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Abstract 4 

While lidar-based forest inventory methods have been widely demonstrated, performances of methods to 5 

predict tree diameters with lidar are not well understood. One cause for this is that the performance metrics 6 

typically used in studies for prediction of diameters can be difficult to interpret, and may not support 7 

comparative inferences between sampling designs and study areas. To help with this problem we propose 8 

two indices and use them to evaluate a variety of lidar and k nearest neighbor (k-NN) strategies for 9 

prediction of tree diameter distributions. The indices are based on the coefficient of determination (R2), and 10 

root mean square deviation (RMSD). Both of the indices are highly interpretable, and the RMSD-based 11 

index facilitates comparisons with alternative (non-lidar) inventory strategies, and with projects in other 12 

regions. We evaluate k nearest neighbors (k-NN) diameter distribution prediction strategies with lidar for 13 

190 training plots distribute across the 800 km2 Savannah River Site in South Carolina, USA. We evaluate 14 

the performance of k-NN with respect to distance metrics, number of neighbors, predictor sets, and 15 

response sets. Amongst the examined strategies we found Mahalanobis distance with k = 3 neighbors 16 

performed best according to a number of criteria.  17 

 18 

Keywords: lidar; forest inventory; k-NN; dbh; diameter distribution; performance criteria; index; indices19 
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1 Introduction 20 

Airborne scanning lidar technology (henceforth referred to as simply lidar) provides vegetation 21 

measurements which are highly related to forest attributes needed for forest inventory and monitoring. 22 

Examples of forest attributes which are highly related to lidar measurements include bole volume, basal 23 

area, quadratic mean diameter, and above-ground biomass [1–3]. The lidar vegetation measurements can 24 

be obtained with high precision over large areas enabling wall-to-wall measurements and predictions of 25 

vegetation attributes, as well as precise estimates of population parameters. Despite demonstrated 26 

advantages to using lidar for inventory and monitoring, there are also omissions from most analyses which 27 

inhibit common usage. One of the limitations of typical lidar research studies, is that they do not evaluate 28 

prediction of tree diameter distributions.   29 

The distribution of diameters at breast height (dbh) is an important component of most forest inventory, 30 

management, and monitoring strategies. Dbhs are needed to describe stand properties because variables 31 

such as growth, volume, value, conversion-cost, product specifications, and future forest prescriptions are 32 

dependent on trees’ dbhs. The use of single-tree level growth and yield models almost always requires dbh 33 

distributions. Dbhs are also used to assess forest sustainability based on whether the quantity and sizes of 34 

growing stock are suited to replace the current population of harvestable trees [4]. Information about dbhs 35 

also informs the type and timing of management strategies and economic value of the stand [5]. Ecological 36 

analyses also use dbh density information including, for example, assessments of vegetative diversity [6], 37 

insect disturbance mechanics [7], habitat suitability [8], and suitability and distribution of parent stock for 38 

coarse woody debris [9]. 39 

Dbh distributions are often simplified using a mathematical function with parameters that can be estimated 40 

or recovered using lidar measurements or other ancillary data. Dbh distribution functions can be predicted 41 

with both parametric and non-parametric strategies. Parametric strategies are based on the assumption that 42 

the dbh density can be characterized by a theoretical probability density function. A variety of theoretical 43 

functions have been tested including the beta [10,10], Weibull [11,12] and Johnson’s SB [13,14]. Two 44 

methods have been used to predict parameters of theoretical functions, the parameter prediction method 45 

and the parameter recovery method [15]. As the name indicates, in the parameter prediction method stand 46 

attributes (or remote sensing data) are used to predict parameters of the probability density function. In 47 

the parameter recovery method moments or percentiles of dbh distribution are predicted or measured 48 

using stand variables. The parameters of a theoretical distribution are then recovered by leveraging the 49 

known relationships between the predicted attributes and the distributional parameters. 50 

Non-parametric strategies attempt to predict percentiles of empirical distributions [16,17] or directly 51 

predict dbh bins or classes. While parametric strategies are advantageous in being able to represent a 52 

complete distribution with a few parameters when the empirical distribution is unimodal, they may have 53 

limited ability to represent complex and mixed species stands that may not have unimodal densities [18]. 54 
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Empirical strategies which retain the original data or relative densities by dbh bins provide more flexibility 55 

to accommodate many types of stand tables [17], however, some prediction strategies for multiple dbh 56 

percentiles can result in illogical behavior, benefitting from the introduction of constraints [19]. 57 

Various strategies for predicting dbh distributions with lidar have been evaluated.  Gobakken and Næsset 58 

(2004) compared parameter prediction and parameter recovery methods in the prediction of stem number 59 

and basal area distributions. The underlying probability theoretical distribution was a two-parameter 60 

Weibull distribution. The precision was slightly better for the parameter recovery method than for the 61 

parameter prediction method. Mehtatalo et al. (2007) also used the parameter recovery approach, however, 62 

they proposed a method where the parameters of the assumed dbh distribution and height-dbh curve are 63 

determined in such a manner that they are compatible with the predictions of stand attributes. Maltamo et 64 

al. (2007) proposed another approach to obtain a compatible stand description. First the parameters of a 65 

Weibull distribution and stand volume are predicted with lidar. Then, the estimated stem number 66 

distribution is modified to correspond to the volume obtained in the previous step by using the calibration 67 

estimation approach proposed by Deville and Sarndal (1992).  68 

Percentiles of dbh distributions have also been predicted with lidar. Maltamo et al. (2006) predicted 12 69 

percentile points in semi-natural forests in Finland. Bollandsås and Naesset (2007) predicted 10 percentiles 70 

in uneven-sized Norway spruce stands. Breidenbach et al. (2008) used a generalized linear model (GLM) 71 

to estimate parameters of theoretical distributions with lidar. A benefit of GLM is that they can be a one-72 

step procedure, without the need to first fit a distribution and then predict its parameters. Thomas et al. 73 

(2008) studied the prediction of both unimodal and bimodal dbh distributions using a finite mixture model 74 

approach. They successfully predicted the parameters of separate Weibull functions, but because there was 75 

no lidar-based method for separation of distribution type (unimodal or bimodal), the applicability of the 76 

method is somewhat limited for lidar inventory. 77 

An alternative strategy to predict dbh distribution with lidar is using k-nearest-neighbor (k-NN) 78 

imputation. An advantage of k-NN is that the k-NN model can be used to simultaneously predict a suite 79 

of response variables, including a tree-list. k-NN also provides compatible stand if stand attributes are 80 

predicted simultaneously with tree-lists. This was the motivation for the work by Packalén and Maltamo 81 

(2008). They predicted stand attributes and tree-lists simultaneously for Scots pine, Norway spruce, and 82 

deciduous trees and compared the performance of a tree-list approach to the use of a Weibull distribution 83 

approach. The k-NN tree-list strategy was able to mimic bimodal dbh distributions of Norway Spruce (the 84 

only shade tolerant tree species in the study area) and in general provided clearly lower error index values. 85 

Maltamo et al. (2009) examined the performance of a k-NN tree-list approach without considering tree 86 

species. Their objectives were to investigate the effect of different predictor and response variables and to 87 

examine the influence of reduced numbers of training plots. The results indicated that response variables 88 

must be selected very carefully in order to obtain accurate predictions of dbh distributions and stand 89 
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attributes. They also reported that with a low number of training plots (approx. 100) precise predictions of 90 

dbh distributions could be produced in their study area.  91 

Individual tree detection (ITD; alternatively referred to as single tree detection in some parts of the world) 92 

is an entirely different approach to predict dbh distributions. Unlike the previously described methods, it 93 

does not depend upon areal sampling and prediction. ITD can directly produce a tree-list, or dbh 94 

distribution [29]. The quality of the dbh distribution is determined by the rate of detected trees and the 95 

precision of dbh modelling. It is well-known that ITD results in tree-lists that include many of the largest 96 

trees, but disproportionally omits trees below the dominant tree layer, which are not easily detected in the 97 

lidar. Peuhkurinen, Mehtätalo, and Maltamo (2011) reported that the saw log size proportion of the dbh 98 

distribution was more accurately predicted by ITD than with an area-based approach, but for the entire 99 

dbh range, the area based approach was more accurate. The degree of concern with under-representing 100 

small trees clearly depends upon the application.  101 

When a diameter prediction strategy is evaluated, inference is typically made on differences between the 102 

observed and predicted distribution using hypothesis or goodness of fit tests, such as the Kolmogorov-103 

Smirnov test. However, for reasons described extensively in Reynolds et al. (1988) including that the p-104 

values can be wildly inaccurate (for fewer than 40 trees per plot), these types of tests are problematic for 105 

many of the same reasons that the statistical community discourages p-value based inference in hypothesis 106 

testing (e.g. Halsey et al., 2015). Reynolds et al. (1988) instead proposed an index based upon absolute 107 

deviations in the units of the response. This index is often referred to as the “Reynolds error index” in the 108 

literature. Reynolds et al. (1988) also described methodologies for formal statistical inference using their 109 

error index.  110 

In this study we wished to understand tradeoffs between various lidar and k-NN based dbh prediction 111 

strategies (e.g. numbers of neighbors, distance metrics, and others). While studies have examined dbh 112 

predictions with lidar, only a subset of prediction strategies were examined, and the indices used by studies 113 

are difficult to generalize to other designs and areas. To overcome these limitations, we propose two indices 114 

and use them to examine a variety of dbh predictions strategies. The proposed indices are based on the 115 

well-known coefficient of determination (R2), and root mean squared deviation (RMSD) which simplifies 116 

their interpretation by users and readers.  117 

Initially, we graphically demonstrate the behavior of the two proposed indices using simulations. We then 118 

use the indices to describe the relative performances of a variety of lidar and k-NN diameter distribution 119 

prediction strategies. Given the large number of components of a k-NN and lidar prediction strategy, clarity 120 

is needed on which k-NN configurations work best with lidar for dbh distribution predictions. Components 121 

that we examine include distance metrics (e.g. Euclidean vs Mahalanobis), numbers of neighbors (the k in 122 

k-NN), presence or absence of stratification, and sensitivity of predictions to the choice of response and 123 
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predictor variables. Based on our findings using the proposed indices, we conclude with recommendations 124 

on effective diameter distribution predictions strategies with lidar and k-NN. 125 

2 Materials and Methods 126 

2.1 Study site  127 

The study was conducted at the U. S. Department of Energy’s Savannah River Site, an 80,267 ha National 128 

Environmental Research Park in Aiken and Barnwell counties, South Carolina USA (Figure 1).  The 129 

Savannah River Site is characterized by sandy soils and gently sloping hills dominated by pines, with 130 

hardwoods occurring in riparian areas. Prior to acquisition by the Department of Energy in 1951, the 131 

majority of Savannah River Site uplands were agricultural fields or had recently been harvested for timber. 132 

The U.S. Department of Agriculture Forest Service has managed the natural resources of the Savannah 133 

River Site since 1952 and reforested the majority of the uplands with loblolly (P. taeda), longleaf (P. 134 

palustris), and slash (P. elliottii) pines.  These pine stands are actively managed for timber and wildlife 135 

habitat.  136 

2.2 Ground data collection 137 

Plot measurements were performed on a grid of fixed radius circular plots designed for modeling forest 138 

attributes with auxiliary lidar data. The plot design consisted of two concentric nested fixed area circular 139 

measurement plots. The innermost 0.004 ha plot was used to measure trees between 2.5 and 7.4 cm in dbh. 140 

Larger trees were measured on a 0.04 ha plot if there were at least 8 dominant or co-dominant trees, 141 

otherwise trees larger than 7.4 cm dbh were measured on a .081 ha plot. The heights, dbhs, heights to crown 142 

base, and species were recorded for trees on the two concentric plots, and additionally trees between 2.5 143 

and 7.4 cm were tallied on a 0.04 ha plot. 144 

Plot locations were selected purposively to cover the range of tree sizes and stand compositions that occur 145 

on the Savannah River Site. Plot locations were taken from a set of approximately 629 inventory plot 146 

locations measured in a 2001 inventory and supplemented with locations in desired vegetation types. Field 147 

measurements were taken on 194 field plot locations selected purposively to sample across multiple 148 

vegetation classes and sizes. Of the 194 plots, 4 were dropped because it was determined that they were 149 

measured in locations outside of our target population. A summary of the tree and plot variables used for 150 

this study is provided in Table 1. Additionally, a visual representation of the empirical dbh density 151 

functions for the 8 most common species occurring on plots is shown in Figure 2. Additional forest 152 

attributes (besides dbh) used in our analyses included trees per hectare (TPH), basal area per hectare (m2 / 153 

ha, BA), Lorey’s height (m, Lor.), and total cubic bole volume (m3 / ha, Vol.).  154 

Plot locations were surveyed using L1/L2 GLONASS enabled survey-grade GPS receivers. The receiver 155 

was placed at each plot’s center on a 3 m pole and a minimum of 600 1-second-epoch satellite fixes were 156 

collected and differentially corrected. We expect the horizontal RMSE for surveyed plot center positions to 157 
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be less than 1 meters in the pine forest types at the Savannah River Site, based upon our previous experience 158 

with positional accuracy using these receivers in a variety of forest types (e.g. Andersen et al., 2009).  159 

Plots were assigned to post-strata using the dominant species group for the stand in which the plot was 160 

measured (the most common dominant types include: Hardwood – 29 plots; Loblolly P. – 76 plots; Longleaf 161 

P. – 54 plots). All of the hardwood species were combined into a single stratum. Forestry staff for the site 162 

developed a tract-wide map of species groups by visually classifying stands in the field. Plots were assigned 163 

to strata by intersecting plot locations with the strata map.   164 

2.3 Lidar data 165 

Lidar data were collected from February 21 to March 2, 2009 with two Leica ALS50-II lidar sensors in leaf-166 

off conditions. One hundred and eighty-five (185) flight lines of data were acquired in 10 sessions across 167 

the project site.  Table 2 provides acquisition parameters.   168 

Lidar heights were processed to create predictor variables for this study using the cloudmetrics executable 169 

included with FUSION software [34]. This executable computes a large number of statistics from lidar 170 

including, but not limited to, height percentiles (e.g. 90th, 50th, and 30th percentile heights in Table 3) and 171 

lidar cover (the percent of returns above a threshold, in our case 1.5 meters). We also examined fraction 172 

without foliage (fwof), a modeled variable which used normalized intensity to suggest the proportion of 173 

the leaf-off lidar which did not intersect live foliage. 174 

2.4 k-NN tree list imputation 175 

In k-NN imputation, response variables from measured sites are shared or imputed with sites without 176 

measurements based on the degree of similarity in their auxiliary variables. The “similarity” in auxiliary 177 

variables is evaluated using a distance metric, e.g. Euclidean distance, where a large number of distance 178 

metrics have been demonstrated in the k-NN literature. The distance metrics are functions which determine 179 

how one or more auxiliary variables should be weighted and combined. The coefficients of the weight 180 

function can also depend on the observed association between response and predictor variables, 181 

theoretically weighting predictors which can better predict the response variable(s). If more than one 182 

nearest neighbor (k greater than one) is used, then a rule must be formulated to average (continuous) and 183 

select (categorical) donor response values. This procedure can be used to simultaneously impute a large 184 

number of response variables in a single step. 185 

Procedurally, the process is as follows: 1) a distance metrics is computed between measured and 186 

unmeasured (response) observations, then 2) the k observations with the smallest distances (donors) are 187 

transferred (imputed) to the observation without a measured response (target).  188 

For this study we relied upon the yaImpute package [35] implemented in R [36] for k-NN imputation.  The 189 

identities of the donor plots (nearest neighbors) were used to impute tree lists, as yaImpute is not currently 190 

set up to directly impute tree lists. Based on the donors’ identities, all of the tree records from the imputed 191 
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donor plots were copied to the target observation. Each copied tree was then distance weighted to generate 192 

a tree list for the target observation.  The distance weighted tree lists from the k neighbors then became the 193 

basis for prediction of the empirical dbh density for the target observation. The choice of a weighting 194 

function for the K imputed neighbors has been shown to have limited effect on performance [27]. 195 

2.5 k-NN imputation strategy components 196 

We examined the effects of 4 components of a k-NN tree list imputation strategy including 1) the choice of 197 

distance metric, 2) the selected predictors, 3) the set of response variables, and 4) the effect of post-198 

stratification. The distance metrics evaluated include Euclidean distance (EUC.), Mahalanobis distance 199 

(MAH), most similar neighbors (MSN), and random forest (RF). MSN and RF distances both use response 200 

variables for measured observations in computing distances. Additional details for how these distances are 201 

defined can be found in the yaImpute package documentation [35]. The effect of post-stratification on k-202 

NN performance was evaluated by stratifying the data, and predicting separately within strata. Strata with 203 

fewer than 10 response measurements were imputed from the pool of all observation. 204 

2.6 Dbh densities  205 

The proportions of trees falling in diameter bins (the empirical dbh density, or just “dbh density”) were 206 

computed by first binning lists of trees into 2.54 cm (1 inch) dbh bins and computing the proportions of all 207 

trees in the dbh classes. In the case of imputed tree lists, weighted dbh densities were computed using the 208 

distance weights from the imputed plots. The bin proportions were then smoothed with a 3-bin moving 209 

average centered on the target bins. The smoothing function was applied to emphasize major trends, and 210 

de-emphasize fine-scale fluctuations. Individual plot densities can have spikes, pits, and other 211 

characteristics that we did not wish to examine.  212 

2.7 Measures of performance  213 

Evaluation of k-NN predictions strategies were performed using (LOO) validation in combination with 214 

indices. In LOO, models are iteratively fit to the data while omitting one plot at a time. After fitting a given 215 

model, the data are then tested against the omitted plot. The errors in prediction for the omitted plots then 216 

serve as the basis for indices of performance. Our first suggested measure of performance is index H,  217 
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(1) 

Index H is equivalent to the coefficient of determination (or, commonly, R2) which has a straight-forward 218 

interpretation – the proportion of variability explained. The index has an advantage over alternative 219 

measures of performance that we examined in that it provides a relative measure of performance. The 220 

baseline level of variability comes from plot variation in dbh densities around the mean dbh density within 221 

a dbh class for all of the plots. As with R2, smaller prediction error relative to baseline variability will yield 222 

index H values closer to one. Larger prediction residuals will in general cause index H to approach zero, 223 

and negative values of H are possible if the prediction strategy is inferior to prediction with the means 224 

model. Our inferences for this index are similar to those that would be made from R2. We rely heavily on 225 

index H for inferences about different k-NN dbh prediction strategies. While the H values are suggestive 226 

of general trends in performance, the index is not suited for identifying a single best prediction strategy. 227 

A limitation of index H is that it is only meaningful in comparisons if the baseline variability is similar 228 

between compared strategies. In many cases this property will not hold. We expect, for example, to have 229 

greater variability amongst variable radius plots than amongst fixed radius plots for the same area; 230 

comparing their index H values then would be meaningless. To compare prediction strategies from two 231 

different inventory designs or two study areas with different levels of baseline variability, it is important 232 

to have an absolute measure of performance. A second limitation to index H is that the index is unitless, 233 

and it is often desirable to have an index in the same units as the attribute of interest. To support inferences 234 

from multiple designs in the units of the response, we propose a second index, I, which is an absolute 235 

measure of performance:  236 
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(2) 

Index I is equivalent to the Root Mean Squared Deviation (RMSD) by plot (rather than by bin). The units 237 

for this index are the same as for the attribute of interest. As with RMSD, a smaller value of index I indicates 238 
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better prediction performance. Index I can be used to compare performance across sites, designs, and 239 

project areas.  240 

While we do not use p-values in this analysis, we recognize that some users will wish to use p-values. P-241 

value can be fairly easily generated for the suggest indices with simulations. One simulation-based 242 

approach to obtain p-value is to randomly assign tree-lists to plots several thousand times, and compute 243 

index values for each randomization. This will yield a distribution of index values for the null model where 244 

lidar and k-NN provide no explanatory power. The distribution can then be compared to the observed 245 

index value for a particular lidar and k-NN configuration. The proportion of values which are as extreme 246 

as the observed index value will serve as the simulation-based p-value. 247 

3 Results  248 

Results are divided into two sections. In the first section – Index properties – we demonstrate the behavior 249 

of H under a variety of prediction scenarios. Our demonstration of index H gives a sense of the behavior 250 

of H under various conditions, and the degree of sensitivity of the index to disagreement between predicted 251 

and observed dbhs. Simulation results are shown only for index H (not I) for the sake of brevity, since the 252 

behavior of the two indices is nearly identical (inversely), although the interpretations are quite different: 253 

index H provides a measure of relative improvement over the mean model (higher is better), and index I 254 

provides a measure of absolute error in the units of the response that is portable between designs and 255 

studies (lower is better).  256 

In the second section – K-NN strategies – we use index H to suggest superior dbh prediction strategies, 257 

then conclude with a table of H and I values for the best prediction strategies. We investigate number k of 258 

nearest neighbors, which distance metric is used, which sets of predictors and response variables are used 259 

for k-NN imputation, and how are predictions for individual species. As with R2, higher index H values 260 

suggest better prediction performance, but are not necessarily suited for model selection. Instead, they are 261 

meant to help interpret general trends in performance for different prediction configurations.  262 

 263 

3.1 Index properties 264 

To provide a sense of the behavior of our indices as a function of prediction performance, we first provide 265 

a visual calibration image which shows H values for various levels of departure from agreement between 266 

a sample and a prediction (Figure 3). Our quantitative examination of the properties of H relative to 267 

prediction properties used simulated dbhs. Our simulated population is a mixture distribution composed 268 

of two normal distributions (Figure 4). For our examination, we took 100 clustered sample plots of 50 trees 269 

from the simulated population, and compared these with “predictions” for the samples (Figure 5). The 270 

predictions were obtained by taking the original sample data and introducing Gaussian noise with 271 

parameters (ߤఌ,  ఌ). In our simulations, we look at various dbh bin widths and four types of errors in our 272ߪ
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predictions, where the four types of prediction errors are represented as four separate lines and labeled 273 

with the parameters of their error distributions. Larger values of index H suggest better prediction 274 

performance, where H is bounded by one on its upper end. A value less than zero indicates that the mean 275 

by bins (as obtained from all sample plots) is a better predictor of the sample distribution than the 276 

prediction strategy under examination. 277 

In Figure 6 we can see that the effect of bin width on H was observed similarly for each type of prediction 278 

error. In each instance both small and large dbh bin widths have reduced values of H, with the highest 279 

(best) values of H typically occurring around 4 to 5 cm for our simulations. We can expect lower values of 280 

H for small bins because there are few observations in narrow bins, resulting in higher sampling variability 281 

in both the plot sample and the plot predictions for each bin. We can also expect lower values of H for 282 

larger dbh bins because the shape of the dbh distribution approaches the average density for the plot. In 283 

this case (large dbh bins), plot mean densities have greater likelihood of falling near the population mean 284 

density, which means there is little variation to be explained by predictions – causing the H values to 285 

decline.  286 

Figure 6 also shows that adding errors of increased size to our predictions causes H values to decline. For 287 

example, when we introduce Gaussian errors with no bias and a standard deviation of 1.0 (ߤఌ=0.0, ߪఌ=1.0), 288 

H values hover around 0.9. When we increase the error by adding a 1 cm bias to predictions, as in the case 289 

of the second line in Figure 5 (ߤఌ ఌߪ ,1.0= =1.0) it causes all of the H values decline. Interestingly, the 290 

magnitude of decline in H values for Gaussian errors (ߤఌ=1, ߪఌ=1.0) is similar to the H values when errors 291 

have parameters (ߤఌ=0, ߪఌ=2.0). When we add errors with 2.0 cm bias and 2.0 cm standard deviation (ߤఌ=0.0, 292 ߪఌ=2.0) we see a more severe downturn in performance: the H values at best explain 60% of variability, and 293 

at worst do a poorer job of prediction than simply using the mean density from all of the plots combined.  294 

3.2 K-NN strategies 295 

Of the four distance metrics examined, the distance metric which had the greatest sensitivity to 296 

configuration was MSN distance. Excluding MSN distance, there was little difference in performance 297 

amongst the distance metrics used to impute tree lists (Table 5). For a given number of neighbors, H only 298 

varied by a few percent. The range of values for any number of neighbors, k, is sufficiently small to suggest 299 

that there is no practical difference in performances amongst distances (excluding MSN). The effect of 300 

number of neighbors, k, was larger, e.g. ranging from 0.50 to 0.76 for Euc., and the decline from using a 301 

sub-optimal k was greatest for MSN. Performances were generally best for 3 neighbors relative to fewer or 302 

more neighbors, with little differences observed in the vicinity of 3 neighbors. 303 

To test the effect of auxiliary variables on performance, a suite of auxiliary variables was initially selected 304 

which would reflect different types of information (Table 6). The variables were then added or removed to 305 

isolate the influences of individual predictors – essentially a manual variable selection approach. Table 6 306 

shows the sorted performances of the various predictor sets. There were only marginal differences among 307 
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performances for predictor sets 1 through 9, when excluding MSN distance. Prediction performances were 308 

clearly sensitive to the predictor sets, although, excluding MSN distance, declines in performance from 309 

using inferior predictors sets were fairly modest (from H = 0.65 to H = 0.80).  310 

We also examined the sensitivity of the k-NN density imputation strategies to differences in the response 311 

sets for MSN and RF. Euc. and Mah., in contrast, do not use response variables when computing distances. 312 

We evaluated two sets of predictor variables with five sets of response variables. The results in Table 7 313 

indicate that MSN was sensitive to the choice of response variables, while RF was fairly insensitive to the 314 

choice of response variables. Index H values for MSN in Table 7 declined from 0.81 to 0.58, a 28.4% 315 

reduction in performance. In contrast, index H values for RF distances varied by less than 4% for the 316 

combinations shown.   317 

Our final evaluation of k-NN components was on the effect of post-stratification. As can be seen in Table 318 

8, post-stratification on forest type resulted in slightly poorer prediction performance in most cases. Most 319 

notably, stratification on the dominant species in a stand did not consistently improve either species group 320 

predictions (hardwood or conifer) or individual species predictions. 321 

3.3 Comparative performance 322 

In Table 9 we provide H and I values for simple cases of prediction and estimation with each of the distance 323 

metrics. Although most of our inferences were based on index H, Table 9 demonstrates the relationship 324 

between the two indices – larger values of H, and smaller values of I suggest better performance, much as 325 

with the coefficient of determination and RMSD. The values of H can also provide a baseline for others to 326 

use in comparisons and in inventory planning. 327 

4 Discussion  328 

4.1 Indices H and I 329 

The indices demonstrated in this study facilitate inferences about dbh distribution predictions. The indices 330 

were essential to our analysis, and enabled us to demonstrate the behavior of diameter predictions with k-331 

NN and lidar in an easily interpreted fashion. The results can also be compared with other regions, and 332 

prediction strategies through the use of index I.  The portability of index I, and to a lesser extent H, should 333 

help to clarify the ability of lidar-based methods to provide diameter predictions for forest inventory. While 334 

we do not compare the performance of lidar-based methods with a traditional inventory system in this 335 

study, such comparisons are a natural extension of this research. 336 

In their current implementation, the indices we proposed are based on tree counts by diameter bin, 337 

however they are not limited to this formulation. The proposed indices can be easily tweaked to suit various 338 

applications. For example, one could weight bins by basal area, or use a completely different strategy which 339 
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uses maximum bin deviations. These could, respectively, be used in applications where errors in larger 340 

trees are more problematic, or in applications where the maximum bin error is of primary concern. 341 

4.2 k-NN imputation strategies 342 

We observed a number of useful trends with respect to the performance of dbh distribution predictions 343 

using nearest neighbor imputation methods and lidar. Our first observation agreed with that of other 344 

studies [37,38] in that lidar and nearest neighbor methods were able to provide meaningful predictive 345 

power for plot level dbh distributions. We were also able to identify patterns in the behavior of prediction 346 

performance with respect to the number of neighbors, k, the nearest neighbor distance type, use of strata 347 

in prediction, and the selection of variables used for imputing dbh distributions at the plot level. These 348 

results may prove indicative of performances in other areas with similar datasets. Our results are also in 349 

rough agreement with those of other k-NN studies, although there are few with which direct comparisons 350 

are feasible as studies describing dbh distribution prediction with lidar and k-NN are not common. 351 

Our results with respect to the number of neighbors are fairly similar to those observed elsewhere, although 352 

not necessarily in the context of dbh distribution prediction. Most studies have observed that prediction 353 

performance improves for k greater than 1, with maximal performance usually falling somewhere in the 354 

range of 2-7 neighbors (a more detailed discussion of selection of k is provided by Eskelson et al., 2009). 355 

Our results also agree with other studies in that prediction performance is not sensitive to a specific number 356 

of neighbors in the indicated range.  357 

With respect to distance metric, while MSN distance achieved equal performance with other metrics in the 358 

best case, it was very sensitive to the configuration used for prediction, at time faring much poorer than 359 

alternate distance metrics. Euc., Mah., and RF were all fairly robust to configuration, and as a result are 360 

preferable to MSN. These results are in contrast to another study which found generally good performance 361 

with MSN distance [37] for dbh predictions. Our findings with respect to MSN were surprising given that 362 

we hypothesized that there would be an advantage to leveraging the empirical relationship between 363 

predictor and response variables. MSN distance did not bear out this hypothesis for dbh prediction, 364 

although RF distance, which also relies on response metrics, performed the best according to the indices. 365 

Even though it performance the best in terms of the indices, a limitation of RF was that it took a much 366 

loinger time to calculate distances. While RF had the best results in terms of top performance and stability, 367 

the required additional computational time may not merit the effort. Mah. distance had nearly the same 368 

performance as RF (for the configurations tested), was faster, and eliminated the need to select a response 369 

set for k-NN - simplifying the analysis process. 370 

The choice of a set of predictor variables also influenced performances, but the results were fairly stable 371 

with respect to changes so long as a reasonable set of predictors was provided. Height metrics such as P30 372 

and P90 appeared to be more important than the canopy cover metric. This is a fairly intuitive result as the 373 

vertical height metrics are likely to better reflect the vertical forest structure, and thereby, indirectly, the 374 
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dbh density. Unlike other potential response variables such as Vol., dbh densities do not measure the 375 

quantity of vegetation, they measure the distribution of sizes. It doesn’t matter if they cover a portion, or 376 

all of the plot. The choice of a response set was only important for MSN distance, which was shown to be 377 

fairly sensitive to all aspects of the k-NN configuration.  378 

The results from stratification with k-NN suggest that more prevalent species were predicted better 379 

without stratification than with stratification. For less common species there was no evidence that one 380 

strategy worked better than the other. Previous studies have differed in their conclusions with respect to 381 

the effects of stratification on k-NN predictions (e.g. Eskelson, Temesgen, and Barrett 2008; Wilson, Lister, 382 

and Riemann 2012), although the studies did not look at dbh predictions. Differing sample sizes between 383 

studies likely played a role in the different findings between studies. The number of suitable donors likely 384 

also played a role in the observed trend that performances were better for more common species. For 385 

dominant subgroups, it is likely dbh densities were simply very similar in form to the combined density 386 

from all species, and therefore also effectively predicted without strata.  387 

5 Conclusions 388 

Tree dbhs are a common requirement of forest inventory systems, but few studies document dbh prediction 389 

performance. This study proposes two interpretable indices and uses them to evaluate various lidar and k-390 

NN dbh prediction strategies. K-NN with lidar was shown to effectively predict a tree dbh distribution for 391 

an 80,267 ha pine dominated study area in South Carolina. While the results were fairly insensitive to 392 

changes, we identified that Mahalanobis distance, k=3 neighbors, and no stratification was preferable to 393 

other strategies. The proposed indices will facilitate others to make comparisons between prediction 394 

strategies, and our findings will enable evaluations of lidar and k-NN as inventory tools. We should note 395 

that this was an intensively managed pine forest plantation, and the results may vary greatly from results 396 

for other forest types. 397 
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Tables 508 

 509 

Table 1. Summary statistics for plot measurements – units for DBH are cm 510 

 511 

    512 

*Dens., BA, Lor., and Vol. are tract level means from plot level calculations, the remaining values were 513 

computed from complete tree lists.  514 

statistic value
meas. year 2009
no. trees 9210
no. plots 190
no. species 63
dom. species Loblolly P.
min DBH 2.5
mean DBH 15.3
median DBH 12.2
max DBH 92.7
sd DBH 11.0
Dens. (/ ha) 735.3
BA (sq. m / ha) 23.6
Lor. (m) 20.1
Vol.  (cub. M / ha) 219.7
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Table 2 Lidar acquisition parameters 515 

 516 

Aircraft speed 220 km hr-1

Flying height 1430 m
Scan angle +/- 10 degrees
Scan frequency 58 hz
Pulse rate 150 kHz
Multi-pulse in flight Enabled
Sidelap 62.5 percent
Laser beam divergence 0.15 mrad @ 1/e
Laser beam diameter at ground 22 cm
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Table 3. Summary of lidar-derived metrics for plots 517 

518 

aux variables min max mean sd
P90 (m) 3.6 36.1 20.3 6.7
P50 (m) 2.3 32.3 15.3 6.1
P30 (m) 1.8 30.0 12.0 5.8
cover (1.50) (%) 14.5 81.9 54.1 12.8
FWOF (%) 0.0 94.4 24.7 26.7
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Table 4. Index H for k-NN by number of neighbors (k) and distance metric using the three predictor 519 

variables P30,  P90, and Cover(1.50) and responses TPH and Vol. for all species combined  520 

 521 

    522 

 523 

k Euc. Mah. MSN RF1 0.72 0.72 0.47 0.713 0.76 0.79 0.64 0.785 0.74 0.75 0.64 0.7410 0.66 0.68 0.59 0.6715 0.57 0.58 0.53 0.6020 0.50 0.51 0.47 0.52
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Table 5. Sorted index H values for k-NN (k=3) dbh predictions for selected predictors sets for all 524 

species combined with responses TPH and Vol. 525 

   526 

Set Predictors Euc. Mah. MSN RF1 P30, P90 0.79 0.80 0.72 0.782 P30, P90, age 0.78 0.80 0.72 0.793 P30, P50, P90, FWOF, age 0.78 0.77 0.69 0.804 P30, P90, FWOF 0.79 0.78 0.71 0.795 P30, P50, P90, age 0.78 0.78 0.69 0.796 P30, P90, cover(1.50) 0.76 0.79 0.64 0.777 P30, P90, cover(1.50), FWOF 0.77 0.78 0.69 0.778 P30, P50, P90, cover(1.50), FWOF, age 0.76 0.76 0.68 0.789 P30, P50, P90, cover(1.50), age 0.76 0.76 0.69 0.7710 P90, age 0.73 0.73 0.70 0.7311 P90, FWOF 0.73 0.73 0.70 0.7312 P30, age 0.72 0.72 0.62 0.7313 P30, FWOF 0.70 0.70 0.65 0.7014 P90, cover(1.50) 0.69 0.70 0.64 0.7015 P30, cover(1.50) 0.65 0.66 0.46 0.66

Distance Metric
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Table 6. Index H values for k-NN (K=3) dbh predictions for selected predictor and response sets for all 527 

species combined  528 

 529 

     530 
Items in brackets indicate multiple response variables with different selection criteria including 531 

hardwood (HW), softwood (or conifer), and hardwood and softwood (HS) trees; ranges of 532 

numbers and greater than symbols indicate selection criteria for DBH values (cm). 533 

response variables predictors MSN RFBA(HS,HW,HW>23,SW(8-26),SW(26-36),SW>41) P30,P90 0.81 0.79TPH(HS,HW,SW>36,SW>41) P30,P90 0.80 0.79BA(HS,HW,HW>23,SW(8-26),SW(26-36),SW>41) P30,P50,P90,FWOF,age 0.78 0.81Lor.(HS,HW,SW) P30,P50,P90,FWOF,age 0.79 0.79TPH(HS,HW,SW>36,SW>41) P30,P50,P90,FWOF,age 0.75 0.80BA(HS,HW,SW) P30,P50,P90,FWOF,age 0.75 0.80BA,Lor.,TPH P30,P50,P90,FWOF,age 0.71 0.81BA,Lor.,TPH P30,P90 0.71 0.79Lor.(HS,HW,SW) P30,P90 0.70 0.78BA(HS,HW,SW) P30,P90 0.58 0.80
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Table 7. Comparison of k-NN (k=3) density by dbh class with and without stratification for most 534 

common species (n = number of plots with species group – it is only by coincidence that both 535 

conifers and hardwoods occur on 176 plots each) 536 

  537 

species n index H dist. best index H dist. bestall 190 0.81 RF 0.78 RFhardwood 176 0.80 RF 0.76 RFconifer 176 0.71 RF 0.64 RFLoblolly pine 151 0.57 RF 0.53 RFWater oak 102 0.65 RF 0.68 RFSweetgum 85 0.36 MSN 0.39 MSNLongleaf pine 79 0.54 RF 0.47 RFBlack cherry 71 0.45 MSN 0.39 MSNSnag 66 0.41 RF 0.38 RFLaurel oak 62 0.36 Euc. 0.30 Euc.Mockernut hickory 54 0.43 Euc. 0.48 Euc.Blackgum 54 0.37 RF 0.52 RFPost oak 51 0.35 MSN 0.43 MSNSouthern red oak 50 0.50 Euc. 0.44 Euc.American Holly 44 0.27 MSN 0.41 MSN

un-stratified stratified
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Table 8. Index values (H,I) for k-NN prediction and estimation strategies with k=3 using the three 538 

predictor variables P30, P90, and Cover(1.50) and responses TPH and Vol. for all species 539 

combined. We also include the baseline variability (k-NN dist = “none”) describing plot 540 

variability around population dbh density. 541 

 542 

k-NN dist. H Inone 0.00 0.32Euc. 0.76 0.16Mah. 0.79 0.15MSN 0.64 0.19RF 0.78 0.15
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Figure Captions 543 

 544 

Figure 1. Map of AOI, forested areas of the Savannah River Site 545 

 546 

Figure 2. Dbh densities (relative frequency) for the 8 most common species (common names and 547 

numbers of trees) measured on fixed radius plots (2009) 548 

 549 

Figure 3. Examples of values of index H for various prediction behaviors  550 

 551 

Figure 4.  Probability density function of simulated mixture distribution used for testing 552 

 553 

Figure 5.  Probability density function of simulated mixture distribution used for testing overlaid with 554 

the predicted distribution for a simulated plot, and the observed measurements for the 555 

simulated plot 556 

 557 

Figure 6.  Effect of bin width on index H values for different combinations of mean and standard 558 

deviation values 559 
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Figures 560 

 561 

 562 

Figure 1. Map of AOI, forested areas of the Savannah River Site 563 

 564 

 565 

 566 
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 567 

Figure 2. Dbh densities (relative frequency) for the 8 most common species (common names and numbers 568 

of trees) measured on fixed radius plots 569 
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 570 

Figure 3. Examples of values of index H for various prediction behaviors 571 
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 572 

Figure 4. Probability density function of simulated mixture distribution used for testing 573 
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 574 

Figure 5. Probability density function of simulated mixture distribution used for testing overlaid with the 575 

predicted distribution for a simulated plot, and the observed measurements for the simulated plot 576 

 577 
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 578 

 579 

Figure 6. Effect of bin width on index H values for different combinations of mean and standard deviation 580 

values 581 

 582 
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