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ABSTRACT 

Apart from their established role in embryonic development Nerve Growth Factors (NGFs) 

have diverse functions in the nervous system. Their role in integration of physiological 

functioning of the nervous system is now attracting attention. In the present analysis, we 

propose a new paradigm about a novel role of NGFs. We hypothesize that NGFs play 

imperative role in maintaining psychological integrity of an individual as a biological system. 

This function may be mediated through HPA-axis- operated homeostatic mechanisms; stress 

induced disruption of which may lead to psychiatric disorders.  

 

Current literature suggests existence of constitutive homeostatic regulatory mechanisms for 

NGFs disruption which may lead to important behavioural effects. NGFs have been shown to 

play crucial parts in endocrine regulation. This is especially true with the prototype ‘NGF’ 

and Brain Derived Neurotrophic Factor (BDNF). These moieties have been observed to play 

important role in maintaining neuro-endocrine homeostasis thereby having a profound impact 

on the psychological health of an individual. Role of NGFs and HPA-axis activation (in 

separate studies) in developing psychiatric disorders - especially those born of stress - have 

been established. Literature suggests their unique interplay for producing a common effect 

which might be implicated in stress induced genesis of psychiatric disorders. This aspect, 

therefore, needs to be elucidated further as a disease etiogenesis model. This model may yield 

important insights into the evolution of psychiatric disorders and may open ways for new 

therapeutic approaches.  
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INTRODUCTION 

The emerging role of Nerve Growth Factors (NGFs) in integration of physiological 

functioning of the nervous system is gaining a lot of interest. NGFs, especially the prototype 
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‘NGF’ and Brain Derived Neurotrophic Factor (BDNF) have been stated to have important 

roles in maintaining neuro-endocrine homeostatic status of the body, which could have a 

great impact on the psychological health of individuals (1–3). Hypothalamo-pituitary-adrenal 

(HPA) axis is understood as the nodal point around which neuro-endocrine-homeostasis of 

the body is established. In this context, NGFs have been reported effectively for their linkage 

to genesis of psychiatric disorders; and there are some studies available on the 

overlapping/crosstalk of NGFs-HPA interactions. We initiated our probes with extensive 

review of the literature on NGFs’ conglomeration in stress, and its causal relationship to 

psychiatric disorders. Our analysis revealed that a neuro-endocrine model of NGFs-mediated 

HPA-axis activation may be involved in stress induced genesis of conditions falling within 

the umbrella of psychiatric disorders.  

 

 

 

NGFs: Descendents of Superfamily of Neurotrophin 

NGFs belong to the Superfamily ‘Neurotrophins’  which has 'NGF' as the prototype, and it 

also includes BDNF, NT-3, NT-4/5 (4), NT-6 and NT-7 (5, 6) (in invertebrates only) (Fig. 

1a); which are more or less similar (7) in structure and function to the prototype NGF (8, 9). 

NGFs execute their actions binding low affinity p75neurotrophin receptor (p75NTR) and high 

affinity Trk receptors (Trk A, B, and C) (9, 10). The NGFs receptor binding has been 

redundant and one type of receptor can bind to more than one NGFs with differential affinity 

and known to synergise for the common neural functions (11, 12) (Fig. 1b). NGFs secretion 

in neurons has been found autocrine/paracrine and to perpetuate itself and each other’s 

secretion (13, 14). The NGFs and their receptors are regarded as a convergence point for 

many signalling pathways related to neurocognitive functions (15) and a vast range of effects 

executed by NGFs in CNS, beginning from normal neuro-physiological functioning to 

survival and death of neurons (16–18). In adult human brain mainly prototype NGF and 

BDNF (more specifically BDNF) have been implicated in most of the neurotrophin mediated 

neurocognitive functions (19, 20) although NT-3 and NT-4/5 have been also known to be 

involved in certain functions related to synaptic plasticity in adult brain (21–23).  
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Fig. 1 a. Superfamily of neurotrophins.  

NGFs- Nerve growth factors, *= In invertebrates only                      

b. Nerve growth factors and their cognate receptors. 

 (Intact and dashed lines are showing signaling through specific high affinity Trk receptors 

and a common low affinity receptor- P75NTR   respectively.)  

 

 

 

 

 

 

 

 

NGFs in adult brain: The omnipresent molecules 

 

NGFs and their receptors have been detected ubiquitously in all regions of adult brain in 

various animal studies, and more specifically in hippocampus and neocortex (24–26). The 

hippocampus had been noted to have highest NGFs synthesis in brain and amongst all NGFs, 

BDNF was most abundant (25). The expressions of the NGFs were found heterogeneous and 

showed region specific dominance in different brain regions.  In cortex, a study reported that 

in rat brain, expression of prototype ‘NGF’, BDNF, and NT-3 was varying in different layers 

(26).      
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In hippocampus NGFs were present more specifically in pyramidal and granular layer 

neurons and showed variations in expression in different CA regions, and in cerebellum were 

more specifically localised to Purkinje and granule cell neurons (27).  

Similar to the NGFs, their receptors were also found heterogeneously distributed and showed 

regions specific dominancy which indicated target regions of their ligands, i.e., TrkB, 

receptor for BDNF, was found more expressed in ependyma and periventricular brain 

parenchyma. And TrkA, high affinity receptor for prototype ‘NGF’ was more densely 

expressed in basal forebrain regions and striatum (28).  

Uniquely, intraventricular injections of NGFs in animal brains showed that they can also 

diffuse to other brain regions with differential limits i.e., prototype ‘NGF’ reached to the 

cortical regions,  BDNF limited to the periventricular regions, and NT-3 reached some 

intermediate destinations (28).  

The mode of NGFs secretion in neurons has been a matter of contention. Current evidence 

suggests,  NGFs’ secretion is not only constitutional (target derived and showing retrograde 

axonal transport serving trophic functions in neurons) but also have prominent activity 

dependent, regulated secretion which move anterograde via dendrites and axons to act at the 

synapses with similar processes of other neurons; where they add extensively in synaptic 

transmission and plasticity (29–32).  

The prototype NGF was found more specifically expressed in inhibitory GABAergic neurons 

(co-labelled GAD65/67) than excitatory neurons (co-labelled CaMKIIa). GABAergic 

neurons are considered as primary source of prototype ‘NGF’ production in CNS (33).  

 

The expression of NGFs and their receptors were found in different subcortical regions (as 

striatum, thalamus, hypothalamus, basal forebrain nuclei, septal regions) and brainstem nuclei 

also. However, the expression was not only restricted in neurons, concomitantly expressed in 

glial cells and nerve fiber bundles also (27, 28, 34).     

 

         

NGFs homeostasis: as a concept  

NGFs have been demonstrated to have extensive role in physiological homeostasis regulation 

(3, 35, 36) and it seems reasonable to speculate for a homeostatic control system of their own 

(3), disruption of which may result in psychiatric disorders (37, 38). Evolutionary link 

therefore has been seen amongst different NGFs by sharing common moiety, receptors, 

signalling cascades and mode of action (10).   
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The neurons found to co-localize more than one NGFs or their receptors (39). The NGFs 

have also noticed to regulate own or other family members in autocrine/paracrine manner in 

CNS (14) , and their regulation also found to follow circadian rhythm (40, 41). And a change 

in NGFs levels also found to reflect on levels of HPA hormones or various neurotransmitters 

in the brain (42, 43). NGFs also found to show neural activity dependent secretion, change in 

levels with sleep, physical activities, and responsive to the environmental changes (44–46). 

All these evidences suggest that NGFs maintain a homeostatic control system of their own 

which plays in concert with other neuro-endocrine homeostatic systems in the body.   

 

 

Role of NGFs in maintenance of normal behaviour  

The significant role of NGFs in normal behavioural processes has been warranted by peer 

reviewed research (47, 48). The role of NGFs in various neurophysiological functions which 

determine normal behavior is known for long; the specific NGFs have been found involved in 

synaptic transmission (20, 49), memory and learning (50–52), sleep (53–55), and neuronal 

protection (18, 56).  

NGFs have been reported mediating behaviour induced cerebral plasticity (19, 20). A 

forebrain specific BDNF gene knock-out study in adult mice revealed that there was 

significant (30% reduction) changes in density of dendritic spines of cortical neurons that 

reflected in smaller brain size and compromised behaviour as difficulty in spatial learning 

and greater inclination for depression (48).        

A study on male hamsters has shown that differential action of BDNF was responsible for 

dominant-subordinate relationship in a resident-intruder model in which individual hamsters 

were identified as winner or loser on the basis of behaviour.  Losing animals had significantly 

more BDNF m-RNA in basolateral and medial nuclei of amygdala while winners had more 

BDNF m-RNA in dentate gyrus of dorsal hippocampus indicating a role of BDNF in 

subsequent experience dependent behavioral plasticity. The experience dependent learning of 

dominant or subordinate behaviour was mediated by BDNF got further confirmed when 

investigators were able to block acquisition of such behaviour with use of K252a (a Trk 

receptor antagonist (57). 

Single nucleotide polymorphic variants of BDNF (rs6265, Val66Met) and NGF (rs6330,  

Ala35Val) genes have been reported to be associated with anxiety phenotypes in human 
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populations (58). Another study implicated BDNF in depression related personality traits in 

healthy volunteers (59). 

Egan et al found a polymorphic variant of BDNF (Val66Met) in subjects associated with poor 

episodic memory and abnormal hippocampal activation (60). Few other studies had 

additionally found the BDNF (Val66Met) polymorph to be associated with anxiety trait, 

depression, HPA and SAM (sympathetic adrenal medullary) axis hyperactivity, and higher 

anticipatory cortisol response to psychological stress in population (61–63).  

NGFs have also been implicated in various causes of psychosocial stress which may cause 

deviation from normal social behavior as: social displacement, disharmony, future 

uncertainty bereavement, complicated upbringing and intense conflicts, etc (64–66).  

 

NGFs have also been implicated in regulation of reproductive behaviours through 

hypothalamus-pituitary-gonadal (HPG) axis, a close functionary of the HPA. An 

experimental study claimed that the prototype 'NGF' is the constitutive element of semen and 

prostatic secretions, and it can mediate influence of male on sexual behaviour of female or 

can induce ovulations through HPG axis (67). 

The prototype ‘NGF’ has been observed to be associated with intimate sexual behaviours; a 

study found serum prototype ‘NGF’ level, and not other NGFs higher in persons indulged in 

early romantic love (68).  

NGFs have a definite role in neurogenesis, network organizations, formation and remodelling 

of synapses in developing brain which also keeps refining afterwards under their regulation 

(43). In adult brain (also in humans) where neurogenesis keeps going on as a physiological 

event; as in hippocampal region (dentate gyrus) and subventricular zone (SVZ) of lateral 

ventricles (69, 70); the role of NGFs in induced neurogenesis, remodelling of neuronal 

connections, and synaptic organizations with new experiences in these brain regions provide 

individual the ability to adapt to new life situations (71, 72),  a disruption of which may lead 

to aberrant behavioural changes alternatively described as psychiatric disorders (73).  

NGFs have also been seen to interact with dopaminergic neurons thus facilitating dopamine 

release at synapses (74, 75). Dopamine is the chief substrate for mesolimbic reward pathway. 

Such a function is crucial for experience dependent modulation of normal behaviour (76). A 
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dopamine-BDNF link in reward pathway functions has been well substantiated by animal 

model studies of social defeat stress (77, 78).    

Neuronal activity dependent secretions of NGFs have been shown to involve cAMP response 

element binding protein (CREB) as the chief mediator. CREB is known to mediate many 

neurotransmitters and neuromodulators in brain. It also activates many transcription factors, 

and influences expression of immediate early genes involved in synaptic transmission and 

plasticity, and experience dependent remodelling of neuronal circuits (79–81). The extensive 

role of CREB in normal neuronal functions and resultant behaviour, and its NGFs mediated 

regulation further substantiates that NGFs may be crucial for maintenance of normal mental 

health and behaviour. 

 

NGFs present a common link to the psychiatric disorders  

NGFs have been implicated in almost all kinds of psychiatric disorders. There is ample  

evidence for involvement of prototype NGF and BDNF in development of schizophrenia 

(82–84), bipolar illness (37, 85), depression (86, 87), Obsessive-compulsive disorder (OCD) 

(88–90), post traumatic stress disorder (PTSD) (91, 92), eating disorder (93), conversion 

disorder (94), and also in anxiety and aggression (57, 83, 95) and social defeat induced 

avoidance behaviour (77). Many studies reported NGFs’ involvement in psychopathology of 

suicidal behaviour (96–98).  The prototype 'NGF' has been implicated in the mechanism of 

drug addiction, alcoholism and substance abuse also (99–102). The published reports suggest 

that an imbalance in NGFs homeostasis may have significant contribution in the pathogenesis 

of these behavioural deviances (1, 37, 103); even from the treatment point of view, the 

antidepressant effects of antipsychotic drugs are known to mediate through NGFs (2, 38).   

 

 

 

Plausible mechanisms for NGFs mediated HPA axis activation model 

Increasing number of studies is linking neurotrophins or NGFs, and stress to the 

pathophysiology of psychiatric disorders (104–106). NGFs work as a homeostatic interface 

between organism and environment which is robust to get disrupted from ordinary 

perturbations of daily life and helps the organism to adapt to the changing survival conditions 
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(107). A persistent state of mounting stress may disrupt NGFs homeostasis in the body (107, 

108), and in consequence may dysregulate NGFs mediated HPA axis activation (107, 109). 

The ambiguity raised in the NGFs-HPA axis regulatory system is to negatively affect mood 

and cognition of the individual which in turn would cause more NGFs-HPA axis 

dysregulation, and a vicious cycle of this (Fig. 2) may lead to stable changes in individual’s 

behaviour in an attempt to re-establish the disrupted homeostasis (110–112). If the NGFs-

HPA axis homeostasis is not re-established, the deviant changes in behaviour may further 

progress into manifested psychiatric disorders (19, 113).  

 

 

 

Fig. 2.  Stress induced HPA axis mediated disruption in NGFs homeostasis  
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Published literature supports the notion that stress induced NGFs mediated dysregulation of 

HPA axis may end up as a psychiatric disorder (if stress causing factors persist). NGFs show 

activity and stress based synthesis in various brain regions involved in stress response 

regulation (1, 105, 114) and the involved brain regions are known to differentially regulate 

HPA axis. For example, prefrontal cortex and hippocampus are known to inhibit but 

amygdala excites it (115). In the similar context, chronic immobilization stress in male rats 

was observed to produce inverse neuronal BDNF secretion and hence growth changes 

mediated by it, in hippocampus and amygdala (116).   

The differential regulation of HPA axis by the various brain regions involved in stress 

response regulation perhaps may be the reason of phenotypic diversity observed in 

psychiatric disorders (115, 117).  

Experimental studies suggest that hippocampus is the most severely affected brain region 

(owing to prolonged glucocorticoid secretion) in chronic restraint stress (118–120). 

Hippocampal inhibitory control of HPA axis activity, which is a normal phenomenon in 

homeostasis, is also known to be compromised in chronic restraint stress (115, 121); and 

along with glucocorticoids, NGFs are known to be central players causing this dysregulation 

(109, 112, 122). Hippocampal pyramidal neurons secrete NGFs in response to stress which 

correspond to HPA axis activity (123, 124), and also TrkB, the receptor for BDNF is found to 

be co-localized with glucocorticoid receptor (GR) and having mutual influence on each 

other’s signalling in these neurons (122). A study by Lambert et al has shown in primary rat 

cortical neurons that BDNF induces structural change at GR gene (phosphorylation at serine 

155 and 287) and causes significant change in its transcriptome (125). Similar evidence for 

essential glucocorticoid-BDNF interaction for stress response have also been noted in 

hypothalamus controlling CRH synthesis at PVN (114). A schematic depiction of NGFs 

mediated hippocampal-HPA axis regulation in normal health and chronic restraint stress is 

presented in Fig. 3.  
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Fig. 3. Hippocampal-HPA axis regulation in normal health and chronic restraint stress  

(In normal health: Increased secretion of specific NGFs in hippocampus, and HPA axis 

hormones occurs in response of fresh stressful stimuli. An increase in cortisone release at 

adrenal as a stress response sends negative feedback through glucocorticoid receptor (GR) in 

hippocampus (but GR expression is maintained) which in turn inhibits HPA activity. Also the 

NGFs secretion response in challenge of fresh stress is maintained. In chronic restraint stress: 

HPA axis regulation gets epigenetically modified causing enduring increase in cortisone 

secretion at adrenal which in turn increases feedback inhibition at hippocampus resulting in 

significant reduction in GR expression,  which further decreases hippocampal inhibitory 

control on HPA axis facilitating its persistent hyperactivation and exaggerated response in 

challenge of fresh stressful stimuli. The NGFs secretion response is also reduced.  (Thickness 

of signaling lines and feedback loops are indicating their strength) (126). 
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Evidences from animal model studies 

There are multiple animal model studies supporting NGFs mediated regulation of HPA axis. 

Studies have also established dysregulation of particular NGFs (prototype ‘NGF’ and BDNF) 

and HPA axis in chronic stress giving way for genesis of psychiatric disorders.  

Givalois et al showed that a single intra-cerebroventricular injection of BDNF in non-

anaesthetized adult rats modified HPA axis activity. In paraventricular nuclei of 

hypothalalamus an increase of BDNF was found to alter CRH (corticotrophin releasing 

hormone) and AVP (arginine vasopressin) synthesis, which in turn lead ACTH release 

(adreno-cortico-trophic hormone) from anterior pituitary and cortisone release from adrenal 

cortex. This change in HPA axis activity in response of exogenous BDNF was similar to the 

physiological condition when a rat is subjected to immobilization stress which suggested role 

of BDNF as stress responsive intracellular messenger (127).  

Naert et al examined the effect of chronic stress (restraint 3 hour/day for 3 weeks) in adult 

rats on behaviour and HPA axis activity in parallel with studying BDNF levels in 

hypothalamus, pituitary and hippocampus. Chronic stress induced anxiety, anhedonia and 

depression like states in these model animals. HPA axis activity was found highly modified 

with increase in the basal level of hypothalamic CRH and AVP synthesis and plasma levels 

of ACTH and cortisone. Added to that, basal BDNF levels were increased in the 

hypothalamus, pituitary and hippocampus. Also, the BDNF response to subsequently applied 

acute novel stress was found modified. All these findings indicated plausible role of BDNF in 

chronic stress induced genesis of psychiatric disorders (42).  

In a consecutive study Naert et al tested the effect of continuous intra-cerebroventricular 

administration of BDNF on HPA axis activity in adult rats and found that it not only modified 

HPA activity but also biological rhythms. These authors had a view that a change in HPA 

activity and biological rhythms occurred through regulatory effect of BDNF on AVP m- 

RNA expression (AVP m-RNA was found to be upregulated after continuous BDNF 

infusion) in suprachiasmatic nucleus (SCN) of hypothalamus (which is regarded as the 

biological clock) (128). The BDNF and its cognate receptor Trk B are known to be expressed 

in SCN and showed circadian variations (41).   

Furthermore, in a study Naert et al tested the effect of partial inhibition of endogenous BDNF 

on HPA activity in adult rats. BDNF knock down by small interfering RNA (siRNA) caused 
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decreased endogenous BDNF production in different brain regions which although didn’t 

influence basal HPA activity but the knock down rats showed decreased BDNF production 

and concomitant altered ACTH and cortisone production in response to restraint stress which 

indicated essential role of BDNF in stress adaptation (129).  

The acute and chronic intra-cerebroventricular administration of BDNF into brain of rat pups 

found to produce changes in HPA activation but only chronic administration of BDNF caused 

stable changes in HPA axis regulation resulting in persistently increased secretion of 

cortisone by adrenal cortex leading to deviant behaviour, while changes in HPA axis 

activation induced by acute doses of BDNF were adjusted by bodily homeostatic systems 

(127, 128). The HPA axis changes induced by chronic administration of BDNF resembled 

that by chronic stress and believed to involve epigenetic mechanisms (130, 131). The 

epigenetic mechanisms are supposed to induce structural adaptations in the chromosomal 

regions so as to register, signal or perpetuate altered activity states (132). The essential role of 

the epigenetics in producing stable changes in HPA axis regulation has been effectively 

proved in animal model studies of chronic stress. Maternal separation of the rat pups (which 

is regarded as an equivalent to chronic stress) induced stable changes in HPA axis regulation 

leading to hyper-cortisone response in stress challenges. The HPA axis changes were  

mediated by epigenetic mechanisms in the form of hypermethylation in promoter regions of 

glucocorticoid receptor (GR) gene hence reducing expression of GR receptors, which in turn 

promoted cortisone hyper secretion by influencing negative feedback loops (133–135), 

conversely, better maternal care caused hypomethylation in the promoter region of the GR 

gene increasing the GR expression leading to reduced cortisone secretion response in face of 

stress challenges (135).  

In experiments blocking the promoter region methylation of GR by histone deacetylase 

inhibitor (introduces change in chromatin structure which would reduce DNA length 

available for methyl group attachment) blocked any increase of cortisone secretion in stress 

challenges in rat pups who had comparatively got low maternal care (135). In contrast, 

addition of methyl groups (by introducing methyl donors) in promoter regions of GR gene in 

adult rats which had got good maternal care as pups induced hyper cortisone secretion thus 

reversing the set maternal programming for stress response (136). The environmental 

enrichment could also reverse the maternal separation induced stress response modification 

(137), which is a good indication for plausible reversibility of HPA axis mediated persistent 
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stress induced disorders. Epigenetic modification of HPA axis stress response also occurred 

at higher levels in the axis than GR synthesis at adrenal, and were also mediated through 

other epigenetic methods than methylation as phosphorylation (125), histone modifications 

and micro-RNA mediated transcriptional regulations (138).  

In an ELS study in male mice maternal separation induced increase in cortisone response in 

next stress challenges was found associated with sustained hypomethylation in POMC (a 

precursor for ACTH) gene promoter region. The mice also presented despair like behaviour 

and memory deficit which were supposedly mediated through AVP signalling and epigenetic 

adaptations at AVP enhancer locus (139). A persistent increase in AVP expression was found 

in hypothalamic paraventricular nuclei (PVN) associated with decreased DNA methylation at 

AVP enhancer locus in an another ELS study done in mice (140).   

In a different ELS study in adult rats decreased AVP enhancer locus methylation in  

amygdala found associated with development of active coping mechanisms when presented 

with predatory stress challenge (141). 

Not only the BDNF expression, but also the prototype NGF had been found to be altered 

significantly in stress caused by various reasons in animal models (123, 142); it was found 

raised in maternal deprivation in rats (123); and specific hypothalamic nuclei were reported 

having raised 'NGF' levels in aggression in mice (95). Occasional reports also implicated NT-

3 in stress (108).   

A dopaminergic modulation of NGFs-HPA axis mediated stress response has also been 

shown in animal models of social defeat. Social defeat was found to raise BDNF levels in 

nucleus accumbens (NAc) which is a destination centre for dopaminergic neurons residing at 

ventral tegmental area (VTA) in mesolimbic reward pathway. A raised BDNF level was 

found associated with learning social avoidance behaviour in model animals and mediated 

through CRH (from PVN of hypothalamus) (77, 78).   

 

Translational studies in human 

There are also reports translating the animal model observation of stress response 

modifications in persistent stress in human subjects (142–144). A single nucleotide 
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polymorphism of BDNF (Val66Met) in human populations has also been found associated 

with altered stress response (63).  

 

Role of epigenetic modifications in NGFs mediated HPA activation model: Behavioural 

adaptations to persistent stress manifesting as psychiatric disorders 

NGFs have been intensively implicated in creating epigenetic memory of environmental 

stimulus (65, 104). MeCP2 (methyl-CpG-binding domain 2), a methyl binding domain 

(MBD) and transcription repressor which is essential for accomplishing gene silencing effect 

of the methylation needed to dissociate from the BDNF promoter region to reprogram the 

stress response (145). An increase in BDNF synthesis accompanying any neuronal activity 

has been a neurophysiological phenomenon. A rapid increase in its synthesis in specific brain 

regions has been a characteristic finding in face of stress challenges (124, 146); Although 

methylation in the BDNF promoter (exon IV) in specific brain regions was found in chronic 

stress only (42, 147). The hypermethylation of a CpG nucleotide at 5’ end of the binding site 

of a transcription factor, nerve growth factor inducible protein A (NGFIA) in GR promoter 

region has also been reported in all rat pups which got reduced maternal care. Certain 

alteration in the DNA methylation pattern for NGFIA is considered as an essential step in the 

epigenetic reprogramming of a stress response (135, 148).  

The persistently raised basal levels of BDNF, and hypercortisone secretion along with other 

stable alterations in HPA axis set points may be inducing transcriptomic changes in 

expression of genes related to synaptic functions (149, 150), and causing structural and 

functional changes in neurons in form of the synaptic organization and synaptic transmission 

leading to altered behaviour of the organism (20, 151) which is perceived as a psychiatric 

disorder.  
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CONCLUSIVE REMARKS 

Understanding the mechanisms of NGFs- HPA interactions and its disruption in persistent 

stress may help to understand stress induced pathogenesis of psychiatric disorders.   

Experimental proof of emergence and alleviation of psychiatric disorders in loss and gain of 

NGFs-HPA axis homeostasis in cohort studies can establish the value of this model in 

general.  
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