

1 Article

2

Nanoindentation-induced Pile-up in the Residual 3 Impression of Crystalline Cu with Different Grain 4 Size

5 **Jiangjiang Hu** ¹, **Yusheng Zhang** ^{2,*}, **Weiming Sun** ³ and **Taihua Zhang** ¹6 ¹ College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
7 jiangjiangwho@gmail.com (J. Hu); zhangth@zjut.edu.cn (T. Zhang)8 ² Advanced Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, Xi'an, 710049,
9 China10 ³ Key Laboratory of Automobile Materials, College of Materials Science and Engineering Jilin University,
11 Nanling Campus, Changchun 130025, China; sunwm15@mails.jlu.edu.cn (W. Sun)

12 * Correspondence: y.sh.zhang@163.com

13 **Abstract:** At room temperature, the indentation morphologies of crystalline copper with different
14 grain size including nanocrystalline (NC), ultrafine-grained (UFG) and coarse-grained (CG) copper
15 were studied by nanoindentation at the strain rate of 0.04/s without holding time at indentation
16 depth of 2000 nm. As the grain size increasing, the height of the pile-up around the residual
17 indentation increases and then has a slightly decrease in the CG Cu, While the area of the pile-up
18 increases constantly. Our analysis has revealed that the dislocation motion and GB activities in the
19 NC Cu, some cross- and multiple-slips dislocation insides the larger grain in the UFG Cu, and forest
20 dislocations from the intragranular Frank-Read sources in the CG Cu, would directly induce these
21 distinct pile-up effect.22 **Keywords:** Nanoindentation; Pile-up effect; Grain size; Dislocation motion; Grain boundaries
23 activities

24

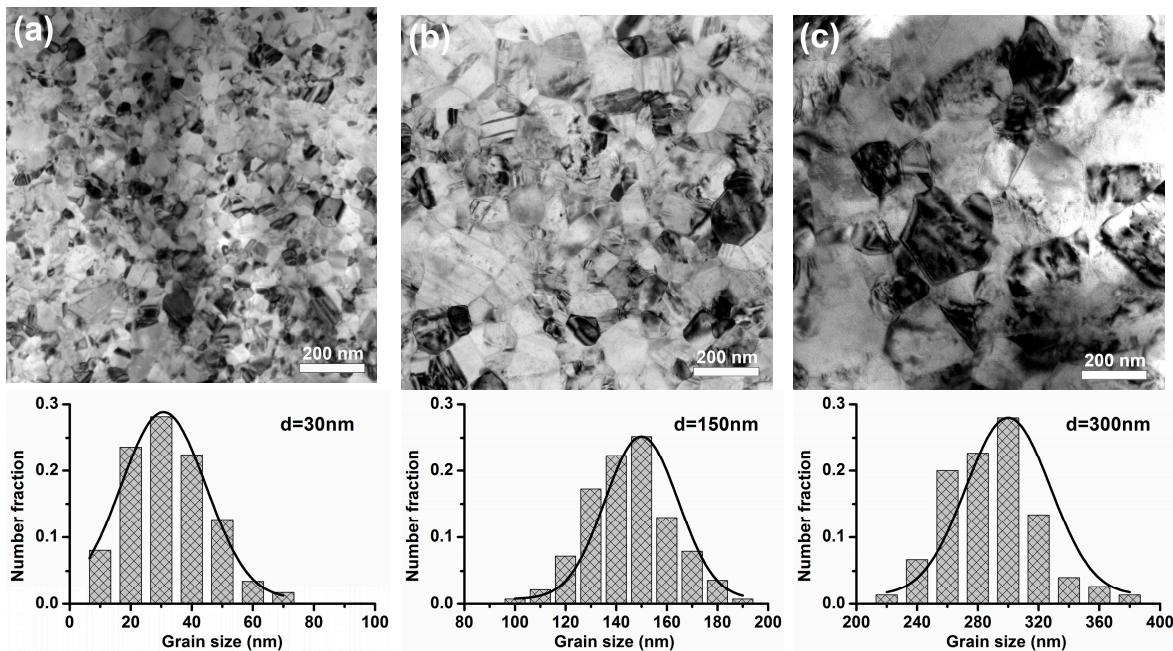
25

1. Introduction

26 Nanoindentation technique has been widely used to characterize the mechanical properties of
27 bulk- and thin-film materials on nano- and microscopic scales such as elastic modulus (E) and
28 hardness (H). From the experimental load-displacement curves, three vital quantities can be obtained:
29 the maximum load P_{max} , the maximum displacement h_{max} , and the contact stiffness S [1]. Then the
30 projected contact area A is calculated from the contact depth using the calibrated area function and
31 then the final E and H can be obtained. It should be noted that the involved mechanical parameters
32 in this contact area calibration are acquired from the indentation of a standard fused silica sample.
33 But in some cases, deviations are evidently generated in the indentation process itself when the
34 mechanical behaviors between the studied materials and the standard sample are quite different. For
35 example, there is an apparent upward extrusion at the edge of the contact with the indenter in some
36 metals, known as pile-up, which means the actual contact area is larger than the value calculated by
37 the Oliver-Pharr method [1]. Some studies has reported that the true contact area is 60% larger than
38 the measured value as serious pile-up occurs, leading to the overestimation of the E and H [2-7].
39 Therefore, it is invaluable in quantitatively accounting for the pile-up influence on E and H in the
40 various materials and loading conditions under nanoindentation testing.

41 Many studies have shown that the formation of pile-up is closely related with the ratio of the
42 yield stress (σ_y) to E , the ratio of the final indentation depth h_f to h_{max} , and the strain hardening
43 exponent (n). Metallic materials with smaller values of the σ_y / E and n usually exhibit larger pile-
44 up height, but accurately determined these two parameters in the indentation process becomes
45 impossible. Therefore, the easily measured h_f / h_{max} from the load-displacement curve can be used to
46 determine the prevalence of the pile-up. It has been suggested that for the materials with low work
47 hardening ability, the amount of the pile-up would become obvious as the ratio of h_f / h_{max} is larger
48 than 0.7 [2, 3]. Interestingly, most of the theoretical development reports were based on numerical
49 modelling [5, 8-12], with very limited experimental data being used to explain this phenomena.
50 Although some reports have studied the effect of work-hardening, grain orientation on the pile-up
51 formation in the metals [3, 13], other factors such as grain size and deformation mechanisms
52 transformation have not been mentioned.

53 The aim of the present work is to establish the relationship between the pile-up effect and grain
54 size in the crystalline materials. Nanocrystalline (NC), ultrafine-grained (UFG) Cu and coarse-
55 grained (CG) copper samples were detected by the nanoindentation at room temperature at
56 indentation depth of 2000 nm, and their pile-up effect around the residual impressions were
57 systemically studied. Deformation mechanism transformation is used to explain why the pile-up
58 effect exhibits different morphologies in the crystalline materials with different grain sizes.

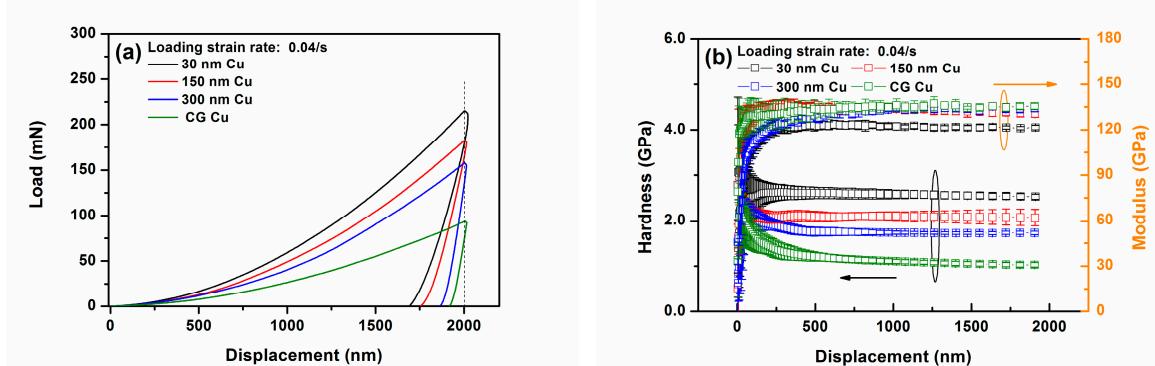

59 2. Experiments details

60 Bulk NC/UFG Cu specimens with different grain sizes used in this article were synthesized by
61 electric brush-plating on the substrate of copper sheets with bath only containing $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$ (180-
62 220g/l), and the detailed processes are presented in the refs. [14-16]. A commercial coarse-grained
63 (CG) copper sheet with thickness of 2 mm and purity of 99.99 wt.% were annealed at a temperature
64 of 800 °C for 24 h, prepared for a contrastive experiment. Foil samples for transmission electron
65 microscope (TEM, JEM-2100F) observation under accelerating voltage of 200 kV were prepared by
66 cutting, polishing and dimpling by argon-ion milling (EMRES101) at 5 kV. Square-shaped
67 nanoindentation specimens of NC/UFG/CG Cu with gauge size of 30×30×2 mm³ were cut, and then
68 mechanically grinded with SiC papers, and finally polished with a microcloth using a slurry of 0.5
69 µm alumina. To acquire reliable nanoindentation data, the surface of the test specimens were
70 mechanically polished to mirror finishing, and then their mechanical properties were characterized
71 at room temperature by a nanoindenter (Agilent-G200) with a Berkovich diamond indenter. All the
72 samples were loaded at strain rates of 0.4/s, 0.04/ and 0.004/s to the indentation depth of 2000 nm
73 without holding time under the procedure of the continuous stiffness measurement (CSM). The
74 thermal drift rate prior to testing was limited below 0.025 nm/s and the indentation under same
75 condition was repeated at least ten times. The surface morphology of the residual impression
76 obtained at strain rate of 0.04/s was observed by the laser confocal microscopy (LSM, OLS4500).

77 3. Results

78 3.1 TEM observation

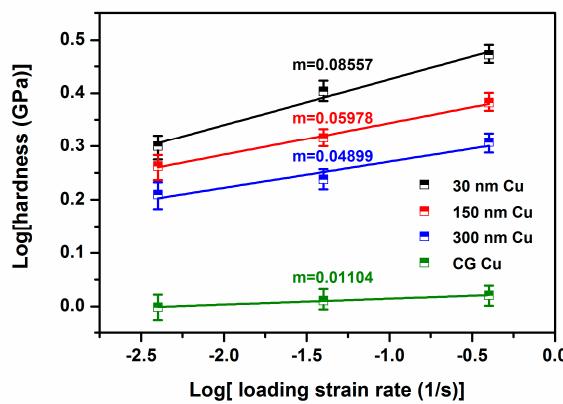
79 Fig. 1 gives the TEM bright images of the typical microstructures of the as-brush-plated NC/UFG
80 Cu. It reveals that these materials consist of uniformly equiaxed grains with random crystalline
81 orientations and predominant high-angle grain boundaries (GBs). Grain size was measured from the
82 statistical analysis of 500 grains taken from the several TEM images, and the average values of these
83 materials are 30 nm, 150 nm and 300 nm, respectively.



84 Fig. 1 TEM bright-field images of the as-brush-plated NC/UFG Cu: (a) 30 nm Cu; (b) 150 nm Cu; (c)
85 300 nm Cu.

86 3.2 Mechanical properties of the nanoindentation

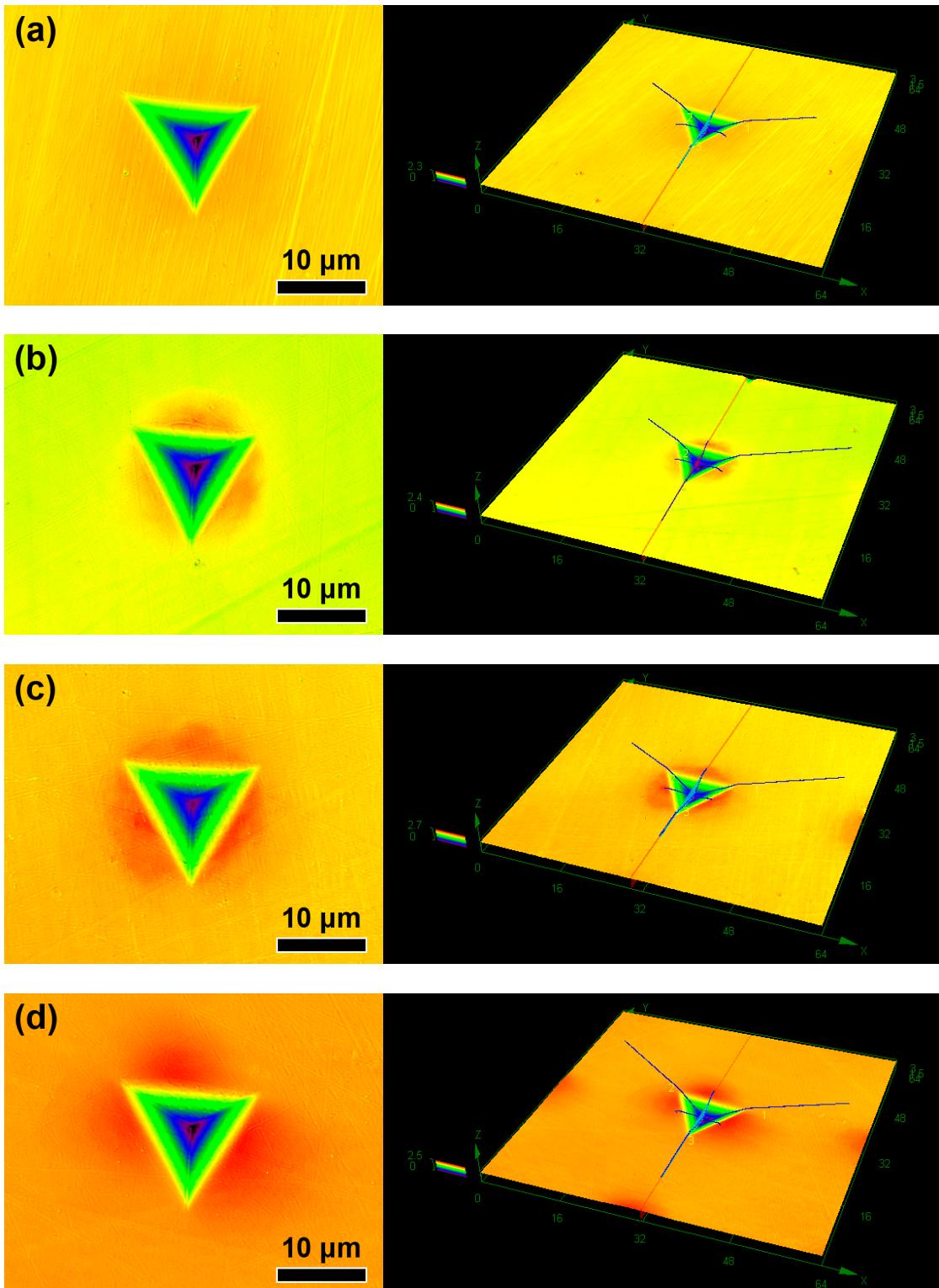
87 Fig. 2a shows the load-displacement ($P-h$) curves obtained at strain rate of 0.04/s to the
88 indentation depth of 2000 nm without holding time on these four materials. It can be seen that as the
89 grain size decreases, the acquired load at given displacement in the loading stage increases rapidly
90 and the slope value of the $P-h$ curves during the unloading regime decreases obviously. To assess the
91 effect of the pile-up in the indenters, Table 1 summarizes the ratio of h_f/h_{max} in these four materials,
92 where h_f and h_{max} are the final and maximum displacement at zero and highest load in the $P-h$ curves.
93 Clearly, this ratio decreases constantly as the grain size decreases.


94 Fig. 2b gives the corresponding E and hardness H versus displacement curves. It can be found
95 that the measured E of these four materials is independent of displacement after the indentation
96 depth is over 500 nm and their values are in the range of 120~135 GPa. The H value increases rapidly
97 at given displacement as the grain size decreases. To give a quantitative measurement of the strain
98 rate dependence of hardness in the different materials, the strain rate sensitivity (m) obtained by the
99 equation of $m = \partial \log H / \partial \log \dot{\epsilon}_L$ is used. Fig. 3 gives the m of the NC/UFG/CG Cu obtained at
100 three typically different loading strain rates of 0.4/s, 0.04/s and 0.004/s. The m value increases with
101 decreasing the grain size and the values in these four materials are 0.08557, 0.05978, 0.04899 and
102 0.01104, respectively.

103 **Fig. 2** (a) Several load-displacement (P - h) curves obtained at indentation depth of 2000 nm at $\dot{\epsilon}_L$ of
 104 0.4/s in the four NC/UFG/CG Cu. (b) Elastic modulus (E) and hardness (H) versus displacement
 105 curves of 30 nm, 150 nm, 300 nm and CG Cu measured by the CSM method at $\dot{\epsilon}_L$ of 0.04/s.

106 **Table 1** h_f/h_{max} of NC/UFG/CG Cu obtained at strain rate of 0.04/s and indentation depth of 2000 nm.

Materials	h_{max} at P_{max}	h_f at 0 mN	h_f/h_{max}
30 nm Cu	2000 nm	1694 nm	0.847
150 nm Cu	2000 nm	1756 nm	0.878
300 nm Cu	2000 nm	1867 nm	0.934
CG Cu	2000 nm	1919 nm	0.960



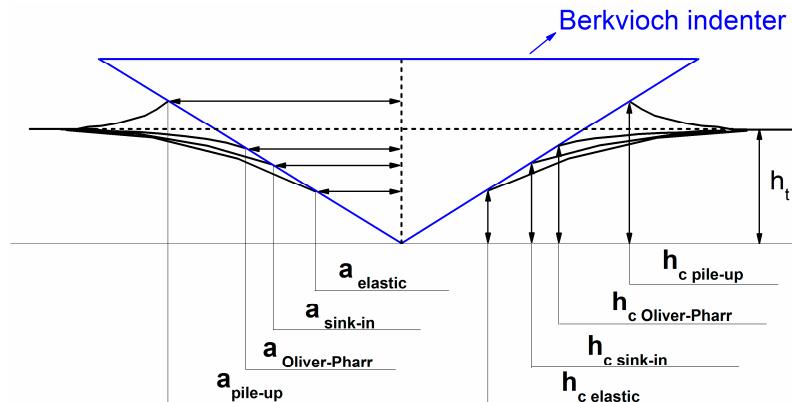
107

108 **Fig. 3** The hardness versus loading strain rate ($\log H - \log \dot{\epsilon}_L$) curves for measuring the strain rate
 109 sensitivity (m) of NC/UFG/CG Cu measured at three different $\dot{\epsilon}_L$ of 0.4/s, 0.04/s and 0.004/s.

110 *3.3 Residual morphology of the impression*

111 LCM images can be used to determine the extent and nature of the pile-up in the deformed
 112 surface topography of the impression. Fig. 4 gives of the residual morphology of the Berkovich
 113 indenter after loading at strain rate of 0.04/s at same indentation depth of 2000 nm in these four
 114 NC/UFG/CG Cu samples. Clearly, expect the indents of 30 nm Cu exhibiting very little protrusion,
 115 the other three materials appear obvious pile-up effect in the vicinities of the impression. In order to
 116 quantify the pile-up height along the z-axis in the impression, cross-sectional curves obtained from
 117 the three different sides of the indentation edges need to be measured (the right graphs in the Fig. 4).
 118 These curves confirm both that the pile-ups are not symmetrical around the indentation edges and
 119 that the height and width of the pile-ups differ from each other at the three different sides of the
 120 indentations. Table 2 gives the detailed maximum height of the pile-up ($h_{pile-up}$) along the directions of
 121 1-3 (clearly seen in the right graph of Fig. 4d) in these four materials. There exists a tendency that the
 122 $h_{pile-up}$ would reach the maximum values as the grain size increases from 30 nm to 300 nm, and then
 123 decreases in the CG Cu. Besides that, there is another interesting result that the area of the pile-up
 124 around the indenters increases continuously as the grain size increasing.

129
130
131
132 **Fig.4** LCM images of 30 nm Cu (a), 150 nm Cu (b), 300 nm Cu (c) and CG Cu (d) obtained at strain
rate of 0.04/s to the indentation depth of 2000 nm. The right is the corresponding three-dimensional
graphs that can be used to measure the detailed height of the pile-up along the cross-section.


Table 2 $h_{pile-up}$ of NC/UFG/CG Cu at three directions.

Materials	$h_{pile-up}$ in the Direction 1	$h_{pile-up}$ in the Direction 2	$h_{pile-up}$ in the Direction 3
-----------	----------------------------------	----------------------------------	----------------------------------

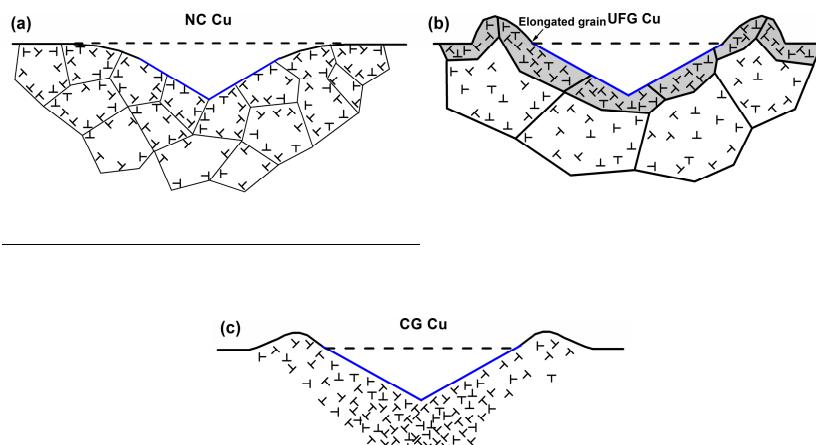
30 nm Cu	0.115 nm	0.099 nm	0.073 nm
150 nm Cu	0.228 nm	0.337 nm	0.292 nm
300 nm Cu	0.396 nm	0.386 nm	0.231 nm
CG Cu	0.244 nm	0.302 nm	0.227 nm

133 **4. Discussion**

134 Oliver-Pharr method is based on the pure elastic contact developed by Sneddon [17], and thus
 135 the tip calibration of the projected contact area at maximum load always considers sink-in effect
 136 occurring around the residual indenter, as shown in the Fig. 5. Finite Element Modeling (FEM) results
 137 have pointed out that [18], when the h_f/h_{max} is smaller than 0.7, or the materials have moderate work
 138 hardening, the Oliver-Pharr analysis procedure would provide a reasonable results of the measured
 139 E and H . When the h_f/h_{max} is larger than 0.7, and/or in the materials without obvious work harden,
 140 larger amount of the pile-up would directly induce an underestimation of the contact area, which
 141 further produces correspondingly large errors in the measurement (overestimation) of the E and H ,
 142 especially at smaller indentation depth. Therefore, accurately determining the contact area from the
 143 P - h curves plays an important role in the measuring the mechanical properties of materials on a local
 144 small volume.

145

146 **Fig. 5** Basic representation of pile up and sink in phenomena, a and h_c are the corresponding residual
 147 radius and contact depth.


148 The pile-up evolution during the indentation is closely related with the relative amounts of
 149 elastic and plastic deformation as characterized by the ratio of the elastic modulus to yield stress, i.e.,
 150 E/σ_y . As $E/\sigma_y=0$, the contact is strictly elastic and dominated by sink-in in the way prescribed
 151 by Hertzian contact mechanics. As $E/\sigma_y=\infty$, the indentation process follows the rigid-plastic
 152 deformation and extensive pile-up would occur around the residual impression [7]. Our previous
 153 reports have already studied systematically the tensile properties of the NC/UFG Cu with different
 154 grain sizes [14, 16, 19], and the corresponding values of E/σ_y in these four materials are 175 (30
 155 nm Cu), 264 (150 nm Cu), 386 (300 nm Cu), 1930 (CG Cu). As expected, elastic behavior is larger for
 156 the NC Cu because of smaller h_f/h_{max} value, but there is little recovery for materials with larger grain
 157 size due to the fact that the sufficiently larger plasticity happens in these materials. Previous works
 158 are mostly focused on the new modified method to acquire more reliable measurement data in the
 159 nanoindentation. For example, direct measurement of the residual hardness impression could
 160 provide more accurate and believable contact area in evaluating the E and H [4, 6]. Very few studies
 161 concerns how the deformation mechanisms in the crystalline materials with different grain sizes
 162 influence the formation of the pile-up in the metal materials.

163 As the grain size further decreases below 100 nm, more GBs are involved in the indentation
 164 deformation and both dislocation activity and GB sliding can be activated in the strain rate range
 165 studied. In this case, large amount of slip planes are activated and dislocations emitted from GBs

166 would propagate in the grain interior and be absorbed by the opposite GBs. This indicates that the
167 highly mobile or unstable generated dislocations in the loading regime can only stay temporarily in
168 grain interior, because GB serves as a sink for dislocation absorption, and the materials exhibit very
169 limited strain hardening capability (as shown in Fig. 6a). Therefore, the effect of the pile-up induced
170 by the strain hardening becomes invalid. Additionally, the changes of the grain shape can hardly
171 happen in the plastic deformation of the NC metals under our experimental conditions. Our previous
172 TEM observations of the NC Cu samples before and after deformation under compression testing
173 have revealed, although the grain size have slightly difference under the assistance of GB activities
174 and grains rotations [16], no obvious change of grain shape can be observed that could induce larger
175 pile-up effect in the UFG metals.

176 As the grain size enters the ranges of 100~1500 nm, the dislocation density associated with grain
177 boundaries becomes low, whereas the forest dislocation density in the grain interior is expected to
178 become high. This deformation mechanism transition is consistent with the variation of m value
179 versus grain size, which is in accordance with other experimental results of tensile, compression and
180 nanoindentation testing [14, 16, 20-23]. Although a number of GB mechanisms such as GB sliding,
181 GB rotation would participate in their plastic deformation, the transition between intragranular and
182 intergranular deformation mechanism is not supposed to be abrupt. Dislocation activities such as the
183 cross- and multiple-slips from the internal source can still be activated effectively in the large grain
184 zones, and dislocations can be trapped inside the grains as a result of dislocation interactions between
185 slip systems or with debris left by cross-slip. So some parts of the pile-up can formed in a way similar
186 to that in the CG metals, where strain hardening induces the plastic deformation around the surface
187 (see the below). Except that, larger grains under indenter would be stretched severely along the shear
188 directions [24, 25] (as shown in Fig. 6b), which can also produce the highest $h_{pile-up}$ in the UFG Cu with
189 grain size of 300 nm.

190 For the conventional CG metals, the plastic deformation mainly involves the dislocation
191 multiplication from the intragranular Frank-Read sources, which could produce the dislocation
192 cells/walls/networks structure in the grain interior. These formed microstructures as a strong pinning
193 point to the dislocation-bowing segment would suppress dislocation cross slips, leading to strong
194 strain hardening in the further plasticity. FEM results have revealed that due to the higher stress
195 applied underneath the tip of the indenter, the shear strain or dislocation density generated at the
196 deepest areas is much higher compared with other areas and materials around this region harden
197 more severely [8]. The strain hardening generated by such dislocation activities is more effective in
198 suppressing the strain localization. But for the regions approaching the surface, the dislocation slips
199 in the other $<110>$ directions would become relatively easy that contributes to final the
200 topography of the pile-up. Due to the relatively large strain hardening capability in the CG metals,
201 larger regions around the surface would deform following the above mechanisms, producing larger
202 areas of the pile-up (as shown in Fig. 6c).

203

204

205 **Fig. 6** Schematic illustrations of local GB structures and dislocation distribution in the NC (a), UFG
 206 (b) and CG (c) Cu underneath the indenters, where "T" represents dislocation.

207 **5. Conclusion**

208 Nanoindentation tests were carried out on crystalline Cu with different grain sizes ranging from
 209 30 nm to 300 nm and CG Cu, and the residual indenter morphologies of these four materials have
 210 been systematically studied. It can be observed the height of the pile-up reaches the maximum values
 211 as the grain size increases from 30 nm to 300 nm, and then decreases in the CG Cu. Besides that, there
 212 is another interesting result that the area of the pile-up around the indenters increases continuously
 213 as the grain size increasing. Our analysis have demonstrated that dislocation activity and GB
 214 activities in the NC metals, some cross- and multiple-slips dislocation insides the larger grain in the
 215 UFG Cu, and forest dislocations from the intragranular Frank-Read sources in the CG Cu are
 216 responsible for the distinct pile-up effect in these materials.

217 **Acknowledgement:** This work was supported by the National Natural Science Foundation of China (Grant Nos.
 218 11672356 and 11727803, 51371089) and Innovation team in key areas of Shaanxi Province (2016KCT-30).

219 **Author Contributions:** Jiangjiang Hu conducted the experiments and wrote the paper. Yusheng Zhang
 220 supervised the revised the whole work. Weiming Sun processed the data. Taihua Zhang conceived the work and
 221 also revised the paper.

222 **Conflicts of Interest:** The authors declare no conflict of interest.

223 **References**

1. Oliver, W.C., Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. *J. Mater. Res.* 2004, **19**, 3.
2. McElhaney, K.W., Vlassak, J.J., Nix, W.D. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. *J. Mater. Res.* 1998, **13**, 1300.
3. Gale, J.D., Achuthan, A. The effect of work-hardening and pile-up on nanoindentation measurements. *J. Mater. Sci.* 2014, **49**, 5066-5075.
4. Beegan, D., Chowdhury, S., Laugier, M.T. A nanoindentation study of copper films on oxidised silicon substrates. *Surf. Coat. Tech.* 2003, **176**, 124-130.
5. Rodríguez, J., Maneiro, M.A.G. A procedure to prevent pile up effects on the analysis of spherical indentation data in elastic-plastic materials. *Mech. Mater.* 2007, **39**, 987-997.
6. Zhou, L., Yao, Y. Single crystal bulk material micro/nano indentation hardness testing by nanoindentation instrument and AFM. *Mat. Sci. Eng. A* 2007, **460-461**, 95-100.

237 7. Taljat, B., Pharr, G.M. Development of pile-up during spherical indentation of elastic-plastic
238 solids. *Int. J. Solids. Struct.* 2004, 41, 3891-3904.

239 8. Liu, Y., Varghese, S., Ma, J., Yoshino, M., Lu, H., Komanduri, R. Orientation effects in
240 nanoindentation of single crystal copper. *Int. J. Plasticity* 2008, 24, 1990-2015.

241 9. Demiral, M., Roy, A., El Sayed, T., Silberschmidt, V.V. Influence of strain gradients on lattice
242 rotation in nano-indentation experiments: A numerical study. *Mat. Sci. Eng. A* 2014, 608, 73-81.

243 10. Sánchez-Martín, R., Pérez-Prado, M.T., Segurado, J., Molina-Aldareguia, J.M. Effect of
244 indentation size on the nucleation and propagation of tensile twinning in pure magnesium. *Acta
245 Mater.* 2015, 93, 114-128.

246 11. Renner, E., Gaillard, Y., Richard, F., Amiot, F., Delobelle, P. Sensitivity of the residual topography
247 to single crystal plasticity parameters in Berkovich nanoindentation on FCC nickel. *Int. J.
248 Plasticity* 2016, 77, 118-140.

249 12. Petryk, H., Stupkiewicz, S., Kucharski, S. On direct estimation of hardening exponent in crystal
250 plasticity from the spherical indentation test. *Int. J. Solids. Struct.* 2017, 112, 209-221.

251 13. Chen, T., Tan, L., Lu, Z., Xu, H. The effect of grain orientation on nanoindentation behavior of
252 model austenitic alloy Fe-20Cr-25Ni. *Acta Mater.* 2017, 138, 83-91.

253 14. Hu, J., Han, S., Sun, G., Sun, S., Jiang, Z., Wang, G., Lian, J. Effect of strain rate on tensile
254 properties of electric brush-plated nanocrystalline copper. *Mat. Sci. Eng. A* 2014, 618, 621-628.

255 15. Hu, J., Sun, G., Zhang, X., Wang, G., Jiang, Z., Han, S., Zhang, J., Lian, J. Effects of loading strain
256 rate and stacking fault energy on nanoindentation creep behaviors of nanocrystalline Cu, Ni-20
257 wt.%Fe and Ni. *J. Alloy. Compd.* 2015, 647, 670-680.

258 16. Hu, J., Zhang, J., Jiang, Z., Ding, X., Zhang, Y., Han, S., Sun, J., Lian, J. Plastic deformation
259 behavior during unloading in compressive cyclic test of nanocrystalline copper. *Mat. Sci. Eng. A*
260 2016, 651, 999-1009.

261 17. Sneddon, I.N. The relation between load and penetration in the axisymmetric Boussinesq
262 problem for a punch of arbitrary profile. *Int. J. Eng. Sci.* 1965, 3, 47-57.

263 18. Bolshakova, A., Pharr, G.M. Influences of pileup on the measurement of mechanical properties
264 by load and depth sensing indentation techniques. *J. Mater. Res.* 1998, 13, 4.

265 19. Zhang, H., Jiang, Z., Lian, S., Jiang, Q. Strain rate dependence of tensile ductility in an
266 electrodeposited Cu with ultrafine grain size. *Mat. Sci. Eng. A* 2008, 479, 136-141.

267 20. Li, H., Liang, Y., Zhao, L., Hu, J., Han, S., Lian, J. Mapping the strain-rate and grain-size
268 dependence of deformation behaviors in nanocrystalline face-centered-cubic Ni and Ni-based
269 alloys. *J. Alloy. Compd.* 2017, 709, 566-574.

270 21. Hu, J., Sun, W., Jiang, Z., Zhang, W., Lu, J., Huo, W., Zhang, Y., Zhang, P. Indentation size effect
271 on hardness in the body-centered cubic coarse-grained and nanocrystalline tantalum. *Mat. Sci.
272 Eng. A* 2017, 686, 19-25.

273 22. Hu, J., Zhang, W., Bi, G., Lu, J., Huo, W., Zhang, Y. Nanoindentation creep behavior of coarse-
274 grained and ultrafine-grained pure magnesium and AZ31 alloy. *Mat. Sci. Eng. A* 2017, 698, 348-
275 355.

276 23. Jiang, Z., Liu, X., Li, G., Jiang, Q., Lian, J. Strain rate sensitivity of a nanocrystalline Cu
277 synthesized by electric brush plating. *Appl. Phys. Lett.* 2006, 88, 143115.

278 24. Wei, Q., Jia, D., Ramesh, K.T., Ma, E. Evolution and microstructure of shear bands in
279 nanostructured Fe. *Appl. Phys. Lett.* 2002, 81, 1240.

280 25. Wei, Q., Kecske, L., Jiao, T., Hartwig, K.T., Ramesh, K.T., Ma, E. Adiabatic shear banding in
281 ultrafine-grained Fe processed by severe plastic deformation. *Acta Mater.* 2004, 52, 1859-1869.