

1 Article

2 **Concentrations of carotenoids and tocopherols in
3 breast milk from urban Chinese mothers and their
4 associations with maternal characteristics: a
5 cross-sectional study**6 **Yong Xue ¹, Esther Campos Giménez ^{2,*}, Karine Meisser Redeuil ², Antoine Lévèques ², Lucas
7 Actis-Goretta ², Gerard Vinyes- Parés ³, Yumei Zhang ^{1,*}, Peiyu Wang ¹, and Sagar K. Thakkar ²**8 ¹ Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science
9 Center, No.38 Xueyuan Road, Haidian District, Beijing 100191, P.R. China; xueyong_pku@bjmu.edu.cn
10 (Y.X.); zhangyumei@bjmu.edu.cn (Y.Z.); wpeiyu138@163.com (P.W.)11 ² Nestlé Research Center, Nestec, Vers-chez-les-blanc, CH-1000 Lausanne 26, Switzerland;
12 campos-gimenez@rdls.nestle.com (E.C.G.); Karine.Meisser@rdls.nestle.com (K.M.R.);
13 Antoine.Leveques@rdls.nestle.com (A.L.); lucas.actisgoretta@rdls.nestle.com (L.A.);
14 sagar.thakkar@rdls.nestle.com (S.K.T.)15 ³ Nestlé Research Center Beijing, Building E-F, No.5 Dijin Road, Haidian District, Beijing 100095, P.R. China;
16 Gerard.VinyesPares@RD.nestle.com (G.V.)

17 * Correspondence: zhangyumei@bjmu.edu.cn or campos-gimenez@rdls.nestle.com; Tel.: +86 10 82801743

18

19 **Abstract:** This study aims to quantify carotenoids and tocopherols in human milk from healthy
20 Chinese women, and to explore their associations with region, lactation stage, and maternal
21 socio-economic and obstetric factors. Human milk was obtained from 509 healthy mothers and the
22 compounds of carotenoids and tocopherols were analyzed by high-performance liquid
23 chromatography after mild saponification and solvent extraction. Socio-economic and obstetric
24 characteristics of the mothers and their dietary intakes through a single 24-hour dietary recall were
25 evaluated. The median content of each component [$\mu\text{g}/100\text{mL}$, median (interquartile range)] in
26 colostrum and mature milk was, respectively, β -carotene 8.0 (4.7-15.2) and 1.8 (1.4-2.7),
27 β -cryptoxanthin 6.2 (2.4-12.9) and 1.8 (1.1-3.4), lutein 5.7 (2.9-10.2) and 3.4 (1.5-6.0), lycopene 6.3
28 (4.0-9.9) and 1.4 (1.1-2.0), zeaxanthin 1.0 (0.6-1.5) and 1.0 (0.6-1.4), α -tocopherol 645 (388-1176) and
29 211 (131-321), γ -tocopherol 68 (48-121) and 77 (45-120). The levels of all those vitamins presented
30 regional differences, and decreased as lactation stage increased except for zeaxanthin and
31 γ -tocopherol. Associations of carotenoid contents with maternal education, delivery mode, and
32 present body mass index were found in multivariate analyses. These results suggest that some
33 region, lactation stage, obstetric and socio-economic factors are associated with human milk
34 concentrations of carotenoids and tocopherols in healthy Chinese mothers.35 **Keywords:** Breast milk; Carotenoids; Tocopherols; Colostrum; Lactation stage; Cross-sectional
36 study

37

38 **1. Introduction**39 According to World Health Organization, exclusive breastfeeding is recommended for the first
40 six months of life [1], period within which breast milk is the sole source of nutrition, providing all
41 necessary nutrients to maintain health and permit normal growth. Thereafter, complementary
42 feeding should be introduced while breastfeeding continues up to 2 years of age or beyond, so that
43 breast milk is still a significant source of nutrients, at least in some parts of the world [2]. The
44 recommended micronutrient intake for infants is currently based on the amounts provided by

45 human milk from well-nourished women [3, 4]; although this has been questioned by some authors,
46 given the high variability observed among individuals [5, 6]. Nevertheless, in absence of better
47 studies to determine optimal intake, milk composition remains the best estimate to determine infant
48 requirements.

49 Vitamin A designates a family of compounds having the biological activity of retinol. Vitamin
50 A is present in breast milk in the forms of preformed retinol (as retinyl esters) but also present as
51 provitamin A carotenoids (α -carotene, β -carotene and β -cryptoxanthine). Carotenoids may
52 represent a significant source of vitamin A for humans [7, 8] and, in particular, for the nursing infant,
53 especially in developing countries [3, 9]. Vitamin A is required in many essential metabolic functions
54 for the growing infant. Some of these processes, such as haematopoiesis, bone development,
55 maintenance of epithelial cells, mucous membranes and immune functions can be supported by all
56 forms of vitamin A (including provitamin A carotenoids); while vision and reproduction specifically
57 require retinol [10] Since infants are born with very low reserves of vitamin A in the liver regardless
58 on the mother's nutritional status [3], they rely entirely on breast milk to support growth and build
59 up liver storage. In addition, non-provitamin A carotenoids (lutein, zeaxanthine and lycopene) have
60 been associated with varied health benefits, from antioxidant to anti-inflammatory, immune or visual
61 functions and cancer prevention [11-15].

62 Vitamin E is a family of eight naturally occurring compounds sharing a common structure,
63 namely α -, β -, γ - and δ -tocopherol and α -, β -, γ - and δ -tocotrienol. The most frequently present in
64 nature and the most active form is by far α -tocopherol (showing 100 % vitamin E activity), followed
65 by β -tocopherol, α -tocotrienol and γ -tocopherol. Breast milk contains primarily α -tocopherol,
66 followed by smaller amounts of γ - and β -tocopherol. The main function of vitamin E in the human
67 body is as an antioxidant, protecting fatty acids from oxidation in cell membranes and lipoproteins,
68 but also improves immunity and prevents inflammatory conditions [16, 17].

69 Given the importance of all these compounds for the newborn and the specific risk of vitamin
70 deficiency in lactating women and breastfed children [18, 19], the need to determine their
71 concentrations in breast milk and how they depend on external or internal factors has been
72 identified. A large number of reports in the composition of milk from Chinese mothers have focused
73 on macronutrients [20-22], minerals [20, 23], and fatty acids [23-29], while only a few studies report
74 fat soluble vitamin or carotenoid values [9, 30, 31]. Shi et al. [30] provide data on the vitamin content
75 of milk from Chinese mothers from Inner Mongolia, which might be difficult to extrapolate to the
76 whole country, partially due to the low number of data points and partially to the fact that it
77 represents only a part of the country. The multinational study of Canfield et al. [9] showed
78 differences in carotenoid patterns between countries, reflecting that each one the dietary carotenoid
79 supply had no indication on the geographical origin of all samples, although this might be limited.
80 Another multinational study [31] showed that, regardless of the difficulty to detect trends due to
81 high individual variability, some carotenoids presented clear differences between countries,
82 confirming previous results, but presenting the same drawbacks related to the limited geographical
83 variability of the samples. Thus, considering the geographical extension and multivariate lifestyles
84 and diet in different parts of China, it would be necessary to study the vitamin and carotenoid
85 composition of milk from Chinese women from different regions through lactation. Vitamin
86 composition data are available in mothers from other countries [9, 31-39] and can be used for data
87 comparison.

88 The changes in milk composition depending on different factors such as stage of lactation or
89 duration of the feeding [38-40], maternal diet, supplementation and nutritional status [36, 41-48]
90 have been demonstrated. In recent years, association studies have found other potential factors
91 influencing the concentrations of vitamins in breast milk, including maternal socio-economic [34, 49,
92 50], obstetric or physiological factors [34, 38, 48, 49, 51, 52]. Indeed, maternal socio-economic and
93 obstetric factors are changing in China, such as the rate of cesarean delivery, which increased from
94 3.4 % in 1988 to 39.3 % in 2008 [53] and to 54.5 % in 2011 [54]; as well as the increase in inappropriate
95 gestational weight gain (GWG), partly due to over nutrition and rising of different dietary habits
96 [55], which may have an impact on the micronutrient status of lactating women and the composition

97 of their milk. Therefore, it is deemed necessary to research the associations of carotenoids and
98 tocopherols in breast milk with maternal characteristics, obstetric and nutritional factors in China.

99 The aims of this study were 1) to determine the composition of carotenoids and tocopherols in
100 breast milk from healthy mothers from urban areas of China along lactation (zero to eight months) 2)
101 to evaluate their interregional differences, and 3) to explore associations with nutrient intake. In
102 addition, the associations with maternal socio-economic and obstetric characteristics, such as age,
103 offspring gender, education, household income, delivery mode, body mass index (BMI), and GWG,
104 were investigated. This study is part of the larger initiative Maternal Infant Nutrition Growth
105 (MING) study.

106 **2. Materials and Methods**

107 *2.1 Background of participants*

108 The MING study was a cross-sectional study designed to investigate the dietary and nutritional
109 status of pregnant women, lactating mothers and young children aged from birth up to three years
110 living in urban areas of China. In addition, the human milk composition of Chinese lactating
111 mothers was characterized. The study was conducted between 2011 and 2012. Three cities (Beijing,
112 Suzhou and Guangzhou) were chosen for the characterization of human milk according to the
113 geographical location and status of economic development. In each city, one grade A hospital and
114 one maternal and child care hospital were randomly selected at each site, mothers at lactation period
115 0 to 240 days were randomly selected based on child registration information. Subjects period 0-5
116 days were recruited at the grade A hospital, and subjects period 6-11 days and 12-30 days were
117 contacted by phone to join the study whereas other subjects were recruited at maternal and child
118 care hospital; if participation was dismissed a replacement was made. Recruitment, and milk
119 sampling as well as baseline data collection were done in separate days.

120 A stratified sampling of 540 lactating mothers in six lactation periods of 0-4, 5-11, 12-30, 31-60,
121 61-120 and 121-240 days was obtained in MING study. Eligibility criteria included women between
122 18-45 years of age giving birth to a single, healthy, full-term gestation and exclusive breastfeeding at
123 least until 4 months. Exclusion criteria included gestational diabetes, hypertension, cardiac diseases,
124 or acute communicable diseases. Lactating women who had nipple or lacteal gland diseases, been
125 using of hormone in recent three months, postpartum depression, or insufficient skills to understand
126 study questionnaires were also excluded.

127 In this cross-sectional study, carotenoids and tocopherols were quantified in 509 breast milk
128 samples collected at different stages from early to late lactation in healthy Chinese women from
129 three different cities (Beijing: n = 151; Guangzhou: n = 180; Suzhou: n = 178). Figure 1 displays the
130 recruitment flowchart from eligibility to sample analysis.

131

132

133

Figure 1. Study flow chart subjects enrolled134 2.2 *Data collection*

135 All subjects completed a structured questionnaire including socio-economic and lifestyle
 136 aspects of the mother such as household income, maternal education and age. Self-reported weight
 137 at the beginning and at the end of pregnancy, number of gestational weeks at delivery, and delivery
 138 mode were also recorded. Additionally, a physical examination evaluated basic anthropometric
 139 parameters including height and weight which were explored to calculate the current BMI (kg/m²),
 140 and BMI < 18.5, 18.5-24.9, 25.0-29.9, and ≥ 30 kg/m² were defined as underweight, normal weight,
 141 overweight, and obese, respectively. These data was obtained to calculate the GWG. According to
 142 the guidelines from the Institute of Medicines (IOM) in the United States [56] suggesting that
 143 underweight women gain 12.5 kg to 18 kg, normal weight women gain 11.5 kg to 16 kg, overweight
 144 women gain 7 kg to 11.5 kg, and obese women gain 5 kg to 9 kg respectively, inadequate, adequate,
 145 and excessive weight gain were confirmed.

146 Dietary intake was assessed using one 24-hour dietary recall. Trained interviewers asked
 147 lactating mothers about all foods, beverages and supplements consumed on the previous day. A
 148 picture booklet of common foods consumed in China and measurement aids were used to estimate
 149 the amount of foods and beverages consumed. Details about food ingredients of homemade foods or
 150 meals eaten out were also asked and recorded. In addition, information on the use of dietary
 151 supplements was collected, including the name and brand of the supplement, age when supplement
 152 was first given and the amount used. A list of dietary supplements commonly used in China was
 153 used to identify the supplements reported during the interview.

154 Data collection was done through face-to-face interviews during the day of human milk sample
 155 collection. In addition, date of birth and gender information of the baby was collected after the data
 156 collection since the data was not included in the initial questionnaires. Subjects were contacted by
 157 phone and were asked to clarify these two aspects retrospectively.

158 2.3 *Dietary assessment*

159 After revision of questionnaires, food records were entered in a database and individual intakes
 160 of vitamin A, total carotenoids, retinol, vitamin E, and α-tocopherol were processed with a food
 161 composition database created for this study that included data from Chinese Food Composition

162 (CFC) tables 2004 & 2009 [57, 58], the Japanese Food Composition (JFC) tables 2005 [59] and branded
163 products and supplements from China. In total, it contained information of 1773 foods with 36
164 nutrients. Finally we also compiled nutritional information from 75 dietary supplements sold in
165 China.

166 *2.4 Sample collection*

167 Breast milk sampling was standardized for all subjects and an electric pump (Horigen
168 HNR/X-2108ZB, Xinhe Electrical Apparatuses Co., Ltd) was used to sample the milk. Samples were
169 collected at the second feeding in the morning (9-11 am) to avoid circadian influence on the
170 outcomes. Single full breast was emptied and an aliquot of 15 mL for colostrum and 40 mL for the
171 remaining time points was secured for characterization purposes. The rest of the milk was returned
172 to the mother for feeding to the infant. Each sample was distributed in 1mL freezing tubes, labeled
173 with subject number, stored at -80°C and then transported to Lausanne (Switzerland) for analysis
174 within 6 months of collection.

175 *2.5 Sample preparation*

176 Briefly, 5 μ L of ethanol containing butylated hydroxytoluene (BHT) (79 g/L), 10 μ L of an
177 aqueous solution of deferoxamine mesylate (10 mg/mL), 4 mL methanol, and 1 mL aqueous solution
178 of potassium hydroxide (KOH) (30 % w/w) were added successively to 1 mL of milk into a 15-mL
179 tube. After mixing, the tube was placed for 30 minutes in a shaking water bath at 37 °C for
180 saponification. The samples were then cooled down on ice, 5 mL of hexane containing 350 mg/L BHT
181 added and mixed vigorously for 30 seconds. Then the tubes were centrifuged at 2500 rpm for 10 min
182 at 4 °C and the upper organic phase transferred to a clean 15-mL tube by means of a glass Pasteur
183 pipette. The liquid/liquid extraction process was repeated and the organic phases combined in the
184 same tube. Once completely dried under nitrogen at room temperature, the residue was dissolved in
185 70 μ L of dioxane/ethanol (1/1, v/v) and 70 μ L acetonitrile were finally added. The samples were
186 centrifuged at 2500 rpm for 10 minutes at room temperature and transferred into adapted low
187 volume Ultra Performance Liquid Chromatography (HPLC) vials before analysis.

188 *2.6 Sample analysis*

189 All the compounds (α -tocopherol, γ -tocopherol, β -carotene, β -cryptoxanthin, lutein, lycopene
190 and zeaxanthin were determined using a Waters Acquity Ultra Performance Liquid
191 Chromatography UPLC® system (Waters, Milford, MA, USA) equipped with a 2.1 mm \times 150 mm
192 Waters Acquity UPLC® HSS T3 column, 100 Å (particle diameter, 1.8 μ m) placed in a column oven
193 set at 35 °C, while autosampler was set at 20 °C.

194 A 5 μ L-aliquot of the final extract was injected into the analytical system. The binary gradient
195 eluting system pumped the mobile phase at a flow rate of 0.4 mL/min. Solvent A was a solution of
196 ammonium acetate 0.05 M in water, and solvent B was a mixture of acetonitrile/diethyl
197 ether/methanol (589/71/119, w/w/w). The eluting gradient program was: 0-20 min, 75 % B; 20-22 min,
198 78 % B; 22-22.1 min, 80 % B; 22.1-30 min, 100 % B; 30-42 min, 100 % B; 42-42.1 min, 75 % B; 42.1-55
199 min, 75 % B. Quantification was performed by external calibration using pure standards.
200 Concentration of standards was determined by spectrophotometry with corrections made for
201 chromatographic purity. Carotenoids were detected and quantified using ultra violet (UV) at
202 different wavelengths (lycopene, 472 nm; β -carotene, β -cryptoxanthin, lutein, and zeaxanthin, 450
203 nm), while α -tocopherol and γ -tocopherol were detected and quantified by fluorescence ($\lambda_{\text{excitation}}$:
204 298 nm, $\lambda_{\text{emission}}$: 328 nm). The standard calibration curve for each compound was constructed by
205 plotting the response (Peak area) versus the concentration using a weighted linear regression model.

206 *2.7 Statistical analysis*

207 The database was established by using Epi Data version 3.0, and a double data entry was
208 carried out. For the information of demographic characteristics, the data were presented as count

209 with percentage for categorical data and median with interquartile range for continuous data with
210 non-normal distribution. Before the progress of data analysis, Shapiro-Wilk test was used to
211 determine whether carotenoids, and tocopherols in breast milk, and vitamins intake had a normal
212 distribution or not. Because of non-normal distributions, median values (interquartile range) were
213 performed to describe and ln transformations were applied when doing multivariate analysis and
214 correlation analysis. Differences in breast milk vitamins were compared among stages of lactating
215 period (0-4 days, 5-11 days, 12-30 days, 31-60 days, 61-120 days, and 121-240 days *postpartum*) and
216 cities (Beijing, Suzhou, and Guangzhou cities) by using nonparametric Kruskal-Wallis test, then
217 nonparametric Mann-Whitney U tests were employed to detect specific differences between the
218 abovementioned groups further. According to demographic characteristics of lactating women and
219 their offspring, comparisons in carotenoids and tocopherols concentration were carried out by using
220 covariance analysis models adjusted with stages of lactating period and research cities. Furthermore,
221 multivariate linear regression models were explored to research the demographic influencing factors
222 of carotenoids and tocopherols concentrations in breast milk. To research the correlations between
223 these contents in breast milk and dietary vitamins intake, Partial-correlation adjusted with stages of
224 lactation and research cities were performed. All of the analyses were carried out using version SPSS
225 20.0 (SPSS Inc. Chicago, IL, USA), and all tests were two-tailed with statistical significance set at $p <$
226 0.05.

227 3. Results

228 The socio-economic characteristics of the lactating women are summarized in Table 1. The
229 mean age of the lactating women was 27.4 ± 4.0 years. The majority of lactating women were
230 unemployed, had completed high school, and a monthly household income representative of urban
231 China. Although the majority of women had normal BMI at present, 44 % of them had excessive
232 GWG and up to 48% lactating women had a cesarean delivery. According to the stage of lactating
233 period, there were no significant differences in the socio-economic characteristics of the lactating
234 women such as age, offspring gender, family's per capita income, current BMI, GWG, and
235 pregnancy duration. However, it was found that less lactating women during 121-240 days
236 *postpartum* had college education level or above when compared with the others ($p < 0.05$).
237 Meanwhile, more lactating women during 0-4 days and 31-60 days *postpartum* underwent cesarean
238 delivery when compared with those women during 5-11 days, 61-120 days, and 121-240 days
239 *postpartum* ($p < 0.05$), and more lactating women during 31-60 days, 61-120 days, and 121-240 days
240 *postpartum* received dietary supplement than those women during 0-4 days *postpartum* ($p < 0.05$).
241

242

Table 1. Demographic characteristics of lactating mothers with different stages of lactating period.

	0-4 days (n = 77)	5-11 days (n = 89)	12-30 days (n = 73)	31-60 days (n = 90)	61-120 days (n = 90)	121-240 days (n = 90)	P-value
Age, years ¹							0.097
< 25	22 (28.6)	27 (30.3)	26 (35.6)	18 (20.0)	26 (28.9)	36 (40.0)	
25-30	35 (45.5)	41 (46.1)	29 (39.7)	44 (48.9)	50 (55.6)	39 (43.3)	
> 30	20 (26.0)	21 (23.6)	18 (24.7)	28 (31.1)	14 (15.6)	15 (16.7)	
Offspring gender ¹							0.158
Male	35 (45.5)	51 (57.3)	39 (53.4)	48 (53.3)	54 (60.0)	43 (47.8)	
Female	42 (54.5)	38 (42.7)	31 (42.5)	39 (43.3)	36 (40.0)	44 (48.9)	
Education ¹							0.003 *
Middle school or blow	17 (22.1)	12 (13.5)	16 (21.9)	26 (28.9)	22 (24.4)	39 (43.3)	
High school	23 (29.9)	31 (34.8)	27 (37.0)	22 (24.4)	25 (27.8)	23 (25.6)	
College or above	36 (46.8)	45 (50.6)	29 (39.7)	42 (46.7)	41 (45.6)	26 (28.9)	
Family's per capita income, Yuan/month ¹							0.140
< 2000	16 (20.8)	19 (21.3)	16 (21.9)	24 (26.7)	26 (28.9)	31 (34.4)	
2000-4000	30 (39.0)	37 (41.6)	34 (46.6)	41 (45.6)	40 (44.4)	41 (45.6)	
> 4000	27 (35.1)	30 (33.7)	17 (23.3)	23 (25.6)	22 (24.4)	18 (20.0)	
Unclear	4 (5.2)	3 (3.4)	6 (8.2)	2 (2.2)	2 (2.2)	0 (0.0)	
Delivery mode ¹							0.002 *
Vaginal delivery	29 (37.7)	50 (56.2)	35 (47.9)	37 (41.1)	55 (61.1)	55 (61.1)	
Cesarean delivery	48 (62.3)	37 (41.6)	38 (52.1)	53 (58.9)	35 (38.9)	34 (37.8)	
Present BMI ¹							0.075
Underweight	1 (1.3)	5 (5.6)	2 (2.7)	2 (2.2)	4 (4.4)	8 (8.9)	
Normal	48 (62.3)	54 (60.7)	47 (64.4)	57 (63.3)	69 (76.7)	65 (72.2)	
Overweight	24 (31.2)	26 (29.2)	23 (31.5)	26 (28.9)	16 (17.8)	16 (17.8)	
Obesity	4 (5.2)	3 (3.4)	1 (1.4)	5 (5.6)	1 (1.1)	1 (1.1)	
Gestational weight gain ¹							0.300
Inadequate	17 (22.1)	11 (12.4)	14 (19.2)	17 (18.9)	19 (21.1)	26 (28.9)	
Adequate	27 (35.1)	29 (32.6)	28 (38.4)	32 (35.6)	36 (40.0)	25 (27.8)	
Excessive	33 (42.9)	48 (53.9)	29 (39.7)	41 (45.6)	34 (37.8)	39 (43.3)	
Dietary supplements intake ¹							0.028 *
Yes	5 (6.5)	13 (14.6)	17 (23.3)	17 (18.9)	22 (24.4)	13 (14.4)	
No	72 (93.5)	76 (85.4)	56 (76.7)	73 (81.1)	68 (75.6)	77 (85.6)	
Pregnancy duration, weeks ²	39 (38-40)	39 (39-40)	39 (38-40)	39 (38-40)	39.5 (39-40)	40 (39-40)	0.332

243

BMI, body mass index, was calculated as body weight by height squared (kg/m^2). Data are expressed as medians (interquartile ranges) for continuous variables and count (percentage) for categorical variables. * Indicates a significant difference among six stages of lactating period ($p < 0.05$). ¹ Compared by Kruskal-Wallis test. ² Compared by chi-square test.

244

The concentrations of the different compounds studied at different periods of lactation are shown in Figure 2 and Supplementary Table 1. As expected, significant differences ($p < 0.001$) according to the different periods of lactation were observed for many compounds. The concentrations of most of them (except for lutein and zeaxanthin) were significantly higher in colostrum (0-4 days *postpartum*) than in transitional (5-11 days and 12-30 days *postpartum*) and mature milk (31-60 days, 61-120 days, and 121-240 days *postpartum*) ($p < 0.01$); a decrease was

245

246

247

248

249

250

251

252

253 observed with advancement of lactation until reaching stable levels from 12 days *postpartum*.
 254 Furthermore, lutein concentrations in milk from lactating women during 0-4 and 5-11 days
 255 *postpartum* were significantly higher compared with those during other periods ($p < 0.01$), while
 256 zeaxanthin and γ -tocopherol concentrations remained stable over time.

257

258 **Figure 2.** Carotenoids and tocopherols of human milk at different lactation stages ($\mu\text{g}/100\text{mL}$).
 259 Analysis of variance, ANOVA. Data are presented as the median (interquartile range). Linear trends
 260 of carotenoids and tocopherols levels along with lactation stages were tested by One-Way ANOVA
 261 after \ln transformations.

262 Carotenoids and tocopherol concentrations in breast milk from lactating women in the three
 263 cities are shown in Figure 3 and Supplementary Table 2. The lycopene content in milk from
 264 Guangzhou city was significantly higher compared with those from Beijing and Suzhou cities ($p <$
 265 0.001). Similarly, the majority of carotenoids (β -carotene, β -cryptoxanthin, lutein, and zeaxanthin)
 266 and α -tocopherol concentrations in milk from Beijing were significantly lower than those from
 267 Suzhou and Guangzhou ($p < 0.01$). While γ -tocopherol concentrations in mothers from Suzhou were
 268 the highest among the three cities ($p < 0.001$).

269

270 **Figure 3.** Carotenoids and tocopherols concentration of human milk from different cities (Beijing,
 271 Suzhou, and Guangzhou cities). Data are presented as the medians (interquartile ranges). Compared
 272 by Mann-Whitney U test with adjusted alpha value ($\alpha' = 0.01$). **, $p < 0.01$; ***, $p < 0.001$.

273 Comparisons of the concentrations by characteristics of lactating women and their offspring are
 274 provided in Table 2 and Supplemental Table 3. There were no significant associations detected
 275 between maternal age, offspring gender, household income, maternal GWG, dietary supplement
 276 intake, and tocopherols in breast milk ($p > 0.05$). However, zeaxanthin concentrations in lactating
 277 women with vaginal delivery were significant higher compared with those with cesarean delivery (p
 278 < 0.05). In addition, zeaxanthin concentrations in women with college education level or above was
 279 significant lower than in women with middle school education level or below ($p < 0.01$). Besides,
 280 β -carotene and zeaxanthin concentrations associations with maternal BMI were found, which
 281 indicated that β -carotene concentrations in lactating women with normal BMI were higher than
 282 those with overweight, while zeaxanthin in milk from underweight lactating women were higher
 283 than those from mothers with normal BMI.

284

285
286**Table 2.** Comparisons of the carotenoids concentration in human milk by the characteristics of lactating women.

	β -carotene		β -cryptoxanthin		Lutein		Zeaxanthin	
	Adjusted ¹ β (95%CI)	SE M						
<u>Age, years</u>								
< 25	-0.05 (-0.18, 0.08)	0.0 7	0.11 (-0.06, 0.28)	0.0 9	-0.13 (-0.35, 0.08)	0.1 1	-0.01 (-0.14, 0.15)	0.0 7
25-30	Reference		Reference		Reference		Reference	
> 30	0.10 (-0.03, 0.23)	0.0 7	0.11 (-0.07, 0.29)	0.0 9	-0.03 (-0.15, 0.19)	0.1 1	0.12 (-0.03, 0.27)	0.0 8
<u>Education</u>								
Middle school or below	Reference		Reference		Reference		Reference	
High school	0.03 (-0.11, 0.17)	0.0 7	-0.18 (-0.36, 0.01)	0.0 9	0.12 (-0.11, 0.35)	0.1 2	-0.14 (-0.30, 0.02)	0.0 8
College or above	0.09 (-0.04, 0.23)	0.0 7	-0.12 (-0.30, 0.06)	0.0 9	0.08 (-0.14, 0.31)	0.1 1	-0.15 (-0.31, -0.00)*	0.0 8
<u>Delivery mode</u>								
Vaginal delivery	0.04 (-0.07, 0.15)	0.0 5	0.03 (-0.11, 0.17)	0.0 7	0.14 (-0.04, 0.31)	0.0 9	0.13 (0.02, 0.25)*	0.0 6
Cesarean delivery	Reference		Reference		Reference		Reference	
<u>Current BMI</u>								
Underweight	0.01 (-0.25, 0.26)	0.1 3	-0.02 (-0.35, 0.32)	0.1 7	0.32 (-0.09, 0.74)	0.2 1	0.29 (0.01, 0.57)*	0.1 4
Normal	Reference		Reference		Reference		Reference	
Overweight	-0.17 (-0.29, -0.05)*	0.0 6	-0.16 (-0.32, 0.00)	0.0 8	-0.11 (-0.31, 0.09)	0.1 0	-0.07 (-0.21, 0.07)	0.0 7
Obesity	-0.24 (-0.54, 0.07)	0.1 6	-0.16 (-0.57, 0.24)	0.2 1	0.16 (-0.34, 0.66)	0.2 6	-0.18 (-0.52, 0.16)	0.1 7

287
288
289
290
291
292
293
294
295
296
297
298

CI, confidence interval; SEM, standard error of mean. Multivariate linear regression model considering carotenoids in breast milk as the dependent variable and the other variables studies as independent variables. ¹ Adjusted for periods of lactation (0-4 days, 5-11days, 12-30days, 31-60days, 61-120days, and 121-240days *postpartum*), cities (Beijing, Suzhou, and Guangzhou cities), and other independent influencing factors listed above. * Indicates a significant difference when compared with the reference ($p < 0.05$). β -carotene: $R^2 = 0.482$, $p < 0.001$; β -cryptoxanthin: $R^2 = 0.366$, $p < 0.001$; Lutein: $R^2 = 0.282$, $p < 0.001$; Zeaxanthin: $R^2 = 0.124$, $p < 0.001$.

The results from 24-hour food intake recall showed that dietary vitamin A and total carotenoids were not associated with all the carotenoids in breast milk when adjusted with different cities and lactation period ($p > 0.05$) (Table 3). Similarly, no significant associations were found between vitamin E and α -tocopherol intake and α - and γ -tocopherol in human milk ($p > 0.05$).

299
300**Table 3.** The associations between vitamins intake and concentrations of carotenoids and tocopherols in breast milk.

		β -carotene	β -cryptoxanthin	Lutein	Lycopene	Zeaxanthin	α -tocopherol	γ -tocopherol
Dietary intake of vitamin A	<i>r</i>	0.022	0.026	0.027	-0.007	0.075	—	—
	<i>p</i>	0.618	0.562	0.537	0.881	0.093	—	—
Dietary intake of total carotenoids	<i>r</i>	0.055	0.002	0.007	-0.038	0.003	—	—
	<i>p</i>	0.220	0.963	0.880	0.398	0.948	—	—
Dietary intake of vitamin E	<i>r</i>	—	—	—	—	—	-0.083	0.006
	<i>p</i>	—	—	—	—	—	0.063	0.885
Dietary intake of α -tocopherol	<i>r</i>	—	—	—	—	—	-0.033	-0.084
	<i>p</i>	—	—	—	—	—	0.456	0.058

301
302
303 ¹Partial-correlation was performed to analyze the correlations adjusted with cities (Beijing, Suzhou, and Guangzhou cities) and periods of lactating (0-4 days, 5-11 days, 12-30 days, 31-60 days, 61-120 days, and 121-240 days *postpartum*).304 **4. Discussion**305 According to literature [40, 48, 60, 61], colostrum is the first milk secretion after delivery, 306 persisting until the seventh or tenth day *postpartum*; it is followed by secretion of transitional milk 307 from around the eighth and up to fifteenth day *postpartum*; from then, mature milk is secreted, which 308 shows a relative stable composition. In the present study, due to the nature of its design it was 309 difficult to exactly classify the human milk collected within 4-11 days and 12-30 days *postpartum* as 310 either colostrum or transitional milk. On the contrary, human milk collected within 0-4 days and 311 30-240 days *postpartum* was clearly classified as colostrum and mature milk respectively.312 Highest concentrations of carotenoids and tocopherols were found in colostrum, after that the 313 concentrations of the different compounds observed in milk at 12-30 days *postpartum* were close to 314 those collected in 30-240 days *postpartum*, which may mean that the changes on carotenoids and 315 tocopherols milk composition gradually slow-down until reaching a relatively stable level after 12 316 days *postpartum*. In accordance with previous studies [35, 40, 60, 61], the levels of most of the 317 compounds (β -carotene, β -cryptoxanthin, lutein, lycopene, and α -tocopherol) except for zeaxanthin 318 and γ -tocopherol decreased along with lactating stage. The evolution trend of γ -tocopherol 319 concentrations in our study were generally comparable with those in Japan [35] (0.111 ± 0.048 320 mg/100mL in 6-10 days *postpartum*; 0.155 ± 0.126 mg/100mL in 11-20 days *postpartum*, 0.105 ± 0.059 321 mg/100mL in 21-89 days *postpartum*; 0.120 ± 0.046 mg/100mL in 90-180 days *postpartum*; 0.086 ± 0.043 322 mg/100mL in 6-10 days *postpartum*).323 The carotenoid content in human milk has been studied in several multinational studies, but 324 very few studies report data for a large lactation period (0-240 days *postpartum*). Canfield et al. [9] 325 assessed the levels of carotenoids in human milk from nine countries (five in Asia or the Pacific Rim, 326 three in Americas, and one in Europe) and found that the concentrations varied greatly among the 327 countries, with only moderate disparities in β -carotene. Regional variability was also found in the 328 longitudinal study of Lipkie et al [31]. In the present study, we found that the median β -carotene 329 concentration in mature milk to be in the same range as that found in Australian, Canadian, Chilean, 330 Japanese, Mexican, Filipinos, English, American and German mothers in several studies [9, 37, 39, 331 40]; while the median β -carotene concentrations in colostrum milk were lower than those reported in 332 Germany [39] or Japan [37]. Regarding the relative distribution of carotenoids in Chinese milk, lutein

333 was found to be the major component in mature human milk, which is in agreement with data
334 published by Lipkie et al. [31] and Canfield et al. [9]. On the contrary, β -carotene was the major
335 carotenoid in colostrum, in agreement with a previous longitudinal study in the United States by
336 Song et al. [62].

337 Differences in carotenoid content of the milk from the three different cities were also observed,
338 milk from Beijing contained significantly lower amounts than milk from Guangzhou or Suzhou for
339 most of carotenoids; while the concentration of lycopene in samples from Guangzhou was higher
340 than the other cities. Taking into consideration that all the samples were collected with the same
341 protocol and analyzed by the same laboratory, it seems reasonable to believe that the main reason
342 for this difference are environmental factors such as dietary habits since Suzhou and Guangzhou
343 had higher intake of fruits and vegetables compared to Beijing.

344 Median α -tocopherol concentrations (211 $\mu\text{g}/100 \text{ mL}$) in Chinese mature milk were lower than
345 those found by researchers in Germany [40], Greece [63], Turkey [34], Poland [61], Canada [64], and
346 Japan [35]. In general, the α -tocopherol content in Chinese milk, not only in colostrum but also in
347 mature milk was lower than those in industrialized countries, and similar with non-industrialized
348 countries. The large inter-subject variation might primarily due to dietary habits, use of dietary
349 supplements, food fortification or genetic differences among different ethnicities; or to
350 methodological factors such as the postpartum date of collection, collection of foremilk or hindmilk,
351 or the collection from a single breast or from both breasts.

352 To date, there is no much evidence of the tocopherols concentration in Chinese human milk. In
353 our study, the median colostrum α -tocopherol concentrations (645 $\mu\text{g}/100\text{mL}$) were similar to those
354 reported in different groups of Chinese lactating women [65, 66] and Polish women [60], but lower
355 than those from German [40] and Brazilian [67], and higher than those of Tunisian [51], Japanese
356 [35], and Inner Mongolia in China [30]. Our results in mature milk (30-240 days *postpartum*) align
357 well to published data [30, 34, 35, 39, 40, 50, 60, 63, 64]. Intra-country variability was also found with
358 the highest levels of tocopherols (26.8 mg α -tocopherol) found in mothers from Suzhou.
359 Environmental factors such as dietary intake are likely accounting for this.

360 Some nutritional, obstetric, and socio-economic factors have been implicated as being
361 associated with the vitamins A and E concentrations in milk [34, 51, 67]. In our study, there were no
362 associations detected between the contents of β -cryptoxanthin, lutein, lycopene, α -tocopherol, and
363 γ -tocopherol and socio-economic characteristics of women and their offspring such as maternal age,
364 household income, maternal GWG or supplements intake. This data provides evidence to suggest
365 that the concentrations of these compounds in breast milk are independent of socio-economic
366 conditions and nutrition in pregnancy. On the contrary, we found associations between the human
367 milk β -carotene and zeaxanthin concentrations with current BMI. These inverse correlations
368 between some of the carotenoids and current BMI may be due to the underlying mechanism that
369 excess of body fat increases the consumption of all antioxidant elements in the diet [68] so that
370 lactating women with higher BMI and more body fat consumed more vitamins A and E than those
371 with lower BMI, resulting in lower carotenoids in human milk. Our results were similar with the
372 previous finding [49] that the percentage of body fat in the lactating women was negatively
373 associated to the concentration of vitamin A in breast milk. In addition, maternal education
374 presented an inverse relationship with lower median concentrations of zeaxanthin among women
375 with high levels of education. Mothers undergoing cesarean delivery presented lower zeaxanthin
376 levels in human milk. Previous studies have associated cesarean delivery with lower colostrum
377 protein content [69] and decreased oxidative stress in colostrum [70], suggesting that cesarean
378 delivery may be detrimental for human milk. Considering that carotenoids contribute to the total
379 antioxidative effect of human milk, this relationship of carotenoids and delivery mode requires
380 further investigation to elucidate the possible causal pathways of these mechanisms including
381 organismal regulation, nutrition, and environment.

382 Previous studies [7, 34, 49] suggested vitamins A and E in human milk were associated to
383 maternal stores, dietary supplements, fortified foods and dietary intake. However, our results
384 indicated that neither vitamin A nor E intakes from one 24-hours dietary recall did not associate with

385 vitamin A and E in human milk, which may be due to the inherent intake variability of one single
386 24-hour dietary recall questionnaire, which did not allow to estimate individual's usual diet, and
387 therefore it is likely to under or overestimate some nutrient intakes. Moreover, Jiang et al. [71] found
388 no significant correlation between dietary constituents and α -tocopherol, in line with our findings.

389 There were some limitations to the present study. Firstly, nutrient intake determined by one
390 24-hour recall may introduce some bias by under- or overestimating long-term dietary habits. This
391 variability may result in difficulty to accurately estimating individual's intake when compared with
392 three days dietary recall. Secondly, little is known about the levels of vitamins A and E in maternal
393 plasma associated with the corresponding milk, which would be better than dietary intake to assess
394 maternal nutrient status, due to impossibility to collect such samples in our research. Thirdly, the
395 fact that our design was a cross-sectional study, we could not collect direct evidence about changes
396 in vitamins A and E with lactation stages, these points should be addressed in future studies.

397 5. Conclusions

398 The total concentrations of carotenoids (β -carotene and β -cryptoxanthin, lutein, lycopene and
399 zeaxanthin) and vitamin E (as α - and γ -tocopherol) were studied in human milk from healthy
400 Chinese women. In summary, our results agree with previous studies and suggest that stage of
401 lactation, regional differences, obstetric, and socio-economic factors may have an effect on human
402 milk concentrations of carotenoids and tocopherol in healthy Chinese mothers. In view of the great
403 importance of these compounds in human milk to ensure optimal growth and development of
404 infants, research should continue to provide biological significance of such results and improve
405 knowledge on the unique composition of human milk.

406 **Supplementary Materials:** Table S1: Carotenoids and tocopherols concentration of human milk at different
407 lactation stages (μ g/100mL), Table S2: Carotenoids and tocopherols concentration of human milk from
408 different cities (Beijing, Suzhou, and Guangzhou cities), Table S3: Comparisons of carotenoids and tocopherols
409 concentration according to characteristics of lactating women and their offspring (μ g/100mL).

410 **Acknowledgments:** The authors would like to thank the participants who volunteered for this study, Lawrence
411 Li for project support and guidance, Celia Ning for project management, Qiaojie Li for clinical project
412 management, Yindong Zheng and Carlos Antonio de Castro for statistical analysis advice and Emilie Ba for
413 data management. Special acknowledgment to Ai Zhao and the project staff at Peking University School of
414 Public Health, to Dr. Jiaji Wang at Guangzhou University School of Public Health and Dr. Liqiang Qin at
415 Soochow University School of Public Health for recruitment and data collection. Nestlé Research Center and
416 Nestlé Nutrition Institute China sponsored the study. The views and opinions expressed in this manuscript are
417 those of the authors and do not necessarily reflect the opinions and recommendations of Nestlé.

418 **Author Contributions:** Y.X. and E.C.G. interpreted the results, drafted, reviewed and revised the initial
419 manuscript. K.M.R., A.L. and L.A. contributed to analysis of samples. G.V. contributed to the study design,
420 drafted, and reviewed the initial manuscript. Y.X. contributed to statistical design. Y.Z. and P.W. contributed to
421 study design and field collection. S.K.T contributed to the study design, breast milk sampling protocol,
422 interpretation of the results. All authors read and approved the final manuscript.

423 **Conflicts of Interest:** The authors declare no conflict of interest. The founding sponsors had no role in the
424 design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in
425 the decision to publish the results.

426 **Ethics approval and consent to participate:** The study was conducted according to the guidelines in the
427 Declaration of Helsinki. All of the procedures involving human subjects were approved by the Medical Ethics
428 Research Board of Peking University (No.IRB00001052-11042). Written informed consent was obtained from all
429 subjects participating in the study. The study was also registered in ClinicalTrials.gov with the number
430 identifier NCT01971671.

431

432

433 **References**

434 1. World Health Organization/UNICEF. *Global strategy for infant and young child feeding*; World Health
435 Organization: Geneva, Switzerland, 2003.

436 2. Onyango, A.W.; Receveur, O.; Esrey, S.A. The contribution of breast milk to toddler diets in western
437 Kenya. *Bull. World. Health. Organ.* **2002**, *80*, 292-299.

438 3. Allen, L.H.; Haskell, M. Vitamin A requirements of infants under six months of age. *Food. Nutr. Bull.* **2001**,
439 *22*, 214-234.

440 4. World Health Organization and Food and Agriculture Organization. *Vitamin and mineral requirements in*
441 *human nutrition. 2nd ed*; World Health Organization: Geneva, Switzerland, 2004.

442 5. Stam, J.; Sauer, P.J.; Boehm, G. Can we define an infant's need from the composition of human milk? *Am. J.*
443 *Clin. Nutr.* **2013**, *98*, S521-S528.

444 6. Powers, H.J. Vitamin requirements for term infants: Considerations for infant formulae. *Nutr. Res. Rev.*
445 **1997**, *10*, 1-33.

446 7. Grune, T.; Lietz, G.; Palou, A.; Ross, A.C.; Stahl, W.; Tang, G.; Thurnham, D.; Yin, S.A.; Biesalski, H.K.
447 Beta-carotene is an important vitamin a source for humans. *J. Nutr.* **2010**, *140*, S2268-S2285.

448 8. Weber, D.; Grune, T. The contribution of beta-carotene to vitamin a supply of humans. *Mol. Nutr. Food. Res.*
449 **2012**, *56*, 251-258.

450 9. Canfield, L.M.; Clandinin, M.T.; Davies, D.P.; Fernandez, M.C.; Jackson, J.; Hawkes, J.; Goldman, W.J.;
451 Pramuk, K.; Reyes, H.; Sablan, B., et al. Multinational study of major breast milk carotenoids of healthy mothers.
452 *Eur. J. Nutr.* **2003**, *42*, 133-141.

453 10. Ball, G.F.M. In *Vitamins: their role in the human body*; Ball, G.F.M., Ed.; Blackwell Science Ltd.: Ames, Iowa,
454 US, 2004; Chapter 7, pp. 133-187.

455 11. Britton, G. Structure and properties of carotenoids in relation to function. *FASEB. J.* **1995**, *9*, 1551-1558.

456 12. Gammone, M.A.; Riccioni, G.; D'Orazio, N. Carotenoids: Potential allies of cardiovascular health? *Food.*
457 *Nutr. Res.* **2015**, *59*, 26762.

458 13. Cocate, P.G.; Natali, A.J.; Alfenas, R.C.; de Oliveira, A.; dos Santos, E.C.; Hermsdorff, H.H. Carotenoid
459 consumption is related to lower lipid oxidation and DNA damage in middle-aged men. *Br. J. Nutr.* **2015**, *114*,
460 257-264.

461 14. Johnson, E.J. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. *Nutr.*
462 *Rev.* **2014**, *72*, 605-612.

463 15. Nishino, H. Cancer prevention by carotenoids. *Mutat. Res.* **1998**, *402*, 159-163.

464 16. Ball, G.F.M. In *Vitamins: their role in the human body*; Ball, G.F.M., Ed.; Blackwell Science Ltd.: Ames, Iowa,
465 USA, 2004; Chapter 9, pp. 234-255.

466 17. Graule, B.; Martin, B.; Agabriel, C.; Girard, C.L. In *Milk and dairy products in human nutrition: production,*
467 *composition and health*; Park, Y.W., Haenlein, G.F., Eds.; Blackwell Science Ltd.: Ames, Iowa, USA, 2013; Chapter
468 10, pp. 200-219.

469 18. Allen, L.H. Multiple micronutrients in pregnancy and lactation: an overview. *Am. J. Clin. Nutr.* **2005**, *81*,
470 S1206-S1212.

471 19. Picciano, M.F. Pregnancy and lactation: Physiological adjustments, nutritional requirements and the role
472 of dietary supplements. *J. Nutr.* **2003**, *133*, S1997-S2002.

473 20. Qian, J.; Chen, T.; Lu, W.; Wu, S.; Zhu, J. Breast milk macro- and micronutrient composition in lactating
474 mothers from suburban and urban shanghai. *J. Paediatr. Child. Health.* **2010**, *46*, 115-120.

475 21. Yang, T.; Zhang, Y.; Ning, Y.; You, L.; Ma, D.; Zheng, Y.; Yang, X.; Li, W.; Wang, J.; Wang, P. Breast milk
476 macronutrient composition and the associated factors in urban chinese mothers. *Chin. Med. J. (Engl).* **2014**, *127*,
477 1721-1725.

478 22. Ding, M.; Li, W.; Zhang, Y.; Wang, X.; Zhao, A.; Zhao, X.; Wang, P.; Sheng, Q.H. Amino acid composition
479 of lactating mothers' milk and confinement diet in rural north china. *Asia. Pac. J. Clin. Nutr.* **2010**, *19*, 344-349.

480 23. Xiang, M.; Harbige, L.S.; Zetterstrom, R. Breast milk levels of zinc and omega-6 polyunsaturated fatty
481 acids and growth of healthy chinese infants. *Acta. Paediatr.* **2007**, *96*, 387-390.

482 24. Peng, Y.M.; Zhang, T.Y.; Wang, Q.; Zetterstrom, R.; Strandvik, B. Fatty acid composition in breast milk and
483 serum phospholipids of healthy term chinese infants during first 6 weeks of life. *Acta. Paediatr.* **2007**, *96*,
484 1640-1645.

485 25. Xiang, M.; Lei, S.; Li, T.; Zetterstrom, R. Composition of long chain polyunsaturated fatty acids in human
486 milk and growth of young infants in rural areas of northern china. *Acta. Paediatr.* **1999**, *88*, 126-131.

487 26. Chen, Z.Y.; Kwan, K.Y.; Tong, K.K.; Ratnayake, W.M.; Li, H.Q.; Leung, S.S. Breast milk fatty acid
488 composition: A comparative study between hong kong and chongqing chinese. *Lipids*. **1997**, *32*, 1061-1067.

489 27. Wan, Z.X.; Wang, X.L.; Xu, L.; Geng, Q.; Zhang, Y. Lipid content and fatty acids composition of mature
490 human milk in rural north china. *Br. J. Nutr.* **2010**, *103*, 913-916.

491 28. Ruan, C.; Liu, X.; Man, H.; Ma, X.; Lu, G.; Duan, G.; DeFrancesco, C.A.; Connor, W.E. Milk composition in
492 women from five different regions of china: The great diversity of milk fatty acids. *J. Nutr.* **1995**, *125*, 2993-2998.

493 29. Li, J.; Fan, Y.; Zhang, Z.; Yu, H.; An, Y.; Kramer, J.K.; Deng, Z. Evaluating the trans fatty acid, cla, pufa and
494 erucic acid diversity in human milk from five regions in china. *Lipids*. **2009**, *44*, 257-271.

495 30. Shi, Y.D.; Sun, G.Q.; Zhang, Z.G.; Deng, X.; Kang, X.H.; Liu, Z.D.; Ma, Y.; Sheng, Q.H. The chemical
496 composition of human milk from inner mongolia of china. *Food. Chem.* **2011**, *127*, 1193-1198.

497 31. Lipkie, T.E.; Morrow, A.L.; Journi, Z.E.; McMahon, R.J.; Ferruzzi, M.G. Longitudinal survey of carotenoids
498 in human milk from urban cohorts in china, mexico, and the USA. *PLoS. One.* **2015**, *10*, e0127729.

499 32. Mulokozi, G.; Lietz, G.; Svanberg, U.; Mugyabuso, J.K.; Henry, J.C.; Tomkins, A.M. Plasma levels of
500 retinol, carotenoids, and tocopherols in relation to dietary pattern among pregnant tanzanian women. *Int. J.*
501 *Vitam. Nutr. Res.* **2003**, *73*, 323-333.

502 33. da Silva Ribeiro, K.D.; de Araujo, K.F.; de Souza, H.H.; Soares, F.B.; da Costa Pereira, M.; Dimenstein, R.
503 Nutritional vitamin a status in northeast brazilian lactating mothers. *J. Hum. Nutr. Diet.* **2010**, *23*, 154-161.

504 34. Tokusoglu, O.; Tansug, N.; Aksit, S.; Dinc, G.; Kasirga, E.; Ozcan, C. Retinol and alpha-tocopherol
505 concentrations in breast milk of turkish lactating mothers under different socio-economic status. *Int. J. Food. Sci.*
506 *Nutr.* **2008**, *59*, 166-174.

507 35. Sakurai, T.; Furukawa, M.; Asoh, M.; Kanno, T.; Kojima, T.; Yonekubo, A. Fat-soluble and water-soluble
508 vitamin contents of breast milk from japanese women. *J. Nutr. Sci. Vitaminol. (Tokyo)*. **2005**, *51*, 239-247.

509 36. Gossage, C.P.; Deyhim, M.; Yamini, S.; Douglass, L.W.; Moser-Veillon, P.B. Carotenoid composition of
510 human milk during the first month postpartum and the response to beta-carotene supplementation. *Am. J. Clin.*
511 *Nutr.* **2002**, *76*, 193-197.

512 37. Kamao, M.; Tsugawa, N.; Suhara, Y.; Wada, A.; Mori, T.; Murata, K.; Nishino, R.; Ukita, T.; Uenishi, K.;
513 Tanaka, K., et al. Quantification of fat-soluble vitamins in human breast milk by liquid chromatography-tandem
514 mass spectrometry. *J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci.* **2007**, *859*, 192-200.

515 38. Campos, J.M.; Paixao, J.A.; Ferraz, C. Fat-soluble vitamins in human lactation. *Int. J. Vitam. Nutr. Res.* **2007**,
516 *77*, 303-310.

517 39. Schweigert, F.J.; Bathe, K.; Chen, F.; Buscher, U.; Dudenhausen, J.W. Effect of the stage of lactation in
518 humans on carotenoid levels in milk, blood plasma and plasma lipoprotein fractions. *Eur. J. Nutr.* **2004**, *43*,
519 39-44.

520 40. Macias, C.; Schweigert, F.J. Changes in the concentration of carotenoids, vitamin a, alpha-tocopherol and
521 total lipids in human milk throughout early lactation. *Ann. Nutr. Metab.* **2001**, *45*, 82-85.

522 41. Nagayama, J.; Noda, K.; Uchikawa, T.; Maruyama, I.; Shimomura, H.; Miyahara, M. Effect of maternal
523 chlorella supplementation on carotenoid concentration in breast milk at early lactation. *Int. J. Food. Sci. Nutr.*
524 **2014**, *65*, 573-576.

525 42. Canfield, L.M.; Giuliano, A.R.; Neilson, E.M.; Blashil, B.M.; Graver, E.J.; Yap, H.H. Kinetics of the response
526 of milk and serum beta-carotene to daily beta-carotene supplementation in healthy, lactating women. *Am. J.*
527 *Clin. Nutr.* **1998**, *67*, 276-283.

528 43. Turner, T.; Burri, B.J.; Jamil, K.M.; Jamil, M. The effects of daily consumption of beta-cryptoxanthin-rich
529 tangerines and beta-carotene-rich sweet potatoes on vitamin a and carotenoid concentrations in plasma and
530 breast milk of bangladeshi women with low vitamin a status in a randomized controlled trial. *Am. J. Clin. Nutr.*
531 **2013**, *98*, 1200-1208.

532 44. Sherry, C.L.; Oliver, J.S.; Renzi, L.M.; Marriage, B.J. Lutein supplementation increases breast milk and
533 plasma lutein concentrations in lactating women and infant plasma concentrations but does not affect other
534 carotenoids. *J. Nutr.* **2014**, *144*, 1256-1263.

535 45. Stuetz, W.; Carrara, V.I.; McGready, R.; Lee, S.J.; Erhardt, J.G.; Breuer, J.; Biesalski, H.K.; Nosten, F.H.
536 Micronutrient status in lactating mothers before and after introduction of fortified flour: Cross-sectional
537 surveys in maela refugee camp. *Eur. J. Nutr.* **2012**, *51*, 425-434.

538 46. Lietz, G.; Mulokozi, G.; Henry, J.C.; Tomkins, A.M. Xanthophyll and hydrocarbon carotenoid patterns
539 differ in plasma and breast milk of women supplemented with red palm oil during pregnancy and lactation. *J.*
540 *Nutr.* **2006**, *136*, 1821-1827.

541 47. Webb, A.L.; Aboud, S.; Furtado, J.; Murrin, C.; Campos, H.; Fawzi, W.W.; Villamor, E. Effect of vitamin
542 supplementation on breast milk concentrations of retinol, carotenoids and tocopherols in hiv-infected tanzanian
543 women. *Eur. J. Clin. Nutr.* **2009**, *63*, 332-339.

544 48. Lima, M.S.; Dimenstein, R.; Ribeiro, K.D. Vitamin e concentration in human milk and associated factors: A
545 literature review. *J. Pediatr. (Rio J.)* **2014**, *90*, 440-448.

546 49. Mello-Neto, J.; Rondo, P.H.; Oshiiwa, M.; Morgano, M.A.; Zacari, C.Z.; Domingues, S. The influence of
547 maternal factors on the concentration of vitamin a in mature breast milk. *Clin. Nutr.* **2009**, *28*, 178-181.

548 50. Szlagatys-Sidorkiewicz, A.; Zagierski, M.; Luczak, G.; Macur, K.; Baczek, T.; Kaminska, B. Maternal
549 smoking does not influence vitamin a and e concentrations in mature breastmilk. *Breastfeed. Med.* **2012**, *7*,
550 285-289.

551 51. Fares, S.; Sethom, M.M.; Kacem, S.; Ksibi, I.; Feki, M.; Jebnoun, S.; Kaabachi, N. Retinol and
552 alpha-tocopherol in the colostrum of lactating tunisian women delivering prematurely: Associations with
553 maternal characteristics. *Pediatr. Neonatol.* **2016**, *57*, 120-126.

554 52. de Azeredo, V.B.; Trugo, N.M. Retinol, carotenoids, and tocopherols in the milk of lactating adolescents
555 and relationships with plasma concentrations. *Nutrition* **2008**, *24*, 133-139.

556 53. Feng, X.L.; Xu, L.; Guo, Y.; Ronsmans, C. Factors influencing rising caesarean section rates in china between
557 1988 and 2008. *Bull. World. Health. Organ.* **2012**, *90*, 30-39, 39A.

558 54. Hou, L.; Li, G.; Zou, L.; Li, C.; Chen, Y.; Yuan, Y.; Wang, X.; Jia, C.; Zhang, W. [cesarean delivery rate and
559 indications in mainland china: A cross sectional study in 2011]. *Zhonghua. Fu. Chan. Ke. Za. Zhi.* **2014**, *49*, 728-735.

560 55. Cui, Z.; Dibley, M.J. Trends in dietary energy, fat, carbohydrate and protein intake in chinese children and
561 adolescents from 1991 to 2009. *Br. J. Nutr.* **2012**, *108*, 1292-1299.

562 56. Rasmussen, K.M.; Yaktine, A.L. *Weight gain during pregnancy: reexamining the guidelines*; National
563 Academies Press: D.C., Washington, 2009.

564 57. Yang, Y.X.; Wang, G.Y.; Pan, X.C. *China Food Composition tables (Book 1)*. 2nd ed; Beijing Medical University
565 Press: Beijing, China, 2009.

566 58. Yang, Y.X.; Wang, G.Y.; Pan, X.C. *China Food Composition tables 2004 (Book 2)*. 2nd ed; Beijing Medical
567 University Press: Beijing, China, 2005.

568 59. Agency, S.a.T. *Standard tables of food composition in Japan (in Japanese)*. 4th ed; Ishiyaku Shuppan Publishers,
569 Inc.: Tokyo, Japan, 2005.

570 60. Szlagatys-Sidorkiewicz, A.; Zagierski, M.; Jankowska, A.; Luczak, G.; Macur, K.; Baczek, T.; Korzon, M.;
571 Krzykowski, G.; Martysiak-Zurowska, D.; Kaminska, B. Longitudinal study of vitamins a, e and lipid oxidative
572 damage in human milk throughout lactation. *Early. Hum. Dev.* **2012**, *88*, 421-424.

573 61. Martysiak-Zurowska, D.; Szlagatys-Sidorkiewicz, A.; Zagierski, M. Concentrations of alpha- and gamma-tocopherols
574 in human breast milk during the first months of lactation and in infant formulas. *Matern. Child. Nutr.* **2013**, *9*, 473-482.

575 62. Song, B.J.; Jouni, Z.E.; Ferruzzi, M.G. Assessment of phytochemical content in human milk during
576 different stages of lactation. *Nutrition* **2013**, *29*, 195-202.

577 63. Antonakou, A.; Chiou, A.; Andrikopoulos, N.K.; Bakoula, C.; Matalas, A.L. Breast milk tocopherol content
578 during the first six months in exclusively breastfeeding greek women. *Eur. J. Nutr.* **2011**, *50*, 195-202.

579 64. Tijerina-Saenz, A.; Innis, S.M.; Kitts, D.D. Antioxidant capacity of human milk and its association with
580 vitamins a and e and fatty acid composition. *Acta. Paediatr.* **2009**, *98*, 1793-1798.

581 65. Zheng, M.C.; Zhou, L.S.; Zhang, G.F. Alpha-tocopherol content of breast milk in china. *J. Nutr. Sci. Vitaminol. (Tokyo)* **1993**, *39*, 517-520.

582 66. Zheng, M.C.; Zhang, G.F.; Zhou, L.S.; Guo, X.G.; Quan, Y.F. Alpha-tocopherol concentrations in human
583 milk from mothers of preterm and full-term infants in china. *Biomed. Environ. Sci.* **1993**, *6*, 259-264.

584 67. Grilo, E.C.; Lira, L.Q.; Dimenstein, R.; Ribeiro, K.D. Influence of prematurity and birth weight on the
585 concentration of alpha-tocopherol in colostrum milk. *Rev. Paul. Pediatr.* **2013**, *31*, 473-479.

586 68. Viroonudomphol, D.; Pongpaew, P.; Tungtrongchitr, R.; Changbumrung, S.; Tungtrongchitr, A.; Phonrat,
587 B.; Vudhivai, N.; Schelp, F.P. The relationships between anthropometric measurements, serum vitamin a and e
588 concentrations and lipid profiles in overweight and obese subjects. *Asia. Pac. J. Clin. Nutr.* **2003**, *12*, 73-79.

589 69. Dizdar, E.A.; Sari, F.N.; Degirmencioglu, H.; Canpolat, F.E.; Oguz, S.S.; Uras, N.; Dilmen, U. Effect of mode
590 of delivery on macronutrient content of breast milk. *J. Matern. Fetal. Neonatal. Med.* **2014**, *27*, 1099-1102.

591

592

593 70. Simsek, Y.; Karabiyik, P.; Polat, K.; Duran, Z.; Polat, A. Mode of delivery changes oxidative and
594 antioxidative properties of human milk: A prospective controlled clinical investigation. *J. Matern. Fetal. Neonatal.*
595 *Med.* **2015**, *28*, 734-738.

596 71. Jiang, J; Xiao, H; Wu, K; Yu, Z; Ren, Y; Zhao, Y; Li, K; Li, J; Li, D. Retinol and α -tocopherol in human milk
597 and their relationship with dietary intake during lactation. *Food. Funct.* **2016**, *7*, 1985-1991.