12 networks were265

constructed by setting the number of equal-area nodes for the cortical parcellation equal to 1000. Since266

all cortical areas of the brain are connected, a fine parcellation should ensure the interconnectedness of267

the whole brain, leaving no nodes isolated. In [10] the authors demonstrated that the highest number268

of nodes at which this condition is fulfilled in equal to 95. For this reason, the networks of the second269

dataset showed the isolated nodes that were not computed in the construction of the connectivity270

matrices. For convenience we call this dataset networks1000 even though the nodes number is different271

from 1000. Table 5 shows the network parameters.272
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Table 4. Details of brain networks with 95 nodes used for experiments

Network Nodes Edge
NE01 95 341
NE02 95 341
NE03 95 334
NE04 95 320
6M01 95 353
6M02 95 333
6M03 95 333
6M04 95 338
AD1 95 449
AD2 95 406
AD3 95 438
AD4 95 416

Table 5. Details of brain networks with 1000 nodes used for experiments

Network Nodes Edge
NE01 889 2555
NE02 904 2618
NE03 900 2585
NE04 899 2298
6M01 902 2458
6M02 849 2182
6M03 805 1928
6M04 851 2087
AD1 902 3146
AD2 869 2691
AD3 878 3262
AD4 853 2907

5.2. Alignment Algorithms273

In this section we describe in detail the multiple alignment algorithms selected to align the274

diffusion brain networks.275

MultiMAGNA++ [13] is a global one-to-one MNA algorithm based on a genetic algorithm to276

build an improved alignment. By simulating the evolutionary process, guided by the survival of277

the fittest principle, the genetic algorithm directly optimizes both edge and node conservation while278

the alignment is constructed. In details, MultiMAGNA++ uses the genetic algorithm to simulates a279

population of alignments that evolves over time and then applies new function for the crossover of280

parent alignments into a superior child alignment that allows for aligning multiple networks.281

The genetic algorithm requires an initial population of a given number of members. In282

MultiMAGNA++, the members of population are multiple alignments. A multiple network alignment283

(MNA) of k networks, ordered in terms of the number of nodes from the smallest to the largest one,284

is represented by using k− 1 permutations which are bijective mappings between pairs of networks285

adjacent. The permutations are set of disjoint node clusters that cover nodes in the k networks. So286

MNA can be defined as multi permutation. The members of a population crossover with each other to287

produce new members. Only the fitted members are more likely to crossover. Thus, the child alignment288

resulting from a crossover function reflects each parent. In MultiMAGNA++, the crossover function is289

defined as the midpoint of the shortest path between two permutations. In this way, the child MNA290

shares the characteristics of each of the two parent MNAs. To avoid the size of the population to grow291

without bound, the size is kept constant across all generations, with only the fittest members surviving292

from one generation to the next. The fitness function is a combined measure of edge conservation SE293

and node conservation SN maximized as follow:294
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αSE + (1− α)SN (1)

where α controls the contribution of each node and edge conservation measures and takes the295

values between 0 and 1.296

The edge conservation measure used in MNA is Conserved Interaction Quality (CIQ). CIQ is a
weighted sum of edge conservation between all pairs of aligned a and b clusters and is defined as:

SE = CIQ =
∑a,b |Ea ,b|cs(a,b)

∑a,b |Ea ,b| (2)

where, |Ea, b| is the number of edges that connect the clusters, and cs(a, b) is edge conservation297

between two clusters. Let r(a, b) be the number of networks that the edges which connect the clusters298

belong to and s(a, b) be the number of networks that contain at least one node in both clusters, cs(a, b)299

is equal to 0 if r(a, b) ≤ 1, also cs(a, b) is equal to r(a,b)
s(a,b) .300

The node conservation measure for MNA refers to internal cluster quality, i.e, the nodes in each
cluster should be highly similar to each other with respect to some node cost function.

SN =
1
n

∑n
i=1

1
(
|ai |
2 )

∑(u,v)∈P(ai)
s(u, v) (3)

where s(u, v) is the similarity between nodes u and v with respect to some node cost function, ai301

is a aligned clusters with i = 1, ..., n, |ai| is the size of ai and P(ai) is the set of all pairs of nodes in ai.302

The genetic algorithm produces newer generations until the alignment quality cannot be303

optimized further.304

GEDEVO-M [14] is a global one-to-one MNA algorithm based on an evolutionary algorithm that305

uses the Graph Edit Distance (GED) as optimization model for finding the best alignments. The GED306

is defined as the minimum insertions and deletions of edges required to transfer a graph into another307

graph. GEDEVO-M applies the Graph Edit Distance to multiple graph models and considers the308

alignment building as Topological Multiple one-to-one Network Alignment (TMNA). TMNA problem309

aims to find a multiple mapping F on a set of graphs G, such that the multiple Graph Edit Distance310

mGEDF is minimal over all possible multiple mapping on G. By minimizing the mGEDF, the number311

of edges that are aligned in multiple networks simultaneously is maximized. The GEDEVO-M builds312

the alignment by generating an initial multiple mapping with random permutations. A one-to-one313

MNA of G graphs consists of a set of disjoint clusters. Each cluster can be represented as a tuple.314

Initially, GEDEVO-M fixes a threshold, defined as the average over all tuple scores and then it randomly315

swaps the tuples that have scores higher than the threshold. The tuples with lower than the threshold316

are also given a certain chance to be swapped. After that, GEDEVO-M uses a crossover operator to317

construct a new multiple mapping from two or more parent individuals of the previous generation. At318

first, GEDEVO-M computes the tuple scores for every possible subset of G. Then, GEDEVO-M iterates319

over the corresponding tuple scores by starting with larger subsets of G and assigns some of these320

tuples to a new multiple mapping until every subset is considered. Finally, GEDEVO-M evaluates the321

quality of the multiple mapping by using the score S. The score S depend on the multiple Graph Edit322

Distance (mGED) and Graphlet-degree signature distance (GSD) of multiple mapping that computes323

the difference in neighboring topologies of potentially matched nodes.324

IsoRankN [15] is a global many-to-many MNA alignment tool based a spectral partitioning325

method to find dense and clique clusters on multiple-network alignment.326

IsoRankN builds a multiple network alignment by local partitioning the graph of pairwise327

functional similarity scores. Initially, IsoRankN computes the functional similarity scores of every pair328

of nodes of k networks. In this way, a functional similarity graph, where each edge is weighted by its329

functional similarity score, is obtained. Then, IsoRankN applies a star spread method on functional330

similarity graph to obtain a multiple alignment as highly similar cliques. In detail, IsoRankN computes,331
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for each node, every neighbor connected with an edge whose weight is greater than a threshold; this332

represent the star of a node S .333

Then, IsoRankN orders the nodes according to the total weight of the star S. For each the star S, a334

subset with highly weighted neighborhood is found. This subset represents a functionally conserved335

interaction cluster. Finally, IsoRankN performed a merging stars process, by looking at the neighbors336

of the neighbors of a node and by merging the stars of two nodes if every member of star related to a337

node 1 has the node 2 as a neighbor and vice versa. The process is repeated until all nodes are assigned338

to a cluster.339
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Abbreviations347

The following abbreviations are used in this manuscript:348

349

NA Network Alignment
PNA Pairwise Network Alignment
MNA Multiple Network Alignment
MRI Magnetic Resonance Imaging
ROIs Region of Interest
DTI Diffusion Tensor Imaging
PINs Protein Interaction Networks
BOLD Blood Oxygenation Level Dependent
NE Newborns
6M Six-Month-Old
AD Adults
HIPAA Health Insurance Portability and Accountability Act
CHR Committee on Human Research
S3 Symmetric Substructure Score
EC Edge Correctness
SE Edge Conservation
SN Node Conservation
CIQ Conserved Interaction Quality
GED Graph Edit Distance
TMNA Multiple one-to-one Network Alignment
mGEDF Multiple Graph Edit Distance

350
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