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ABSTRACT:  10 
Owing to the complexity of neurodegenerative diseases, multiple cellular types need to be targeted 11 
simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-12 
sensitive coated microbubbles (in a targeted nanoemulsion) are available. Versatile small-molecule 13 
drug(s) targeting multiple pathways of Alzheimer's disease pathogenesis are known. By 14 
incorporating such drug(s) into the targeted LCM/ND lipid nanoemulsion type, one obtains a 15 
multitasking combination therapeutic for translational medicine. This multitasking therapeutic 16 
targets cell-surface scavenger receptors (mainly SR-BI), making possible for various Alzheimer's-17 
related cell types to be simultaneously searched out for localized drug treatment in vivo. Besides 18 
targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s) 19 
include a characteristic lipid-coated microbubble [LCM] subpopulation (i.e., a stable LCM 20 
suspension); such LCM substantially reduce the acoustic power levels needed for accomplishing 21 
temporary noninvasive (transcranial) ultrasound treatment, or sonoporation, if additionally desired 22 
for the Alzheimer's patient.  23 
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Background -- Transcranial Ultrasound  35 

The recent preclinical report of using transcranial ultrasound to clear out amyloid-β plaques [1] in 36 
mouse brain is quite intriguing, but a related technical news report [2] questions whether this method 37 
can work in people without causing damage. Alzheimer's patients already have disrupted blood-38 
brain barriers, so that any interaction of microbubbles (acoustically activated by ultrasound) with the 39 
blood-brain barrier (BBB) needs to be done very carefully so as not to make matters worse for the 40 
Alzheimer's patient [2]. This expressed caution also has relevance to a recent review concerning 41 
therapies for Alzheimer's disease [3]. The authors summarize the field by emphasizing that many of 42 
the therapeutic strategies tested (in animal models) have been successful, but none in humans. There 43 
is a striking deficit in translational research, i.e., to take a successful treatment in mice and translate 44 
it to the Alzheimer's patient. The authors assert that either the rodent models are not good, or we 45 
should extract only the most useful information from those animal models [3]. In view of all the 46 
foregoing arguments, it appears likely that intravenous injection of film-stabilized microbubbles is 47 
quite useful since such preformed microbubbles are well known to substantially reduce the acoustic 48 
power levels needed for temporary noninvasive (transcranial) ultrasound opening of the BBB [4-6], 49 
that is, for accomplishing "sonoporation".  50 

Sonoporation  51 

The structural mechanism for sonoporation by microbubbles/nanobubbles has very recently been 52 
studied [7] in more detail by performing molecular dynamics computer simulations on systems that 53 
contained a model of the tight junctions from the BBB. When no bubble is present in the system, no 54 
damage to the model tight junction is observed when the traveling shock (or sonic) wave propagates 55 
across it. However, in the presence of a nanobubble, even when the impulse of the shock wave is 56 
relatively low, the implosion of the nanobubble causes significant structural change to their model 57 
tight junction [7]. These investigators further explain the structural mechanism of (lipid-bilayer) 58 
membrane poration, from shock wave (or sonic wave) induced nanobubble collapse, through the use 59 
of (course-grain) molecular dynamics simulations. Specifically, in the absence of a nanobubble, shock 60 
pressure is evenly distributed along the lateral area of the (modeled lipid-bilayer) membrane; 61 
whereas in the presence of a nanobubble an unequal distribution of pressure on the membrane is 62 
created, leading to the membrane poration [8].  63 

Receptor-Mediated Drug Delivery for Alzheimer's Disease  64 

Moreover, by appropriate choice of film-stabilized microbubbles that can also carry a suitable drug 65 
across the BBB for localized delivery, it may be possible for the ultrasound intensity (acoustic power 66 
level) to be lowered even further -- resulting in even smaller chances of doing any harm to brain 67 
tissue in the patient. In actuality, various types of film-stabilized microbubble agent exist which can 68 
function as a drug carrier. However, many of these preformed microbubble agents are incapable, 69 
after intravenous injection, of targeting any localized tissue sites or specific lesions. While some of 70 
the remaining film-stabilized microbubble agents are capable of targeting, very few appear capable 71 
of searching out the appropriate (cell-surface) receptors lining the vasculature of the human brain or 72 
within Alzheimer's disease sites in actual patients. Those Alzheimer's-disease-related human 73 
receptors involve certain "lipoprotein receptors", including notably the (class B) scavenger receptor 74 
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referred to as SR-BI [9] which has been found to display significantly impaired function in 75 
Alzheimer's patients [10]. In this study of humans ( where, as in mice [11], the SR-BI is well 76 
established as a major high-density lipoprotein (HDL) receptor ), specifically HDL were isolated from 77 
20 healthy subjects and from 39 Alzheimer's patients. The anti-inflammatory activity of HDL was 78 
found to be significantly lower in Alzheimer's patients, which paralleled additional results revealing 79 
that Alzheimer's disease had impaired the interaction of HDL with SR-BI receptors obtained from 80 
these patients. The authors conclude that their study, using humans, provides evidence for the first 81 
time that the functionality of HDL is impaired in Alzheimer's disease, and that this alteration might 82 
be caused by Alzheimer's-disease-associated oxidative stress and inflammation [10]. More recently, 83 
Song et al. [12] have similarly showed that the anti-inflammatory effects of HDL are dependent on 84 
SR-BI expression on macrophages (a type of immune cell). These investigators point out that besides 85 
HDL's role in regulating cholesterol metabolism, HDL has been shown to exhibit antioxidant and 86 
anti-inflammatory effects in the vasculature [12]. To now summarize the various cell types which all 87 
display cell-surface SR-BI and are potentially implicated in Alzheimer's disease, the report by 88 
Thanopoulou et al. [11] should next be considered. These authors point out that SR-BI has been 89 
identified on astrocytes and vascular smooth muscle cells in Alzheimer's disease brain, and has been 90 
demonstrated to mediate adhesion of microglia (another type of immune cell) to fibrillar amyloid-β. 91 
As concerns their own experiments, Thanopoulou et al. report that SR-BI mediates perivascular 92 
macrophage response, and regulates amyloid-β pathology and cerebral angiopathy in an Alzheimer's 93 
mouse model (i.e., human-amyloid precursor protein transgenic mouse). The authors remark that 94 
these findings designate SR-BI as a therapeutic target for treatment of Alzheimer's disease and 95 
cerebral amyloid angiopathy [11].  96 

From all the foregoing findings in the preceding paragraph, it is evident that choosing an intravenous 97 
film-stabilized microbubble agent which targets cell-surface SR-BI could allow various above-98 
described cell types, all potentially implicated in Alzheimer's disease, to be simultaneously searched 99 
out and likely reached for localized treatment (e.g., drug delivery). Due to the complexity of 100 
Alzheimer's disease, it is likely that therapeutics which target multiple cellular sites will result in a 101 
more efficient management of this disease, and might also be effective in various forms of 102 
Alzheimer's disease with different underlying pathophysiological mechanisms [13]. As recently 103 
pointed out by Bredesen [14], there is not any single drug currently available for Alzheimer's disease 104 
that exerts anything beyond a marginal, unsustained symptomatic effect, with little or no effect on 105 
disease progression. Bredesen further states that, in the past decade alone, hundreds of clinical trials 106 
have been conducted for treating Alzheimer's disease, at an aggregate cost of literally billions of 107 
dollars, without success. However, for both Alzheimer's disease as well as its predecessors, mild 108 
cognitive impairment and subjective cognitive impairment, comprehensive combination therapies 109 
(targeting multiple cellular sites) have not been explored. It is also possible that targeting multiple 110 
cellular sites, within the multiple-cell-type network underlying Alzheimer's disease 111 
pathophysiology, may be successful even when each [SR-BI bearing] cell type targeted is affected in 112 
a relatively modest way; that is to say, the effects on the various cell types targeted may be additive, 113 
multiplicative, or otherwise synergistic [14].  114 

 115 
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Past Targeted Nanotherapy using Lipid Nanoemulsions  116 

The above-stated desire for a multitasking combination therapeutic, capable of targeting (via SR-BI) 117 
the multiple-cell-type network underlying Alzheimer's disease pathophysiology, would be further 118 
fulfilled if the chosen intravenous microbubble agent could readily and demonstrably carry (one or 119 
more) useful small molecular drugs(s). There is one multitasking therapeutic candidate, existing in 120 
the form of an intravenous film-stabilized microbubble agent which targets cell-surface SR-BI, that is 121 
documented to be a successful carrier of selected small molecular compound(s). Specifically, "lipid-122 
coated microbubble (LCM) /nanoparticle-derived" lipid nanoemulsion, also known as LCM/ND lipid 123 
nanoemulsion type, is well-documented [9] to be useful for highly selective delivery of (easily 124 
incorporated) lipophilic dyes, labels, or low-molecular-weight drugs to various types of solid tumors 125 
and certain other (noncancerous) hyperproliferative-disease lesions/sites. All these lesions 126 
consistently display an increased (cell-surface) expression and/or activity of lipoprotein receptors, 127 
including notably the (class B) scavenger receptor known as SR-BI (or sometimes as CLA-1 [the 128 
human SR-BI ortholog] ). Such data on SR-BI expression and function are noteworthy; namely, SR-BI 129 
has emerged as the lipoprotein receptor primarily involved in the enhanced endocytosis (i.e., 130 
enhanced intracellular uptake) of LCM/ND lipid nanoemulsions into hyperproliferative-disease sites 131 
[9]. First, as concerns tumors, an independent evaluation of this type of lipid nanoemulsion has 132 
appeared in a review article by Constantinides et al. [15]. At the same time, this particular study 133 
provides certain relevant data that is useful as a test of the expectation that a significantly enhanced 134 
endocytosis of LCM/ND lipid nanoemulsion (likely mediated by SR-BI) ought to be readily detectable 135 
in Hep3B human hepatoma cells. [This expectation arises from the fact that SR-BI expression, which 136 
is well described for HepG2 cells, has also been documented in Hep3B cells. Furthermore, when 137 
studying the effect of chemical agents causing decreased SR-BI levels in Hep3B hepatoma cells, the 138 
same chemical agents were observed to cause decreased uptake of HDL lipids into Hep3B cells (for 139 
a review see ref. [9] ).] In actuality, a noticeably enhanced uptake of this (dye-carrying) LCM/ND lipid 140 
nanoemulsion type into varied tumor cells is reported by Constantinides et al. [15] and, as expected, 141 
the observed enhanced uptake is particularly marked in Hep3B hepatoma cells (see Table 24.1 in ref. 142 
[9] ). The LCM/ND lipid nanoemulsion version employed by these authors is called Emulsiphan. 143 
Most solid tumors displayed enhanced uptake of this Emulsiphan version of (dye-labeled) LCM/ND 144 
lipid nanoemulsion; however, these tumors did not do so to the same degree. Nonetheless, it is 145 
noteworthy that all of the varied tumor cells listed in Table 24.1 [9] display a significantly increased 146 
uptake of this LCM/ND lipid nanoemulsion version (as compared to the undetectable level of 147 
Emulsiphan nanoemulsion uptake in parenteral 3T3-L1 cells which are noncancerous cells). (For 148 
added discussion, see Sect. 24.3 in ref. [9].) Besides the above dye-labeling experiments, both 149 
Constantinides et al. [15] and Ho et al. [16] have formulated LCM/ND lipid nanoemulsions with the 150 
anticancer drug, paclitaxel, and documented the successful delivery (intracellularly) of the carried 151 
drug to tumor cells of various types [9].  152 

As concerns the above-mentioned "certain other (noncancerous) hyperproliferative-disease 153 
lesions/sites", which overexpress scavenger receptors, one example is central nervous system (CNS) 154 
injury -- that is brain injury and/or spinal cord injury. Various published studies indicate increased 155 
scavenger receptor expression on "proliferating macrophages" and "activated astrocytes" arising after 156 
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CNS injury. At the same time, this increased scavenger receptor expression, which probably mainly 157 
involves SR-BI (see Sect. 25.1.1 in ref. [9] ), provides a plausible avenue for targeted drug-delivery 158 
treatment of CNS-injury sites. Accordingly, Wakefield et al. [17] examined the use of LCM/ND lipid 159 
nanoemulsion to deliver 7β-hydroxycholesterol (7β-OHC) to a radiofrequency (thermal) lesion in the 160 
rat brain. [7β-OHC and other oxysterols have been reported, by other investigators, to inhibit 161 
astrogliosis both in vitro and in vivo (cf. [9] ).] Wakefield et al. [17] observed that the number of 162 
activated astrocytes were reduced when treated with 7β-OHC delivered by the LCM/ND lipid 163 
nanoemulsion, while not affected by the same dose of intravenously injected 7β-OHC in saline. It 164 
appears that the mechanism of this enhanced delivery of 7β-OHC to the brain-injury site, by a 165 
LCM/ND lipid nanoemulsion type, shares common features with the above tumor work. (For added 166 
discussion, see Chap. 13 and Sect. 24.3 in ref. [9].) The above interpretation of the data receives 167 
additional indirect support from published findings, of other investigators, which document the 168 
expression of SR-BI on astrocytes and vascular smooth muscle cells in adult mouse and human brains 169 
-- as well as in Alzheimer's disease brain [9]. Lastly, this documented ability of LCM/ND lipid 170 
nanoemulsion to function as a carrier of selected small molecular compounds would, of course, be 171 
potentially applicable to certain drug molecules already being used in research for treating 172 
Alzheimer's disease (and brain injury). Several low-molecular-weight, and sufficiently lipophilic, 173 
candidates for incorporation into the LCM/ND lipid nanoemulsion are Edaravone [18,19], caffeine 174 
[20-23], resveratrol [24,25], and docosahexaenoic acid or DHA [26-34]. 175 

Serum Amyloid A (SAA), SR-BI, and Alzheimer's Disease  176 

The immune response after brain injury, and during neurodegenerative disorders, is highly complex 177 
-- involving both local and systemic events at the cellular and molecular level [35]. More specifically, 178 
inflammation of brain tissue in the absence of infection (sterile inflammation) contributes to acute 179 
brain injury and chronic disease. Accordingly, Savage et al. have studied the inflammatory responses 180 
of glial cells in the presence of a relevant endogenous priming stimulus; these authors report the 181 
acute-phase-protein serum amyloid A (SAA) [see below] acted as a sterile, endogenous, priming 182 
stimulus on glial cells [36]. Note that serum amyloid A (SAA) is a liver-derived "high-density 183 
lipoprotein (HDL)"-associated apolipoprotein, whose level in the blood increases up to 1,000-fold in 184 
response to various injuries including trauma (e.g., CNS injury), inflammation (e.g., human vascular 185 
plaques and Alzheimer's lesions), etc. Like other acute-phase reactants, the liver is the major site of 186 
SAA expression; however, SAA is also expressed in cells at inflammation sites, e.g., macrophage cell 187 
lines and within human atherosclerotic lesions (e.g., [9] ). Baranova et al. point out [37] that the 188 
importance of SAA in various physiological and pathological processes has generated considerable 189 
interest in the identity of the cell-surface receptor(s) that bind, internalize, and mediate SAA-induced 190 
proinflammatory effects. Furthermore, these authors assert that the results of their study demonstrate 191 
that CLA-1 (the human SR-BI ortholog [38] ) functions as an endocytic SAA receptor, and is involved 192 
in SAA-mediated cell signaling events associated with the immune-related and inflammatory effects 193 
of SAA [37]. In addition, CLA-1 and SR-BI are highly expressed on monocytes/macrophages, cells 194 
known to be the primary sites of SAA uptake [37,39].  195 
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It is also worth noting that such blood-borne human monocytes (with their high expression of CLA-196 
1/SR-BI and ability to differentiate into macrophages to elicit an immune response locally) have 197 
recently been reported [40] to reduce Alzheimer's-like pathology and associated cognitive 198 
impairments in transgenic mice having Alzheimer's-like symptoms. Specifically, monocytes (derived 199 
from human umbilical cord blood cells) were found to play a central role in ameliorating cognitive 200 
deficits and reducing amyloid-β neuropathology in an Alzheimer's mouse model [40]. This finding 201 
is consistent with an earlier study, by different investigators [41], which reported that very old SR-BI 202 
knockout mice show deficient synaptic plasticity (long-term potentiation) in the hippocampus. Also, 203 
very old SR-BI knockout mice were found to display impairments in recognition memory and spatial 204 
memory [41].  205 

Returning to the above observations regarding SAA and inflammation, they are of added interest 206 
because inflammation is a known risk factor for Alzheimer's disease and the SAA concentration is 207 
much higher, in cerebrospinal fluid (CSF), in subjects with Alzheimer's disease than in controls [42]. 208 
It was further found that SAA dissociated apolipoprotein E (apoE) from HDL, in the CSF, in a dose-209 
dependent manner. Importantly, amyloid-β fragments (i.e., 1-42) were bound to large CSF-HDL, but 210 
not to apoE dissociated by SAA. Miida et al. [42] therefore postulate that inflammation in the CNS 211 
may impair amyloid-β clearance due to loss of apoE from CSF-HDL. Moreover, it has recently been 212 
independently reported that SAA itself can misfold and potentially lead to systemic amyloidoses [43].  213 

Treating Brain Injury, Neuroinflammation, and Alzheimer's Disease via LCM/ND 214 
Nanoemulsions  215 

The brief histological description of brain-injury sites, in the preceding four paragraphs, points to a 216 
larger pathophysiological overlap which exists between brain injury and Alzheimer's disease brain. 217 
First as concerns brain injury, Wang et al. [44] have pointed out that non-neuronal brain cells, 218 
especially astrocytes (the predominant cell type in the human brain), may exert an active role in the 219 
pathogenesis of traumatic brain injury (TBI). Activated astrocytes may contribute to increased 220 
oxidative stress and neuroinflammation following neurotrauma. Interestingly, the drug Edaravone 221 
(also mentioned above [see 4 paragraphs back] ) has been used successfully, in past research, for its 222 
neuroprotective and antioxidative effects on the brain after TBI. Wang et al. [44] extended this 223 
research and found that, after intravenous administration (in rats), Edaravone treatment significantly 224 
decreased hippocampal neuron loss, reduced oxidative stress, and decreased neuronal programmed 225 
cell death as compared to control treatment. The protective effects of Edaravone treatment were also 226 
related to the pathology of TBI on non-neuronal cells, as Edaravone decreased both astrocyte and 227 
microglia activation following TBI. These authors conclude that the likely mechanism of Edaravone's 228 
neuroprotective effect, in the rat model of TBI, is via inhibiting oxidative stress leading to a decreased 229 
inflammatory response and decreased glial activation, and thereby reducing neuronal death and 230 
improving neurological function [44]. Similarly, Itoh et al. [45] have reported that Edaravone 231 
administration intravenously (in rats), following TBI, inhibited free radical-induced neuronal 232 
degeneration and apoptotic cell death around the damaged area. Hence, Edaravone treatment 233 
improved cerebral dysfunction following TBI, suggesting its potential as an effective clinical therapy 234 
[45].  235 
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In view of the above description of TBI, the effects of the drug Edaravone, and the pathophysiological 236 
overlap of TBI with many characteristics of Alzheimer's disease brain (cf. above), it is logical and 237 
consistent that Jiao et al. [18] have recently reported that Edaravone can also ameliorate Alzheimer's 238 
disease-type pathologies and cognitive deficits of a mouse model of Alzheimer's disease. Specifically, 239 
besides reducing amyloid-β deposition and tau hyperphosphorylation, Edaravone was found to 240 
alleviate oxidative stress and, hence, attenuates the downstream pathologies including glial activation, 241 
neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the memory deficits of the mice 242 
[18]. [Note that Edaravone is a small-molecule drug, which is known to function as a free-radical 243 
scavenger; it currently is being used clinically in Japan to treat (acute ischemic) stroke patients 244 
[18,44].] Jiao et al. [18] further state that their above findings suggest that Edaravone is a promising 245 
drug candidate for Alzheimer's disease by targeting multiple key pathways of the disease 246 
pathogenesis. This recommendation by Jiao et al. of Edaravone (for treating Alzheimer's disease) fits 247 
well with the initial drug candidates suggested, based on low-molecular-weight and sufficient 248 
lipophilicity, for incorporation into the LCM/ND lipid nanoemulsion proposed here (cf. above) to 249 
treat Alzheimer's disease. Since their recommendation is based in part on knowledge of failed clinical 250 
trials indicating that a single target or pathway does not work on this complex disease [18], these 251 
investigators are understandably encouraged by a drug like Edaravone which targets multiple 252 
pathways of Alzheimer's disease pathogenesis.  253 

Another drug candidate suggested above for incorporation into the LCM/ND nanoemulsion is 254 
docosahexaenoic acid, or DHA. It has recently been reported extensively, in numerous publications 255 
by various groups of investigators worldwide (e.g., [26-34] ), that DHA has been used successfully to 256 
treat Alzheimer's symptoms in humans as well as animal models (and brain injury in animal models). 257 
[See also below.]  258 

Targeted Delivery (of drugs including antibody therapeutics) coordinated with Focused 259 
Sonoporation  260 

More generally, this overall nanotherapeutic approach to treating Alzheimer's disease, via 261 
lipid(LCM/ND)-nanoemulsion particles, is in harmony with the conclusions of a recent review on 262 
drug targeting to the brain [46]. Of particular interest, Mahringer et al. [46] point out that one 263 
noninvasive approach to overcome the blood-brain barrier (BBB) has been to increase lipophilicity 264 
[even further] of CNS drugs by use of colloidal drug-delivery carriers, e.g., surfactant/lipid-coated 265 
(polymeric) nanoparticles. These authors explain that, after intravenous injection, these surfactant-266 
treated nanoparticles apparently bind to apolipoproteins (e.g., apoA-I in blood plasma) and are 267 
subsequently recognized by the corresponding lipoprotein receptors, namely, SR-BI type scavenger 268 
receptors at the BBB ( [46]; cf. Sect. 25.2 in ref. [9] ). In addition, Mahringer et al.[46] further point out 269 
in their review that focused-ultrasound/microbubble (FUS/M) delivery of a model drug has been 270 
achieved in the past with minimal histological damage, while demonstrating markedly increased 271 
brain dosage (compared to background BBB "leak"), in transgenic Alzheimer's-disease mouse models 272 
[47]. Moreover, in another related study, the FUS/M strategy opened the BBB sufficiently to allow 273 
passage of compounds of at least 70 kDa (but not greater than 2,000 kDa) into the brain parenchyma. 274 
This noninvasive and localized BBB-opening (i.e., sonoporation) technique could, therefore, provide 275 
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an applicable mode to deliver nanoparticles of a range over several orders of magnitude of daltons 276 
[46,48]. As specifically concerns antibody therapeutics, a very recent review [49] cites a published 277 
example where dopamine receptor-targeted antibodies could cross the BBB following FUS/M 278 
delivery. Also, i.v. injection of anti-amyloid β antibodies were observed to cross the BBB following 279 
FUS/M delivery and, furthermore, significantly reduced amyloid β plaques (4-days) post treatment 280 
in a transgenic mouse model of Alzheimer's disease [50,51].  281 

Even without employing sonoporation, Mahringer et al. [46] emphasize that brain uptake of large 282 
peptides like lipoproteins is mediated by endocytosis and/or transcytosis through peptide-specific 283 
receptors (e.g., scavenger receptors (SR)) which are now studied as target moieties for antibody-284 
conjugated nanocarriers. Currently developed CNS drugs include large, hydrophilic molecules like 285 
antibodies; while approximately 100% of large molecules ordinarily do not cross the BBB, such large 286 
molecules (e.g., antibodies) do in fact pass the membrane barrier when delivered via receptor-287 
mediated endocytosis. As Mahringer et al. [46] point out in their detailed review, the BBB is equipped 288 
with several endocytotic receptors at the luminal surface (i.e., capillary endothelial membrane), 289 
including the type BI scavenger receptor (SR-BI). These reviewers state that coated nanoparticles 290 
represent one of the most innovative noninvasive approaches for drug delivery to the CNS; an 291 
important aspect for the commercial development of such nanoparticle systems is the fact that some 292 
of the materials employed have already been registered for parenteral use. The authors also cite work 293 
published in the past decade (consistent with separate Cav-Con, Inc.-collaborative studies published 294 
in the 1990s [see www.netplex.net/~cavcon] ), using fluorescent-labeled coated nanoparticles and 295 
confocal laser scanning microscopy, which provide direct evidence that the [polymer-]coated 296 
nanoparticles crossed the BBB and distributed in the brain tissue after i.v. administration to rats [46].  297 

Very recently, the same coated-microbubble approach has been successfully utilized by Mulik et al. 298 
[52] for the targeted delivery of a particular therapeutic agent, namely DHA, into the brain. 299 
Specifically, lipoprotein nanoparticles reconstituted with docosahexaenoic acid (DHA) were 300 
employed due to the likelihood of their significant therapeutic value in the brain, since DHA is known 301 
to be neuroprotective [52]. Temporary, noninvasive BBB opening was achieved by Mulik et al. using 302 
pulsed ultrasound exposures in a localized brain region in normal rats, after which the (fluorescent-303 
labeled or) DHA containing lipoprotein nanoparticles were administered intravenously. Fluorescent 304 
imaging of the rat brain tissue demonstrated that DHA was incorporated into the brain cells (and 305 
metabolized) in the ultrasound-exposed hemisphere. In addition, histological evaluation did not 306 
indicate any evidence of increased tissue damage in the ultrasound-exposed brain regions compared 307 
to normal brain. The authors concluded that their study demonstrates that localized delivery of DHA 308 
to the brain is possible using systemically-administered lipoprotein nanoparticles combined with 309 
pulsed focused ultrasound exposures in the brain [52]. (Other related nanoemulsion formulations for 310 
delivery of DHA have also been described recently [53].)  311 

Finally, (microbubble-assisted) sonoporation not only facilitates localized drug delivery (cf. above) 312 
but also the removal of amyloid-β plaques from brain tissue in a mouse model [1]. The mechanism of 313 
this plaque-burden reduction by sonoporation is believed to involve "loosening the tight junctions of 314 
the cells forming the BBB" (see Background); at the same time, it is worth noting that this same 315 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 September 2017                   doi:10.20944/preprints201709.0166.v1

Peer-reviewed version available at Med. Sci. 2017, 5, 29; doi:10.3390/medsci5040029

http://dx.doi.org/10.20944/preprints201709.0166.v1
http://dx.doi.org/10.3390/medsci5040029


 9 of 17 

 

mechanism might also function to counteract characteristic decreased "brain clearance" of neurotoxic 316 
amyloid-β "monomer" which has been described [54] as a central event in the pathogenesis of 317 
Alzheimer's disease. Namely, the recent biomolecular study by Keaney et al. reports that controlled 318 
modulation of tight junction components at the BBB can enhance the clearance (into the plasma) of 319 
soluble human amyloid-β monomers from the brain in a murine model of Alzheimer's disease [54].  320 

Conclusions  321 

By incorporating drug candidates (such as Edaravone, DHA, or antibody therapeutic) into the 322 
LCM/ND lipid nanoemulsion type, known to be a successful drug carrier [9], one is likely to obtain a 323 
multitasking combination therapeutic for translational medicine. This therapeutic agent would target 324 
cell-surface SR-BI making possible for various (above-described) cell types, all potentially implicated 325 
in Alzheimer's disease (cf. [55,56] ), to be simultaneously searched out and better reached for localized 326 
drug treatment of brain tissue in vivo. Further, it has been reconfirmed in the current literature that 327 
receptor-mediated endocytosis/transcytosis via lipoprotein receptors, particularly scavenger 328 
receptors including SR-BI, remains a major route for drug delivery across the blood-brain barrier; 329 
namely, recently published work has demonstrated that nanocomplexes can be readily transported 330 
into brain capillary endothelial cells [bovine and porcine] via SR-BI receptor-mediated endocytosis 331 
([57]; see also [58-60] ). Accordingly, endothelial modulation and repair become feasible by 332 
pharmacological targeting [61-69] via SR-BI receptors (cf. [70] ). Moreover, the effects of the various 333 
cell types targeted (via SR-BI) may be additive, multiplicative, or otherwise synergistic. This 334 
therapeutic approach receives added impetus from continual findings of cerebrovascular pathology 335 
[71-77] and brain arterial aging [78-81] accompanying, and an apparent endothelium-dysfunction 336 
involvement [61-69,77, 82-89] in, Alzheimer's disease (and its major risk factors) [81-99]. Hence the 337 
proposed multitasking combination therapeutic may also display greater effectiveness at different 338 
stages of Alzheimer's disease (cf. [55,56] ); as a result, this multitasking (drug-delivery) therapeutic 339 
could represent a promising way to treat, delay, or even prevent the disease in the future. Lastly, a 340 
completely separate and additional advantage of such LCM/ND lipid nanoemulsion(s), as a 341 
component of this combination therapeutic, stems from the characteristic lipid-coated microbubble 342 
subpopulation [9] existing in this nanoemulsion type. Specifically, such preformed (lipid-stabilized) 343 
microbubbles are well known to substantially reduce the acoustic power levels needed for 344 
accomplishing temporary noninvasive (transcranial) ultrasound treatment [4-8,100-103], or 345 
sonoporation [104-111], if additionally desired for the Alzheimer's patient.  346 
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