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Abstract: Satellite imagery has had limited application in the analysis of pre-colonial settlement 19 
archaeology in the Caribbean; visible evidence of wooden structures perishes quickly in tropical 20 
climates. Only slight topographic modifications remain, typically associated with middens. 21 
Nonetheless, surface scatters, as well as the soil characteristics they produce, can serve as 22 
quantifiable indicators of an archaeological site, which can be detected by analysis of remote 23 
sensing imagery. A variety of data sets were investigated, with the intention to combine 24 
multispectral bands to feed a direct detection algorithm, providing a semi-automatic process to 25 
cross-correlate the datasets. Sampling was done using locations of known sites, as well as areas 26 
with no archaeological evidence. The pre-processed very diverse remote sensing data sets have 27 
gone through a process of image registration. The algorithm was applied in the northwestern 28 
Dominican Republic on areas that included different types of environments, chosen for having 29 
sufficient imagery coverage, and a representative number of known locations of indigenous sites. 30 
The resulting maps present quantifiable statistical results of locations with similar pixel value 31 
combinations as the identified sites, indicating higher probability of archaeological evidence. The 32 
results show the variable potential of this method in diverse environments. 33 

Keywords: Remote sensing; direct detection; GIS mapping; Caribbean Archaeology; landscape 34 
archaeology 35 

 36 

1. Introduction 37 
The fascination with feature identification and mapping of geometric archaeological alignments 38 

by means of remote sensing is as old as the first appearance of aerial photos [1–3]. Throughout the 39 
last centuries, it has advanced significantly, leading to new archaeological discoveries using imagery 40 
from satellites and drones [4, 5]. The human eye remains an adept feature extractor and can 41 
distinguish linear or circular structures and earthworks easily from the natural soil [6]. More 42 
recently, however, automatic approaches in pattern recognition have also become common, often 43 
based on computer algorithms adopted from other disciplines [7–10], and tested for archaeological 44 
purposes to detect color [11, 12], changes in topography [13, 14] or different reflection patterns [15]. 45 

A different challenge is the identification of non-geometric archaeological features with more 46 
amorphous shape and structure. Without any clear geometry, they pose a special problem, as the 47 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 October 2017                   doi:10.20944/preprints201710.0070.v1

©  2017 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Geosciences 2017, 7, 127; doi:10.3390/geosciences7040127

http://dx.doi.org/10.20944/preprints201710.0070.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/geosciences7040127


 2 of 15 

 

most prominent parameter for successful recognition is missing. This is the case for indigenous 48 
settlements in the Caribbean, which have been identified through assemblages of shells, ceramics 49 
bone remains, and stone tools; but not by traces of extant or sub-surface structural remains [16, 17]. 50 
The irregular pattern of pre-colonial settlement vestiges has made their detection challenging for 51 
remote sensing [18], and previous work has been dominated by traditional archaeological survey 52 
methods: the identification of surface material based on the knowledge of local scouts or 53 
landowners, and defining an approximate delineation of areas based on the surface finds on site [19, 54 
20]. The trial approach presented here is an example for a novel statistical, systematic, and therefore 55 
more objective method. 56 

Developed at Cultural Site Research and Management (CSRM) [21, 22], the Direct Detection Model 57 
(DDM) identifies the probability of sites by comparing single pixel values. This approach 58 
presupposes that anthropogenic activities at archaeological sites, often over long periods of time, 59 
have impacted these parts of the landscape in ways that if they persist are statistically measureable 60 
in remote sensing data. The DDM has therefore two sets of input data. The first set has two parts. 61 
The first are the locations of known archaeological sites. In the trial area of the northwestern 62 
Dominican Republic and Haiti, the archaeological ‘sites’ were identified over several years by 63 
different archaeologists, mostly with the help of local guides. Each site visited was named, a number 64 
of archaeological samples taken, and georeferenced by taking one or more GPS points at the site 65 
using a handheld device. The second part of the first is represented by areas with presumably no 66 
sites; these are equally important for the study. A second data set comprises a variety of remote 67 
sensing imagery. The subtle variation between already discovered areas of human activity, the sites, 68 
and areas of no human activity (non-sites) within each remote sensing band, can be used to detect 69 
difference. The difference is more likely to be detected when many different bands of available 70 
satellite or aerial data sets are combined. 71 

The area of interest, northern Hispaniola, presents a highly diverse environment. Along the 72 
coast runs the 200 kilometers long Cordillera Septentrional, a several hundred meter high mountain 73 
range, partly covered by temperate to tropical forest, separating the coast from the fertile floodplain 74 
of the Valle de Cibao. Large parts of the hills and the plains north of the cordillera have been cleared 75 
for pasture. The northern coast is protected by coral reefs and mangrove forests. The region has been 76 
settled through waves of immigrations, archaeologically divided into earliest lithic age period since 77 
4000 BC [23], the archaic period from 2500 BC the later ceramic ages distinguishable by ostionoid, 78 
meillacoid and chicoid ceramics [24–26, 23]. Shortly after the arrival of Columbus, and the foundation 79 
of the first Spanish town in the Americas at La Isabella in 1493 [27], evidence for Amerindian activity 80 
declines rapidly [28] from the archaeological record [29, 30]. We can therefore postulate that most 81 
sites marked in the map are either from prehistoric or very early colonial times. Variations in 82 
topography, land use and vegetation have created a landscape that changes over few kilometers, 83 
which also affected the indigenous settlement strategy [31]. Accumulations of shells indicate 84 
Amerindian use of marine resources [32], while other sites, often on prominent location overseeing 85 
the landscape, have been identified as settlements due to their particular topographic attributes 86 
consisting of mounds and flattened areas that served as base for house construction [33, 34, 30]. 87 

 88 
3. Materials and Methods 89 

Based on the availability of remote sensing datasets, and samples of already identified 90 
archaeological sites, three areas of 5 x 5 kilometers in different environments were initially identified 91 
for trials. All existing archaeological site datasets were merged into a single point shape file, and 92 
then split for each of the trial regions. Polygons were created for the identified areas, whenever the 93 
site dimension had been measured. Only the two areas in Puerto Plata, DR (1) and Montecristi, DR 94 
(2) were ultimately trialed (Figure 1). The third area in Meillac (Dep. Nord-Est), Haiti, (3) was 95 
excluded following the second round of trials. An additional 1.5 x 5 kilometer area (4) that had been 96 
focus of a systematic total area survey [35] was initially thought to be well suited for comparing 97 
remote sensing and ground interpretation. Unfortunately it had to be discarded as there were not 98 
enough known sites in the area. 99 
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 100 

 101 

Figure 1. Initially selected trial areas in northern Hispaniola and the available remote sensing data sets 102 
superimposed on a modified NASA SRTM background. The small images display the (A) landscape in the 103 
Puerto Plata and (B) the view from an archaeological site in the Montecristi region (right). 104 

Table 1. Availability of initially acquired data sets for sample sites Puerto Plata, DR (1) Montecristi, DR (2) 105 
Meillac, Haiti (3) and the Test site in the Montecristi (4). The regions were picked for very light or non-existing 106 
cloud cover within the images. In bold are the data sets included in the survey, while data sets in italic were 107 
rejected later for various reasons. MS = multispectral; PC = panchromatic. 108 

 Dataset Source Bands Resolution [m] (1) (2) (3) (4) 

A SRTM USGS 1 30 x x x X 
B LandSat-8 NASA/USGS 7 (MS) 1 (PC) 30 (MS) 15 (PC) x x x x 
C ASTER NASA/METI/AIST 9 15 x x x x 
D UAVSAR NASA/ JPL 6 (9) 5.7  x x x x 
E WorldView-2 Digital Globe Foundation 8 1.85-2.07 (MS) x x x x 
F Aerial CNIGS (Govt. of Haiti) 3 .7   x  
G TanDEM-X DLR. e. V. 1 3 x x x x 

The passive remote sensing data sets Landsat-8, Worldview-2, ASTER, and active sensors 109 
UAVSAR as well as TanDEM-X stripmap (see Table 1 and Figure 2) were chosen based on resolution, 110 
availability, accessibility and practicality; they were either freely available, or acquired through 111 
generous data grants. Aerial imagery of northern Haiti was provided free of charge by Haiti’s Centre 112 
National de l'Information Géo-Spatiale. Because of insufficient spatial resolution, work with Landsat-8, 113 
ASTER, and TanDEM-X was discontinued after consideration, leaving UAVSAR and Worldview-2 114 
for further steps. The latter, multispectral data set, made available by the DigitalGlobe Foundation, 115 
covers the regions of interest in two-meter-resolution with one panchromatic and eight multispectral 116 
bands (see Table 2). The data set, with bands in the visible and near-visible range, was 117 
atmospherically corrected to reflectance values [36]. This standardized imagery removing artefacts 118 
caused by atmospheric interference. While often neglected, atmospheric correction is important and 119 
can significantly impact subsequent processing techniques like indices [37]. 120 
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 121 

Figure 2. Overview of the initially trialed remote sensing data sets for the region Nordest Haiti. A) SRTM, B) 122 
LandSat, C) ASTER, D) UAVSAR, E) Worldview-2, F) Aerial. 123 

Table 2. Band distribution and wavelength of Worldview-2 satellite. 124 
Band 0 1 2 3 4 5 6 7 8 

Color Pan Coastal Blue Green Yellow Red Red Edge NIR1 NIR2 

λ in nm  400-450 450-510 510-580 585-625 630-690 705-745 770-895 860-1040 

From the original Worldview-2 data, the transformations NDVI, PCA and Tasseled Cap were 125 
applied with the purpose to create additional bands that may improve the site identification 126 
regarding their environmental discrimination. Of these, the NDVI (Normalized Difference 127 
Vegetation Index) [38] is a unidimensional spectral index, adjusting the band information based on 128 
the principle that healthy vegetation absorbs most of the VIS light and reflects most of the NIR light. 129 
Unhealthy or sparse vegetation reflects more VIS light and less NIR light. The formula applied used 130 
the bands red and red edge:  131 

NDVI:  Float ("Red Edge"-"Red") / ("Red Edge"+"Red") 132 

Principal Component Analysis (PCA) was applied with the intention to reduce the data 133 
dimensionality of correlated bands [39]. The method rotates the original space of features into a 134 
space where the transformed features are pairwise orthogonal. This creates an n-dimensional space 135 
of eigenvectors, where n is the number of input dimensions (features), with the goal to orthogonalize 136 
the data set. The first principal component accounts for the maximum proportion of variance from 137 
the original dataset, the following, being orthogonal to the first one, for the next principal 138 
components, creating eventually a new coordinate system of orthogonal axes.  A subset of the 139 
components is usually chosen for subsequent analysis. The method used to select these components 140 
varies by application. The first three components were included in the algorithm while the latter 141 
components were discarded as redundant. For a more detailed explanation, see [40]. 142 
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Tasseled Cap Transformation or K-T transform, as originally developed by [41] for LandSAT 143 
imagery, was applied on each Worldview-2 data set using bands one to eight in accordance with 144 
[42]. Tasseled cap applies predefined correction coefficients to each band and will produce eight new 145 
bands. This spectral index conversion intends to highlight changes in vegetation and soil, where the 146 
pixel values are being transferred into a new orthogonal axial system; of these the first three new 147 
bands are the most important, representing Brightness (red), Wetness or yellowness of vegetation 148 
(blue) and Greenness (green). Based on the reflectance values given by [42] for each Worldview-2 149 
component, the formulas go as such: 150 

Brightness: Float (0.060436*"Coastal"+0.012147*"Blue"+0.125846*"Green"+0.313039*"Yellow" 151 
+0.412175*"Red"+0.482758*"Red Edge"-0.160654*"NIR1"+0.67351*"NIR2") 152 

Greenness: Float (-0.140191*"Coastal"-0.206224*"Blue"-0.215854*"Green"-0.314441* 153 
"Yellow"-0.410892*"Red"+0.095786*"Red Edge" +0.600549*"NIR1"+0.503672*"NIR2") 154 

Wetness & Shadow: Float (-0.270951*"Coastal" -0.315708*"Blue" -0.317263*"Green" -0.242544*"Yellow" 155 
-0.256463*"Red"-0.096550*"Red Edge"-0.742535*"NIR1"+0.202430*"NIR2") 156 

In addition to passive remote sensing data, NASA had captured UAVSAR (Uninhabited Aerial 157 
Vehicle Synthetic Aperture Radar) polarimetric L-band data of ~5.7 meter, over the large fault zones 158 
of Hispaniola. Publicly available, this data set also covers the areas of interest. Accessed through the 159 
JPL/ASF website, the data was extracted to single band TIFF-files using [43] (downloaded product: 160 
PolSAR- polarimetric SAR – MLC). Different materials reflect radar waves with different intensities 161 
and polarizations. Among the feature differentiated are smoothness, homogeneity, and correlation, 162 
as well as soil moisture, and vegetation discrimination revealed by variation in density and 163 
structure. This is highlighted by the three color channels of a synthesized Pauli Decomposition image 164 
(see Table 3). From the original seven bands, Pauli decomposition bands were produced through 165 
[44], to represent all the polarimetric information in a single SAR image. 166 

Table 3. UAVSAR bands as extracted to create Pauli decomposition bands. 167 
Band HHHH HHHV HHVV HVHV HVVV VVVV   HV HH-VV  HH+VV 

Real + + + + + +  Name Pauli3 Pauli2 Pauli1 

Imaginary - + + - + -  Code Red Green Blue 

Atmospherically corrected 15m ASTER (Advanced Spaceborne Thermal Emission and Reflection) data 168 
was acquired through NASA/METI/AIST/Japan Space Systems and U.S./Japan ASTER Science 169 
Team, the low resolution however made the imagery of limited use. Additionally, several 170 
TanDEM-X data sets were acquired through a DLR e.V. research grant, but the uncorrected data was 171 
not utilized for the DDM. All remote sensing data went through a series of image registration 172 
protocols to render them standard in pixel size, resolution and angle that allowed exact correlation 173 
between pixels of different data sets. To achieve this goal, all datasets were initially converted to the 174 
same georeferenced system: WGS 84, UTM 19N for the Dominican Republic (20N respectively for 175 
Haiti) and a 5000 x 5000 meter area was resampled using a 2m grid. This created a 2500 x 2500 grid of 176 
points which were then used to sample data from each dataset (Figure 3). These values were then 177 
interpolated into a stack of registered raster dataset. After this transformation, the pixels and their 178 
attributes of each band were exactly overlapping, diminishing the possibility of corner and border 179 
uncertainties. In addition, the prepared Worldview-2 data set served as base for land cover 180 
classification (Table 4), to better distinguish the variety of surface coverage.  181 
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 182 

Figure 3. The image displays the necessity for point distribution and rearrangement of pixels on UAVSAR Pauli 183 
decompensated data. 184 

Table 4. The three-band RGB combination of Worldview 2 was used to create land cover classification for each 185 
site. 186 

 187 

 188 

 189 

 190 

 191 

 192 

3. Results 193 
3.1 Posterior Probability Approach 194 

Initial tests on a modified version of the algorithm, using a posterior probability modeling [45–195 
48] to define difference between potential areas of sites and non-sites were conducted with focus on 196 
a trial area in Puerto Plata, DR. This approach had been successfully applied elsewhere and involved 197 
using known sites and alleged non-sites to build a binary classifier where each cell was assigned a 198 
posterior probability of being an archaeological site. Datasets included Woldview-2 imagery and 199 
band difference ratios similar to the NDVI, which were then reduced using PCA. Results were 200 
positive with two caveats. Firstly, the algorithm was based on a binary classification might be more 201 
effective when identifying homogenous site-types like lithic scatters. Secondly, the algorithm 202 
performed better with a larger and very accurate sample of known sites and checked known 203 
non-sites of a surveyed area. In this project, the heterogeneous nature of the sites coupled with a 204 
small number of known sites must be regarded as an impediment to this approach. The sites in the 205 
original dataset were represented by single artefact find spots around a central point which 206 
represented the site proper. Polygons were digitized around all points to delineate sites. There were 207 
12 sites in the area with an average area of 4338 m². Non-Sites were generated according to the 208 
following rules: 209 

• In surveyed areas 210 
• > 100 meters from known sites 211 
• Buffers with a radius of 37 meters (with an area of 4300 m²) were generated around each site.  212 
 213 

 (1) Puerto Plata (2) Montecristi (3) Haiti (4) Test site 

1 Water Water Water Water

2 Flat Surfaces Mangrove Mangrove Bare Soil

3 Mangrove Bare Earth Structures & Roads Forest

4 Forest Built Forest Shrub

5 Eroded Land Forest Shrubs

6 Pasture Shrub Pasture

7 Structure Clouds Dump Site
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 214 
Figure 4. Receiver Operating Characteristics (ROC curve) of the posterior probability approach from Puerto Plata. 215 

 216 
The approach may have been hindered by the dominance of sites in the mangroves, and on 217 

hilltops; the algorithm favored these areas for probable site locations. The trial results were plotted 218 
on a ROC curve (Figure 4), which demonstrates that sites were much more likely to be found in the 219 
high or higher probability areas of the posterior probability maps of Puerto Plata (Figure 5), and 220 
much less likely in the low probability areas. 221 

 222 
Figure 5. Posterior probability results from Puerto Plata in topographic and top down view. A) the original RGB 223 
data, B) overlaid by the resulting posterior probability map. 224 

 225 
3.2 Frequentist protocols 226 

A frequentist [22] approach was applied for the Montecristi area (Figure 6). This had been 227 
programmed in the statistical software R [49]. This 5 x 5 kilometers area is located in a hilly part of 228 
the coastal region of Montecristi, where new sites had recently been identified [31, 50, 35], of which 229 
16 sites were chosen. 230 
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 231 

 232 
Figure 6. Various combined remote sensing data sets of the Montecristi trial area. A) UAVSAR Pauli 233 
Decomposition. B) Worldview-2 NDVI. C) Worldview PCA. D) Worldview Tasseled Cap. E) Worldview RGB 234 
with rectangles defined for F) land cover classification. A white cloud can be seen in the lower center of (E). 235 
 236 

A window of 81 x 81 pixels (160x160meters) was set around the single pixels picked as the 237 
center of the known sites (KS) and randomly selected non-sites (NS) creating a base of information of 238 
6561 pixels, across each band, for each point of interest. The same number of known sites and 239 
non-sites was considered. Histograms were generated for each separate band across sites and 240 
non-sites. The histograms were binned in 100 equally spaced separations (see Figure 7). A student 241 
t-test/Wilcoxon rank sum test was conducted to see if there is a significant dissimilarity between sites 242 
and non-sites. 243 

 244 
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 245 
Figure 7. Sketch of the frequentist protocol algorithm. Student's (Gosset's) T-test/Wilcoxon rank sum test is 246 
applied to determine, if the distributions of site and non-site pixels in individual bins are statistically 247 
significantly different, with 0- hypothesis being they are from the same distribution. 248 
 249 
3.3. Dominance of bands 250 

A variety of statistical trial calculations were applied. A band-difference ratio (BDR) was 251 
generated among every band included in the algorithm data set, to reduce the dominance of 252 
particular as well as essentially redundant data sets. These ratios were indices similar to the NDVI 253 
and normalized datasets. Only bands with the lowest positive response rate, a low p-value (cause for 254 
rejecting the 0-hypothesis that KS and NS were similar) were further considered for the tests. The 255 
highly diverse environment, as made visible in the land cover maps, would, one might expect, 256 
influence the success of the approach in comparison with other areas where land cover was more 257 
homogenous [51]. 258 

 259 
Figure 8. Results from the frequentist tests in the Montecristi area, using a total of 21 bands. A) Sturges rule: 260 
highest value after Boolean merge: 2, B) based on Scott: highest value after Boolean merge: 4 C) Sturges rule 261 
using BDR: highest combination after Boolean merge: 7. 262 

 263 
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The frequentist protocol from [21, 51] was implemented in R with different binning strategies [52], 264 
and [53] using Student’s (Gosset’s) T-Test or the Wilcoxon rank sum test (for explanations of these 265 
tests, see [54]). The bulk of the work in R was done as exploratory data analysis with mixing and 266 
matching binning strategies and hypothesis testing. The results vary strongly on different numbers 267 
and combinations, based on the variety band different ratios, and statistical tests (Figure 8).  268 
 269 
4. Discussion 270 

The final result that incorporated the land cover information shows a definite response to the 271 
diverse landscape represented in the image (Figure 9). Several aspects are notable: As anticipated, 272 
without sites mapped in the mangrove area, No. (1), this area remains completely void of site 273 
activity. The forested areas also appear relatively unresponsive. Since large parts of the survey area 274 
are covered by areas defined as dense forest, the random distribution algorithm put more non-sites 275 
into forested areas which may likely have had an effect on the non-sites statistics. Most significant 276 
high response areas are found in locations with little vegetation where the dimension of these areas 277 
can be better defined. This expected best response rate is confirmed by the bright red colored areas 278 
surrounding these sites, showing that in these locations the algorithm shows its best strength. 279 
However, a significant number of sites had been marked in areas covered by forest and shrub, 280 
which, in our tests at least, do not respond well to the DDM search protocols using only the data sets 281 
available. It can be expected that the reflection value of sites in bare earth areas should differ 282 
significantly from non-sites here than in forested sites, as the scatter of archaeological material is 283 
better displayed on the surface, particularly in ploughed areas, while canopy vegetation does not 284 
appear particularly affected by it.  285 

 286 

 287 
Figure 9. DDM frequentist results based on 8 UAVSAR bands, 3 Pauli Decomposition, 8 WV-2, NDVI, KTT and 288 
best BDR outcome. 289 
 290 
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From an archaeological interpretative view, the higher values do not necessarily represent an 291 
ancient pattern of settlement selection, but a combination of features that seem to be the trend in this 292 
particular area. It remains uncertain if the DDM corresponds to areas that follow attributes based on 293 
previous [20] and current research that served predictive models [35], a pattern that expresses 294 
tendencies, such as proximity to the sea, or other sea features such as mangrove forest, proximity to 295 
brooks, proximity to flat lands (usually less forested), and elevation less than 100m. Modern 296 
settlements have been built near areas that combined the aforementioned features, as these also 297 
allow the development of crops. The high valued pixels of the DDM show zones in which these 298 
features have been combined, and could be a reason to have also highlighted certain areas of current 299 
habitation. For the northern part the model created seems to correlate this indigenous activity 300 
pattern, possibly though related to other factors. While the topography was not taken in 301 
consideration due to its low resolution, interpreted visually, these areas respond to areas of low 302 
probability. In the center and south of the area the two known sites at location (3) in Fig. 9 are from 303 
two extensive sites on grassland, surrounding a former school yard. Here the results appear to 304 
delineate the area of the assemblage of material. Location (4) in the southwest corner seems to pick 305 
up a small site near the large site of El Manantial (MC-44, [18] only separated by a small gorge. The 306 
intensity showing (5) was identified as a modern dump site, (6) represents the above mentioned 307 
small cloud. 308 
 309 
5. Conclusion 310 

Automatic detection models for archaeology, particularly the idea of predictive modeling, have 311 
been under heavy scrutiny since their appearance in archaeological research [55–57], with 312 
predominant questioning as to whether the time and effort invested served the outcome. Leaving 313 
decisions not completely to the machine but guiding the solution finding the improving and more 314 
advanced and fast algorithms semi-automatically, shows great potential for breakthroughs in the 315 
detection to amorphous archaeological features in the future. 316 

Regarding the applied frequentist algorithm, it was shown in previous studies at non-forested  317 
locations that the applied algorithms was particularly useful in otherwise uniform environments to 318 
identify archaeological [21] or geological features [47]. The anticipated significant differentiation 319 
between sites and non-sites on northern Hispaniola was overshadowed by the immense 320 
environmental variation in the surveyed region. Many strong factors weigh in that made it 321 
particularly difficult for the algorithm to distinguish archaeological sites from areas with little 322 
archaeological potential. 323 

Improvements could be made, by using instead of a single point with a square of 81x81 pixels, 324 
an average of the pixel values inside an actually determined area extent of a site, as it could have 325 
been used for the small trial area, where sites had been identified by systematic survey. This would 326 
have provided a more precise fingerprint in comparison to the non-sites. Also, picking non-sites 327 
randomly from different environments may have enhanced the probability that with very bad luck 328 
an actual not yet identified site would have been selected. A point of critique could also be the use of 329 
only two completely different datasets; another might be that these data sets were used to produce 330 
synthetic bands. Also, the vegetation types or patterns in forested covered areas produce a diversity 331 
that could only be differentiated with additional data. A highly distinguishable feature of some 332 
identified sites, the topography, as identified through drone photogrammetry [34] could be an 333 
important factor to significantly improve the study, but for this the access to high resolution regional 334 
LiDAR data would be crucial. 335 

To conclude, the study has to be seen as a trial to test and improve possibilities to 336 
semi-automatically identify areas with non-structural archaeological potential in diverse 337 
environments: this leaves great potential for future tasks to evaluate regions for unknown and 338 
potentially threatened heritage and archaeology automatically. 339 
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