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Abstract: We explore the dynamics of information systems. We show that the driving force for1

information dynamics is determined by both the information landscape and information flux which2

determines the equilibrium time reversible and the nonequilibrium time-irreversible behaviours3

of the system respectively. We further demonstrate that the mutual information rate between the4

two subsystems can be decomposed into the time-reversible and time-irreversible parts respectively,5

analogous to the information landscape-flux decomposition for dynamics. Finally, we uncover the6

intimate relation between the nonequilibrium thermodynamics in terms of the entropy production7

rates and the time-irreversible part of the mutual information rate. We demonstrate the above features8

by the dynamics of a bivariate Markov chain.9

Keywords: nonequilibrium thermodynamics; landscape-flux decomposition; mutual information10

rate; entropy production rate11

1. Introduction12

There are growing interests in studying the information systems in the fields of control theory,13

information theory, communication theory, and biophysics [1–6]. Significant progresses have14

been made recently towards the understanding of the information system in terms of information15

thermodynamics [10–13]. However, the identification of the global driving force for the information16

system dynamics is still challenging. Here we would like to fill the gap by quantifying the driving17

forces for the information system dynamics. Inspired by the recent development of landscape and flux18

theory for the non-equilibrium systems [14–16], we will show that the driving force for information19

dynamics is determined by both the information landscape and information flux. The information flux20

is a measure of the degree of nonequilibirumness or time irreversibility. Mutual information represents21

the correlation between two information subsystems. We uncovered that the mutual information rate22

between the two subsystems can be decomposed into the time-reversible and time-irreversible parts23

respectively. This is originated from the information landscape-flux decomposition for dynamics. An24

important signature of nonequilibriumness is the entropy production or energy cost. We also uncover25

the intimate relation between the entropy production rates and the time-irreversible part of the mutual26

information rate. We demonstrate the above features by the dynamics of a bivariate Markov chain.27

2. Bivariate Markov Chains28

Markov chains have been often assumed for the underlying information dynamics of the total29

system in random environments. That is, the two subsystems together forms a Markov chain in30

continuous or discrete times, which is the so-called Bivariate Markov Chain(BMC). The processes of31

the two subsystems are correspondingly said to be marginal processes or marginal chain. The BMC32

was used to model ion channel currents [2]. It was also used to model delays and congestion in a33
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computer network [3]. Recently, different models of BMC appeared in non-equilibrium statistical34

physics for capturing or implementing the Maxwell’s demon [4–6], which can be seen as one marginal35

chain in the BMC playing feedback control to the other marginal chain. Although the BMC has been36

studied for decades, there are still challenges on quantifying the dynamics of the whole as well as the37

two subsystems. This is because neither of them needs to be Markovian chain in general [7], and the38

quantifications of the probabilities (densities) for the trajectories of the two subsystems involve complex39

random matrices manipulations [8]. This leads to the problem not exactly analytically solvable. The40

corresponding numerical solutions often lack direct mathematical and physical interpretations.41

The conventional analysis of the BMC focuses on the mutual information [9] of the two subsystems42

for quantifying the underlying information correlations. There are three main representations on this.43

The first one was proposed by Sagawa [10,11] for explaining the mechanism of Maxwell’s demon in44

Szilard’s engine. In this representation, the mutual information between the demon and controlled45

system characterizes the observation and the feedback of the demon. This leads to an elegant way46

which includes the increment of the mutual information into a unified fluctuation relation. The second47

representation was proposed by Esposito [12] in an attempt to explain the violation of the second48

law in a specified BMC, the bipartite model, where the mutual information is divided into two parts49

corresponding to the two subsystems respectively, which were said to be the information flows. This50

representation tries to explain the mechanism of the demon because one can see that the information51

flows do contribute to the entropy production to both demon and controlled system. The first two52

representations are based on the ensembles of the subsystem states. This means that the mutual53

information is defined only on the time-sliced distributions of the system states, which somehow lacks54

the information of subsystem dynamics: the time-correlations of the observation and feedback of the55

demon. The last representation was seen in the work of Seifert [13] where he used a more general56

definition of mutual information in information theory, which is defined on the trajectories of the57

two subsystem. More exactly, this is the so-called Mutual Information Rate (MIR) which quantifies58

the correlation between the two subsystem dynamics. However, due to the difficulties from the59

possible underlying non-Markovian property of the marginal chains, exactly solvable models and60

comprehensive conclusions are still challenging from this representation.61

In this study, we study the discrete-time BMC in both stochastic dynamics. To avoid the technical62

difficulty caused by non-Markovian dynamics, we first assume that the two marginal chains follow63

the Markovian dynamics. The non-Markovian case will be discussed elsewhere. We explore the64

time-irreversibility of BMC and marginal processes in steady state. Then we decompose driving force65

for the underlying information dynamics as the information landscape and information flux [14–16]66

representing the time-reversible parts and time-irreversible parts respectively. We also prove that the67

non-vanishing flux fully describes the time-irreversibility of BMC and marginal processes.68

We focus on the mutual information rate between the two marginal chains in information69

dynamics. Since the two marginal chains are assumed to be Markov chains here, the mutual70

information rate is exactly analytically solvable, which can be seen as the averaged conditional71

correlation between the two subsystem states. Here the conditional correlations reveal the time72

correlations between the past states and the future states.73

Corresponding to the landscape-flux decomposition in stochastic dynamics, we decompose the74

MIR into two parts: the time-reversible and time-irreversible parts respectively. The time-reversible75

part measures the part of the correlations between the two marginal chains in both forward76

and backward processes of BMC. The time-irreversible part measures the difference between the77

correlations in forward and backward processes of BMC respectively. We can see that a non-vanishing78

time-irreversible part of the MIR must be driven by a non-vanishing flux in steady state, and can be79

seen as the sufficient condition for a BMC to be time-irreversible.80
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We also reveal the important fact that the time-irreversible parts of MIR contributes to the81

nonequilibrium Entropy Production Rate (EPR) of the BMC by the simple equality:82

EPR of BMC = EPR of 1st marginal chain + EPR of 2nd marginal chain + 2× time-irreversible part of MIR.

And this relation may help to develop general theory on nonequilibrium interacting information83

system dynamics.84

3. Information Landscape and Information Flux for Determining the Information Dynamics,85

Time-Irreversibility86

Consider a finite-state, discrete-time, ergodic, and irreducible bivariate Markov chain87

Z = (X, S) = {(X(t), S(t)), t ≥ 1}. (1)

We assume that the state space of X is given by X = {1, ..., d} and the state space of S is given by88

S = {1, ..., l}. The state space of Z is then given by Z = X × S . The time evolution of distribution of89

Z is characterized by the following master equation in discrete time,90

pz(z; t + 1) = ∑
z′

qz(z|z′)pz(z′; t), for t ≥ 1, and z ∈ Z (2)

where pz(z; t) = pz(x, s; t) is the probability of observing state z (or joint probability of X = x and91

S = s) at time t; qz(z|z′) = qz(x, s|x′, s′) ≥ 0 are the transition probabilities from z′ = (x′, s′) to92

z = (x, s) respectively and are with ∑z qz(z|z′) = 1.93

We assume that there exists a unique stationary distribution πz such that πz(z) =94

∑z′ qz(z|z′)πz(z′). Then given arbitrary initial distribution, the distribution goes to πz exponentially95

fast in time. If the initial distribution is πz, we say that Z is in Steady State (SS) and our discussion is96

based on this SS.97

The marginal chains of Z, i.e., X and S, do not need to be Markov chains in general. For simplicity98

of analysis, we assume that both marginal chains are Markov chains and the corresponding transition99

probabilities are given by qx(x|x′) and qs(s|s′) (for x, x′ ∈ X and s, s′ ∈ S) respectively. Then we have100

the following master equations for X and S,101

px(x; t + 1) = ∑
x′

qx(x|x′)px(x′; t), (3)

and102

ps(s; t + 1) = ∑
s′

qs(s|s′)ps(s′; t), (4)

where px(x; t) and ps(s; t) are the probabilities of observing X = x and S = s at time t respectively.103

We consider that both Eqs.(3,4) have unique stationary solutions πx and πs which satisfy πx(x) =104

∑x′ qx(x|x′)πx(x′) and πs(s) = ∑s′ qs(s|s′)πs(s′) respectively. Also, we assume that when Z is in SS,105

πx and πs are also achieved. The relations between πx, πs and πz read,106 {
πx(x) = ∑s πz(x, s),

πs(s) = ∑x πz(x, s).
(5)

In the rest of this paper, we let XT = {X(1), X(2), ..., X(T)}, ST = {S(1), S(2), ..., S(T)}, and107

ZT = {Z(1), Z(2), ..., Z(T)} = (XT , ST) denote the time sequences of X, S, and Z in time T respectively.108

To characterize the time-irreversibility of the Markov chain C in stochastic dynamics in SS, we109

introduce the concept of probability flux. Here we let C denote arbitrary Markov chain in {Z, X, S},110
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and let c, πc, qc, and CT denote arbitrary state of C, the stationary distribution of C, the transition111

probabilities of C, and a time sequence of C in time T and in SS, respectively.112

The averaged number transitions from the state c′ to state c, denoted by N(c′ → c), in unit time113

in SS can be obtained as114

N(c′ → c) = πc(c′)qc(c|c′).

This is also the probability of the time sequence CT = {C(1) = c′, C(2) = c}, (T = 2). Correspondingly,115

the averaged number of reverse transitions, denoted by N(c→ c′), reads116

N(c→ c′) = πc(c)qc(c′|c).

This is also the the probability of the time-reverse sequence C̃T = {C(1) = c, C(2) = c′}, (T = 2).117

The difference between these two transition numbers measures the time-reversibility of the forward118

sequence CT in SS,119

Jc(c′ → c) = N(c′ → c)− N(c→ c′)

= P(CT)− P(C̃T)

= πc(c′)qc(c|c′)− πc(c)qc(c′|c), for C = X, S, or Z. (6)

Then, Jc(c′ → c) is said to be the probability flux from c′ to c in SS. If Jc(c′ → c) = 0 for arbitrary c′ and120

c, then CT (T = 2) is time-reversible; otherwise when Jc(c′ → c) 6= 0, CT is time-irreversible. Clearly,121

we have from Eq. (6) that122

Jc(c′ → c) = −Jc(c→ c′). (7)

The transition probability determines the evolution dynamics of the information system. We123

can decompose the transition probabilities qc(c|c′) into two parts: the time-reversible part Dc and124

time-irreversible part Bc, which read125

qc(c|c′) = Dc(c′ → c) + Bc(c′ → c), with (8)Dc(c′ → c) = 1
2πc(c′)

(πc(c′)qc(c|c′) + πc(c)qc(c′|c)),
Bc(c′ → c) = 1

2πc(c′)
Jc(c′ → c).

From this decomposition, we can see that the information dynamics is determined by two driving126

forces. One of the driving force is determined by the steady state probability distribution and is127

time reversible. The other driving force for the information system dynamics is the steady state128

probability flux which breaks the detailed balance and quantify the time irreversibility. Since the steady129

state probability measures the weight of the information state, therefore it quantifies the information130

landscape. If we define the potential landscape for the information system as φ = − log π, then the131

Dc(c′ → c) = 1
2 (qc(c|c′) + πc(c)

πc(c′)
qc(c′|c)) = 1

2 (qc(c|c′) + exp[−(φc(c)− φc(c′)]qc(c′|c)) becomes the132

difference or "gradient" in the potential landscape. Therefore, this reversible part of the information133

dynamics is determined by the "gradient" of the information landscape. The steady state probability134

flux measures the information flow in the dynamics and therefore can be termed as the information135

flux. It is a direct measure of the nonequilibriumness in terms of time irreversibility.136

By Eqs.(7,8), we have the following relations137 {
πc(c′)Dc(c′ → c) = πc(c)Dc(c→ c′),

πc(c′)Bc(c′ → c) = −πc(c)Bc(c→ c′).
(9)
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As we can see in next section, Dc and Bc are useful for us to quantify time-reversible and138

time-irreversible observables of C respectively.139

We give the interpretation that the non-vanishing probability flux Jc fully measures the140

time-irreversibility of the chain C in time T for T ≥ 2. Let CT be arbitrary sequence of C in SS,141

and with no loss of generality we let T = 3. Similar to Eq. (6), the measure of time-irreversibility of142

CT can be given by the difference between the probability of CT = {C(1), C(2), C(3)} and that of its143

time-reversal C̃T = {C(3), C(2), C(1)}, such as144

P(CT)− P(C̃T)

= πc(C(1))qc(C(2)|C(1))qc(C(3)|C(2))− πc(C(3))qc(C(2)|C(3))qc(C(1)|C(2))
= πc(C(1)) (Dc(C(1)→ C(2)) + Bc(C(1)→ C(2))) (Dc(C(2)→ C(3)) + Bc(C(2)→ C(3)))−
πc(C(3)) (Dc(C(3)→ C(2)) + Bc(C(3)→ C(2))) (Dc(C(2)→ C(1)) + Bc(C(2)→ C(1))) ,

for C = X, S or Z.

Then by the relations given in Eq.(9), we have P(CT)− P(C̃T) = 0 holds for arbitrary CT if and only if145

Bc(C(1) → C(2)) = Bc(C(2) → C(3)) = 0 or equivalently Jc(C(1) → C(2)) = Jc(C(2) → C(3)) = 0.146

This conclusion can be made for arbitrary T > 3. Thus, non-vanishing Jc can fully describe the147

time-irreversibility of C for C = X, S, or Z.148

We show the relations between the fluxes of the whole system Jz and of the subsystem Jx as149

following:150

Jx(x′ → x) = πx(x′)qx(x|x′)− πx(x)qx(x′|x)
= P({x′, x})− P({x, x′})
= ∑

s,s′

(
P({(x′, s′), (x, s)})− P({(x, s), (x′, s′)})

)
= ∑

s,s′

(
πz(x′, s′)qz(x, s|x′, s′)− πz(x, s)qz(x′, s′|x, s)

)
= ∑

s,s′
Jz((x′, s′)→ (x, s)). (10)

Similarly, we have151

Js(s′ → s) = ∑
x,x′

Jz((x′, s′)→ (x, s)). (11)

These relations indicate that the subsystem fluxes Jx and Js can be seen as the coarse-grained levels of152

total system flux Jz by averaging over the other part of the system S and X respectively. We should153

emphasize that, Non-vanishing Jz does not mean X or S is time-irreversible and vice versa.154

4. Mutual Information Decomposition to Time-Reversible and Time-Irreversible Parts155

According to the information theory, the two interacting information systems represented by156

bivariate Markov chain Z can be characterized by the Mutual Information Rate (MIR) between the157

marginal chains X and S in SS. The mutual information rates represents correlation between two158

interacting infomration systems. The MIR is defined on the probabilities of all possible time sequences,159

P(ZT), P(XT), and P(ST), and is given by160

I(X, S) = lim
T→∞

1
n ∑

ZT

P(ZT) log
P(ZT)

P(XT)P(ST)
. (12)

It measures the correlation between X and S in unit time, or say, the efficient bits of information that X161

and S exchange with each other in unit time. The MIR must be non-negative, and a vanishing I(X, S)162
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indicates that X and S are independent of each other. More explicitly, the corresponding probabilities163

of these sequences can be evaluated by using Eqs.(2,3,4), we have164 
P(XT) = πx(X(1))∏T−1

t=1 qx(X(t + 1)|X(t)),

P(ST) = πs(S(1))∏T−1
t=1 qs(S(t + 1)|S(t)),

P(ZT) = πz(Z(1))∏T−1
t=1 qz(Z(t + 1)|Z(t)).

By substituting these probabilities into Eq.(12) (see Appendix), we have the exact expression of MIR as165

I(X, S) = ∑
z,z′

πz(z′)qz(z|z′) log
qz(z|z′)

qx(x|x′)qs(s|s′)

=
〈
i(z|z′)〉z′ ,z ≥ 0, for z = (x, s), and z′ = (x′, s′). (13)

where i(z|z′) = log qz(z|z′)
qx(x|x′)qs(s|s′) is the conditional (Markovian) correlation between the states x and166

s when the transition z′ = (x′, s′) → z = (x, s) occurs. This indicates that when the two marginal167

processes are both Markovian, the MIR is the average of the conditional (Markovian) correlations.168

These correlations are measurable when transitions occur and can be seen from the observables of Z.169

By noting the decomposition of transition probabilities in Eq. (8), we have a corresponding170

decomposition of I(X, S) such as171

I(X, S) = ID(X, S) + IB(X, S), with (14){
ID(X, S) = ∑z,z′ πz(z′)Dz(z|z′)i(z|z′) = 1

2 ∑z,z′(πz(z′)qz(z|z′) + πz(z)qz(z′|z))i(z|z′),
IB(X, S) = ∑z,z′ πz(z′)Bz(z|z′)i(z|z′) = 1

2 ∑z,z′ Jz(z|z′)i(z|z′) = 1
4 ∑z,z′ Jz(z|z′)(i(z|z′)− i(z′|z)).

This means that the mutual information representing the correlations between the two interacting172

systems can be decomposed into time reversible equilibrium part and time irreversible nonequilibrium173

part. The origin of this is from the fact the underlying information dynamics is determined by both174

the time reversible information landscape and time irreversible information flux. These equations are175

very important to establish the link to the time-irreversibility. We now give further interpretation for176

ID(X, S) and IB(X, S):177

Consider a bivariate Markov chain Z in SS wherein X and S are dependent of each other, i.e.,178

I(X, S) = ID(X, S) + IB(X, S) > 0. By the ergodicity of Z, we have the MIR which measures the179

averaged conditional correlation along the time sequences ZT ,180

lim
T→∞

1
T
〈
i(Z(t + 1)|Z(t))〉ZT = I(X, S), for 1 < t < T.

Then IB(X, S) measures the change of averaged conditional correlation between X and S when a181

sequence of Z turns back in time,182

lim
T→∞

1
T
〈
i(Z(t + 1)|Z(t))− i(Z(t)|Z(t + 1))

〉
ZT = 2IB(X, S).

A negative IB(X, S) shows that the correlation between X and S becomes strong in the time-reversal183

process of Z; A positive IB(X, S) shows that the correlation becomes weak in the time-reversal process184

of Z. Both two cases show that the Z is time-irreversible since we have a non-vanishing Jz. But the case185

of IB(X, S) = 0 is complicated, since it indicates either a vanishing Jz or a non-vanishing Jz. Anyway,186

we see that a non-vanishing IB(X, S) is a sufficient condition for Z to be time-irreversible. On the other187

hand, ID(X, S) = I(X, S)− IB(X, S) measures the correlation remaining in the backward process of Z.188
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5. Relationship Between Mutual Information and Entropy Production189

The Entropy Production Rates (EPR) or energy dissipation (cost) rate at steady state is a quantitative190

nonequilibriumness measure which characterizes the time-irreversibility of the underlying processes.191

The EPRs of the information system described by the bivariate Markov chains here can be given by192 
Rz =

1
2 ∑z,z′ Jz(z′ → z) log qz(z|z′)

qz(z′ |z) ≥ 0,

Rx = 1
2 ∑x,x′ Jx(x′ → x) log qx(x|x′)

qx(x′ |x) ≥ 0,

Rs =
1
2 ∑s,s′ Js(s′ → s) log qs(s|s′)

qs(s′ |s) ≥ 0,

(15)

where total and subsystem entropy productions Rz, Rx, and Rs correspond to Z, X, and S respectively.193

Here, Rz usually contains the detailed interaction information of the system (or subsystems) and194

environments; Rx and Rs provide the coarse-grained information of time-irreversible observables195

of X and Z respectively. Each non-vanishing EPR indicates that the corresponding Markov chain196

is time-irreversible. Again, we emphasize that a non-vanishing Rz does not mean X or S is197

time-irreversible and vice versa.198

We are interested in the connection between these EPRs and mutual information. We can associate199

them with IB(X, S) by noting Eqs.(10,11,14). We have200

IB(X, S) =
1
4 ∑

z,z′
Jz(z|z′)(i(z|z′)− i(z′|z))

=
1
4 ∑

z,z′
Jz(z|z′) log

qz(z|z′)
qz(z′|z)

− 1
4 ∑

x,x′
Jx(x|x′) log

qx(x|x′)
qx(x′|x) −

1
4 ∑

s,s′
Js(s|s′) log

qs(s|s′)
qs(s′|s)

=
1
2
(Rz − Rx − Rs). (16)

We note that IB(X, S) intimated related to the EPRs. This builds up a bridge between these EPRs201

and irreversible part of the mutual information. Moreover, we also have202 
Rz = Rx + Rs + 2IB(X, S) ≥ 0,

Rx + Rs ≥ −2IB(X, S),

Rz ≥ 2IB(X, S).

(17)

This indicates that the time-irreversible MIR contributes to the detailed EPR. In other words, The203

differences of entropy production rate of the whole system and subsystems provides the origin of the204

time irreversible part of the mutual information. This gives the nonequilibrium thermodynamic origin205

of the irreversible mutual information or correlations. Of course, since the EPR is related to the flux206

directly as seem from above definitions, the origin of the EPR or nonequilibrium thermodynamics207

is from the non-vanishing information flux for the nonequilibrium dynamics. On the other hand,208

irreversible part of the mutual information measures the correlations and contributes to the correlated209

part of the EPR between the subsystems.210

6. A Simple Case: Blind Demon211

As a concrete example, we consider a two-state system coupled to two information baths a and b.212

The states of the system are denoted by X = {x : x = 0, 1} respectively. Each bath sends an instruction213

to the system. If the system adopts one of them, it then follows the instruction and makes change214

of the state. The instructions generated from one bath are independently and identically distributed215

(Bernoulli trials). Both the probability distributions of the instructions corresponding to the baths216

follow Bernoulli distributions and read {εa(x) : x ∈ X , εa(x) ≥ 0, ∑x εa(x) = 1} for bath a and217

{εb(x) : x ∈ X , εb(x) ≥ 0, ∑x εb(x) = 1} for bath b respectively. Since the system cannot execute two218
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instructions simultaneously, there exists an information demon that makes choices for the system. The219

demon is blind to care about the system and it makes choices independently and identically distributed.220

The choices of the demon are denoted by S = {s : s = a, b} respectively. The probability distribution221

of demon’s choices reads {P(s) : s ∈ S , P(a) = p, P(b) = 1− p, p ∈ [0, 1]}. Still, we use Z = (X, S)222

with X ∈ X and S ∈ S to denote the BMC of the system and the demon.223

The transition probabilities of the system read224

qx(x|x′) = pεa(x) + (1− p)εb(x).

The transition probabilities of the demon read225

qs(s|s′) = P(s).

And the transition probabilities of the joint chain read226

qz(x, s|x′, s′) = P(s)εs′(x).

We have the corresponding steady state distributions or the information landscape as,227 
πx(x) = pεa(x) + (1− p)εb(x),

πs(s) = P(s),

πz(x, s) = P(s)πx(x).

We obtain the information fluxes as,228 
Jx(x′ → x) = 0, for all x, x′ ∈ X
Js(s′ → s) = 0, for all s, s′ ∈ S
Jz((x′, s′)→ (x, s)) = P(s)P(s′)(πx(x′)εs′(x)− πx(x)εs(x′)).

Here, we use the notations εs(x′) and εs′(x) (s, s′ = a or b) to denote the probabilities of the instructions229

x′ or x from bath a or b briefly. We obtain the EPRs as230 
Rx = 0,

Rs = 0,

Rz = ∑x p(1− p)(εa(x)− εb(x))(log εa(x)− log εb(x)).

We evaluate the MIR as231

I(X, S) = −∑
x

πx(x) log πx(x) + p ∑
x

εa(x) log εa(x) + (1− p)∑
x

εb(x) log εb(x).

The time-irreversible part of I(X, S) reads,232

IB(X, S) =
1
2

Rz.

7. Conclusion233

In this work, we identify the driving forces for the information system dynamics. We show that234

the information system dynamics is determined by both the information landscape and information235

flux representing the time reversible and time irreversible part of the information dynamics. We further236

demonstrate that the mutual information representing the correlations can be decomposed into time237

reversible part and time irreversible part originated from the landscape and flux decomposition of238
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the information dynamics. Finally we uncover the intimate relationship between the difference of239

the entropy production of the whole system and the subsystems and the time irreversible part of the240

mutual information. This will help for understanding the non-equilibrium behaviour of the interacting241

information system dynamics in random environments. Furthermore, we believe that our conclusion242

can be made more general for the BMC with non-Markovian marginal chains which we will discuss in243

a separate work.244
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Abbreviations248

The following abbreviations are used in this manuscript:249

250

BMC Bivariate Markov Chain
EPR Entropy Production Rate
MIR Mutual Information Rate
SS Steady State

251

Appendix252

Here, we derive the exact form of Mutual Information Rate (MIR, Eq.(13)) in steady state by using253

the cumulant-generating function.254

We write arbitrary time sequence of Z in time T in the form as following

ZT = {Z(1), ..., Z(i), ..., Z(T)}, for T ≥ 2,

where Z(i) (for i ≥ 1) denotes the state at time i. The corresponding probability of ZT is in the
following form

P(ZT) = πz(Z1)

{
T−1

∏
i=1

qz(Zi+1|Zi)

}
. (A.1)

We let the chain U = (X, S) to denote a process that X and S follow the same Markov dynamics
in Z but are independent of each other. Then we have the transition probabilities of U read

qu(u|u′) = q(x, s|x′, s′) = qx(x|x′)qs(s|s′). (A.2)

Then the probability of a time sequence of U, UT , with the same trajectory of ZT reads

P(UT) = πu(Z1)

{
T−1

∏
i=1

qu(Zi+1|Zi)

}
, (A.3)

with πu(x, s) = πx(x)πs(s) being the stationary probability of U.255

For evaluating the exact form of MIR, we introduce the cumulant-generating function of the

random variable log P(ZT)
P(UT)

,

K(m, T) = log
〈

exp
(

m log
P(ZT)

P(UT)

)〉
ZT

. (A.4)
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We can see that

lim
T→∞

lim
m→0

1
T

∂K(m, T)
∂m

= lim
T→∞

1
T

〈
log

P(ZT)

P(UT)

〉
ZT

= I(X, S). (A.5)

Thus, our idea is to evaluate K(m, T) at first. We have

K(m, T) = log
〈

exp
(

m log
P(ZT)

P(UT)

)〉
ZT

= log

{
∑
ZT

(P(ZT))m+1

(P(UT))m

}

= log

 ∑
{Z(0),Z(1),...,Z(T)}

(πm+1
z (Z0))

(πm
u (Z0))

T−1

∏
i=0

qm+1
z (Zi+1|Zi)

qm
u (Zi+1|Zi)

 , (A.6)

where we realize that the last equality can be rewritten in the form of matrices multiplication.256

We introduce the following matrices and vectors for Eq. (A.6) such that

QQQz =
{
(QzQzQz)(z,z′) = qz(z|z′), for z, z′ ∈ Z

}
,

GGG(m) =

{
(GGG(m))(z,z′) =

qm+1
z (z|z′)
qm

u (z|z′)
, for z, z′ ∈ Z

}
,

πππz = {(πππz)z = πz(z), for z ∈ Z} ,

vvv(m) =

{
(vvv(m))z =

πm+1
z (z)
πm

u (z)

}
, (A.7)

where QQQz is the transition matrix of Z; πππz is the stationary distribution of Z. It can be also verified that

QQQz = GGG(0),

πππz = vvv(0),

πππz = QQQzπππz,

111†QQQz = 111†,

lim
m→0

dGGG(m)

dm
=

{(
lim
m→0

dGGG(m)

dm

)
(z,z′)

= qz(z|z′) log
qz(z|z′)
qu(z|z′)

, for z, z′ ∈ Z
}

,

lim
m→0

dvvv(m)

dm
=

{(
lim
m→0

dvvv(m)

dm

)
z
= πz(z) log

πz(z)
πu(z)

, for z ∈ Z
}

, (A.8)

where 111† is the vector of all 1’s with appropriate dimension.257

Then K(m, T) can be rewritten in a compact form such that

K(m, T) = log
{

111†GGGT−1(m)vvv(m)
}

. (A.9)
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Then, we substitute Eq. (A.9) into Eq. (A.5) and have

I(X, S) = lim
T→∞

lim
m→0

1
T

∂K(m, T)
∂m

= lim
T→∞

lim
m→0

1
T

∂ log
{

111†GGGT−1(m)vvv(m)
}

∂m

= lim
T→∞

lim
m→0

1
T

{
(T − 1)111†GGGT−2(m)

dGGG(m)

dm
vvv(m) + 111†GGGT−1(m)

dvvv(m)

dm

}
= lim

T→∞

1
T

{
(T − 1)111†GGGT−2(0)

(
lim
m→0

dGGG(m)

dm

)
vvv(0) + 111†GGGT−1(0)

(
lim
m→0

dvvv(m)

dm

)}
. (A.10)

By noting Eq. (A.8) and T ≥ 2, we obtain Eq. (13) from Eq. (A.10) that

I(X, S) = lim
T→∞

1
T

{
(T − 1)111†GGGT−2(0)

(
lim
m→0

dGGG(m)

dm

)
vvv(0) + 111†GGGT−1(0)

(
lim
m→0

dvvv(m)

dm

)}
= lim

T→∞

{(
1− 1

T

)
111†
(

lim
m→0

dGGG(m)

dm

)
πππz +

1
T

111†
(

lim
m→0

dvvv(m)

dm

)}
= 111†

(
lim
m→0

dGGG(m)

dm

)
πππz

= ∑
(x,s),(x′ ,s′)

πz(x′, s′)qz(x, s|x′, s′) log
qz(x, s|x′, s′)

qx(x|x′)qs(s|s′)
. (A.11)
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