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14 Abstract: Polyunsaturated fatty acids (PUFAs) and antioxidants are important mediators in the

15 central nervous system (CNS). Lipid derivatives may be used to generate endocannabinoids or
16 prostanoids derived from arachidonic acid, which attenuates excitotoxicity in quadripartite
17 synapses with a focus in astrocytes and microglia; on the other hand, antioxidants, such as
18 glutathione (GSH) and ascorbate, have been shown to signal through transmitter receptors and
19 protect against acute and chronic oxidative stress, modulating the activity of different signaling
20 pathways. Several authors have investigated the role of these nutrients in young and senescent
21 brain, as well as in degenerative conditions such as Alzheimer’s and Parkinson's diseases. Through
22 literature review, we aimed to highlight recent data on the role of fatty acids, antioxidants and
23 physical activity in physiology and in molecular mechanisms of brain senescence. Data indicate the
24 complexity and essentiality of endogenous/dietary antioxidants for maintenance of the redox status
25 and control of neuroglial signaling under stress. Recent studies also indicate that omega-3 and -6
26 fatty acids act in a competitive manner to generate mediators for energy metabolism, feeding
27 behavior, plasticity and memory mechanisms throughout aging. Finding pharmacological or
28 dietary resources that mitigate or prevent neurodegenerative affections continues to be a great
29 challenge and require additional efforts from researchers, clinicians and nutritionists in the field.

30 Keywords: Essential fatty acids; Ascorbic acid; Glutathione; Aging; Parkinson’s disease;

31 Alzheimer’s disease; Senescence; Nervous system; Growth factors; Neuroprotection;
32 Docosahexaenoic acid; a-linolenic acid.
33

34 1. Introduction

35 Throughout the 20st century, evidence-based medical knowledge has allowed for a significant
36  increase in life expectancy, especially in well-developed countries. Epidemiological data from 1900
37  (United States and United Kingdom) indicate that 50% of the population lived approximately until
38 50 years old, while in the 1990’s, half of the population lived until 80 years old (1). The ageing process,
39  however, is permissive for the development of several degenerative disorders and infectious
40  diseases, which are strongly influenced by nutritional imbalances, inflammation, metabolic
41  exhaustion and by the natural process of cellular senescence (2).

42 Insufficient ingestion and/or deficient absorption of essential nutrients deeply affects health
43 condition of elderly individuals. Frangeskou and coworkers explored the impact of dehydration as
44 an extenuating factor for public expenses with health services, increasing mortality, hospital
45  readmission and period of stay under medical/hospital care (3). Digestion and absorption of nutrients
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is normally deficient in the elderly, as compared to younger individuals. In a recent study, it was
shown that essential and branched-chain amino acids reach peak blood levels within 1h hour after
young individuals (20-25 years old) receive a protein-rich meal, while the same peak concentrations
were reached only 3h post-meal for an elderly (60-75 years old) group (4).

Prevalence of malnutrition, weakness and related disabilities are also relevant factors and may
comprehend a large portion of the aged population, mainly those institutionalized (hospitalized) and
resident of non-developed/developing countries (5). In a cross-sectional Brazilian epidemiological
study with elderly individuals (> 60 years old), anemia index, hemoglobin concentration and
population frailty were intrinsically related, indicating that low levels of hemoglobin are associated
with a greater number of frailty indicators (Fried phenotype criteria) (6).

Western diets, characterized by the high lipid content (mainly saturated fatty acids), refined
carbohydrates and low ingestion of vegetables have been associated to the development of serious
cardiovascular disorders, cancer and diabetes (7). Loss of endothelial homeostasis during ageing, for
example, strongly depends on oxidative stress, inflammation and nutritional factors. Dietetic
interventions in elderly people are, however, hardened by cognitive impairment and loss of motility,
which limits the autonomy for preparing complex meals, chewing and digesting food (8). Regulation
of circadian cycle and decrease in dietetic calories content has been shown to be effective in
promoting longevity in several in vivo models (9).

In emerging countries, such as Asian and Latin-American nations, it is possible to observe a
marked effect of nutritional transition, parallel to the accelerated expansion of urban areas, which
incorporates negative dietary habits in the population (10). Such factor introduces a deep
epidemiological concern, once modifications in feeding habits and obesity are strong indicators of
health risk, such as high blood cholesterol, pre-diabetes, hypertension, asthma, arthritis and bad or
regular self-reported health condition (11). Weight variations affect the well-being of elderly patients,
a determinant factor for survival within such group (12).

Depression may also be related to the development of obesity (13), and obesity itself is
significantly associated to abusive intake of alcohol and depression, mainly in adult female
individuals or highly obese subjects (14, 15). Current dietetic approaches rely on providing balanced
amounts of energy, macro and micronutrients; other therapies, such as correction of the gut
microbiome and global intestine health, await further clinical evidence (16). Here, we explore post-
transitional aspects of modern feeding, especially the intake of fatty acids and antioxidants, which
greatly relates to the process of brain ageing, one of the pillars in generalized senescence.

2. Senescence of the Nervous System

Many disabling central nervous system symptoms and diseases are highly associated with the
aging process, including cerebrovascular disease, Alzheimer’s disease (AD) and Parkinson’s disease
(PD), as well as decline of attention and memory (17, 18). Despite the current medical advances to
extend lifespan, untangling the precise metabolic interactions involved in the process of neural aging
continues to be a challenge. Both environmental and endogenous factors have been postulated to
play a role in cellular senescence, including genetic alterations (DNA damage and shortening of
telomeres) and gene expression (19, 20), accumulation of aberrant proteins (21), excitotoxicity (22),
oxidative damage and mitochondrial dysfunction (23, 24), and others.

It has been shown that the disturbances in brain synaptic circuitry that occurs especially in
hippocampus and pre-frontal cortex during ageing might promote relevant cognitive decline (25).
Oxidative damage accumulates with age and is potentially harmful to many mitochondrial functions.
Contributing factors include decreased membrane fluidity and the intrinsic rate of proton leakage
across the inner mitochondrial membrane (26). Previous reports showed that mitochondria are
chronically depolarized in aged neural cells, including an age-dependent decrease in mitochondrial
membrane potential in cerebellar neurons from brain slices (27) and in cultured basal forebrain
neurons (28). Brain mitochondria from senescent rats present damaged mitochondrial I complex,
which may be related to the increase of Bax/Bcl-2 observed in these mitochondria (29). It has also
been shown in rats and humans that senescent subjects feature larger mitochondria than young cells,
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but in a smaller amount (30-32). If on the one hand the total volume of the cell occupied by
mitochondria is virtually unaltered in young and old subjects, on the other hand these larger
mitochondria do not feature the same bioenergetic capability (32, 33). Potential consequences of
mitochondrial chronic depolarization include impaired ATP synthesis and redox homeostasis, as
well as disruption of calcium gradient across the mitochondrial membrane with subsequent
impairment on mitochondrial calcium stores or increase in the threshold necessary to trigger
mitochondrial uptake of calcium (34). Thus, changes in the metabolic status would greatly impair the
fuel reserves of the neural cells and consequently make them less capable to respond to injury. In the
context of the cognitive impairment of the aged cells, the linchpin seems to be the activity of the fast-
spiking interneurons (35), which have high metabolic demands and thus are more susceptible to
metabolic dysfunction (36).

Accumulated data indicate that the gradual dysfunction of respiratory chain complexes
involved in the electron transfer (mainly complexes I and IV), flaws in compensatory mechanisms,
inaccurate gene expression, and increased number of mitochondrial DNA (mtDNA) damage are at
least capable of influencing the progression of AD (37). Blood glucose and several associated
metabolic pathways appear to be altered in the brain of AD patients; however, these manifestations
may be consequence of the ageing and disease progression, which undermine synapses and attenuate
the demand for glucose, further contributing to the functional and progressive decline of cerebral
functions (38).

One of the main regulators of growth and survival in adverse environmental conditions, the
mammalian target of rapamycin (nTOR) is a catalytic subunit of two distinct complexes known as
mTOR1 and mTOR2 complexes (mTORC1 and mTORC2, respectively) (39). The intrinsic
communication of mTOR complexes (mainly mTORC1) with the metabolic control of glycogenesis
and lipogenesis is essential to maintain central homeostasis (39, 40), since neural cells are highly
dependent on the continued supply of glucose and other energy substrates (e.g. ketone bodies and
lipids) to maintain ATP/AMP ratio. This dynamic allows for the correct regulation of autophagy
systems, essential for the clearance of malfunctioning organelles and misfolded proteins, which were
found to be dysregulated in central diseases such as AD (41).

Nutritional profile of elder individuals seems to be important to the progression of several
pathological conditions affecting CNS. It has been reported that the occurrence of disabilities and
signals of fatigue are significantly correlated to diet deficiency of folate (i.e. vitamin B9) and
magnesium in patients with multiple sclerosis (MS) (42). The onset of preclinical indicators for AD
suggest that the availability of micronutrients and fatty acids, especially docosahexaenoic acid
(DHA), is gradually restricted and follows the progression of the disease in aged subjects. Protein-
energy nutritional status is also aggravated in AD, but it usually parallels the symptoms of cognitive
impairment. Nutritional strategies that combine key nutrients for the formation and maintenance of
synaptic integrity have been used primarily to prevent loss or impairment of memory in AD patients
(43). In vivo restriction in the supply of nutrients during pre- and post-natal periods cause metabolic
changes to the blood-brain barrier, inducing cognitive disorders and predisposition to AD (44). These
findings underscore an intrinsic relationship between adequate supply of essential nutrients,
especially fatty acids and antioxidants, and maintenance of central homeostasis during aging.

3. Adipose tissue-CNS crosstalk in brain aging

Aging and obesity can affect the central regulation of systemic homeostasis, increasing the risk
to develop AD, insulin resistance, diabetes mellitus, cardiovascular and cerebrovascular diseases.
However, these two metabolic conditions frequently coexist and it is difficult to distinguish the
relative contribution of each one to the disease progression. Neuroinflammation seems to be a
common mechanism by which these conditions independently and interactively impair
neurogenesis, neural stem cells survival and differentiation, promote age-related cognitive decline
and neurodegenerative diseases (45, 46).

Blood-brain barrier (BBB) breakdown may precede and trigger both neuroinflammation and
neurodegeneration. Because obesity is related to a persistent pro-inflammatory state (47), plasma-
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148  derived deleterious factors such as LPS and saturated fatty acids can pass through the damaged BBB
149 to induce neuroinflammation. In fact, serum derived from aged mice or aged high-fat fed mice
150  produces significant microglia activation, with increased reactive oxygen species production and
151  cytokine expression in hippocampus (48). On the other hand, Nlrp3 inflammasome knockout mice
152 show decreased metabolic and inflammatory markers in peripheral and central tissues, improved
153 functional cognitive decline during aging, and expanded lifespan (49). In the hypothalamus, an
154  important brain region regulating energy homeostasis, both aging and over nutrition increase the
155  proinflammatory axis comprising IkB kinase-p (IKKP) and its downstream nuclear transcription
156  factor NF-xB (IKKB/NF-kB signaling). Hypothalamic inflammation decreases satiety response to
157  insulin and to the adipose tissue derived hormone leptin, which can contribute to positive energy
158  balance and obesity (50). Several cellular mechanisms contribute to hypothalamic ageing in healthy
159 and overweight individuals, including genomic instability, telomere shortening, epigenetic
160  mechanisms, stem-cell depletion, endoplasmic reticulum stress and autophagy. Not surprisingly, all
161  these mechanisms are also altered in obese subjects and can contribute to systemic and brain
162  inflammation (51).

163 In diet-induced obesity, white adipose tissue dysfunction is the primarily source of altered levels
164 of circulating free fatty acids, several hormones called adipokines, and proinflammatory cytokines.
165  White adipose tissue depots are in the subcutaneous and visceral compartments. In addition to
166  controlling fuel accumulation, the adipose tissue is an important endocrine organ releasing
167  adipokines allowing its effective interaction with several other tissues including central nervous
168  system, liver, muscle and pancreas to regulate energy metabolism in an efficient and integrated
169  manner in health individuals (52).

170 White adipose tissue depots present a complex cell composition, including the main cell type,
171  adipocytes, but also pre-adipocytes, fibroblasts, mesenchymal cells, immune cells (macrophages, T
172 cells and others), endothelial cells, and smooth muscle cells (52, 53). Adipose tissue cellularity can
173 present alterations depending on the metabolic status, lean or obese. In lean adipose tissue, resident
174 or recruited macrophages are mostly M2-anti-inflammatory that produce TGF-g, IL-10, CCL17, 18,
175 22 and 24. In adipose tissue from obese subjects the main macrophage population is the M1-
176  proinflammatory cells that produce mainly IL-6, TNF-«, IL-1p, IFN-y (54).

177 There are marked differences between visceral and subcutaneous white adipose depots. Despite
178  of different anatomic distribution, visceral depots are more vascular and innervated, present larger
179 adipocytes, higher lipolytic activity, and increased production of proinflammatory molecules and
180  free fatty acids, as compared with subcutaneous adipose tissue. Regarding endocrine function,
181  visceral adipocytes produce more of the anti-inflammatory adipokine adiponectin while
182  subcutaneous adipocytes produce more leptin, an important regulator of body energy homeostasis
183  that decreases food intake and stimulates energy expenditure. These structural and functional
184  differences characterize the visceral adipose tissue as more insulin-resistant and detrimental in the
185  context of cardiometabolic diseases (55).

186 Leptin is an important hormone involved in the white adipose tissue and brain crosstalk. Leptin
187  production positively correlates with the fat mass. Therefore, obese individuals present
188  hyperleptinemia (56). Leptin acts mainly on the arcuate hypothalamic nucleus (Arc) activating
189  anorexigenic neurons that express proopiomelanocortin and cocaine/amphetamine-related transcript
190  (POMC/CART neurons), thus inhibiting orexigenic neurons that express the neurotransmitters
191  neuropeptide Y and agouti-related protein (NPY/AgRP neurons) (57, 58). In lean individuals, leptin
192 action results in decreased food intake and increased energy expenditure to control fat mass
193 expansion by a negative feedback loop. However, in obese individuals, hyperleptinemia is commonly
194 associated with hypothalamic leptin resistance and a progressive increase of adiposity (59).

195 In experimental models of aging, hypothalamic regulation of lifespan has been suggested since
196 it was demonstrated increased hypothalamic expression of NFkB pathway in experimental models
197  of advanced age, and that inhibition of this pathway delays ageing and extends lifespan in rodents
198 (60, 61). In old rats, brain inflammation induced by LPS has been associated with increased peripheral
199  inflammatory markers and hyperleptinemia, while treatment with anti-leptin serum partially
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200  reverses brain inflammation, highlighting the crucial role of leptin as a mediator of brain
201  inflammation in aging (62).

202 In humans, the relationship between leptin and cognition in elderly population is controversial
203 and deserves careful interpretation. While mid-life obesity and systemic metabolic changes, such as
204  high leptin circulating levels, are risk factors to the development of dementia, low plasma leptin
205  levels later in life are associated with worsening cognitive decline and increased risk of developing
206  AD (63, 64). This controversial pattern seems to be time-dependent. Possibly, higher levels of leptin
207  in mid-life could trigger initial deleterious mechanisms in the brain predisposing for age-related
208  diseases, and after the actual development of cognitive impairment in elderly individuals, changes
209  in whole body energy metabolism can result in weight loss and consequently lower leptin levels.
210 In healthy elderly subjects, plasma leptin levels are positively correlated with grey matter
211  volume of several brain regions, including the hippocampus (65), and inversely correlated with age-
212 related cognitive decline (66). In a prospective study of the Framingham original cohort, circulating
213 leptin levels were associated with reduced incidence of dementia and AD in asymptomatic older
214 adults (67). Therefore, these studies suggest a protective effect of leptin on brain function. Contrarily,
215  mild cognitive impairment was positively correlated with serum leptin and IL-1B levels, and
216  inversely correlated with the adiponectin in elderly population (68). Additionally, in elderly
217  individuals included in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, higher leptin
218  levels were associated with deficits in frontal, parietal, temporal and occipital lobes, brainstem, and
219  the cerebellum (69).

220 In contrast to obesity and hyperleptinemia, caloric restriction is another energetic challenge that
221  can modulate adiposity, brain function and lifespan. From the evolutionary perspective, the brain is
222 a unique organ that presents optimal cognitive function performance under hunger/food scarcity
223 conditions (70). Caloric restriction can optimize brain function throughout several molecular and
224 cellular mechanisms that include modulation of synaptic activity, BDNF signaling, mitochondrial
225  biogenesis, DNA repair, protein homeostasis, and reduced inflammation (71). Sirtuins are important
226  mediators of the brain metabolic adaptation during caloric restriction. Sirtuins (SIRT1-SIRT7) are
227  enzymes commonly known as NAD+-dependent histone deacetylases (HDAC). However, in
228  addition to controlling gene expression by chromatin remodeling, sirtuins can regulate a variety of
229  cellular functions by modulating the activity of kinases, transcription factors and other molecular
230  targets (72). Brain content of SIRT1 increases in response to caloric restriction and is involved in
231  several brain and behavioral adaptation in mice (73, 74).

232 4.Fatty Acids

233 Polyunsaturated fatty acids PUFAs, especially DHA, play an essential role in the maintenance
234 of central and peripheral metabolism. DHA is produced by desaturation and elongation of a-linolenic
235 acid (ALA), which is considered essential in the diet, since mammals are unable to biosynthesize
236  DHA and eicosapentaenoic acid (EPA) from precursors with shorter hydrocarbon chains (75).
237  Humans are required to intake dietary ALA present in leafy vegetables and oil, together with EPA
238  and DHA from fish oil (76). ALA, DHA and EPA (i.e. omega-3) should be maintained at appropriate
239 levels in the diet, since the quantitative ratio between linoleic acid (LA, i.e. omega-6) and ALA is
240  critical to control the production of arachidonic acid (ARA) and pro-inflammatory mediators (e.g.
241  eicosanoids), which play an important role in the progression of cardiovascular diseases, diabetes
242 and brain disorders (77).

243 Cerebrovascular diseases and neurodegenerative processes are highly dependent on the
244 stability of central blood. The proper functioning of reperfusion systems attenuates cell death and
245  prevents stroke episodes, resulting in less cognitive impairment over time (78, 79). Maintenance of
246  the connective brain structure in patients with AD is one of the major challenges in preserving
247  memory and associated functions, changes such as severe hippocampal atrophy and increased
248  lesions in white matter are, at least, prevented by interventions in which polyunsaturated fatty acids-
249  enriched diets are provided, especially DHA and EPA. In addition, patients undergoing diets rich in
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250  these fatty acids are less likely to develop neurodegenerative processes or functional and cognitive
251  loss toward the progression of the disease (80).

252 In a recent study, senescent rodents depleted of omega-3 had greater dysfunction in
253 glutamatergic synapses and 30% lower uptake of glutamate in astroglia from CA1 hippocampal area
254  (81). Studies using imaging methods have shown that, even in individuals with normal cognition,
255  fish oil supplementation is positively associated with a greater average volume of the hippocampus,
256  cingulate cortex and orbitofrontal areas. Fish oil supplementation was also related to higher scores
257  onstandardized cognitive tests. Presence of the ApoE4 allele seems to be a determining factor in the
258  outcome of clinical trials with DHA, since patients without this allele present better results from
259  dietary and pharmacological interventions using omega-3 (82, 83).

260 Omega-3 fatty acids decrease the synthesis of proinflammatory lipid mediators produced by the
261  omega-6 and ARA metabolism in a competitive manner. Omega-3 act as endogenous ligand of the
262  transcriptional factors peroxisome proliferator-activated receptors (PPAR-y and «) that attenuate the
263 activity of NF-xB mediated inflammatory pathways (e.g. COX-2, TNF, IL-1) and modulate the
264  mechanism of fatty acid oxidation, peroxisome proliferation, sensitization to insulin and adipocyte
265  differentiation, a potential therapeutic target in the treatment of dyslipidemia (84, 85). In the brain,
266  PPAR-y participates in many aspects of microglial activation, myelination, heat shock protein (HSP)
267 response, cell death, production of TNFa, inhibition of Activator Protein 1 (AP-1) and NF-«B, besides
268  reducing the synthesis of nitric oxide (NO) and prostaglandin E2 (PGE2). Therefore, PPAR-y plays a
269 critical anti-inflammatory role in diseases such as Parkinson's disease, multiple sclerosis and AD (86,
270  87). PPAR-y have also been demonstrated to be effective in preventing intracerebral ischemic
271  damage, especially in patients with associated morbidities, such as type II diabetes (88).

272 Afshordel and colleagues (2015) have recently explored another central mechanism of DHA,
273  which can be converted to neuroprotectin D-1 (NPD-1), an unesterified derivative with
274  neuroprotective properties. Authors showed that fish oil supplementation in aged rodents can raise
275  levels of unesterified DHA and NPD-1-like metabolites in parallel to increased Bcl-2 levels in the
276  brain, suggesting that EPA and/or DHA contribute to the control of apoptotic mechanisms and
277  mitochondrial function (89).

278 Omega 3 fatty acids play an important role in preventing chronic injuries in the peripheral and
279  central metabolism, especially for patients undergoing Western diets. In fact, recent data on in vivo
280  models suggest that supplementation of these fatty acids can prevent cognitive decline, promote
281  hippocampal protection and neuroplasticity (90). The balance between saturated and unsaturated
282  fatty acids may control features of the peripheral metabolism. Kaplan and Greenwood discuss the
283  importance of saturated fatty acids (SFA) consumption on the control of feeding behavior in animal
284  models, highlighting its negative influence on the hepatic metabolism of glucose, which in turn
285  regulates its availability to the brain, where it can control the production of neurotransmitters, trophic
286  factors, feeding behavior and general cognitive performance (91).

287 The benefits of consuming low-calorie meals, fibers and omega-3 rich foods are well supported
288 by the literature. Eating patterns, however, depend on the individual’s ability to control dietary
289  intake. Subjects undergoing nutritional counseling, the adherence to prescribed nutritional programs
290  greatly varies (13-76%) according to how complex and deep is the involvement of the patient with
291  inadequate eating habits (92). A recent study investigated the role of SFA on feeding behavior, and
292  epidemiological and experimental data suggest that the indiscriminate consumption of SFA and
293  simple sugars promotes damage in hippocampal regions involved in negative control of appetite and
294 cognitive processing of reward (93).

295 Finally, glucolipotoxicity describes the synergistic effect of glucose and SFA on the induction of
296  apoptosis in human  pancreatic cells, and the presence of an omega-6 polyunsaturated (LA) or
297  monounsaturated (i.e. oleic acid) fatty acid reduces this toxicity (94). Several authors have
298  demonstrated the deleterious effect of glucolipotoxicity on pancreatic 3 cells, highlighting its role in
299  the progression of type II diabetes, mitochondrial dysfunction, production of reactive oxygen species
300  (ROS) and deposition of cholesterol and ceramide in f cells (95-97). Novel therapeutic targets for the
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301  treatment of type II diabetes now consider the strong synergistic effect of SFA and glucose in
302  progression of the disease (98, 99).

303 Together, recent data demonstrate the important neuroprotective role of omega-3 fatty acids,
304  attenuating the deleterious effects of excessive omega-6 consumption, and demonstrating the
305  negative impacts of glucolipotoxicity. Intake of the correct amount of fatty acids and carbohydrates
306  play an essential role in the aging process, neuroinflammation, AD and other neurodegenerative
307  diseases (100).

308 5. Antioxidants

309 Central degenerative processes are importantly linked to the excessive production of ROS,
310  which promote oxidative damage to proteins, lipids, and nucleotides, causing connective and
311  vascular disorders, loss of neuronal content, activation of microglia/macrophages and induction of
312  mechanisms preceding the onset of AD. The use of antioxidants, such as ascorbic acid (AAC) and
313 vitamin E (VE) has shown to be effective in combating the symptoms of cognitive loss and oxidative
314 stress (101).

315 Humans and primates have lost the ability to synthesize ascorbic acid due to absence of the gene
316  coding for L-gulono-y-lactone oxidase enzyme (i.e. Gulo), that converts gulonolactone into L-ascorbic
317  acid. In animals expressing this enzyme, inactivation of the Gulo gene implies the need for
318  antioxidant supplementation even prenatally, becoming required for survival. If supplementation of
319  AAC is removed, the subjects become anemic, lose weight and die, presenting damage to vascular
320  integrity, proliferation of smooth muscle cells and increased oxidative stress, which recruits
321  compensatory antioxidant mechanisms (102, 103). In humans, consumption of approximately
322 10mg/day of AAC is enough to prevent the onset of deficiency symptoms (104).

323 AAC transport into the brain is mediated by the sodium-vitamin C co-transporters 2 (SVCT2),
324  ensuring a sharp concentration gradient through the choroid plexus (105). Although not responsible
325  forthe central concentrations of AAC, SVCT1 transporters are essential for the maintenance of plasma
326  levels of the antioxidant, which in turn modulates the availability of AAC into the cerebrospinal fluid
327  (CSF) and ultimately to the brain.

328 After cerebrovascular disorders, such as transient ischemia and stroke, AAC absorption and
329  SVCT2 expression rises significantly, especially in capillary endothelial cells located in the ischemic
330  region, indicating that AAC is involved in neutralization of ROS produced by the oxidative stress or
331  specifically due to macrophage activity in the damaged region (106). Lin et al. (2010) showed that
332  intraperitoneal injections of AAC (500mg/kg in PBS), following compression of the somatosensory
333 cortex of rats, prevented disruption of the BBB and maintained the integrity of the sensory system
334 (107). This preservation phenomenon may be extended to other types of BBB damage or
335  cerebrovascular disorders that occur in the aging process (108).

336 Recently, it has been proposed that AAC is involved in the prevention of cognitive decay and
337  depression in in vivo models, primarily in situations where damage is promoted by the oxidative
338  stress or pro-oxidant agents (109, 110). In a cohort study with 117 elderly individuals, the
339  supplementation of AAC was associated with a lower incidence of severe cognitive impairment, with
340  no effect on verbal ability (111). Guidi and colleagues (2006) evaluated plasma levels of homocysteine
341  (tHcy), a marker of ROS and total antioxidant capacity, in AD elderly patients with either mild
342 cognitive impairment or vascular dementia. Data obtained showed high levels of tHcy and reduced
343 total antioxidant capacity in AD and mild cognitive impairment patients. tHcy levels were also high
344  in vascular dementia patients, while low total antioxidant capacity was exclusively related to AD
345  individuals. ROS levels were homogenous between groups, indicating that the loss of total
346  antioxidant capacity may be related to progression of cognitive complications (112).

347 Besides the isolated supplementation of AAC, population studies seek to highlight the
348  participation of other dietary components in preventing cognitive/motor impairment and AD
349 progression. In a study from Morris and colleagues, consumption of antioxidant nutrients, VE, AAC
350  and p-carotene was investigated according to the incidence of AD in a population of individuals aged
351  over 65 years. In this study, only dietary intake of VE was associated with reduced risk of AD,
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352  surprisingly, this relationship was observed only in subjects without the allele ApoE4 (113).
353 Determining the contribution of a specific antioxidant is, however, a difficult task, as these and other
354  phytochemicals apparently act synergistically when present in foods and complex phytoextracts
355 (114).

356 Another antioxidant intrinsically involved in the metabolic signs of aging and in pathological
357  dynamics of neurodegenerative diseases is glutathione (GSH), a tripeptide composed of glutamic
358  acid, cysteine and glycine residues. GSH is the most prevalent thiol compound in cells from virtually
359  all body tissues. GSH is essential for cell proliferation, participates in apoptotic processes, ROS
360  neutralization and also maintains the reduced form of intracellular protein’s sulfhydryl groups (115).
361 In the brain, GSH is found in higher concentrations in the glial cells, while in neurons this
362  concentration is slightly lower (116).

363 GSH is involved in the prevention of mitochondrial damage, cell death and in the pathogenesis
364  of CNS, providing evidence for the relationship between GSH and diseases such as PD and AD (117-
365  118). Elucidating the complexity of the neuroprotective mechanisms performed by GSH, in a recent
366  study, it was shown that even non-toxic decreases in GSH concentrations are able to cause an
367 imbalance in NO activity, allowing the nitration of proteins, a predictive marker for
368  neurodegenerative diseases (119).

369 Attenuation of central levels of GSH, especially in the mitochondria, appears to be a strong
370  indicator of oxidative damage during ageing (120). In a recent work with proton magnetic resonance
371  spectroscopy, authors showed depletion of GSH, increase in lactate and unchanged levels of AAC in
372 the occipital cortex of elderly compared to young individuals (121). In another study, Mandal and
373 colleagues showed a linear reduction of GSH concentrations in the frontal cortex during ageing, mild
374  cognitive impairment and diagnosed AD, with gender-specific components (122). Lower GSH levels
375  were also observed (post-mortem samples) in patients with autism, bipolar disorder, major
376  depression and schizophrenia (123, 124). Finally, recent investigations from our group suggest that
377  GSH may also act as a signaling molecule in CNS (Figure 1), regulating purinergic activity, ion
378  channel opening and GABA release. Incubation with milimolar concentrations of GSH induces an
379 acute increase in intracellular calcium levels ([Ca2+]i), and may act in consonance with reducing
380  properties of GSH during disease and tissue injury (125, 126).

381 6. Physical Activity

382 Regular physical activity has several beneficial effects on health and the exercise capacity is a
383  strong and independent predictor of morbidity and mortality for patients of all ages (127, 128). Over
384  the last decades, life expectancy has been increasing and the continuous reduction in the mortality
385  rates among the elderly population is associated with dietary factors and exercise (129). In fact,
386  exercise can not only improve life expectancy but slow down, delay or prevent many age-associated
387  chronic pathologies, extending health span for an optimal longevity (130, 131) Physical activity can
388  also reverse or attenuate the progression of brain aging, being associated to positive vascular,
389  structural, and neuromolecular changes, including insulin resistance, inflammation and oxidative
390  stress, which contribute to cognitive decline and brain-related diseases (132, 133).

391 The cerebral blood flow is tightly coupled to the cerebral metabolic rate and neuronal
392 metabolism, thus systemic vascular dysfunction associated with brain hypoperfusion can
393  compromise cognitive performance (134, 135). Injuries in endothelium and central/peripheral
394  vascular structure involve increased inflammation and oxidative stress (132). In addition, cerebral
395  blood flow declines with age (136, 137), which strongly contributes to the decrease in cognitive
396  function in the elderly (138). Exercise, in contrast, increases cerebral blood flow in an intensity-
397  dependent manner and has been shown to improve cognitive function and brain aging (136, 139).
398  Aged mice presented lower cerebral blood flow, accompanied by a lower content of endothelial nitric
399  oxide synthase (e-NOS) and vascular endothelial growth factor (VEGF) in the brain microvasculature,
400  when compared to young mice; training in aged mice improve all parameters (140). Mice submitted
401  to running exercise exhibit reduced cerebral lesion sizes after a cerebral ischemia episode, and this
402  effect was blunted in the e-NOS deficient mice. Running also improved functional outcome
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associated with higher cerebral blood flow and angiogenesis in the ischemic striatum, which was
completely abrogated in animals treated with L-NAME, a NOS inhibitor. These data indicate that
exercise improves short-term stroke outcome via NO-dependent mechanisms (141).

In an animal model of vascular dementia induced by bilateral carotid artery occlusion, treadmill
exercise reduced the memory impairment caused by the chronic cerebral hypoperfusion and induced
hippocampal neurogenesis via the BDNF-pCREB pathway (142). Imaging analyses conducted both
in mice and in young/middle-aged humans showed that exercise-induced neurogenesis associated
with increased cerebral blood volume occurs selectively at the hippocampal dentate gyrus (143, 144).
Similarly, a study conducted in healthy older humans (60-77 years) also observed that aerobic fitness
improvement was associated with positive changes in hippocampal perfusion, early recall and
recognition memory, however, these benefits decrease with progressing age, indicating that the
capacity for vascular hippocampal plasticity may be age-dependent (145).

Age-related brain atrophy is commonly associated with cognitive impairment and memory loss.
In fact, the rate, extent, and brain regions showing atrophy can vary among the individuals (144). A
recent study by Hanning and colleagues (146) found that brain atrophy in the elderly is associated
with higher IL-6 and IL-8 circulating levels, suggesting a role for systemic inflammation in the brain
atrophy pathogenesis. Greater brain volumes are associated with greater cognitive reserve and a
higher capacity to deal with AD pathology without the clinical manifestation of cognitive impairment
(139). In individuals at the age of 75 years, a higher level of physical activity was associated with
better memory performance and with greater volumes of both total brain and white matter (147, 148).
In addition, higher aerobic fitness level was related to higher hippocampal volume and better
memory performance in older non-demented individuals (148), older individuals in the earliest
stages of AD (149), and in preadolescent children (150), highlighting the impact of physical activity
in increasing brain volume of individuals from all ages. Interestingly, a 42-year follow-up identified
that men with high cardiovascular fitness at age 18 had a lower risk of early-onset dementia and mild
cognitive impairment later in life (151).

Sexual dimorphism is observed on brain anatomical structures, neurochemicals and functions,
and not surprisingly men and women also differ in the incidence and nature of CNS-related diseases,
such as cognitive impairment, AD, autism, schizophrenia and eating disorders (152). In addition,
females exhibit stronger immune response, improved antioxidant capacity, better redox and
functional state of their immune cells and, accordingly, the “inflammaging” process in the elderly
show gender differences, including higher serum levels of IL-6 in men than in women (153, 154).
Elderly individuals with mild cognitive impairment have higher mortality rates, compared with
cognitively normal age-matched individuals, and the mortality rate was highest in men (155).
Although cerebral blood flow decreases with age, women have higher levels than men in all ages
(156). The human male brain exhibit more global gene expression changes than the female brain
throughout ageing, with gene expression mostly down-regulated until the 60 years old in men. On
the other hand, in older ages, women showed progressively more gene expression changes than men.
Interestingly, the major category of down-regulated genes in men was related to protein processing
and energy generation (157).

Not surprisingly, exercise impact between genders is also different, and is explored in mixed
gender studies. Overall, studies comparing male and female indicate that the positive effect of
physical activity or exercise on brain volume, cognition, and AD risk is more pronounced in females
(158, 159). However, this subject remains controversial. It was observed that cardiorespiratory fitness
was positively associated with total and cortical gray matter volumes in elderly men at increased risk
for AD (160). This profile was not observed in women, and authors suggested that cardiorespiratory
fitness might be beneficial to the brain health, only in men, at the age of 60 years and older.

Insulin is also an important player in the control of degenerative scenarios. In addition to the
modulation of energy metabolism, it regulates several features that are essential for healthy aging:
cerebral blood flow, inflammatory responses, oxidative stress, A@ clearance, tau phosphorylation,
apoptosis, synaptic plasticity and memory formation (161). In humans, insulin resistance and type 2
diabetes have been shown to predict the development of age-related diseases and a preserved insulin
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action is strongly associated with longevity (162, 163). AD development and symptoms are closely
related to an insulin-resistant brain state, and type 2 diabetes mellitus is a risk factor for dementia
and AD (164). Intranasal insulin therapy in patients with AD or mild cognitive impairment has been
associated with improvement in cognitive function (165-167), increased brain volume, including
hippocampus, and reduction in the tau-P181/AB42 ratio (166).

Exercise can stimulate cellular insulin signaling and sensitivity in peripheral organs (168) and in
the brain with a beneficial impact on brain structure (169) and function (170, 171). A major factor for
the development of insulin resistance is obesity (172), and the impact of obesity on unhealth brain
aging has been discussed previously in this review. Exercise is an effective intervention to prevent or
treat obesity and obesity-related insulin resistance (173) and improve adipokine profile in obese
individuals increasing adiponectin and reducing hyperleptinemia (174-176). In addition, the exercise-
induced hippocampal neurogenesis was remarkably attenuated in an adiponectin-deficient mice,
highlighting that adiponectin may be an essential factor mediating this effect via its receptor 1
(ADNRI) and AMPK activation (177).

Exercise induces insulin sensitivity and glucose disposal through several pathways, including
improvement in inflammation and oxidative stress that are high-risk factors for cognitive impairment
and accelerated aging (161, 163). In elderly individuals of both sexes, exercise improves inflammatory
profile by reducing serum inflammatory markers, such as C-reactive protein, IL-6, TNF-« (176, 178-
180). In peripheral blood mononuclear cells obtained from aged individuals, exercise training
induced lower protein expression of toll-like receptors (TLR2 and TLR4) associated with an anti-
inflammatory status linked to myeloid differentiation primary response gene 88 (MyD88)-dependent
and MyD88-independent pathways (181). Additionally, the exercise-induced improvement in
inflammatory profile in the elderly was associated with positive changes in cognition (182) and
greater total brain volume (183). In young healthy mice, exercise did not promote changes in serum
inflammatory markers, however, induced lower content of IL-6 and TNF-a in the hippocampus,
indicating that it can promote an anti-inflammatory effect in the brain without affecting the
peripheral cytokines production (184). Although the exercise promotes several long-term benefits,
including improvement in the proinflammatory state, the acute exercise responses are associated
with increased serum levels and tissue expression of IL-6 and TNFa (185, 186). In a mice model of
traumatic brain injury associated with neurodegeneration and chronic neuroinflammation, it was
observed that delayed exercise onset (5 weeks after trauma) caused improvements in working and
retention memory, decreased lesion volume, increased neurogenesis in the hippocampus and
reduced IL-1b gene expression. However, these improvements were not observed when exercise was
initiated 1 week after the brain injury. In fact, it exacerbated chronic classical inflammatory responses,
highlighting the importance of timing of exercise onset and its relation to cognitive outcomes and
neuroinflammation (187).

Autophagy is a physiological and catabolic process, vital for the maintenance of cell
homeostasis, by effectively getting rid of dysfunctional organelles such as damaged mitochondria
and malformed proteins, and disrupted autophagy contributes to unhealth aging and decreased
longevity (188, 189). Elderly individuals submitted to exercise training exhibit increased expression
of autophagy related-genes, including beclin-1, Atg12, Atgl6, and the LC3II/I in peripheral blood
mononuclear cells compared with sedentary individuals (190, 191). In addition, the expression of
NLRP3, Bcl-2 and Bcl-xL was reduced in peripheral blood mononuclear cells of trained elderly
individuals, indicating improvement in autophagy, prevention of NLRP3 inflammasome activation,
and reduction of apoptosis (190).

Several studies have revealed that physical activity or exercise elicits a combined effect
improving the redox state and enhancing inflammatory defenses, combating the “oxi-inflamm-
aging” process (131, 154). Healthy aged female rats submitted to long-term exercise training showed
lower ROS content, lower protein carbonyl content and increased SOD 1 and SOD 2 protein
expression in the hippocampus compared with sedentary age-matched rats, indicating a beneficial
effect on the oxidative status (192). In an aged mice model of AD (3xTg-AD), voluntary exercise
reversed lipoperoxidation and oxidized glutathione levels, while improving the antioxidant enzyme
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507  CuZn-SOD content in the cerebral cortex. These changes were associated with optimized behavior
508  and cognition, and reduced amyloid/tau pathology, highlighting the neuroprotective effect of
509  exercise through regulation of redox homeostasis (193). Neuronal mitochondria are especially
510  susceptible to oxidative stress, therefore, the beneficial impact of exercise on redox balance has many
511  positive effects on mitochondrial function (194). In young and aged rats, exercise induced a reduction
512 in oxidative stress accompanied by increased mitochondrial biogenesis, dynamic and mitophagy in
513  the brain (192, 195).

514 Physical activity and exercise affect directly the skeletal muscle physiology, which is a
515  metabolically active tissue that releases myokines, which might be involved in the beneficial effects
516  of exercise (196, 197). Important neural factors associated with neurogenesis, angiogenesis, and
517  cognition, such as BDNF and VEGF are also produced by skeletal muscle and modulated by exercise
518  (198). Indeed, the significance of these factors released by the skeletal muscle during exercise to the
519  brain physiology is still unclear. In both young and elderly individuals, the skeletal muscle BDNF
520 expression and the serum concentration of BDNF increase after exercise, and it was associated with
521  structural and functional benefits to the brain (197-199). However, it has been proposed that the brain
522 contributes to 70-80% of circulating BDNF at rest and during exercise, therefore, the systemic impact
523 of the BDNF released from the muscle needs further investigation (200).

524 Finally, irisin is an exercise-induced myokine that is highly expressed in the brain (196, 201).
525  Interestingly, the knockdown of the precursor of irisin, FNDC5, in neuronal precursors impaired their
526  development into mature neurons (202). Since the FNDC5 expression in the brain is upregulated with
527  exercise, the specific tissue contribution to the beneficial effect of exercise on the brain is still to be
528  defined (201).

529

530 7. Conclusions

531

532 Aging is a sensitive period for the maintenance of metabolic and functional balance of the brain.

533 When compiled, data indicate the complexity of action and essentiality of various
534  dietary/endogenous antioxidants, in addition to the proper balance in the consumption of essential
535  fatty acids (omega-3 and -6), whose synergistic actions allow for the maintenance of physiological
536  conditions, even throughout severe metabolic stress (Figure 2). Recent investigations aim to elucidate
537  mechanisms for preventing the intrinsic effects of the aging process in affections such as ischemic
538 disorders (203) and functional decay of mitochondria (204). However, finding pharmacological or
539  dietary resources capable of significantly intervening with the neurodegenerative affections remains
540  a great challenge (205, 206). Future research should rely on novel integrative methods present in
541  systemsbiology, which allows for a broad analysis of the metabolic interactions in ageing and disease

542 processes.
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556 Figure 1. Mechanisms of functional compartmentalization mediated by glutathione in the retinal environment.
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558 Figure 1 legend: Tissue damage, hypoxia and ROS (1) promote increased activity of antioxidant system
559 intermediates in Miiller glial cells, such as vy-glutamylcysteine ligase (GLCL), which stimulates the
560 synthesis/release of GSH (2) and the uptake of cysteine through a glutamate-cysteine antiporter system (3). When
561 released, GSH is capable of activating P2X7 receptors, allowing for intense Ca2+ increase in the Miiller cells (4),
562 while extracellular glutamate promotes activation of AMPA receptors in retinal neurons, leading to higher Na+
563 levels in these cells (5). Finally, intracellular Ca2+ (glia) and Na+ (neurons) stimulate GABA release to the
564 extracellular environment.
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580 Figure 2. Brain dynamics in healthy and unhealthy aging.
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581
582 Figure 2 legend: Moderate physical activity, low-calorie diets and essential fatty acids are amongst the main
583 elements of a healthy brain, where we observe less or no cognitive decline, greater lifespan, reduced
584 cardiovascular (and metabolic) risks and thus overall better quality of life. Conversely, a continuously stressed
585 brain, either by an unstable environment or by chemical mediators (e.g. ROS, RNS and other radicals). Also,
586 high caloric meals and/or typical cafeteria diets are risk factors for the development of several such affections.
587
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