

1 *Review*

2 **Fatty acids, antioxidants and physical activity in 3 brain aging**

4 **Hércules Rezende Freitas ^{1*}, Gustavo da Costa Ferreira ¹, Isis Hara Trevenzoli ², Karen de Jesus
5 Oliveira ³ and Ricardo Augusto de Melo Reis ¹**

6 ¹ Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio
7 de Janeiro; freitashr@biof.ufrj.br

8 ² Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal
9 do Rio de Janeiro; haraisis@biof.ufrj.br

10 ³ Laboratory of Endocrine Physiology and Metabolism, Biomedical Institute, Universidade Federal
11 Fluminense; karenoliveira@id.uff.br

12 * Correspondence: freitashr@biof.ufrj.br; Tel.: +55 (21)-3938-6594

13

14 **Abstract:** Polyunsaturated fatty acids (PUFAs) and antioxidants are important mediators in the
15 central nervous system (CNS). Lipid derivatives may be used to generate endocannabinoids or
16 prostanoids derived from arachidonic acid, which attenuates excitotoxicity in quadripartite
17 synapses with a focus in astrocytes and microglia; on the other hand, antioxidants, such as
18 glutathione (GSH) and ascorbate, have been shown to signal through transmitter receptors and
19 protect against acute and chronic oxidative stress, modulating the activity of different signaling
20 pathways. Several authors have investigated the role of these nutrients in young and senescent
21 brain, as well as in degenerative conditions such as Alzheimer's and Parkinson's diseases. Through
22 literature review, we aimed to highlight recent data on the role of fatty acids, antioxidants and
23 physical activity in physiology and in molecular mechanisms of brain senescence. Data indicate the
24 complexity and essentiality of endogenous/dietary antioxidants for maintenance of the redox status
25 and control of neuroglial signaling under stress. Recent studies also indicate that omega-3 and -6
26 fatty acids act in a competitive manner to generate mediators for energy metabolism, feeding
27 behavior, plasticity and memory mechanisms throughout aging. Finding pharmacological or
28 dietary resources that mitigate or prevent neurodegenerative affections continues to be a great
29 challenge and require additional efforts from researchers, clinicians and nutritionists in the field.

30 **Keywords:** Essential fatty acids; Ascorbic acid; Glutathione; Aging; Parkinson's disease;
31 Alzheimer's disease; Senescence; Nervous system; Growth factors; Neuroprotection;
32 Docosahexaenoic acid; α -linolenic acid.

33

34 **1. Introduction**

35 Throughout the 20st century, evidence-based medical knowledge has allowed for a significant
36 increase in life expectancy, especially in well-developed countries. Epidemiological data from 1900
37 (United States and United Kingdom) indicate that 50% of the population lived approximately until
38 50 years old, while in the 1990's, half of the population lived until 80 years old (1). The ageing process,
39 however, is permissive for the development of several degenerative disorders and infectious
40 diseases, which are strongly influenced by nutritional imbalances, inflammation, metabolic
41 exhaustion and by the natural process of cellular senescence (2).

42 Insufficient ingestion and/or deficient absorption of essential nutrients deeply affects health
43 condition of elderly individuals. Frangoskou and coworkers explored the impact of dehydration as
44 an extenuating factor for public expenses with health services, increasing mortality, hospital
45 readmission and period of stay under medical/hospital care (3). Digestion and absorption of nutrients

46 is normally deficient in the elderly, as compared to younger individuals. In a recent study, it was
47 shown that essential and branched-chain amino acids reach peak blood levels within 1h hour after
48 young individuals (20-25 years old) receive a protein-rich meal, while the same peak concentrations
49 were reached only 3h post-meal for an elderly (60-75 years old) group (4).

50 Prevalence of malnutrition, weakness and related disabilities are also relevant factors and may
51 comprehend a large portion of the aged population, mainly those institutionalized (hospitalized) and
52 resident of non-developed/developing countries (5). In a cross-sectional Brazilian epidemiological
53 study with elderly individuals (≥ 60 years old), anemia index, hemoglobin concentration and
54 population frailty were intrinsically related, indicating that low levels of hemoglobin are associated
55 with a greater number of frailty indicators (Fried phenotype criteria) (6).

56 Western diets, characterized by the high lipid content (mainly saturated fatty acids), refined
57 carbohydrates and low ingestion of vegetables have been associated to the development of serious
58 cardiovascular disorders, cancer and diabetes (7). Loss of endothelial homeostasis during ageing, for
59 example, strongly depends on oxidative stress, inflammation and nutritional factors. Dietetic
60 interventions in elderly people are, however, hardened by cognitive impairment and loss of motility,
61 which limits the autonomy for preparing complex meals, chewing and digesting food (8). Regulation
62 of circadian cycle and decrease in dietetic calories content has been shown to be effective in
63 promoting longevity in several in vivo models (9).

64 In emerging countries, such as Asian and Latin-American nations, it is possible to observe a
65 marked effect of nutritional transition, parallel to the accelerated expansion of urban areas, which
66 incorporates negative dietary habits in the population (10). Such factor introduces a deep
67 epidemiological concern, once modifications in feeding habits and obesity are strong indicators of
68 health risk, such as high blood cholesterol, pre-diabetes, hypertension, asthma, arthritis and bad or
69 regular self-reported health condition (11). Weight variations affect the well-being of elderly patients,
70 a determinant factor for survival within such group (12).

71 Depression may also be related to the development of obesity (13), and obesity itself is
72 significantly associated to abusive intake of alcohol and depression, mainly in adult female
73 individuals or highly obese subjects (14, 15). Current dietetic approaches rely on providing balanced
74 amounts of energy, macro and micronutrients; other therapies, such as correction of the gut
75 microbiome and global intestine health, await further clinical evidence (16). Here, we explore post-
76 transitional aspects of modern feeding, especially the intake of fatty acids and antioxidants, which
77 greatly relates to the process of brain ageing, one of the pillars in generalized senescence.

78 2. Senescence of the Nervous System

79 Many disabling central nervous system symptoms and diseases are highly associated with the
80 aging process, including cerebrovascular disease, Alzheimer's disease (AD) and Parkinson's disease
81 (PD), as well as decline of attention and memory (17, 18). Despite the current medical advances to
82 extend lifespan, untangling the precise metabolic interactions involved in the process of neural aging
83 continues to be a challenge. Both environmental and endogenous factors have been postulated to
84 play a role in cellular senescence, including genetic alterations (DNA damage and shortening of
85 telomeres) and gene expression (19, 20), accumulation of aberrant proteins (21), excitotoxicity (22),
86 oxidative damage and mitochondrial dysfunction (23, 24), and others.

87 It has been shown that the disturbances in brain synaptic circuitry that occurs especially in
88 hippocampus and pre-frontal cortex during ageing might promote relevant cognitive decline (25).
89 Oxidative damage accumulates with age and is potentially harmful to many mitochondrial functions.
90 Contributing factors include decreased membrane fluidity and the intrinsic rate of proton leakage
91 across the inner mitochondrial membrane (26). Previous reports showed that mitochondria are
92 chronically depolarized in aged neural cells, including an age-dependent decrease in mitochondrial
93 membrane potential in cerebellar neurons from brain slices (27) and in cultured basal forebrain
94 neurons (28). Brain mitochondria from senescent rats present damaged mitochondrial I complex,
95 which may be related to the increase of Bax/Bcl-2 observed in these mitochondria (29). It has also
96 been shown in rats and humans that senescent subjects feature larger mitochondria than young cells,

97 but in a smaller amount (30-32). If on the one hand the total volume of the cell occupied by
98 mitochondria is virtually unaltered in young and old subjects, on the other hand these larger
99 mitochondria do not feature the same bioenergetic capability (32, 33). Potential consequences of
100 mitochondrial chronic depolarization include impaired ATP synthesis and redox homeostasis, as
101 well as disruption of calcium gradient across the mitochondrial membrane with subsequent
102 impairment on mitochondrial calcium stores or increase in the threshold necessary to trigger
103 mitochondrial uptake of calcium (34). Thus, changes in the metabolic status would greatly impair the
104 fuel reserves of the neural cells and consequently make them less capable to respond to injury. In the
105 context of the cognitive impairment of the aged cells, the linchpin seems to be the activity of the fast-
106 spiking interneurons (35), which have high metabolic demands and thus are more susceptible to
107 metabolic dysfunction (36).

108 Accumulated data indicate that the gradual dysfunction of respiratory chain complexes
109 involved in the electron transfer (mainly complexes I and IV), flaws in compensatory mechanisms,
110 inaccurate gene expression, and increased number of mitochondrial DNA (mtDNA) damage are at
111 least capable of influencing the progression of AD (37). Blood glucose and several associated
112 metabolic pathways appear to be altered in the brain of AD patients; however, these manifestations
113 may be consequence of the ageing and disease progression, which undermine synapses and attenuate
114 the demand for glucose, further contributing to the functional and progressive decline of cerebral
115 functions (38).

116 One of the main regulators of growth and survival in adverse environmental conditions, the
117 mammalian target of rapamycin (mTOR) is a catalytic subunit of two distinct complexes known as
118 mTOR1 and mTOR2 complexes (mTORC1 and mTORC2, respectively) (39). The intrinsic
119 communication of mTOR complexes (mainly mTORC1) with the metabolic control of glycogenesis
120 and lipogenesis is essential to maintain central homeostasis (39, 40), since neural cells are highly
121 dependent on the continued supply of glucose and other energy substrates (e.g. ketone bodies and
122 lipids) to maintain ATP/AMP ratio. This dynamic allows for the correct regulation of autophagy
123 systems, essential for the clearance of malfunctioning organelles and misfolded proteins, which were
124 found to be dysregulated in central diseases such as AD (41).

125 Nutritional profile of elder individuals seems to be important to the progression of several
126 pathological conditions affecting CNS. It has been reported that the occurrence of disabilities and
127 signals of fatigue are significantly correlated to diet deficiency of folate (i.e. vitamin B9) and
128 magnesium in patients with multiple sclerosis (MS) (42). The onset of preclinical indicators for AD
129 suggest that the availability of micronutrients and fatty acids, especially docosahexaenoic acid
130 (DHA), is gradually restricted and follows the progression of the disease in aged subjects. Protein-
131 energy nutritional status is also aggravated in AD, but it usually parallels the symptoms of cognitive
132 impairment. Nutritional strategies that combine key nutrients for the formation and maintenance of
133 synaptic integrity have been used primarily to prevent loss or impairment of memory in AD patients
134 (43). In vivo restriction in the supply of nutrients during pre- and post-natal periods cause metabolic
135 changes to the blood-brain barrier, inducing cognitive disorders and predisposition to AD (44). These
136 findings underscore an intrinsic relationship between adequate supply of essential nutrients,
137 especially fatty acids and antioxidants, and maintenance of central homeostasis during aging.

138 3. Adipose tissue–CNS crosstalk in brain aging

139 Aging and obesity can affect the central regulation of systemic homeostasis, increasing the risk
140 to develop AD, insulin resistance, diabetes mellitus, cardiovascular and cerebrovascular diseases.
141 However, these two metabolic conditions frequently coexist and it is difficult to distinguish the
142 relative contribution of each one to the disease progression. Neuroinflammation seems to be a
143 common mechanism by which these conditions independently and interactively impair
144 neurogenesis, neural stem cells survival and differentiation, promote age-related cognitive decline
145 and neurodegenerative diseases (45, 46).

146 Blood-brain barrier (BBB) breakdown may precede and trigger both neuroinflammation and
147 neurodegeneration. Because obesity is related to a persistent pro-inflammatory state (47), plasma-

148 derived deleterious factors such as LPS and saturated fatty acids can pass through the damaged BBB
149 to induce neuroinflammation. In fact, serum derived from aged mice or aged high-fat fed mice
150 produces significant microglia activation, with increased reactive oxygen species production and
151 cytokine expression in hippocampus (48). On the other hand, Nlrp3 inflammasome knockout mice
152 show decreased metabolic and inflammatory markers in peripheral and central tissues, improved
153 functional cognitive decline during aging, and expanded lifespan (49). In the hypothalamus, an
154 important brain region regulating energy homeostasis, both aging and over nutrition increase the
155 proinflammatory axis comprising $I\kappa B$ kinase- β (IKK β) and its downstream nuclear transcription
156 factor NF- κB (IKK β /NF- κB signaling). Hypothalamic inflammation decreases satiety response to
157 insulin and to the adipose tissue derived hormone leptin, which can contribute to positive energy
158 balance and obesity (50). Several cellular mechanisms contribute to hypothalamic ageing in healthy
159 and overweight individuals, including genomic instability, telomere shortening, epigenetic
160 mechanisms, stem-cell depletion, endoplasmic reticulum stress and autophagy. Not surprisingly, all
161 these mechanisms are also altered in obese subjects and can contribute to systemic and brain
162 inflammation (51).

163 In diet-induced obesity, white adipose tissue dysfunction is the primarily source of altered levels
164 of circulating free fatty acids, several hormones called adipokines, and proinflammatory cytokines.
165 White adipose tissue depots are in the subcutaneous and visceral compartments. In addition to
166 controlling fuel accumulation, the adipose tissue is an important endocrine organ releasing
167 adipokines allowing its effective interaction with several other tissues including central nervous
168 system, liver, muscle and pancreas to regulate energy metabolism in an efficient and integrated
169 manner in health individuals (52).

170 White adipose tissue depots present a complex cell composition, including the main cell type,
171 adipocytes, but also pre-adipocytes, fibroblasts, mesenchymal cells, immune cells (macrophages, T
172 cells and others), endothelial cells, and smooth muscle cells (52, 53). Adipose tissue cellularity can
173 present alterations depending on the metabolic status, lean or obese. In lean adipose tissue, resident
174 or recruited macrophages are mostly M2-anti-inflammatory that produce TGF- β , IL-10, CCL17, 18,
175 22 and 24. In adipose tissue from obese subjects the main macrophage population is the M1-
176 proinflammatory cells that produce mainly IL-6, TNF- α , IL-1 β , IFN- γ (54).

177 There are marked differences between visceral and subcutaneous white adipose depots. Despite
178 of different anatomic distribution, visceral depots are more vascular and innervated, present larger
179 adipocytes, higher lipolytic activity, and increased production of proinflammatory molecules and
180 free fatty acids, as compared with subcutaneous adipose tissue. Regarding endocrine function,
181 visceral adipocytes produce more of the anti-inflammatory adipokine adiponectin while
182 subcutaneous adipocytes produce more leptin, an important regulator of body energy homeostasis
183 that decreases food intake and stimulates energy expenditure. These structural and functional
184 differences characterize the visceral adipose tissue as more insulin-resistant and detrimental in the
185 context of cardiometabolic diseases (55).

186 Leptin is an important hormone involved in the white adipose tissue and brain crosstalk. Leptin
187 production positively correlates with the fat mass. Therefore, obese individuals present
188 hyperleptinemia (56). Leptin acts mainly on the arcuate hypothalamic nucleus (Arc) activating
189 anorexigenic neurons that express proopiomelanocortin and cocaine/amphetamine-related transcript
190 (POMC/CART neurons), thus inhibiting orexigenic neurons that express the neurotransmitters
191 neuropeptide Y and agouti-related protein (NPY/AgRP neurons) (57, 58). In lean individuals, leptin
192 action results in decreased food intake and increased energy expenditure to control fat mass
193 expansion by a negative feedback loop. However, in obese individuals, hyperleptinemia is commonly
194 associated with hypothalamic leptin resistance and a progressive increase of adiposity (59).

195 In experimental models of aging, hypothalamic regulation of lifespan has been suggested since
196 it was demonstrated increased hypothalamic expression of NF κB pathway in experimental models
197 of advanced age, and that inhibition of this pathway delays ageing and extends lifespan in rodents
198 (60, 61). In old rats, brain inflammation induced by LPS has been associated with increased peripheral
199 inflammatory markers and hyperleptinemia, while treatment with anti-leptin serum partially

200 reverses brain inflammation, highlighting the crucial role of leptin as a mediator of brain
201 inflammation in aging (62).

202 In humans, the relationship between leptin and cognition in elderly population is controversial
203 and deserves careful interpretation. While mid-life obesity and systemic metabolic changes, such as
204 high leptin circulating levels, are risk factors to the development of dementia, low plasma leptin
205 levels later in life are associated with worsening cognitive decline and increased risk of developing
206 AD (63, 64). This controversial pattern seems to be time-dependent. Possibly, higher levels of leptin
207 in mid-life could trigger initial deleterious mechanisms in the brain predisposing for age-related
208 diseases, and after the actual development of cognitive impairment in elderly individuals, changes
209 in whole body energy metabolism can result in weight loss and consequently lower leptin levels.

210 In healthy elderly subjects, plasma leptin levels are positively correlated with grey matter
211 volume of several brain regions, including the hippocampus (65), and inversely correlated with age-
212 related cognitive decline (66). In a prospective study of the Framingham original cohort, circulating
213 leptin levels were associated with reduced incidence of dementia and AD in asymptomatic older
214 adults (67). Therefore, these studies suggest a protective effect of leptin on brain function. Contrarily,
215 mild cognitive impairment was positively correlated with serum leptin and IL-1 β levels, and
216 inversely correlated with the adiponectin in elderly population (68). Additionally, in elderly
217 individuals included in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, higher leptin
218 levels were associated with deficits in frontal, parietal, temporal and occipital lobes, brainstem, and
219 the cerebellum (69).

220 In contrast to obesity and hyperleptinemia, caloric restriction is another energetic challenge that
221 can modulate adiposity, brain function and lifespan. From the evolutionary perspective, the brain is
222 a unique organ that presents optimal cognitive function performance under hunger/food scarcity
223 conditions (70). Caloric restriction can optimize brain function throughout several molecular and
224 cellular mechanisms that include modulation of synaptic activity, BDNF signaling, mitochondrial
225 biogenesis, DNA repair, protein homeostasis, and reduced inflammation (71). Sirtuins are important
226 mediators of the brain metabolic adaptation during caloric restriction. Sirtuins (SIRT1–SIRT7) are
227 enzymes commonly known as NAD $^{+}$ -dependent histone deacetylases (HDAC). However, in
228 addition to controlling gene expression by chromatin remodeling, sirtuins can regulate a variety of
229 cellular functions by modulating the activity of kinases, transcription factors and other molecular
230 targets (72). Brain content of SIRT1 increases in response to caloric restriction and is involved in
231 several brain and behavioral adaptation in mice (73, 74).

232 4. Fatty Acids

233 Polyunsaturated fatty acids PUFAs, especially DHA, play an essential role in the maintenance
234 of central and peripheral metabolism. DHA is produced by desaturation and elongation of α -linolenic
235 acid (ALA), which is considered essential in the diet, since mammals are unable to biosynthesize
236 DHA and eicosapentaenoic acid (EPA) from precursors with shorter hydrocarbon chains (75).
237 Humans are required to intake dietary ALA present in leafy vegetables and oil, together with EPA
238 and DHA from fish oil (76). ALA, DHA and EPA (i.e. omega-3) should be maintained at appropriate
239 levels in the diet, since the quantitative ratio between linoleic acid (LA, i.e. omega-6) and ALA is
240 critical to control the production of arachidonic acid (ARA) and pro-inflammatory mediators (e.g.
241 eicosanoids), which play an important role in the progression of cardiovascular diseases, diabetes
242 and brain disorders (77).

243 Cerebrovascular diseases and neurodegenerative processes are highly dependent on the
244 stability of central blood. The proper functioning of reperfusion systems attenuates cell death and
245 prevents stroke episodes, resulting in less cognitive impairment over time (78, 79). Maintenance of
246 the connective brain structure in patients with AD is one of the major challenges in preserving
247 memory and associated functions, changes such as severe hippocampal atrophy and increased
248 lesions in white matter are, at least, prevented by interventions in which polyunsaturated fatty acids-
249 enriched diets are provided, especially DHA and EPA. In addition, patients undergoing diets rich in

250 these fatty acids are less likely to develop neurodegenerative processes or functional and cognitive
251 loss toward the progression of the disease (80).

252 In a recent study, senescent rodents depleted of omega-3 had greater dysfunction in
253 glutamatergic synapses and 30% lower uptake of glutamate in astroglia from CA1 hippocampal area
254 (81). Studies using imaging methods have shown that, even in individuals with normal cognition,
255 fish oil supplementation is positively associated with a greater average volume of the hippocampus,
256 cingulate cortex and orbitofrontal areas. Fish oil supplementation was also related to higher scores
257 on standardized cognitive tests. Presence of the ApoE4 allele seems to be a determining factor in the
258 outcome of clinical trials with DHA, since patients without this allele present better results from
259 dietary and pharmacological interventions using omega-3 (82, 83).

260 Omega-3 fatty acids decrease the synthesis of proinflammatory lipid mediators produced by the
261 omega-6 and ARA metabolism in a competitive manner. Omega-3 act as endogenous ligand of the
262 transcriptional factors peroxisome proliferator-activated receptors (PPAR- γ and α) that attenuate the
263 activity of NF- κ B mediated inflammatory pathways (e.g. COX-2, TNF, IL-1) and modulate the
264 mechanism of fatty acid oxidation, peroxisome proliferation, sensitization to insulin and adipocyte
265 differentiation, a potential therapeutic target in the treatment of dyslipidemia (84, 85). In the brain,
266 PPAR- γ participates in many aspects of microglial activation, myelination, heat shock protein (HSP)
267 response, cell death, production of TNF α , inhibition of Activator Protein 1 (AP-1) and NF- κ B, besides
268 reducing the synthesis of nitric oxide (NO) and prostaglandin E2 (PGE2). Therefore, PPAR- γ plays a
269 critical anti-inflammatory role in diseases such as Parkinson's disease, multiple sclerosis and AD (86,
270 87). PPAR- γ have also been demonstrated to be effective in preventing intracerebral ischemic
271 damage, especially in patients with associated morbidities, such as type II diabetes (88).

272 Afshordel and colleagues (2015) have recently explored another central mechanism of DHA,
273 which can be converted to neuroprotectin D-1 (NPD-1), an unesterified derivative with
274 neuroprotective properties. Authors showed that fish oil supplementation in aged rodents can raise
275 levels of unesterified DHA and NPD-1-like metabolites in parallel to increased Bcl-2 levels in the
276 brain, suggesting that EPA and/or DHA contribute to the control of apoptotic mechanisms and
277 mitochondrial function (89).

278 Omega 3 fatty acids play an important role in preventing chronic injuries in the peripheral and
279 central metabolism, especially for patients undergoing Western diets. In fact, recent data on in vivo
280 models suggest that supplementation of these fatty acids can prevent cognitive decline, promote
281 hippocampal protection and neuroplasticity (90). The balance between saturated and unsaturated
282 fatty acids may control features of the peripheral metabolism. Kaplan and Greenwood discuss the
283 importance of saturated fatty acids (SFA) consumption on the control of feeding behavior in animal
284 models, highlighting its negative influence on the hepatic metabolism of glucose, which in turn
285 regulates its availability to the brain, where it can control the production of neurotransmitters, trophic
286 factors, feeding behavior and general cognitive performance (91).

287 The benefits of consuming low-calorie meals, fibers and omega-3 rich foods are well supported
288 by the literature. Eating patterns, however, depend on the individual's ability to control dietary
289 intake. Subjects undergoing nutritional counseling, the adherence to prescribed nutritional programs
290 greatly varies (13-76%) according to how complex and deep is the involvement of the patient with
291 inadequate eating habits (92). A recent study investigated the role of SFA on feeding behavior, and
292 epidemiological and experimental data suggest that the indiscriminate consumption of SFA and
293 simple sugars promotes damage in hippocampal regions involved in negative control of appetite and
294 cognitive processing of reward (93).

295 Finally, glucolipotoxicity describes the synergistic effect of glucose and SFA on the induction of
296 apoptosis in human β pancreatic cells, and the presence of an omega-6 polyunsaturated (LA) or
297 monounsaturated (i.e. oleic acid) fatty acid reduces this toxicity (94). Several authors have
298 demonstrated the deleterious effect of glucolipotoxicity on pancreatic β cells, highlighting its role in
299 the progression of type II diabetes, mitochondrial dysfunction, production of reactive oxygen species
300 (ROS) and deposition of cholesterol and ceramide in β cells (95-97). Novel therapeutic targets for the

301 treatment of type II diabetes now consider the strong synergistic effect of SFA and glucose in
302 progression of the disease (98, 99).

303 Together, recent data demonstrate the important neuroprotective role of omega-3 fatty acids,
304 attenuating the deleterious effects of excessive omega-6 consumption, and demonstrating the
305 negative impacts of glucolipotoxicity. Intake of the correct amount of fatty acids and carbohydrates
306 play an essential role in the aging process, neuroinflammation, AD and other neurodegenerative
307 diseases (100).

308 **5. Antioxidants**

309 Central degenerative processes are importantly linked to the excessive production of ROS,
310 which promote oxidative damage to proteins, lipids, and nucleotides, causing connective and
311 vascular disorders, loss of neuronal content, activation of microglia/macrophages and induction of
312 mechanisms preceding the onset of AD. The use of antioxidants, such as ascorbic acid (AAC) and
313 vitamin E (VE) has shown to be effective in combating the symptoms of cognitive loss and oxidative
314 stress (101).

315 Humans and primates have lost the ability to synthesize ascorbic acid due to absence of the gene
316 coding for L-gulono- γ -lactone oxidase enzyme (i.e. Gulo), that converts gulonolactone into L-ascorbic
317 acid. In animals expressing this enzyme, inactivation of the Gulo gene implies the need for
318 antioxidant supplementation even prenatally, becoming required for survival. If supplementation of
319 AAC is removed, the subjects become anemic, lose weight and die, presenting damage to vascular
320 integrity, proliferation of smooth muscle cells and increased oxidative stress, which recruits
321 compensatory antioxidant mechanisms (102, 103). In humans, consumption of approximately
322 10mg/day of AAC is enough to prevent the onset of deficiency symptoms (104).

323 AAC transport into the brain is mediated by the sodium-vitamin C co-transporters 2 (SVCT2),
324 ensuring a sharp concentration gradient through the choroid plexus (105). Although not responsible
325 for the central concentrations of AAC, SVCT1 transporters are essential for the maintenance of plasma
326 levels of the antioxidant, which in turn modulates the availability of AAC into the cerebrospinal fluid
327 (CSF) and ultimately to the brain.

328 After cerebrovascular disorders, such as transient ischemia and stroke, AAC absorption and
329 SVCT2 expression rises significantly, especially in capillary endothelial cells located in the ischemic
330 region, indicating that AAC is involved in neutralization of ROS produced by the oxidative stress or
331 specifically due to macrophage activity in the damaged region (106). Lin et al. (2010) showed that
332 intraperitoneal injections of AAC (500mg/kg in PBS), following compression of the somatosensory
333 cortex of rats, prevented disruption of the BBB and maintained the integrity of the sensory system
334 (107). This preservation phenomenon may be extended to other types of BBB damage or
335 cerebrovascular disorders that occur in the aging process (108).

336 Recently, it has been proposed that AAC is involved in the prevention of cognitive decay and
337 depression in *in vivo* models, primarily in situations where damage is promoted by the oxidative
338 stress or pro-oxidant agents (109, 110). In a cohort study with 117 elderly individuals, the
339 supplementation of AAC was associated with a lower incidence of severe cognitive impairment, with
340 no effect on verbal ability (111). Guidi and colleagues (2006) evaluated plasma levels of homocysteine
341 (tHcy), a marker of ROS and total antioxidant capacity, in AD elderly patients with either mild
342 cognitive impairment or vascular dementia. Data obtained showed high levels of tHcy and reduced
343 total antioxidant capacity in AD and mild cognitive impairment patients. tHcy levels were also high
344 in vascular dementia patients, while low total antioxidant capacity was exclusively related to AD
345 individuals. ROS levels were homogenous between groups, indicating that the loss of total
346 antioxidant capacity may be related to progression of cognitive complications (112).

347 Besides the isolated supplementation of AAC, population studies seek to highlight the
348 participation of other dietary components in preventing cognitive/motor impairment and AD
349 progression. In a study from Morris and colleagues, consumption of antioxidant nutrients, VE, AAC
350 and β -carotene was investigated according to the incidence of AD in a population of individuals aged
351 over 65 years. In this study, only dietary intake of VE was associated with reduced risk of AD,

352 surprisingly, this relationship was observed only in subjects without the allele ApoE4 (113).
353 Determining the contribution of a specific antioxidant is, however, a difficult task, as these and other
354 phytochemicals apparently act synergistically when present in foods and complex phytoextracts
355 (114).

356 Another antioxidant intrinsically involved in the metabolic signs of aging and in pathological
357 dynamics of neurodegenerative diseases is glutathione (GSH), a tripeptide composed of glutamic
358 acid, cysteine and glycine residues. GSH is the most prevalent thiol compound in cells from virtually
359 all body tissues. GSH is essential for cell proliferation, participates in apoptotic processes, ROS
360 neutralization and also maintains the reduced form of intracellular protein's sulphydryl groups (115).
361 In the brain, GSH is found in higher concentrations in the glial cells, while in neurons this
362 concentration is slightly lower (116).

363 GSH is involved in the prevention of mitochondrial damage, cell death and in the pathogenesis
364 of CNS, providing evidence for the relationship between GSH and diseases such as PD and AD (117-
365 118). Elucidating the complexity of the neuroprotective mechanisms performed by GSH, in a recent
366 study, it was shown that even non-toxic decreases in GSH concentrations are able to cause an
367 imbalance in NO activity, allowing the nitration of proteins, a predictive marker for
368 neurodegenerative diseases (119).

369 Attenuation of central levels of GSH, especially in the mitochondria, appears to be a strong
370 indicator of oxidative damage during ageing (120). In a recent work with proton magnetic resonance
371 spectroscopy, authors showed depletion of GSH, increase in lactate and unchanged levels of AAC in
372 the occipital cortex of elderly compared to young individuals (121). In another study, Mandal and
373 colleagues showed a linear reduction of GSH concentrations in the frontal cortex during ageing, mild
374 cognitive impairment and diagnosed AD, with gender-specific components (122). Lower GSH levels
375 were also observed (post-mortem samples) in patients with autism, bipolar disorder, major
376 depression and schizophrenia (123, 124). Finally, recent investigations from our group suggest that
377 GSH may also act as a signaling molecule in CNS (Figure 1), regulating purinergic activity, ion
378 channel opening and GABA release. Incubation with millimolar concentrations of GSH induces an
379 acute increase in intracellular calcium levels ($[Ca^{2+}]_i$), and may act in consonance with reducing
380 properties of GSH during disease and tissue injury (125, 126).

381 6. Physical Activity

382 Regular physical activity has several beneficial effects on health and the exercise capacity is a
383 strong and independent predictor of morbidity and mortality for patients of all ages (127, 128). Over
384 the last decades, life expectancy has been increasing and the continuous reduction in the mortality
385 rates among the elderly population is associated with dietary factors and exercise (129). In fact,
386 exercise can not only improve life expectancy but slow down, delay or prevent many age-associated
387 chronic pathologies, extending health span for an optimal longevity (130, 131). Physical activity can
388 also reverse or attenuate the progression of brain aging, being associated to positive vascular,
389 structural, and neuromolecular changes, including insulin resistance, inflammation and oxidative
390 stress, which contribute to cognitive decline and brain-related diseases (132, 133).

391 The cerebral blood flow is tightly coupled to the cerebral metabolic rate and neuronal
392 metabolism, thus systemic vascular dysfunction associated with brain hypoperfusion can
393 compromise cognitive performance (134, 135). Injuries in endothelium and central/peripheral
394 vascular structure involve increased inflammation and oxidative stress (132). In addition, cerebral
395 blood flow declines with age (136, 137), which strongly contributes to the decrease in cognitive
396 function in the elderly (138). Exercise, in contrast, increases cerebral blood flow in an intensity-
397 dependent manner and has been shown to improve cognitive function and brain aging (136, 139).
398 Aged mice presented lower cerebral blood flow, accompanied by a lower content of endothelial nitric
399 oxide synthase (e-NOS) and vascular endothelial growth factor (VEGF) in the brain microvasculature,
400 when compared to young mice; training in aged mice improve all parameters (140). Mice submitted
401 to running exercise exhibit reduced cerebral lesion sizes after a cerebral ischemia episode, and this
402 effect was blunted in the e-NOS deficient mice. Running also improved functional outcome

403 associated with higher cerebral blood flow and angiogenesis in the ischemic striatum, which was
404 completely abrogated in animals treated with L-NAME, a NOS inhibitor. These data indicate that
405 exercise improves short-term stroke outcome via NO-dependent mechanisms (141).

406 In an animal model of vascular dementia induced by bilateral carotid artery occlusion, treadmill
407 exercise reduced the memory impairment caused by the chronic cerebral hypoperfusion and induced
408 hippocampal neurogenesis via the BDNF-pCREB pathway (142). Imaging analyses conducted both
409 in mice and in young/middle-aged humans showed that exercise-induced neurogenesis associated
410 with increased cerebral blood volume occurs selectively at the hippocampal dentate gyrus (143, 144).
411 Similarly, a study conducted in healthy older humans (60–77 years) also observed that aerobic fitness
412 improvement was associated with positive changes in hippocampal perfusion, early recall and
413 recognition memory, however, these benefits decrease with progressing age, indicating that the
414 capacity for vascular hippocampal plasticity may be age-dependent (145).

415 Age-related brain atrophy is commonly associated with cognitive impairment and memory loss.
416 In fact, the rate, extent, and brain regions showing atrophy can vary among the individuals (144). A
417 recent study by Hanning and colleagues (146) found that brain atrophy in the elderly is associated
418 with higher IL-6 and IL-8 circulating levels, suggesting a role for systemic inflammation in the brain
419 atrophy pathogenesis. Greater brain volumes are associated with greater cognitive reserve and a
420 higher capacity to deal with AD pathology without the clinical manifestation of cognitive impairment
421 (139). In individuals at the age of 75 years, a higher level of physical activity was associated with
422 better memory performance and with greater volumes of both total brain and white matter (147, 148).
423 In addition, higher aerobic fitness level was related to higher hippocampal volume and better
424 memory performance in older non-demented individuals (148), older individuals in the earliest
425 stages of AD (149), and in preadolescent children (150), highlighting the impact of physical activity
426 in increasing brain volume of individuals from all ages. Interestingly, a 42-year follow-up identified
427 that men with high cardiovascular fitness at age 18 had a lower risk of early-onset dementia and mild
428 cognitive impairment later in life (151).

429 Sexual dimorphism is observed on brain anatomical structures, neurochemicals and functions,
430 and not surprisingly men and women also differ in the incidence and nature of CNS-related diseases,
431 such as cognitive impairment, AD, autism, schizophrenia and eating disorders (152). In addition,
432 females exhibit stronger immune response, improved antioxidant capacity, better redox and
433 functional state of their immune cells and, accordingly, the “inflammaging” process in the elderly
434 show gender differences, including higher serum levels of IL-6 in men than in women (153, 154).
435 Elderly individuals with mild cognitive impairment have higher mortality rates, compared with
436 cognitively normal age-matched individuals, and the mortality rate was highest in men (155).
437 Although cerebral blood flow decreases with age, women have higher levels than men in all ages
438 (156). The human male brain exhibit more global gene expression changes than the female brain
439 throughout ageing, with gene expression mostly down-regulated until the 60 years old in men. On
440 the other hand, in older ages, women showed progressively more gene expression changes than men.
441 Interestingly, the major category of down-regulated genes in men was related to protein processing
442 and energy generation (157).

443 Not surprisingly, exercise impact between genders is also different, and is explored in mixed
444 gender studies. Overall, studies comparing male and female indicate that the positive effect of
445 physical activity or exercise on brain volume, cognition, and AD risk is more pronounced in females
446 (158, 159). However, this subject remains controversial. It was observed that cardiorespiratory fitness
447 was positively associated with total and cortical gray matter volumes in elderly men at increased risk
448 for AD (160). This profile was not observed in women, and authors suggested that cardiorespiratory
449 fitness might be beneficial to the brain health, only in men, at the age of 60 years and older.

450 Insulin is also an important player in the control of degenerative scenarios. In addition to the
451 modulation of energy metabolism, it regulates several features that are essential for healthy aging:
452 cerebral blood flow, inflammatory responses, oxidative stress, A β clearance, tau phosphorylation,
453 apoptosis, synaptic plasticity and memory formation (161). In humans, insulin resistance and type 2
454 diabetes have been shown to predict the development of age-related diseases and a preserved insulin

455 action is strongly associated with longevity (162, 163). AD development and symptoms are closely
456 related to an insulin-resistant brain state, and type 2 diabetes mellitus is a risk factor for dementia
457 and AD (164). Intranasal insulin therapy in patients with AD or mild cognitive impairment has been
458 associated with improvement in cognitive function (165-167), increased brain volume, including
459 hippocampus, and reduction in the tau-P181/A β 42 ratio (166).

460 Exercise can stimulate cellular insulin signaling and sensitivity in peripheral organs (168) and in
461 the brain with a beneficial impact on brain structure (169) and function (170, 171). A major factor for
462 the development of insulin resistance is obesity (172), and the impact of obesity on unhealthy brain
463 aging has been discussed previously in this review. Exercise is an effective intervention to prevent or
464 treat obesity and obesity-related insulin resistance (173) and improve adipokine profile in obese
465 individuals increasing adiponectin and reducing hyperleptinemia (174-176). In addition, the exercise-
466 induced hippocampal neurogenesis was remarkably attenuated in an adiponectin-deficient mice,
467 highlighting that adiponectin may be an essential factor mediating this effect via its receptor 1
468 (ADNR1) and AMPK activation (177).

469 Exercise induces insulin sensitivity and glucose disposal through several pathways, including
470 improvement in inflammation and oxidative stress that are high-risk factors for cognitive impairment
471 and accelerated aging (161, 163). In elderly individuals of both sexes, exercise improves inflammatory
472 profile by reducing serum inflammatory markers, such as C-reactive protein, IL-6, TNF- α (176, 178-
473 180). In peripheral blood mononuclear cells obtained from aged individuals, exercise training
474 induced lower protein expression of toll-like receptors (TLR2 and TLR4) associated with an anti-
475 inflammatory status linked to myeloid differentiation primary response gene 88 (MyD88)-dependent
476 and MyD88-independent pathways (181). Additionally, the exercise-induced improvement in
477 inflammatory profile in the elderly was associated with positive changes in cognition (182) and
478 greater total brain volume (183). In young healthy mice, exercise did not promote changes in serum
479 inflammatory markers, however, induced lower content of IL-6 and TNF- α in the hippocampus,
480 indicating that it can promote an anti-inflammatory effect in the brain without affecting the
481 peripheral cytokines production (184). Although the exercise promotes several long-term benefits,
482 including improvement in the proinflammatory state, the acute exercise responses are associated
483 with increased serum levels and tissue expression of IL-6 and TNF α (185, 186). In a mice model of
484 traumatic brain injury associated with neurodegeneration and chronic neuroinflammation, it was
485 observed that delayed exercise onset (5 weeks after trauma) caused improvements in working and
486 retention memory, decreased lesion volume, increased neurogenesis in the hippocampus and
487 reduced IL-1 β gene expression. However, these improvements were not observed when exercise was
488 initiated 1 week after the brain injury. In fact, it exacerbated chronic classical inflammatory responses,
489 highlighting the importance of timing of exercise onset and its relation to cognitive outcomes and
490 neuroinflammation (187).

491 Autophagy is a physiological and catabolic process, vital for the maintenance of cell
492 homeostasis, by effectively getting rid of dysfunctional organelles such as damaged mitochondria
493 and malformed proteins, and disrupted autophagy contributes to unhealthy aging and decreased
494 longevity (188, 189). Elderly individuals submitted to exercise training exhibit increased expression
495 of autophagy related-genes, including beclin-1, Atg12, Atg16, and the LC3II/I in peripheral blood
496 mononuclear cells compared with sedentary individuals (190, 191). In addition, the expression of
497 NLRP3, Bcl-2 and Bcl-xL was reduced in peripheral blood mononuclear cells of trained elderly
498 individuals, indicating improvement in autophagy, prevention of NLRP3 inflammasome activation,
499 and reduction of apoptosis (190).

500 Several studies have revealed that physical activity or exercise elicits a combined effect
501 improving the redox state and enhancing inflammatory defenses, combating the "oxi-inflamm-
502 aging" process (131, 154). Healthy aged female rats submitted to long-term exercise training showed
503 lower ROS content, lower protein carbonyl content and increased SOD 1 and SOD 2 protein
504 expression in the hippocampus compared with sedentary age-matched rats, indicating a beneficial
505 effect on the oxidative status (192). In an aged mice model of AD (3xTg-AD), voluntary exercise
506 reversed lipoperoxidation and oxidized glutathione levels, while improving the antioxidant enzyme

507 CuZn-SOD content in the cerebral cortex. These changes were associated with optimized behavior
508 and cognition, and reduced amyloid/tau pathology, highlighting the neuroprotective effect of
509 exercise through regulation of redox homeostasis (193). Neuronal mitochondria are especially
510 susceptible to oxidative stress, therefore, the beneficial impact of exercise on redox balance has many
511 positive effects on mitochondrial function (194). In young and aged rats, exercise induced a reduction
512 in oxidative stress accompanied by increased mitochondrial biogenesis, dynamic and mitophagy in
513 the brain (192, 195).

514 Physical activity and exercise affect directly the skeletal muscle physiology, which is a
515 metabolically active tissue that releases myokines, which might be involved in the beneficial effects
516 of exercise (196, 197). Important neural factors associated with neurogenesis, angiogenesis, and
517 cognition, such as BDNF and VEGF are also produced by skeletal muscle and modulated by exercise
518 (198). Indeed, the significance of these factors released by the skeletal muscle during exercise to the
519 brain physiology is still unclear. In both young and elderly individuals, the skeletal muscle BDNF
520 expression and the serum concentration of BDNF increase after exercise, and it was associated with
521 structural and functional benefits to the brain (197-199). However, it has been proposed that the brain
522 contributes to 70–80% of circulating BDNF at rest and during exercise, therefore, the systemic impact
523 of the BDNF released from the muscle needs further investigation (200).

524 Finally, irisin is an exercise-induced myokine that is highly expressed in the brain (196, 201).
525 Interestingly, the knockdown of the precursor of irisin, FNDC5, in neuronal precursors impaired their
526 development into mature neurons (202). Since the FNDC5 expression in the brain is upregulated with
527 exercise, the specific tissue contribution to the beneficial effect of exercise on the brain is still to be
528 defined (201).

529 7. Conclusions

530

532 Aging is a sensitive period for the maintenance of metabolic and functional balance of the brain.
533 When compiled, data indicate the complexity of action and essentiality of various
534 dietary/endogenous antioxidants, in addition to the proper balance in the consumption of essential
535 fatty acids (omega-3 and -6), whose synergistic actions allow for the maintenance of physiological
536 conditions, even throughout severe metabolic stress (Figure 2). Recent investigations aim to elucidate
537 mechanisms for preventing the intrinsic effects of the aging process in affections such as ischemic
538 disorders (203) and functional decay of mitochondria (204). However, finding pharmacological or
539 dietary resources capable of significantly intervening with the neurodegenerative affections remains
540 a great challenge (205, 206). Future research should rely on novel integrative methods present in
541 systems biology, which allows for a broad analysis of the metabolic interactions in ageing and disease
542 processes.

543 **Supplementary Materials:** There are no supplementary materials provided

544 **Acknowledgments:** Grants from Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ),
545 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Instituto Nacional de Ciência e
546 Tecnologia de Neurociência Translacional (INCT-INNT) supported this work. HRF is recipient of a Ph.D.
547 research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). RAMR,
548 IHT, KJO and GCF receive a research fellowship from CNPq.

549 **Author Contributions:** All authors contributed equally to the writing and reviewing of this paper.

550 **Conflicts of Interest:** The authors declare no conflict of interest.

551

552

553

554

555

556 **Figure 1.** Mechanisms of functional compartmentalization mediated by glutathione in the retinal environment.

557

558 **Figure 1 legend:** Tissue damage, hypoxia and ROS (1) promote increased activity of antioxidant system
 559 intermediates in Müller glial cells, such as γ -glutamylcysteine ligase (GLCL), which stimulates the
 560 synthesis/release of GSH (2) and the uptake of cysteine through a glutamate-cysteine antiporter system (3). When
 561 released, GSH is capable of activating P2X⁷ receptors, allowing for intense Ca²⁺ increase in the Müller cells (4),
 562 while extracellular glutamate promotes activation of AMPA receptors in retinal neurons, leading to higher Na⁺
 563 levels in these cells (5). Finally, intracellular Ca²⁺ (glia) and Na⁺ (neurons) stimulate GABA release to the
 564 extracellular environment.

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580 **Figure 2.** Brain dynamics in healthy and unhealthy aging.

581

582 **Figure 2 legend:** Moderate physical activity, low-calorie diets and essential fatty acids are amongst the main
 583 elements of a healthy brain, where we observe less or no cognitive decline, greater lifespan, reduced
 584 cardiovascular (and metabolic) risks and thus overall better quality of life. Conversely, a continuously stressed
 585 brain, either by an unstable environment or by chemical mediators (e.g. ROS, RNS and other radicals). Also,
 586 high caloric meals and/or typical cafeteria diets are risk factors for the development of several such affections.

587

588 **References**

589

- 590 1. Khaw KT. Epidemiological aspects of ageing. *Philosophical transactions of the Royal Society of London*
 591 *Series B, Biological sciences.* 1997;352(1363):1829-35.
- 592 2. Finch CE. Evolution in health and medicine Sackler colloquium: Evolution of the human lifespan and
 593 diseases of aging: roles of infection, inflammation, and nutrition. *Proc Natl Acad Sci U S A.* 2010;107 Suppl
 594 1:1718-24.
- 595 3. Frangeskou M, Lopez-Valcarcel B, Serra-Majem L. Dehydration in the Elderly: A Review Focused on
 596 Economic Burden. *The journal of nutrition, health & aging.* 2015;19(6):619-27.
- 597 4. Milan AM, D'Souza RF, Pundir S, Pileggi CA, Thorstensen EB, Barnett MP, et al. Older Adults Have
 598 Delayed Amino Acid Absorption after a High Protein Mixed Breakfast Meal. *The journal of nutrition, health &*
- 599 *aging.* 2015;19(8):839-45.
- 600 5. Nguyen TN, Cumming RG, Hilmer SN. A Review of Frailty in Developing Countries. *The journal of*
- 601 *nutrition, health & aging.* 2015;19(9):941-6.
- 602 6. Pires Corona L, Drumond Andrade FC, de Oliveira Duarte YA, Lebrao ML. The Relationship between
 603 Anemia, Hemoglobin Concentration and Frailty in Brazilian Older Adults. *The journal of nutrition, health &*
- 604 *aging.* 2015;19(9):935-40.
- 605 7. Kearney J. Food consumption trends and drivers. *Philosophical transactions of the Royal Society of London*
 606 *Series B, Biological sciences.* 2010;365(1554):2793-807.
- 607 8. Miller MS, Callahan DM, Toth MJ. Skeletal muscle myofilament adaptations to aging, disease, and disuse
 608 and their effects on whole muscle performance in older adult humans. *Frontiers in physiology.* 2014;5:369.

609 9. Newgard CB, Pessin JE. Recent progress in metabolic signaling pathways regulating aging and life span.
610 The journals of gerontology Series A, Biological sciences and medical sciences. 2014;69 Suppl 1:S21-7.

611 10. Popkin BM. The nutrition transition and obesity in the developing world. *J Nutr.* 2001;131(3):871s-3s.

612 11. Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world—a growing challenge. *N
613 Engl J Med.* 2007;356(3):213-5.

614 12. Steptoe A, Deaton A, Stone AA. Subjective wellbeing, health, and ageing. *Lancet.* 2015;385(9968):640-8.

615 13. Goodman E, Whitaker RC. A prospective study of the role of depression in the development and
616 persistence of adolescent obesity. *Pediatrics.* 2002;110(3):497-504.

617 14. Onyike CU, Crum RM, Lee HB, Lyketsos CG, Eaton WW. Is obesity associated with major depression?
618 Results from the Third National Health and Nutrition Examination Survey. *Am J Epidemiol.* 2003;158(12):1139-
619 47.

620 15. McCarty CA, Kosterman R, Mason WA, McCauley E, Hawkins JD, Herrenkohl TI, et al. Longitudinal
621 associations among depression, obesity and alcohol use disorders in young adulthood. *Gen Hosp Psychiatry.*
622 2009;31(5):442-50.

623 16. Saunier K, Dore J. Gastrointestinal tract and the elderly: functional foods, gut microflora and healthy
624 ageing. *Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian
625 Association for the Study of the Liver.* 2002;34 Suppl 2:S19-24.

626 17. Lopez-Leon M, Outeiro TF, Goya RG. CELL REPROGRAMMING: THERAPEUTIC POTENTIAL AND
627 THE PROMISE OF REJUVENATION FOR THE AGING BRAIN. *Ageing research reviews.* 2017.

628 18. Cararo JH, Streck EL, Schuck PF, Ferreira Gd C. Carnosine and Related Peptides: Therapeutic Potential in
629 Age-Related Disorders. *Aging and disease.* 2015;6(5):369-79.

630 19. Jager K, Walter M. Therapeutic Targeting of Telomerase. *Genes.* 2016;7(7).

631 20. Wang Y, Xu Q, Sack L, Kang C, Elledge SJ. A gain-of-function senescence bypass screen identifies the
632 homeobox transcription factor DLX2 as a regulator of ATM-p53 signaling. *Genes & development.* 2016;30(3):293-
633 306.

634 21. Reeg S, Grune T. Protein Oxidation in Aging: Does It Play a Role in Aging Progression? *Antioxidants &
635 redox signaling.* 2015;23(3):239-55.

636 22. Poon HF, Calabrese V, Calvani M, Butterfield DA. Proteomics analyses of specific protein oxidation and
637 protein expression in aged rat brain and its modulation by L-acetylcarnitine: insights into the mechanisms of
638 action of this proposed therapeutic agent for CNS disorders associated with oxidative stress. *Antioxidants &
639 redox signaling.* 2006;8(3-4):381-94.

640 23. Lionaki E, Tavernarakis N. Oxidative stress and mitochondrial protein quality control in aging. *Journal of
641 proteomics.* 2013;92:181-94.

642 24. Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, et al.
643 Mitochondrial dysfunction and oxidative stress in aging and cancer. *Oncotarget.* 2016;7(29):44879-905.

644 25. Samson RD, Barnes CA. Impact of aging brain circuits on cognition. *Eur J Neurosci.* 2013;37(12):1903-15.

645 26. Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. *Proc Natl Acad
646 Sci U S A.* 1994;91(23):10771-8.

647 27. Xiong J, Camello PJ, Verkhratsky A, Toescu EC. Mitochondrial polarisation status and [Ca²⁺]_i signalling in
648 rat cerebellar granule neurones aged in vitro. *Neurobiol Aging.* 2004;25(3):349-59.

649 28. Murchison D, Zawieja DC, Griffith WH. Reduced mitochondrial buffering of voltage-gated calcium influx
650 in aged rat basal forebrain neurons. *Cell Calcium.* 2004;36(1):61-75.

651 29. Tatarkova Z, Kovalska M, Timkova V, Racay P, Lehotsky J, Kaplan P. The Effect of Aging on Mitochondrial
652 Complex I and the Extent of Oxidative Stress in the Rat Brain Cortex. *Neurochem Res.* 2016;41(8):2160-72.

653 30. Miquel J. An update on the mitochondrial-DNA mutation hypothesis of cell aging. *Mutation 25research.*
654 1992;275(3-6):209-16.

655 31. Bertoni-Freddari C, Fattoretti P, Casoli T, Spagna C, Meier-Ruge W. Morphological alterations of synaptic
656 mitochondria during aging. The effect of Hydergine treatment. *Annals of the New York Academy of Sciences.*
657 1994;717:137-49.

658 32. Sastre J, Millan A, Garcia de la Asuncion J, Pla R, Juan G, Pallardo, et al. A Ginkgo biloba extract (EGb 761)
659 prevents mitochondrial aging by protecting against oxidative stress. *Free radical biology & medicine.*
660 1998;24(2):298-304.

661 33. Wakabayashi T. Megamitochondria formation - physiology and pathology. *Journal of cellular and
662 molecular medicine.* 2002;6(4):497-538.

663 34. Nicholls DG. Mitochondrial membrane potential and aging. *Aging cell*. 2004;3(1):35-40.

664 35. Sik A, Penttonen M, Buzsaki G. Interneurons in the hippocampal dentate gyrus: an in vivo intracellular
665 study. *Eur J Neurosci*. 1997;9(3):573-88.

666 36. Kann O, Papageorgiou IE, Draguhn A. Highly energized inhibitory interneurons are a central element for
667 information processing in cortical networks. *Journal of cerebral blood flow and metabolism : official journal of*
668 *the International Society of Cerebral Blood Flow and Metabolism*. 2014;34(8):1270-82.

669 37. Swerdlow RH. Brain aging, Alzheimer's disease, and mitochondria. *Biochim Biophys Acta*.
670 2011;1812(12):1630-9.

671 38. Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, et al. Brain fuel metabolism,
672 aging, and Alzheimer's disease. *Nutrition*. 2011;27(1):3-20.

673 39. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing.
674 *Nature reviews Molecular cell biology*. 2011;12(1):21-35.

675 40. Cornu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer. *Current opinion in genetics &*
676 *development*. 2013;23(1):53-62.

677 41. Perluigi M, Di Domenico F, Butterfield DA. mTOR signaling in aging and neurodegeneration: At the
678 crossroad between metabolism dysfunction and impairment of autophagy. *Neurobiology of disease*. 2015;84:39-
679 49.

680 42. Bitarafan S, Harirchian MH, Nafissi S, Sahraian MA, Togha M, Siassi F, et al. Dietary intake of nutrients
681 and its correlation with fatigue in multiple sclerosis patients. *Iranian journal of neurology*. 2014;13(1):28-32.

682 43. Mi W, van Wijk N, Cansev M, Sijben JW, Kamphuis PJ. Nutritional approaches in the risk reduction and
683 management of Alzheimer's disease. *Nutrition*. 2013;29(9):1080-9.

684 44. Tomi M, Zhao Y, Thamotharan S, Shin BC, Devaskar SU. Early life nutrient restriction impairs blood-brain
685 metabolic profile and neurobehavior predisposing to Alzheimer's disease with aging. *Brain Res*. 2013;1495:61-
686 75.

687 45. Banks WA, Abrass CK, Hansen KM. Differentiating the Influences of Aging and Adiposity on Brain
688 Weights, Levels of Serum and Brain Cytokines, Gastrointestinal Hormones, and Amyloid Precursor Protein. *J*
689 *Gerontol A Biol Sci Med Sci*. 2016;71(1):21-9.

690 46. Purkayastha S, Cai D. Disruption of neurogenesis by hypothalamic inflammation in obesity or aging. *Rev*
691 *Endocr Metab Disord*. 2013;14(4):351-6.

692 47. Ahima RS. Digging deeper into obesity. *The Journal of clinical investigation*. 2011;121(6):2076-9.

693 48. Tucsek Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A, et al. Obesity in aging exacerbates
694 blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on
695 expression of genes involved in beta-amyloid generation and Alzheimer's disease. *J Gerontol A Biol Sci Med Sci*.
696 2014;69(10):1212-26.

697 49. Youm YH, Grant RW, McCabe LR, Albarado DC, Nguyen KY, Ravussin A, et al. Canonical Nlrp3
698 inflammasome links systemic low-grade inflammation to functional decline in aging. *Cell Metab*. 2013;18(4):519-
699 32.

700 50. De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich
701 diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. *Endocrinology*.
702 2005;146(10):4192-9.

703 51. Cavadas C, Aveleira CA, Souza GF, Velloso LA. The pathophysiology of defective proteostasis in the
704 hypothalamus - from obesity to ageing. *Nat Rev Endocrinol*. 2016;12(12):723-33.

705 52. Rodriguez A, Ezquierro S, Mendez-Gimenez L, Becerril S, Fruhbeck G. Revisiting the adipocyte: a model
706 for integration of cytokine signaling in the regulation of energy metabolism. *Am J Physiol Endocrinol Metab*.
707 2015;309(8):E691-714.

708 53. Strissel KJ, DeFuria J, Shaul ME, Bennett G, Greenberg AS, Obin MS. T-cell recruitment and Th1
709 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice. *Obesity (Silver Spring)*.
710 2010;18(10):1918-25.

711 54. Castoldi A, Naffah de Souza C, Camara NO, Moraes-Vieira PM. The Macrophage Switch in Obesity
712 Development. *Front Immunol*. 2015;6:637.

713 55. Badimon L, Cubedo J. Adipose tissue depots and inflammation: effects on plasticity and resident
714 mesenchymal stem cell function. *Cardiovasc Res*. 2017.

715 56. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. *Nature*.
716 1998;395(6704):763-70.

717 57. Sahu A. Leptin decreases food intake induced by melanin-concentrating hormone (MCH), galanin (GAL)
718 and neuropeptide Y (NPY) in the rat. *Endocrinology*. 1998;139(11):4739-42.

719 58. Ahima RS, Osei SY. Leptin signaling. *Physiol Behav*. 2004;81(2):223-41.

720 59. Bjorbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS. Identification of SOCS-3 as a potential mediator
721 of central leptin resistance. *Mol Cell*. 1998;1(4):619-25.

722 60. Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, et al. Hypothalamic programming of systemic ageing
723 involving IKK-beta, NF-kappaB and GnRH. *Nature*. 2013;497(7448):211-6.

724 61. Horrillo D, Sierra J, Arribas C, Garcia-San Frutos M, Carrascosa JM, Lauzurica N, et al. Age-associated
725 development of inflammation in Wistar rats: Effects of caloric restriction. *Arch Physiol Biochem*. 2011;117(3):140-
726 50.

727 62. Koenig S, Luheshi GN, Wenz T, Gerstberger R, Roth J, Rummel C. Leptin is involved in age-dependent
728 changes in response to systemic inflammation in the rat. *Brain, behavior, and immunity*. 2014;36:128-38.

729 63. McGuire MJ, Ishii M. Leptin Dysfunction and Alzheimer's Disease: Evidence from Cellular, Animal, and
730 Human Studies. *Cell Mol Neurobiol*. 2016;36(2):203-17.

731 64. Ronan L, Alexander-Bloch AF, Wagstyl K, Farooqi S, Brayne C, Tyler LK, et al. Obesity associated with
732 increased brain age from midlife. *Neurobiol Aging*. 2016;47:63-70.

733 65. Narita K, Kosaka H, Okazawa H, Murata T, Wada Y. Relationship between plasma leptin level and brain
734 structure in elderly: a voxel-based morphometric study. *Biol Psychiatry*. 2009;65(11):992-4.

735 66. Holden KF, Lindquist K, Tylavsky FA, Rosano C, Harris TB, Yaffe K, et al. Serum leptin level and cognition
736 in the elderly: Findings from the Health ABC Study. *Neurobiol Aging*. 2009;30(9):1483-9.

737 67. Lieb W, Beiser AS, Vasan RS, Tan ZS, Au R, Harris TB, et al. Association of plasma leptin levels with
738 incident Alzheimer disease and MRI measures of brain aging. *JAMA*. 2009;302(23):2565-72.

739 68. Gorska-Ciebiada M, Saryusz-Wolska M, Borkowska A, Ciebiada M, Loba J. Adiponectin, leptin and IL-1
740 beta in elderly diabetic patients with mild cognitive impairment. *Metab Brain Dis*. 2016;31(2):257-66.

741 69. Rajagopalan P, Toga AW, Jack CR, Weiner MW, Thompson PM, Alzheimer's Disease Neuroimaging I. Fat-
742 mass-related hormone, plasma leptin, predicts brain volumes in the elderly. *Neuroreport*. 2013;24(2):58-62.

743 70. Mattson MP. Lifelong brain health is a lifelong challenge: from evolutionary principles to empirical
744 evidence. *Ageing Res Rev*. 2015;20:37-45.

745 71. Phillips C. Lifestyle Modulators of Neuroplasticity: How Physical Activity, Mental Engagement, and Diet
746 Promote Cognitive Health during Aging. *Neural Plast*. 2017;2017:3589271.

747 72. Jesko H, Wencel P, Strosznajder RP, Strosznajder JB. Sirtuins and Their Roles in Brain Aging and
748 Neurodegenerative Disorders. *Neurochem Res*. 2017;42(3):876-90.

749 73. Cohen DE, Supinski AM, Bonkowski MS, Donmez G, Guarente LP. Neuronal SIRT1 regulates endocrine
750 and behavioral responses to calorie restriction. *Genes Dev*. 2009;23(24):2812-7.

751 74. Fusco S, Ripoli C, Podda MV, Ranieri SC, Leone L, Toietta G, et al. A role for neuronal cAMP responsive-
752 element binding (CREB)-1 in brain responses to calorie restriction. *Proc Natl Acad Sci U S A*. 2012;109(2):621-6.

753 75. Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty
754 acids and endocannabinoids in health and disease. *Nutr Neurosci*. 2017;1-20.

755 76. Simopoulos AP. Essential fatty acids in health and chronic disease. *The American journal of clinical
756 nutrition*. 1999;70(3 Suppl):560s-9s.

757 77. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. *Biomedicine &
758 pharmacotherapy = Biomedecine & pharmacotherapie*. 2002;56(8):365-79.

759 78. Denis I, Potier B, Vancassel S, Heberden C, Lavialle M. Omega-3 fatty acids and brain resistance to ageing
760 and stress: body of evidence and possible mechanisms. *Ageing research reviews*. 2013;12(2):579-94.

761 79. Denis I, Potier B, Heberden C, Vancassel S. Omega-3 polyunsaturated fatty acids and brain aging. *Curr
762 Opin Clin Nutr Metab Care*. 2015;18(2):139-46.

763 80. Haast RA, Kiliaan AJ. Impact of fatty acids on brain circulation, structure and function. *Prostaglandins,
764 leukotrienes, and essential fatty acids*. 2015;92:3-14.

765 81. Latour A, Grintal B, Champeil-Potokar G, Hennebelle M, Lavialle M, Dutar P, et al. Omega-3 fatty acids
766 deficiency aggravates glutamatergic synapse and astroglial aging in the rat hippocampal CA1. *Aging Cell*.
767 2013;12(1):76-84.

768 82. Chouinard-Watkins R, Plourde M. Fatty acid metabolism in carriers of apolipoprotein E epsilon 4 allele: is
769 it contributing to higher risk of cognitive decline and coronary heart disease? *Nutrients*. 2014;6(10):4452-71.

770 83. Salem N, Jr., Vandal M, Calon F. The benefit of docosahexaenoic acid for the adult brain in aging and
771 dementia. *Prostaglandins, leukotrienes, and essential fatty acids*. 2015;92:15-22.

772 84. Nagasawa M, Hara T, Kashino A, Akasaka Y, Ide T, Murakami K. Identification of a functional peroxisome
773 proliferator-activated receptor (PPAR) response element (PPRE) in the human apolipoprotein A-IV gene.
774 *Biochemical pharmacology*. 2009;78(5):523-30.

775 85. Xue B, Yang Z, Wang X, Shi H. Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation
776 via activation of AMPK/SIRT1 pathway. *PLoS One*. 2012;7(10):e45990.

777 86. Bernardo A, Minghetti L. PPAR-gamma agonists as regulators of microglial activation and brain
778 inflammation. *Current pharmaceutical design*. 2006;12(1):93-109.

779 87. Heneka MT, Landreth GE. PPARs in the brain. *Biochim Biophys Acta*. 2007;1771(8):1031-45.

780 88. Culman J, Zhao Y, Gohlke P, Herdegen T. PPAR-gamma: therapeutic target for ischemic stroke. *Trends in
781 pharmacological sciences*. 2007;28(5):244-9.

782 89. Afshordel S, Hagl S, Werner D, Rohner N, Kogel D, Bazan NG, et al. Omega-3 polyunsaturated fatty acids
783 improve mitochondrial dysfunction in brain aging--impact of Bcl-2 and NPD-1 like metabolites. *Prostaglandins,
784 leukotrienes, and essential fatty acids*. 2015;92:23-31.

785 90. Cutuli D, De Bartolo P, Caporali P, Laricchiuta D, Foti F, Ronci M, et al. n-3 polyunsaturated fatty acids
786 supplementation enhances hippocampal functionality in aged mice. *Frontiers in aging neuroscience*. 2014;6:220.

787 91. Kaplan RJ, Greenwood CE. Dietary saturated fatty acids and brain function. *Neurochem Res*.
788 1998;23(5):615-26.

789 92. Burke LE, Dunbar-Jacob J. Adherence to medication, diet, and activity recommendations: from assessment
790 to maintenance. *The Journal of cardiovascular nursing*. 1995;9(2):62-79.

791 93. Kanoski SE, Davidson TL. Western diet consumption and cognitive impairment: links to hippocampal
792 dysfunction and obesity. *Physiology & behavior*. 2011;103(1):59-68.

793 94. El-Assaad W, Buteau J, Peyot ML, Nolan C, Roduit R, Hardy S, et al. Saturated fatty acids synergize with
794 elevated glucose to cause pancreatic beta-cell death. *Endocrinology*. 2003;144(9):4154-63.

795 95. El-Assaad W, Joly E, Barbeau A, Sladek R, Buteau J, Maestre I, et al. Glucolipotoxicity alters lipid
796 partitioning and causes mitochondrial dysfunction, cholesterol, and ceramide deposition and reactive oxygen
797 species production in INS832/13 ss-cells. *Endocrinology*. 2010;151(7):3061-73.

798 96. Fontes G, Zarrouki B, Hagman DK, Latour MG, Semache M, Roskens V, et al. Glucolipotoxicity age-
799 dependently impairs beta cell function in rats despite a marked increase in beta cell mass. *Diabetologia*.
800 2010;53(11):2369-79.

801 97. Poitout V, Amyot J, Semache M, Zarrouki B, Hagman D, Fontes G. Glucolipotoxicity of the pancreatic beta
802 cell. *Biochim Biophys Acta*. 2010;1801(3):289-98.

803 98. van Raalte DH, Diamant M. Glucolipotoxicity and beta cells in type 2 diabetes mellitus: target for durable
804 therapy? *Diabetes research and clinical practice*. 2011;93 Suppl 1:S37-46.

805 99. Liu Z, Stanojevic V, Brindamour LJ, Habener JF. GLP1-derived nonapeptide GLP1(28-36)amide protects
806 pancreatic beta-cells from glucolipotoxicity. *The Journal of endocrinology*. 2012;213(2):143-54.

807 100. Bazan NG, Molina MF, Gordon WC. Docosahexaenoic acid signalolipidomics in nutrition: significance in
808 aging, neuroinflammation, macular degeneration, Alzheimer's, and other neurodegenerative diseases. *Annual
809 review of nutrition*. 2011;31:321-51.

810 101. Head E, Rofina J, Zicker S. Oxidative stress, aging, and central nervous system disease in the canine model
811 of human brain aging. *The Veterinary clinics of North America Small animal practice*. 2008;38(1):167-78, vi.

812 102. Maeda N, Hagiwara H, Nakata Y, Hiller S, Wilder J, Reddick R. Aortic wall damage in mice unable to
813 synthesize ascorbic acid. *Proc Natl Acad Sci U S A*. 2000;97(2):841-6.

814 103. Harrison FE, Meredith ME, Dawes SM, Saskowski JL, May JM. Low ascorbic acid and increased oxidative
815 stress in *gulo*(-/-) mice during development. *Brain Res*. 2010;1349:143-52.

816 104. Hodges RE, Hood J, Canham JE, Sauberlich HE, Baker EM. Clinical manifestations of ascorbic acid
817 deficiency in man. *The American journal of clinical nutrition*. 1971;24(4):432-43.

818 105. Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. *Free
819 radical biology & medicine*. 2009;46(6):719-30.

820 106. Gess B, Sevimli S, Strecker JK, Young P, Schabitz WR. Sodium-dependent vitamin C transporter 2 (SVCT2)
821 expression and activity in brain capillary endothelial cells after transient ischemia in mice. *PLoS One*.
822 2011;6(2):e17139.

823 107. Lin JL, Huang YH, Shen YC, Huang HC, Liu PH. Ascorbic acid prevents blood-brain barrier disruption
824 and sensory deficit caused by sustained compression of primary somatosensory cortex. *Journal of cerebral blood*
825 *flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.*
826 2010;30(6):1121-36.

827 108. Hall ED, Vaishnav RA, Mustafa AG. Antioxidant therapies for traumatic brain injury. *Neurotherapeutics.*
828 2010;7(1):51-61.

829 109. Narayanan SN, Kumar RS, Paval J, Nayak S. Effect of ascorbic acid on the monosodium glutamate-induced
830 neurobehavioral changes in periadolescent rats. *Bratislavské lekarske listy.* 2010;111(5):247-52.

831 110. Moretti M, Colla A, de Oliveira Balen G, dos Santos DB, Budni J, de Freitas AE, et al. Ascorbic acid
832 treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by
833 chronic unpredictable stress. *Journal of psychiatric research.* 2012;46(3):331-40.

834 111. Paleologos M, Cumming RG, Lazarus R. Cohort study of vitamin C intake and cognitive impairment. *Am*
835 *J Epidemiol.* 1998;148(1):45-50.

836 112. Guidi I, Galimberti D, Lonati S, Novembrino C, Bamonti F, Tiriticco M, et al. Oxidative imbalance in
837 patients with mild cognitive impairment and Alzheimer's disease. *Neurobiol Aging.* 2006;27(2):262-9.

838 113. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, et al. Dietary intake of
839 antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. *Jama.*
840 2002;287(24):3230-7.

841 114. Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, et al. Reversals of age-related
842 declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or
843 strawberry dietary supplementation. *J Neurosci.* 1999;19(18):8114-21.

844 115. Dringen R. Metabolism and functions of glutathione in brain. *Progress in neurobiology.* 2000;62(6):649-71.

845 116. Rice ME, Russo-Menna I. Differential compartmentalization of brain ascorbate and glutathione between
846 neurons and glia. *Neuroscience.* 1998;82(4):1213-23.

847 117. Kish SJ, Morito C, Hornykiewicz O. Glutathione peroxidase activity in Parkinson's disease brain.
848 *Neuroscience letters.* 1985;58(3):343-6.

849 118. Volicer L, Crino PB. Involvement of free radicals in dementia of the Alzheimer type: a hypothesis.
850 *Neurobiol Aging.* 1990;11(5):567-71.

851 119. Aquilano K, Baldelli S, Ciriolo MR. Glutathione is a crucial guardian of protein integrity in the brain upon
852 nitric oxide imbalance. *Commun Integr Biol.* 2011;4(4):477-9.

853 120. Perluigi M, Di Domenico F, Giorgi A, Schinina ME, Coccia R, Cini C, et al. Redox proteomics in aging rat
854 brain: involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the
855 aging process. *J Neurosci Res.* 2010;88(16):3498-507.

856 121. Emir UE, Raatz S, McPherson S, Hodges JS, Torkelson C, Tawfik P, et al. Noninvasive quantification of
857 ascorbate and glutathione concentration in the elderly human brain. *NMR in biomedicine.* 2011;24(7):888-94.

858 122. Mandal PK, Tripathi M, Sugunan S. Brain oxidative stress: detection and mapping of anti-oxidant marker
859 'Glutathione' in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive
860 magnetic resonance spectroscopy. *Biochem Biophys Res Commun.* 2012;417(1):43-8.

861 123. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain
862 antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. *Int J*
863 *Neuropsychopharmacol.* 2011;14(1):123-30.

864 124. Chauhan A, Audhya T, Chauhan V. Brain region-specific glutathione redox imbalance in autism.
865 *Neurochem Res.* 2012;37(8):1681-9.

866 125. Freitas HR, Reis RA. Glutathione induces GABA release through P2X7R activation on Muller glia.
867 *Neurogenesis (Austin, Tex).* 2017;4(1):e1283188.

868 126. Faria RX, Freitas HR, Reis RAM. P2X7 receptor large pore signaling in avian Muller glial cells. *J Bioenerg*
869 *Biomembr.* 2017.

870 127. Blaha MJ, Hung RK, Dardari Z, Feldman DI, Whelton SP, Nasir K, et al. Age-dependent prognostic value
871 of exercise capacity and derivation of fitness-associated biologic age. *Heart.* 2016;102(6):431-7.

872 128. Voss MW, Nagamatsu LS, Liu-Ambrose T, Kramer AF. Exercise, brain, and cognition across the life span.
873 *J Appl Physiol (1985).* 2011;111(5):1505-13.

874 129. Vijg J, de Grey AD. Innovating aging: promises and pitfalls on the road to life extension. *Gerontology.*
875 2014;60(4):373-80.

876 130. Seals DR, Justice JN, LaRocca TJ. Physiological geroscience: targeting function to increase healthspan and
877 achieve optimal longevity. *The Journal of physiology*. 2016;594(8):2001-24.

878 131. Di Benedetto S, Muller L, Wenger E, Duzel S, Pawelec G. Contribution of neuroinflammation and immunity
879 to brain aging and the mitigating effects of physical and cognitive interventions. *Neuroscience and biobehavioral*
880 *reviews*. 2017;75:114-28.

881 132. Jackson PA, Pialoux V, Corbett D, Drogos L, Erickson KI, Eskes GA, et al. Promoting brain health through
882 exercise and diet in older adults: a physiological perspective. *The Journal of physiology*. 2016;594(16):4485-98.

883 133. Guure CB, Ibrahim NA, Adam MB, Said SM. Impact of Physical Activity on Cognitive Decline, Dementia,
884 and Its Subtypes: Meta-Analysis of Prospective Studies. *BioMed research international*. 2017;2017:9016924.

885 134. Bolduc V, Thorin-Trescases N, Thorin E. Endothelium-dependent control of cerebrovascular functions
886 through age: exercise for healthy cerebrovascular aging. *American journal of physiology Heart and circulatory*
887 *physiology*. 2013;305(5):H620-33.

888 135. De la Torre R, Corella D, Castaner O, Martinez-Gonzalez MA, Salas-Salvador J, Vila J, et al. Protective effect
889 of homovanillyl alcohol on cardiovascular disease and total mortality: virgin olive oil, wine, and catechol-
890 methylthion. *The American journal of clinical nutrition*. 2017;105(6):1297-304.

891 136. Ainslie PN, Cotter JD, George KP, Lucas S, Murrell C, Shave R, et al. Elevation in cerebral blood flow
892 velocity with aerobic fitness throughout healthy human ageing. *The Journal of physiology*. 2008;586(16):4005-
893 10.

894 137. Xing CY, Tarumi T, Meijers RL, Turner M, Repshas J, Xiong L, et al. Arterial Pressure, Heart Rate, and
895 Cerebral Hemodynamics Across the Adult Life Span. *Hypertension*. 2017;69(4):712-20.

896 138. de la Torre JC. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and
897 dementia. *Cardiovascular psychiatry and neurology*. 2012;2012:367516.

898 139. Barnes JN. Exercise, cognitive function, and aging. *Advances in physiology education*. 2015;39(2):55-62.

899 140. Viboolvorakul S, Patumraj S. Exercise training could improve age-related changes in cerebral blood flow
900 and capillary vascularity through the upregulation of VEGF and eNOS. *BioMed research international*.
901 2014;2014:230791.

902 141. Gertz K, Priller J, Kronenberg G, Fink KB, Winter B, Schrock H, et al. Physical activity improves long-term
903 stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and
904 cerebral blood flow. *Circulation research*. 2006;99(10):1132-40.

905 142. Choi DH, Lee KH, Lee J. Effect of exercise-induced neurogenesis on cognitive function deficit in a rat model
906 of vascular dementia. *Molecular medicine reports*. 2016;13(4):2981-90.

907 143. Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, et al. An in vivo correlate
908 of exercise-induced neurogenesis in the adult dentate gyrus. *Proc Natl Acad Sci U S A*. 2007;104(13):5638-43.

909 144. Erickson KI, Leckie RL, Weinstein AM. Physical activity, fitness, and gray matter volume. *Neurobiol Aging*.
910 2014;35 Suppl 2:S20-8.

911 145. Maass A, Duzel S, Goerke M, Becke A, Sobieray U, Neumann K, et al. Vascular hippocampal plasticity after
912 aerobic exercise in older adults. *Molecular psychiatry*. 2015;20(5):585-93.

913 146. Hanning U, Roesler A, Peters A, Berger K, Baune BT. Structural brain changes and all-cause mortality in
914 the elderly population-the mediating role of inflammation. *Age (Dordrecht, Netherlands)*. 2016;38(5-6):455-64.

915 147. Benedict C, Brooks SJ, Kullberg J, Nordenskjold R, Burgos J, Le Greves M, et al. Association between
916 physical activity and brain health in older adults. *Neurobiol Aging*. 2013;34(1):83-90.

917 148. Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, et al. Aerobic fitness is associated with
918 hippocampal volume in elderly humans. *Hippocampus*. 2009;19(10):1030-9.

919 149. Morris JK, Vidoni ED, Johnson DK, Van Sciver A, Mahnken JD, Honea RA, et al. Aerobic exercise for
920 Alzheimer's disease: A randomized controlled pilot trial. *PLoS One*. 2017;12(2):e0170547.

921 150. Chaddock L, Erickson KI, Prakash RS, Kim JS, Voss MW, Vanpatter M, et al. A neuroimaging investigation
922 of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent
923 children. *Brain Res*. 2010;1358:172-83.

924 151. Nyberg J, Aberg MA, Schioler L, Nilsson M, Wallin A, Toren K, et al. Cardiovascular and cognitive fitness
925 at age 18 and risk of early-onset dementia. *Brain*. 2014;137(Pt 5):1514-23.

926 152. Cahill L. Why sex matters for neuroscience. *Nature reviews Neuroscience*. 2006;7(6):477-84.

927 153. Taaffe DR, Harris TB, Ferrucci L, Rowe J, Seeman TE. Cross-sectional and prospective relationships of
928 interleukin-6 and C-reactive protein with physical performance in elderly persons: MacArthur studies of

929 successful aging. The journals of gerontology Series A, Biological sciences and medical sciences.
930 2000;55(12):M709-15.

931 154. De la Fuente M, Cruces J, Hernandez O, Ortega E. Strategies to improve the functions and redox state of
932 the immune system in aged subjects. Current pharmaceutical design. 2011;17(36):3966-93.

933 155. Vassilaki M, Cha RH, Aakre JA, Therneau TM, Geda YE, Mielke MM, et al. Mortality in mild cognitive
934 impairment varies by subtype, sex, and lifestyle factors: the Mayo Clinic Study of Aging. Journal of Alzheimer's
935 disease : JAD. 2015;45(4):1237-45.

936 156. Xing CY, Tarumi T, Liu J, Zhang Y, Turner M, Riley J, et al. Distribution of cardiac output to the brain across
937 the adult lifespan. Journal of cerebral blood flow and metabolism : official journal of the International Society of
938 Cerebral Blood Flow and Metabolism. 2017;37(8):2848-56.

939 157. Berchtold NC, Cribbs DH, Coleman PD, Rogers J, Head E, Kim R, et al. Gene expression changes in the
940 course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A. 2008;105(40):15605-10.

941 158. Brown BM, Peiffer JJ, Martins RN. Multiple effects of physical activity on molecular and cognitive signs of
942 brain aging: can exercise slow neurodegeneration and delay Alzheimer's disease? Molecular psychiatry.
943 2013;18(8):864-74.

944 159. Varma VR, Chuang YF, Harris GC, Tan EJ, Carlson MC. Low-intensity daily walking activity is associated
945 with hippocampal volume in older adults. Hippocampus. 2015;25(5):605-15.

946 160. Pentikainen H, Ngandu T, Liu Y, Savonen K, Komulainen P, Hallikainen M, et al. Cardiorespiratory fitness
947 and brain volumes in men and women in the FINGER study. Age and ageing. 2017;46(2):310-3.

948 161. Talbot K. Brain insulin resistance in Alzheimer's disease and its potential treatment with GLP-1 analogs.
949 Neurodegenerative disease management. 2014;4(1):31-40.

950 162. Akintola AA, van Heemst D. Insulin, aging, and the brain: mechanisms and implications. Frontiers in
951 endocrinology. 2015;6:13.

952 163. Paolisso G, Gambardella A, Ammendola S, D'Amore A, Balbi V, Varricchio M, et al. Glucose tolerance and
953 insulin action in healthy centenarians. The American journal of physiology. 1996;270(5 Pt 1):E890-4.

954 164. Bertram S, Brixius K, Brinkmann C. Exercise for the diabetic brain: how physical training may help prevent
955 dementia and Alzheimer's disease in T2DM patients. Endocrine. 2016;53(2):350-63.

956 165. Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, et al. Long Acting Intranasal
957 Insulin Detemir Improves Cognition for Adults with Mild Cognitive Impairment or Early-Stage Alzheimer's
958 Disease Dementia. Journal of Alzheimer's disease : JAD. 2015;45(4):1269-70.

959 166. Craft S, Claxton A, Baker LD, Hanson AJ, Cholerton B, Trittschuh EH, et al. Effects of Regular and Long-
960 Acting Insulin on Cognition and Alzheimer's Disease Biomarkers: A Pilot Clinical Trial. Journal of Alzheimer's
961 disease : JAD. 2017;57(4):1325-34.

962 167. Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, et al. Intranasal insulin improves
963 cognition and modulates beta-amyloid in early AD. Neurology. 2008;70(6):440-8.

964 168. Hoene M, Lehmann R, Hennige AM, Pohl AK, Haring HU, Schleicher ED, et al. Acute regulation of
965 metabolic genes and insulin receptor substrates in the liver of mice by one single bout of treadmill exercise. The
966 Journal of physiology. 2009;587(1):241-52.

967 169. Castro MG, Venutolo C, Yau PL, Convit A. Fitness, insulin sensitivity, and frontal lobe integrity in adults
968 with overweight and obesity. Obesity (Silver Spring, Md). 2016;24(6):1283-9.

969 170. Kang EB, Cho JY. Effects of treadmill exercise on brain insulin signaling and beta-amyloid in
970 intracerebroventricular streptozotocin induced-memory impairment in rats. Journal of exercise nutrition &
971 biochemistry. 2014;18(1):89-96.

972 171. Muller AP, Gnoatto J, Moreira JD, Zimmer ER, Haas CB, Lulhier F, et al. Exercise increases insulin signaling
973 in the hippocampus: physiological effects and pharmacological impact of intracerebroventricular insulin
974 administration in mice. Hippocampus. 2011;21(10):1082-92.

975 172. Zhang H, Zhang C. Adipose "talks" to distant organs to regulate insulin sensitivity and vascular function.
976 Obesity (Silver Spring, Md). 2010;18(11):2071-6.

977 173. Ringseis R, Eder K, Mooren FC, Kruger K. Metabolic signals and innate immune activation in obesity and
978 exercise. Exercise immunology review. 2015;21:58-68.

979 174. Khoo J, Dhamodaran S, Chen DD, Yap SY, Chen RY, Tian RH. Exercise-Induced Weight Loss is More
980 Effective than Dieting for Improving Adipokine Profile, Insulin Resistance, and Inflammation in Obese Men.
981 International journal of sport nutrition and exercise metabolism. 2015;25(6):566-75.

982 175. Lowndes J, Zoeller RF, Kyriazis GE, Miles MP, Seip RL, Moyna NM, et al. Hyperleptinemia is associated
983 with CRP, but not apolipoprotein E, and is reduced by exercise training. International journal of sport nutrition
984 and exercise metabolism. 2014;24(5):524-31.

985 176. Markofski MM, Carrillo AE, Timmerman KL, Jennings K, Coen PM, Pence BD, et al. Exercise training
986 modifies ghrelin and adiponectin concentrations and is related to inflammation in older adults. The journals of
987 gerontology Series A, Biological sciences and medical sciences. 2014;69(6):675-81.

988 177. Vella CA, Allison MA, Cushman M, Jenny NS, Miles MP, Larsen B, et al. Physical Activity and Adiposity-
989 related Inflammation: The MESA. Medicine and science in sports and exercise. 2017;49(5):915-21.

990 178. Yau SY, Li A, Hoo RL, Ching YP, Christie BR, Lee TM, et al. Physical exercise-induced hippocampal
991 neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc Natl Acad
992 Sci U S A. 2014;111(44):15810-5.

993 179. Ogawa K, Sanada K, Machida S, Okutsu M, Suzuki K. Resistance exercise training-induced muscle
994 hypertrophy was associated with reduction of inflammatory markers in elderly women. Mediators of
995 inflammation. 2010;2010:171023.

996 180. Santos RV, Viana VA, Boscolo RA, Marques VG, Santana MG, Lira FS, et al. Moderate exercise training
997 modulates cytokine profile and sleep in elderly people. Cytokine. 2012;60(3):731-5.

998 181. Rodriguez-Miguelez P, Fernandez-Gonzalo R, Almar M, Mejias Y, Rivas A, de Paz JA, et al. Role of Toll-
999 like receptor 2 and 4 signaling pathways on the inflammatory response to resistance training in elderly subjects.
1000 Age (Dordrecht, Netherlands). 2014;36(6):9734.

1001 182. Chupel MU, Direito F, Furtado GE, Minuzzi LG, Pedrosa FM, Colado JC, et al. Strength Training Decreases
1002 Inflammation and Increases Cognition and Physical Fitness in Older Women with Cognitive Impairment.
1003 Frontiers in physiology. 2017;8:377.

1004 183. Braskie MN, Boyle CP, Rajagopalan P, Gutman BA, Toga AW, Raji CA, et al. Physical activity,
1005 inflammation, and volume of the aging brain. Neuroscience. 2014;273:199-209.

1006 184. Chennaoui M, Gomez-Merino D, Drogou C, Geoffroy H, Dispersyn G, Langrume C, et al. Effects of exercise
1007 on brain and peripheral inflammatory biomarkers induced by total sleep deprivation in rats. Journal of
1008 inflammation (London, England). 2015;12:56.

1009 185. Nieman DC, Davis JM, Brown VA, Henson DA, Dumke CL, Utter AC, et al. Influence of carbohydrate
1010 ingestion on immune changes after 2 h of intensive resistance training. Journal of applied physiology.
1011 2004;96(4):1292-8.

1012 186. Della Gatta PA, Garnham AP, Peake JM, Cameron-Smith D. Effect of exercise training on skeletal muscle
1013 cytokine expression in the elderly. Brain, behavior, and immunity. 2014;39:80-6.

1014 187. Piao CS, Stoica BA, Wu J, Sabirzhanov B, Zhao Z, Cabatbat R, et al. Late exercise reduces
1015 neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiology of disease.
1016 2013;54:252-63.

1017 188. de la Torre JC. Are Major Dementias Triggered by Poor Blood Flow to the Brain? Theoretical
1018 Considerations. Journal of Alzheimer's disease : JAD. 2017;57(2):353-71.

1019 189. Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI, et al. Overexpression of Atg5 in mice activates
1020 autophagy and extends lifespan. Nature communications. 2013;4:2300.

1021 190. Mejias-Pena Y, Estebanez B, Rodriguez-Miguelez P, Fernandez-Gonzalo R, Almar M, de Paz JA, et al.
1022 Impact of resistance training on the autophagy-inflammation-apoptosis crosstalk in elderly subjects. Aging.
1023 2017;9(2):408-18.

1024 191. Mejias-Pena Y, Rodriguez-Miguelez P, Fernandez-Gonzalo R, Martinez-Florez S, Almar M, de Paz JA, et
1025 al. Effects of aerobic training on markers of autophagy in the elderly. Age (Dordr). 2016;38(2):33.

1026 192. Marosi K, Bori Z, Hart N, Sarga L, Koltai E, Radak Z, et al. Long-term exercise treatment reduces oxidative
1027 stress in the hippocampus of aging rats. Neuroscience. 2012;226:21-8.

1028 193. Garcia-Mesa Y, Colie S, Corpas R, Cristofol R, Comellas F, Nebreda AR, et al. Oxidative Stress Is a Central
1029 Target for Physical Exercise Neuroprotection Against Pathological Brain Aging. The journals of gerontology
1030 Series A, Biological sciences and medical sciences. 2016;71(1):40-9.

1031 194. Raefsky SM, Mattson MP. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles
1032 in neuroplasticity and disease resistance. Free radical biology & medicine. 2017;102:203-16.

1033 195. Marques-Aleixo I, Santos-Alves E, Balca MM, Rizo-Roca D, Moreira PI, Oliveira PJ, et al. Physical exercise
1034 improves brain cortex and cerebellum mitochondrial bioenergetics and alters apoptotic, dynamic and
1035 auto(mito)phagy markers. Neuroscience. 2015;301:480-95.

1036 196. Panati K, Suneetha Y, Narala VR. Irisin/FNDC5--An updated review. European review for medical and
1037 pharmacological sciences. 2016;20(4):689-97.

1038 197. Raschke S, Eckel J. Adipo-myokines: two sides of the same coin--mediators of inflammation and mediators
1039 of exercise. *Mediators of inflammation*. 2013;2013:320724.

1040 198. Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, et al. The Effect of Exercise Training
1041 on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis. *PLoS*
1042 *One*. 2016;11(9):e0163037.

1043 199. Erickson KI, Miller DL, Roecklein KA. The aging hippocampus: interactions between exercise, depression,
1044 and BDNF. *The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry*.
1045 2012;18(1):82-97.

1046 200. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, et al. Evidence for a release of brain-
1047 derived neurotrophic factor from the brain during exercise. *Experimental physiology*. 2009;94(10):1062-9.

1048 201. Wrann CD. FNDC5/irisin - their role in the nervous system and as a mediator for beneficial effects of
1049 exercise on the brain. *Brain plasticity*. 2015;1(1):55-61.

1050 202. Hashemi MS, Ghaedi K, Salamian A, Karbalaie K, Emadi-Baygi M, Tanhaei S, et al. Fndc5 knockdown
1051 significantly decreased neural differentiation rate of mouse embryonic stem cells. *Neuroscience*. 2013;231:296-
1052 304.

1053 203. Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. *The Journal of*
1054 *experimental biology*. 2004;207(Pt 18):3221-31.

1055 204. Liu J, Atamna H, Kuratsune H, Ames BN. Delaying brain mitochondrial decay and aging with
1056 mitochondrial antioxidants and metabolites. *Annals of the New York Academy of Sciences*. 2002;959:133-66.

1057 205. Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: the need for
1058 antioxidants that penetrate the blood brain barrier. *Neuropharmacology*. 2001;40(8):959-75.

1059 206. Slemmer JE, Shacka JJ, Sweeney MI, Weber JT. Antioxidants and free radical scavengers for the treatment
1060 of stroke, traumatic brain injury and aging. *Current medicinal chemistry*. 2008;15(4):404-14.