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1 Abstract: We explore the dynamics of information systems. We show that the driving force for
:  information dynamics is determined by both the information landscape and information flux which
s determines the equilibrium time reversible and the nonequilibrium time-irreversible behaviours
«  of the system respectively. We further demonstrate that the mutual information rate between the
s two subsystems can be decomposed into the time-reversible and time-irreversible parts respectively,
s analogous to the information landscape-flux decomposition for dynamics. Finally, we uncover the
»  intimate relation between the nonequilibrium thermodynamics in terms of the entropy production
¢ rates and the time-irreversible part of the mutual information rate. We demonstrate the above features
s by the dynamics of a bivariate Markov chain.

1o Keywords: nonequilibrium thermodynamics; landscape-flux decomposition; mutual information
1 rate; entropy production rate

> 1. Introduction

"

13 There are growing interests in studying the information systems in the fields of control theory,
1« information theory, communication theory, and biophysics [1-6]. Significant progresses have
1s been made recently towards the understanding of the information system in terms of information
s thermodynamics [10-13]. However, the identification of the global driving force for the information
iz system dynamics is still challenging. Here we would like to fill the gap by quantifying the driving
e forces for the information system dynamics. Inspired by the recent development of landscape and flux
1o theory for the non-equilibrium systems [14-16], we will show that the driving force for information
20 dynamics is determined by both the information landscape and information flux. The information flux
a1 is a measure of the degree of nonequilibirumness or time irreversibility. Mutual information represents
22 the correlation between two information subsystems. We uncovered that the mutual information rate
2 between the two subsystems can be decomposed into the time-reversible and time-irreversible parts
2a  respectively. This is originated from the information landscape-flux decomposition for dynamics. An
2 important signature of nonequilibriumness is the entropy production or energy cost. We also uncover
26 the intimate relation between the entropy production rates and the time-irreversible part of the mutual
2z information rate. We demonstrate the above features by the dynamics of a bivariate Markov chain.

2s 2. Bivariate Markov Chains

20 Markov chains have been often assumed for the underlying information dynamics of the total
s system in random environments. That is, the two subsystems together forms a Markov chain in
a1 continuous or discrete times, which is the so-called Bivariate Markov Chain(BMC). The processes of
sz the two subsystems are correspondingly said to be marginal processes or marginal chain. The BMC
33 was used to model ion channel currents [2]. It was also used to model delays and congestion in a
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s« computer network [3]. Recently, different models of BMC appeared in non-equilibrium statistical
ss  physics for capturing or implementing the Maxwell’s demon [4-6], which can be seen as one marginal
36 chain in the BMC playing feedback control to the other marginal chain. Although the BMC has been
sz studied for decades, there are still challenges on quantifying the dynamics of the whole as well as the
s two subsystems. This is because neither of them needs to be Markovian chain in general [7], and the
3o quantifications of the probabilities (densities) for the trajectories of the two subsystems involve complex
s random matrices manipulations [8]. This leads to the problem not exactly analytically solvable. The
a  corresponding numerical solutions often lack direct mathematical and physical interpretations.

42 The conventional analysis of the BMC focuses on the mutual information [9] of the two subsystems
a2 for quantifying the underlying information correlations. There are three main representations on this.
« The first one was proposed by Sagawa [10,11] for explaining the mechanism of Maxwell’s demon in
«s  Szilard’s engine. In this representation, the mutual information between the demon and controlled
s system characterizes the observation and the feedback of the demon. This leads to an elegant way
a7 which includes the increment of the mutual information into a unified fluctuation relation. The second
s representation was proposed by Esposito [12] in an attempt to explain the violation of the second
s law in a specified BMC, the bipartite model, where the mutual information is divided into two parts
so corresponding to the two subsystems respectively, which were said to be the information flows. This
s1 representation tries to explain the mechanism of the demon because one can see that the information
s2 flows do contribute to the entropy production to both demon and controlled system. The first two
ss representations are based on the ensembles of the subsystem states. This means that the mutual
s« information is defined only on the time-sliced distributions of the system states, which somehow lacks
ss the information of subsystem dynamics: the time-correlations of the observation and feedback of the
ss demon. The last representation was seen in the work of Seifert [13] where he used a more general
sz definition of mutual information in information theory, which is defined on the trajectories of the
se two subsystem. More exactly, this is the so-called Mutual Information Rate (MIR) which quantifies
ss the correlation between the two subsystem dynamics. However, due to the difficulties from the
e possible underlying non-Markovian property of the marginal chains, exactly solvable models and
e comprehensive conclusions are still challenging from this representation.

62 In this study, we study the discrete-time BMC in both stochastic dynamics. To avoid the technical
es difficulty caused by non-Markovian dynamics, we first assume that the two marginal chains follow
e« the Markovian dynamics. The non-Markovian case will be discussed elsewhere. We explore the
es time-irreversibility of BMC and marginal processes in steady state. Then we decompose driving force
es for the underlying information dynamics as the information landscape and information flux [14-16]
ez representing the time-reversible parts and time-irreversible parts respectively. We also prove that the
e non-vanishing flux fully describes the time-irreversibility of BMC and marginal processes.

69 We focus on the mutual information rate between the two marginal chains in information
7 dynamics. Since the two marginal chains are assumed to be Markov chains here, the mutual
= information rate is exactly analytically solvable, which can be seen as the averaged conditional
72 correlation between the two subsystem states. Here the conditional correlations reveal the time
7s  correlations between the past states and the future states.

74 Corresponding to the landscape-flux decomposition in stochastic dynamics, we decompose the
7 MIR into two parts: the time-reversible and time-irreversible parts respectively. The time-reversible
76 part measures the part of the correlations between the two marginal chains in both forward
7z and backward processes of BMC. The time-irreversible part measures the difference between the
7e correlations in forward and backward processes of BMC respectively. We can see that a non-vanishing
7o time-irreversible part of the MIR must be driven by a non-vanishing flux in steady state, and can be
s seen as the sufficient condition for a BMC to be time-irreversible.
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We also reveal the important fact that the time-irreversible parts of MIR contributes to the
nonequilibrium Entropy Production Rate (EPR) of the BMC by the simple equality:

EPR of BMC = EPR of 1st marginal chain + EPR of 2nd marginal chain 4 2 X time-irreversible part of MIR.

And this relation may help to develop general theory on nonequilibrium interacting information
system dynamics.

3. Information Landscape and Information Flux for Determining the Information Dynamics,
Time-Irreversibility

Consider a finite-state, discrete-time, ergodic, and irreducible bivariate Markov chain
Z=(X,8)={(X(t),S(t),t > 1}. €))

We assume that the state space of X is given by X = {1,...,d} and the state space of S is given by
S = {1, ..., 1}. The state space of Z is then given by Z = X x S. The time evolution of distribution of
Z is characterized by the following master equation in discrete time,

pz(zt+1) =) q:(2]2)p2(2;t), fort > 1, andz € Z )
Z/

where p,(z;t) = pz(x,s;t) is the probability of observing state z (or joint probability of X = x and
S = s) at time t; g2(z|z) = gz(x,s|x/,s’) > 0 are the transition probabilities from z’ = (x/,s’) to
z = (x,s) respectively and are with ), g.(z|z") = 1.

We assume that there exists a unique stationary distribution 7, such that 7m,(z) =
Y . 4z(z|2") 2 (2’). Then given arbitrary initial distribution, the distribution goes to 77, exponentially
fast in time. If the initial distribution is 7t,, we say that Z is in Steady State (SS) and our discussion is
based on this SS.

The marginal chains of Z, i.e., X and S, do not need to be Markov chains in general. For simplicity
of analysis, we assume that both marginal chains are Markov chains and the corresponding transition
probabilities are given by gx(x|x’) and gs(s|s’) (for x,x' € X and s,s" € S) respectively. Then we have
the following master equations for X and S,

pr(x;t+1) = qu(x|x’)px(x’;t), 3)
and

ps(s;t+1) = 2‘75(5|5/)P5(5//'t)r 4)

where py(x;t) and ps(s; t) are the probabilities of observing X = x and S = s at time ¢ respectively.

We consider that both Egs.(3,4) have unique stationary solutions 7ty and 7t; which satisfy 7ty (x) =
Yo gx(x|x") e (x) and 715(s) = Yo gs(s]s”) 715 (s”) respectively. Also, we assume that when Z is in SS,
7T, and 715 are also achieved. The relations between 7y, 715 and 7, read,

{nx<x> = Lo(x,s), 5
Ts(s) = Ly 72(,5).
In the rest of this paper, we let X” = {X(1),X(2),..., X(T)}, ST = {S(1),5(2),...,S(T)}, and
zT ={z(1),Z(2),.., Z(T)} = (XT,ST) denote the time sequences of X, S, and Z in time T respectively.
To characterize the time-irreversibility of the Markov chain C in stochastic dynamics in SS, we
introduce the concept of probability flux. Here we let C denote arbitrary Markov chain in {Z, X, S},

d0i:10.20944/preprints201710.0067.v1
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m and let ¢, 7, g¢, and CT denote arbitrary state of C, the stationary distribution of C, the transition
u2 probabilities of C, and a time sequence of C in time T and in SS, respectively.

113 The averaged number transitions from the state ¢’ to state ¢, denoted by N (¢’ — ¢), in unit time
ue 1in SS can be obtained as

N(c' = ¢) = mc()ge(c|c).

us  This is also the probability of the time sequence CT = {C(1) = ¢/,C(2) = ¢}, (T = 2). Correspondingly,
ue the averaged number of reverse transitions, denoted by N(c — ¢’), reads

N(c — ') = me(c)ge(c|c).

ur  This is also the the probability of the time-reverse sequence CT = {C(1) = ¢,C(2) = ¢'}, (T = 2).
us The difference between these two transition numbers measures the time-reversibility of the forward
1o sequence CT in SS,

Je(d"—¢) = N('—=c¢)—N(c— /)
= P(CT)-P(CT)
te(c)ge(clc’) — me(c)ge(c'|e), for C =X, S, or Z. (6)

120 Then, J.(¢" — ¢) is said to be the probability flux from ¢’ to ¢ in SS. If J.(¢ — ¢) = 0 for arbitrary ¢’ and
121 ¢, then CT (T = 2) is time-reversible; otherwise when Je(c —¢) #0,C T is time-irreversible. Clearly,
122 'we have from Eq. (6) that

Je(c" = ¢) = —Jc(c = ). )

123 The transition probability determines the evolution dynamics of the information system. We
124 can decompose the transition probabilities g.(c|c’) into two parts: the time-reversible part D, and
125 time-irreversible part B, which read

ge(clc") = De(c" = ¢) + Be(c" — ¢), with (8)

De(c" = ¢) = gy (me(e)ge(ele’) + me(c)ge(c’[e)),
Be(cd' = ¢) = M:W]C(C/ — ).

126 From this decomposition, we can see that the information dynamics is determined by two driving
127 forces. One of the driving force is determined by the steady state probability distribution and is
126 time reversible. The other driving force for the information system dynamics is the steady state
120 probability flux which breaks the detailed balance and quantify the time irreversibility. Since the steady
130 state probability measures the weight of the information state, therefore it quantifies the information
11 landscape. If we define the potential landscape for the information system as ¢ = — log 7, then the

2 De(e! = 0) = 3(qe(cle’) + Z55c(c'le)) = 3(qe(ele’) + exp[—(ge(c) = ¢e(c)]ge('|c)) becomes the
113 difference or "gradient” in the potential landscape. Therefore, this reversible part of the information
13 dynamics is determined by the "gradient" of the information landscape. The steady state probability
135 flux measures the information flow in the dynamics and therefore can be termed as the information
136 flux. It is a direct measure of the nonequilibriumness in terms of time irreversibility.

137 By Egs.(7,8), we have the following relations

)

{nc(c’)Dc(c’ —¢) = 7tc(c)De(c — ),
7. (¢")Be(¢" — ¢) = —m(c)Bc(c — ).
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132 As we can see in next section, D, and B, are useful for us to quantify time-reversible and
130 time-irreversible observables of C respectively.

140 We give the interpretation that the non-vanishing probability flux J. fully measures the
w1 time-irreversibility of the chain C in time T for T > 2. Let CT be arbitrary sequence of C in SS,
12 and with no loss of generality we let T = 3. Similar to Eq. (6), the measure of time-irreversibility of
13 CT can be given by the difference between the probability of CT = {C(1),C(2),C(3)} and that of its
e time-reversal CT = {C(3),C(2),C(1)}, such as

P(CT) - P(CT)

¢(C(1))q:(C(2)|C(1))4c(C(3)[C(2)) — me(C(3))4c(C(2)[C(3))g.(C(1)[C(2))

¢(C(1)) (De(C(1) = C(2)) + B:(C(1) — C(2))) (Dc(C(2) = C(3)) + B(C(2) = C(3))) —
m:(C(3)) (De(C(3) = C(2)) + Bc(C(3) = C(2))) (De(C(2) — C(1)) + B(C(2) — C(1))),
forC=X,SorZ.

I
IS IS

s Then by the relations given in Eq.(9), we have P(CT) — P(CT) = 0 holds for arbitrary C” if and only if
s B.(C(1) = C(2)) = B.(C(2) = C(3)) = 0 or equivalently J.(C(1) — C(2)) = J.(C(2) — C(3)) = 0.
1z This conclusion can be made for arbitrary T > 3. Thus, non-vanishing J. can fully describe the
e time-irreversibility of C for C = X, S, or Z.

140 We show the relations between the fluxes of the whole system J, and of the subsystem J, as
10 following:

Jo(x = x) = () ga(x]x") — e (x) g2 (2] x)
P({x',x}) — P({x,x'})
= ) (PH(ES), (x,5)}) — P({(x,5), (+',s")}))

s,8!

= Z (72 (x',8")qz(x,8]x',8") — m2(x,8)g2 (', s"|x, )

s,s!

= Y L((x,s") = (x,9)). (10)
151 Similarly, we have
Js(s" = s) =Y L((x,s") = (x,9)). (11)

152 These relations indicate that the subsystem fluxes [, and s can be seen as the coarse-grained levels of
153 total system flux ], by averaging over the other part of the system S and X respectively. We should
15« emphasize that, Non-vanishing |, does not mean X or S is time-irreversible and vice versa.

155 4. Mutual Information Decomposition to Time-Reversible and Time-Irreversible Parts

156 According to the information theory, the two interacting information systems represented by
157 bivariate Markov chain Z can be characterized by the Mutual Information Rate (MIR) between the
1se  marginal chains X and S in SS. The mutual information rates represents correlation between two
s interacting infomration systems. The MIR is defined on the probabilities of all possible time sequences,
w0 P(ZT), P(XT),and P(ST), and is given by

(12)

T
I(X,5) = lim iZZ:P(ZT)log P(XPT()ZP()ST)

161 It measures the correlation between X and S in unit time, or say, the efficient bits of information that X
12 and S exchange with each other in unit time. The MIR must be non-negative, and a vanishing I(X, S)
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163 indicates that X and S are independent of each other. More explicitly, the corresponding probabilities
16s  Of these sequences can be evaluated by using Eqgs.(2,3,4), we have

= =
>

\_j
I

Tt (X(l))Ht 1 Hax(X(E+ D)X (8)),
( ) = m (ST t -1 qs( (t+1)[5(8)),
= (Z(D) TS 9=(Z(t + 1)[Z(8)).

1es By substituting these probabilities into Eq.(12) (see Appendix), we have the exact expression of MIR as

_ 9= (z|2')
I(X,S) = an (z|2)) logW
= <1(z|z )22 >0, forz=(x,s), andz’ = (¥, s'). (13)

!
1s  Where i(z|z') = log % is the conditional (Markovian) correlation between the states x and
X s

17 s when the transition z’ = (x/,s’) — z = (x,s) occurs. This indicates that when the two marginal
16 processes are both Markovian, the MIR is the average of the conditional (Markovian) correlations.
10 These correlations are measurable when transitions occur and can be seen from the observables of Z.
170 By noting the decomposition of transition probabilities in Eq. (8), we have a corresponding
i1 decomposition of I(X, S) such as

I(X,S) = Ip(X,S) + I3(X, S), with (14)

{ID(XIS) = Yoo Ta(2)D2(212)i(22') = 3 Lo (702(2')92(212") + 712(2)q2(2'|2))i(2]2"),
I5(X,S) = Yoo 2(2')Ba(2]2)i(2]2') = § Lo J2(2|2)i(2]2)) = § Xow (212))(i(2]2) — i(2']2)).

12 This means that the mutual information representing the correlations between the two interacting
173 systems can be decomposed into time reversible equilibrium part and time irreversible nonequilibrium
17a  part. The origin of this is from the fact the underlying information dynamics is determined by both
175 the time reversible information landscape and time irreversible information flux. These equations are
e very important to establish the link to the time-irreversibility. We now give further interpretation for
w7z Ip(X,S) and I5(X,S):

178 Consider a bivariate Markov chain Z in SS wherein X and S are dependent of each other, i.e.,
i [(X,S) = Ip(X,S) + Ig(X,S) > 0. By the ergodicity of Z, we have the MIR which measures the
10 averaged conditional correlation along the time sequences Z7,

1
lim —(i(Z(t+1)|Z(t))),r = I(X,S), for1 <t <T.
T—oo T

1:2 Then Ip(X, S) measures the change of averaged conditional correlation between X and S when a
1.2 sequence of Z turns back in time,

fim L (i(Z(t+ DIZ(0) ~ HZO|Z( -+ 1)) 1 = 21(X, S).

1z A negative Ig(X, S) shows that the correlation between X and S becomes strong in the time-reversal
1sa  process of Z; A positive Ig(X, S) shows that the correlation becomes weak in the time-reversal process
s Of Z. Both two cases show that the Z is time-irreversible since we have a non-vanishing J,. But the case
1s  Of Ip(X, S) = 0is complicated, since it indicates either a vanishing J, or a non-vanishing J,. Anyway,
1z we see that a non-vanishing Ig (X, S) is a sufficient condition for Z to be time-irreversible. On the other
1 hand, Ip(X,S) = I(X,S) — Ig(X, S) measures the correlation remaining in the backward process of Z.
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180 5. Relationship Between Mutual Information and Entropy Production

190 The Entropy Production Rates (EPR) or energy dissipation (cost) rate at steady state is a quantitative
11 nonequilibriumness measure which characterizes the time-irreversibility of the underlying processes.
102 The EPRs of the information system described by the bivariate Markov chains here can be given by

RZ—ZZZZ/]Z(Z — z)log 1 E “Zg >0,
Ry = 3 ¥ o Jx(x' = x)log q"g l‘xxg >0, (15)
Rs—zzss/]s(s — s)log 1 E'ngo,

103 where total and subsystem entropy productions R, Ry, and R correspond to Z, X, and S respectively.
10s  Here, R, usually contains the detailed interaction information of the system (or subsystems) and
15 environments; Ry and Rs provide the coarse-grained information of time-irreversible observables
s Of X and Z respectively. Each non-vanishing EPR indicates that the corresponding Markov chain
107 is time-irreversible. Again, we emphasize that a non-vanishing R, does not mean X or S is
108 time-irreversible and vice versa.

199 We are interested in the connection between these EPRs and mutual information. We can associate
200 them with Ig(X, S) by noting Eqgs.(10,11,14). We have

(X,5) = Z]z 2|2)(i(zl7) - i(2']2))
zz’
92(2|2 9 (x[x") gs(sls")
= J.(z|z — =) Jx(x]x") 1o Js(s]s") 1o
Rl 0 = § T g 2 — ) ]
1
= 5(R:—Ri—R.). (19
201 We note that Ig(X, S) intimated related to the EPRs. This builds up a bridge between these EPRs

202 and irreversible part of the mutual information. Moreover, we also have

R; =Ry +Rs +21B(X/S) >0
Ry +Rs > *ZIB(X/S)r (17)
R; > ZIB(X/S)

203 This indicates that the time-irreversible MIR contributes to the detailed EPR. In other words, The
206 differences of entropy production rate of the whole system and subsystems provides the origin of the
20s time irreversible part of the mutual information. This gives the nonequilibrium thermodynamic origin
206 Of the irreversible mutual information or correlations. Of course, since the EPR is related to the flux
207 directly as seem from above definitions, the origin of the EPR or nonequilibrium thermodynamics
20s  is from the non-vanishing information flux for the nonequilibrium dynamics. On the other hand,
200 irreversible part of the mutual information measures the correlations and contributes to the correlated
210 part of the EPR between the subsystems.

2 6. A Simple Case: Blind Demon

212 As a concrete example, we consider a two-state system coupled to two information baths a and b.
21z The states of the system are denoted by X = {x : x = 0, 1} respectively. Each bath sends an instruction
za  to the system. If the system adopts one of them, it then follows the instruction and makes change
25 of the state. The instructions generated from one bath are independently and identically distributed
zs  (Bernoulli trials). Both the probability distributions of the instructions corresponding to the baths
217 follow Bernoulli distributions and read {e,(x) : x € X,e,(x) > 0, €,(x) = 1} for bath a4 and
as {€y(x) 1 x € X, e5(x) >0,), ,(x) = 1} for bath b respectively. Since the system cannot execute two
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210 instructions simultaneously, there exists an information demon that makes choices for the system. The
220 demon is blind to care about the system and it makes choices independently and identically distributed.
21 The choices of the demon are denoted by S = {s : s = a, b} respectively. The probability distribution
222 of demon’s choices reads {P(s) : s € S,P(a) = p,P(b) =1—p,p € [0,1]}. Still, we use Z = (X, S)
223 with X € X and S € S to denote the BMC of the system and the demon.

224 The transition probabilities of the system read

9x(x]x") = pea(x) + (1 - p)ey(x).

225 The transition probabilities of the demon read
35(51s) = P(s).
226 And the transition probabilities of the joint chain read
gz(x,s]x,8") = P(s)ey (x).
22z We have the corresponding steady state distributions or the information landscape as,
7x(x) = pea(x) + (1 = pep(x),

1ts(s) = P(s),
m2(x,8) = P(s)my(x).

22s  We obtain the information fluxes as,
Jx(x' = x) =0, forallx,x’ € X
Js(s' —s) =0, foralls,s' € S
J2((x,8") = (x,8)) = P(s)P(s) (7 (x")esr (x) — 7rx(x)es(x")).

220 Here, we use the notations €;(x’) and €, (x) (s, s’ = a or b) to denote the probabilities of the instructions
230 ¥ or x from bath a or b briefly. We obtain the EPRs as

Ry =0,
Rs =0,
Ry =Y p(1 = p)(€a(x) — €(x))(log €a(x) —logep(x)).

231 We evaluate the MIR as

I(X,5) = — an(x)log e (X) + pZeu(x)logea(x) +(1-p) Zeb(x)logeb(x).

X

2.2 The time-irreversible part of I(X, S) reads,
1
I3(X,S) = ERZ.

233 7. Conclusion

234 In this work, we identify the driving forces for the information system dynamics. We show that
235 the information system dynamics is determined by both the information landscape and information
236 flux representing the time reversible and time irreversible part of the information dynamics. We further
237 demonstrate that the mutual information representing the correlations can be decomposed into time
238 reversible part and time irreversible part originated from the landscape and flux decomposition of
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230 the information dynamics. Finally we uncover the intimate relationship between the difference of
2a0  the entropy production of the whole system and the subsystems and the time irreversible part of the
za1  mutual information. This will help for understanding the non-equilibrium behaviour of the interacting
22 information system dynamics in random environments. Furthermore, we believe that our conclusion
2a3 can be made more general for the BMC with non-Markovian marginal chains which we will discuss in
2as  a separate work.
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22s  Abbreviations

240 The following abbreviations are used in this manuscript:

BMC Bivariate Markov Chain
EPR  Entropy Production Rate
MIR  Mutual Information Rate
SS Steady State

22 Appendix

253 Here, we derive the exact form of Mutual Information Rate (MIR, Eq.(13)) in steady state by using
=a  the cumulant-generating function.
We write arbitrary time sequence of Z in time T in the form as following

zT ={z(1),..,2(i),.., Z(T)}, for T > 2,

where Z(i) (for i > 1) denotes the state at time i. The corresponding probability of ZT is in the
following form

T-1
P(Z") = m.(Zy) {H Qz(zi+1zi)} : (A1)
i=1

We let the chain U = (X, S) to denote a process that X and S follow the same Markov dynamics
in Z but are independent of each other. Then we have the transition probabilities of U read

qu(ulu’) = q(x,s]x’,5") = g2 (x|x")gs(s]s"). (A2)

Then the probability of a time sequence of U, U”, with the same trajectory of ZT reads

T-1
P(UT) = 1tu(Z1) {H qu(zi+1|zi)} ’ (A.3)
i=1

s with 7, (x,s) = 71 (x)75(s) being the stationary probability of U.
For evaluating the exact form of MIR, we introduce the cumulant-generating function of the
(z")

random variable log %,

K(m,T) =log < exp (m log IIjElZI;))> >ZT. (A.4)
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We can see that
19K(m, T)
ST am
.1 p(zT)
= lim =( 1
T T< °& pur) >ZT
=1(X,S). (A.5)
Thus, our idea is to evaluate K(m, T) at first. We have
P(zT) ) >
K(m,T) =log { exp | mlog ———
1 —vuop (s )
(P(ZT))erl
=1lo —
8 {ZZ (P
(n.erl ZO qm+1 z+1|Z )
= log ) H = , (A.6)
{{Z(O),Z(l) ..... Z(T)} (nm(ZO i=0 qu z+1|Z )
2 where we realize that the last equality can be rewritten in the form of matrices multiplication.
We introduce the following matrices and vectors for Eq. (A.6) such that
Q. = {(QZ)(z,z’) =q,(z|), forz,z € Z} ,
CIEIED
Gm—{Gm qz,forz,z’EZ},
( ) ( ( ))(z,z) qu (Z|ZI)
., = {(m;); = m;(2), forz € Z},
_ _ (z)
v(m) - {(v(m))z - NT(Z) 7 (A7)
where Q; is the transition matrix of Z; 7 is the stationary distribution of Z. It can be also verified that
Qz = G(O)r
7, =v(0),
= Q:7;,
1+QZ = 1+/
/
lim dG(m) = <1im dG(m)) =q,(z|') log qz(z|z,), forz,z € Z 3,
m—0 dm m=0 dm ) qu(z|z")
. do(m) . do(m)\ 72(2)
nlgb T = { (7}113}) am ), 1,(z) log ()’ forze Z 3, (A.8)

257 where 17 is the vector of all 1’s with appropriate dimension.
Then K(m, T) can be rewritten in a compact form such that

K(m,T) = log {1+GT—1(m)v(m)} . (A.9)
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Then, we substitute Eq. (A.9) into Eq. (A.5) and have
... 10K(m,T)
1(X,8) = Jim lim =
taT-1
 lim Lim 10log {1'G" ! (m)v(m)}
T—oom—0 T aom
— i e L yvqteT-2y, 4G(m) taT-1,, A0(m)
= TlgﬂorLI% T {(T DN1I'G' = (m) I v(m)+1'G' " (m) I
— L _1\1teT-2 . dG(m) tAT-1 . do(m)
= Tlgrc}o T {(T 1)1'G" 7=(0) <7}Z1Ln(] T v(0)+1'G"(0) nl}g’b Im . (A.10)
By noting Eq. (A.8) and T > 2, we obtain Eq. (13) from Eq. (A.10) that
T ) _11teT-2 . dG(m) tAT-1 . do(m)
I(X,9) = Tlgr;o T {(T 1)1'G" ~(0) (%1310 T v(0)+1'G" ~(0) nl}grb T
. 1\ (e dGm)\ 1 (o do(m)
- %%{(1 T) 1 (r}}inm dm Tz + T1 111113}) dm
. dG(m)
_qt
=1 (11111310 dm )nz
! o/ ! o qz(x’5|xlfsl)
= Z 7_[Z(x ;S )qZ(x/S|x /S )log (All)

(20,00 ) 0x(x[x")qs (s[s")’
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