

1 *Review*

2

3 **ALZHEIMER'S DISEASE, BRAIN INJURY, AND C.N.S. NANOTHERAPY IN** 4 **HUMANS: SONOPORATION AUGMENTING DRUG TARGETING**

5

6 Author: **Joseph S. D'Arrigo**,¹

7 Affiliation: **Cavitation-Control Technology Inc.**, Farmington, CT 06032, USA

8 ¹ Present address: Cav-Con Inc., Bellevue, WA 98007, USA

9 E-mail: cavcon@ntplx.net

10 **ABSTRACT:**

11 Owing to the complexity of neurodegenerative diseases, multiple cellular types need to be targeted
12 simultaneously in order for a given therapy to demonstrate any major effectiveness. Ultrasound-
13 sensitive coated microbubbles (in a targeted nanoemulsion) are available. Versatile small-molecule
14 drug(s) targeting multiple pathways of Alzheimer's disease pathogenesis are known. By
15 incorporating such drug(s) into the targeted LCM/ND lipid nanoemulsion type, one obtains a
16 multitasking combination therapeutic for translational medicine. This multitasking therapeutic
17 targets cell-surface scavenger receptors (mainly SR-BI), making possible for various Alzheimer's-
18 related cell types to be simultaneously searched out for localized drug treatment *in vivo*. Besides
19 targeting cell-surface SR-BI, the proposed LCM/ND-nanoemulsion combination therapeutic(s)
20 include a characteristic lipid-coated microbubble [LCM] subpopulation (i.e., a stable LCM
21 suspension); such LCM substantially reduce the acoustic power levels needed for accomplishing
22 temporary noninvasive (transcranial) ultrasound treatment, or sonoporation, if additionally desired
23 for the Alzheimer's patient.

24

25 KEYWORDS: Alzheimer's disease; drug targeting; nanoemulsion; neuroinflammation; neurotrauma;
26 oxidative stress; scavenger receptors; SR-BI; transcranial sonoporation

27

28

29

30

31

32

33

34

35 **Background -- Transcranial Ultrasound**

36 The recent preclinical report of using transcranial ultrasound to clear out amyloid- β plaques [1] in
37 mouse brain is quite intriguing, but a related technical news report [2] questions whether this method
38 can work in people without causing damage. Alzheimer's patients already have disrupted blood-
39 brain barriers, so that any interaction of microbubbles (acoustically activated by ultrasound) with the
40 blood-brain barrier (BBB) needs to be done very carefully so as not to make matters worse for the
41 Alzheimer's patient [2]. This expressed caution also has relevance to a recent review concerning
42 therapies for Alzheimer's disease [3]. The authors summarize the field by emphasizing that many of
43 the therapeutic strategies tested (in animal models) have been successful, but none in humans. There
44 is a striking deficit in translational research, i.e., to take a successful treatment in mice and translate
45 it to the Alzheimer's patient. The authors assert that either the rodent models are not good, or we
46 should extract only the most useful information from those animal models [3]. In view of all the
47 foregoing arguments, it appears likely that intravenous injection of film-stabilized microbubbles is
48 quite useful since such preformed microbubbles are well known to substantially reduce the acoustic
49 power levels needed for temporary noninvasive (transcranial) ultrasound opening of the BBB [4-6],
50 that is, for accomplishing "sonoporation".

51 **Sonoporation**

52 The structural mechanism for sonoporation by microbubbles/nanobubbles has very recently been
53 studied [7] in more detail by performing molecular dynamics computer simulations on systems that
54 contained a model of the tight junctions from the BBB. When no bubble is present in the system, no
55 damage to the model tight junction is observed when the traveling shock (or sonic) wave propagates
56 across it. However, in the presence of a nanobubble, even when the impulse of the shock wave is
57 relatively low, the implosion of the nanobubble causes significant structural change to their model
58 tight junction [7]. These investigators further explain the structural mechanism of (lipid-bilayer)
59 membrane poration, from shock wave (or sonic wave) induced nanobubble collapse, through the use
60 of (course-grain) molecular dynamics simulations. Specifically, in the absence of a nanobubble, shock
61 pressure is evenly distributed along the lateral area of the (modeled lipid-bilayer) membrane;
62 whereas in the presence of a nanobubble an unequal distribution of pressure on the membrane is
63 created, leading to the membrane poration [8].

64 **Receptor-Mediated Drug Delivery for Alzheimer's Disease**

65 Moreover, by appropriate choice of film-stabilized microbubbles that can also carry a suitable drug
66 across the BBB for localized delivery, it may be possible for the ultrasound intensity (acoustic power
67 level) to be lowered even further -- resulting in even smaller chances of doing any harm to brain
68 tissue in the patient. In actuality, various types of film-stabilized microbubble agent exist which can
69 function as a drug carrier. However, many of these preformed microbubble agents are incapable,
70 after intravenous injection, of targeting any localized tissue sites or specific lesions. While some of
71 the remaining film-stabilized microbubble agents are capable of targeting, very few appear capable
72 of searching out the appropriate (cell-surface) receptors lining the vasculature of the human brain or
73 within Alzheimer's disease sites in actual patients. Those Alzheimer's-disease-related human
74 receptors involve certain "lipoprotein receptors", including notably the (class B) scavenger receptor

75 referred to as SR-BI [9] which has been found to display significantly impaired function in
76 Alzheimer's patients [10]. In this study of humans (where, as in mice [11], the SR-BI is well
77 established as a major high-density lipoprotein (HDL) receptor), specifically HDL were isolated from
78 20 healthy subjects and from 39 Alzheimer's patients. The anti-inflammatory activity of HDL was
79 found to be significantly lower in Alzheimer's patients, which paralleled additional results revealing
80 that Alzheimer's disease had impaired the interaction of HDL with SR-BI receptors obtained from
81 these patients. The authors conclude that their study, using humans, provides evidence for the first
82 time that the functionality of HDL is impaired in Alzheimer's disease, and that this alteration might
83 be caused by Alzheimer's-disease-associated oxidative stress and inflammation [10]. More recently,
84 Song et al. [12] have similarly showed that the anti-inflammatory effects of HDL are dependent on
85 SR-BI expression on macrophages (a type of immune cell). These investigators point out that besides
86 HDL's role in regulating cholesterol metabolism, HDL has been shown to exhibit antioxidant and
87 anti-inflammatory effects in the vasculature [12]. To now summarize the various cell types which all
88 display cell-surface SR-BI and are potentially implicated in Alzheimer's disease, the report by
89 Thanopoulou et al. [11] should next be considered. These authors point out that SR-BI has been
90 identified on astrocytes and vascular smooth muscle cells in Alzheimer's disease brain, and has been
91 demonstrated to mediate adhesion of microglia (another type of immune cell) to fibrillar amyloid- β .
92 As concerns their own experiments, Thanopoulou et al. report that SR-BI mediates perivascular
93 macrophage response, and regulates amyloid- β pathology and cerebral angiopathy in an Alzheimer's
94 mouse model (i.e., human-amyloid precursor protein transgenic mouse). The authors remark that
95 these findings designate SR-BI as a therapeutic target for treatment of Alzheimer's disease and
96 cerebral amyloid angiopathy [11].

97 From all the foregoing findings in the preceding paragraph, it is evident that choosing an intravenous
98 film-stabilized microbubble agent which targets cell-surface SR-BI could allow various above-
99 described cell types, all potentially implicated in Alzheimer's disease, to be simultaneously searched
100 out and likely reached for localized treatment (e.g., drug delivery). Due to the complexity of
101 Alzheimer's disease, it is likely that therapeutics which target multiple cellular sites will result in a
102 more efficient management of this disease, and might also be effective in various forms of
103 Alzheimer's disease with different underlying pathophysiological mechanisms [13]. As recently
104 pointed out by Bredesen [14], there is not any single drug currently available for Alzheimer's disease
105 that exerts anything beyond a marginal, unsustained symptomatic effect, with little or no effect on
106 disease progression. Bredesen further states that, in the past decade alone, hundreds of clinical trials
107 have been conducted for treating Alzheimer's disease, at an aggregate cost of literally billions of
108 dollars, without success. However, for both Alzheimer's disease as well as its predecessors, mild
109 cognitive impairment and subjective cognitive impairment, comprehensive combination therapies
110 (targeting multiple cellular sites) have not been explored. It is also possible that targeting multiple
111 cellular sites, within the multiple-cell-type network underlying Alzheimer's disease
112 pathophysiology, may be successful even when each [SR-BI bearing] cell type targeted is affected in
113 a relatively modest way; that is to say, the effects on the various cell types targeted may be additive,
114 multiplicative, or otherwise synergistic [14].

115

116 **Past Targeted Nanotherapy using Lipid Nanoemulsions**

117 The above-stated desire for a multitasking combination therapeutic, capable of targeting (via SR-BI)
118 the multiple-cell-type network underlying Alzheimer's disease pathophysiology, would be further
119 fulfilled if the chosen intravenous microbubble agent could readily and demonstrably carry (one or
120 more) useful small molecular drugs(s). There is one multitasking therapeutic candidate, existing in
121 the form of an intravenous film-stabilized microbubble agent which targets cell-surface SR-BI, that is
122 documented to be a successful carrier of selected small molecular compound(s). Specifically, "lipid-
123 coated microbubble (LCM) /nanoparticle-derived" lipid nanoemulsion, also known as LCM/ND lipid
124 nanoemulsion type, is well-documented [9] to be useful for highly selective delivery of (easily
125 incorporated) lipophilic dyes, labels, or low-molecular-weight drugs to various types of solid tumors
126 and certain other (noncancerous) hyperproliferative-disease lesions/sites. All these lesions
127 consistently display an increased (cell-surface) expression and/or activity of lipoprotein receptors,
128 including notably the (class B) scavenger receptor known as SR-BI (or sometimes as CLA-1 [the
129 human SR-BI ortholog]). Such data on SR-BI expression and function are noteworthy; namely, SR-BI
130 has emerged as the lipoprotein receptor primarily involved in the enhanced endocytosis (i.e.,
131 enhanced intracellular uptake) of LCM/ND lipid nanoemulsions into hyperproliferative-disease sites
132 [9]. First, as concerns tumors, an independent evaluation of this type of lipid nanoemulsion has
133 appeared in a review article by Constantinides et al. [15]. At the same time, this particular study
134 provides certain relevant data that is useful as a test of the expectation that a significantly enhanced
135 endocytosis of LCM/ND lipid nanoemulsion (likely mediated by SR-BI) ought to be readily detectable
136 in Hep3B human hepatoma cells. [This expectation arises from the fact that SR-BI expression, which
137 is well described for HepG2 cells, has also been documented in Hep3B cells. Furthermore, when
138 studying the effect of chemical agents causing decreased SR-BI levels in Hep3B hepatoma cells, the
139 same chemical agents were observed to cause decreased uptake of HDL lipids into Hep3B cells (for
140 a review see ref. [9].) In actuality, a noticeably enhanced uptake of this (dye-carrying) LCM/ND lipid
141 nanoemulsion type into varied tumor cells is reported by Constantinides et al. [15] and, as expected,
142 the observed enhanced uptake is particularly marked in Hep3B hepatoma cells (see Table 24.1 in ref.
143 [9].) The LCM/ND lipid nanoemulsion version employed by these authors is called Emulsiphane.
144 Most solid tumors displayed enhanced uptake of this Emulsiphane version of (dye-labeled) LCM/ND
145 lipid nanoemulsion; however, these tumors did not do so to the same degree. Nonetheless, it is
146 noteworthy that all of the varied tumor cells listed in Table 24.1 [9] display a significantly increased
147 uptake of this LCM/ND lipid nanoemulsion version (as compared to the undetectable level of
148 Emulsiphane nanoemulsion uptake in parenteral 3T3-L1 cells which are noncancerous cells). (For
149 added discussion, see Sect. 24.3 in ref. [9].) Besides the above dye-labeling experiments, both
150 Constantinides et al. [15] and Ho et al. [16] have formulated LCM/ND lipid nanoemulsions with the
151 anticancer drug, paclitaxel, and documented the successful delivery (intracellularly) of the carried
152 drug to tumor cells of various types [9].

153 As concerns the above-mentioned "certain other (noncancerous) hyperproliferative-disease
154 lesions/sites", which overexpress scavenger receptors, one example is central nervous system (CNS)
155 injury -- that is brain injury and/or spinal cord injury. Various published studies indicate increased
156 scavenger receptor expression on "proliferating macrophages" and "activated astrocytes" arising after

157 CNS injury. At the same time, this increased scavenger receptor expression, which probably mainly
158 involves SR-BI (see Sect. 25.1.1 in ref. [9]), provides a plausible avenue for targeted drug-delivery
159 treatment of CNS-injury sites. Accordingly, Wakefield et al. [17] examined the use of LCM/ND lipid
160 nanoemulsion to deliver 7 β -hydroxycholesterol (7 β -OHC) to a radiofrequency (thermal) lesion in the
161 rat brain. [7 β -OHC and other oxysterols have been reported, by other investigators, to inhibit
162 astrogliosis both in vitro and in vivo (cf. [9]).] Wakefield et al. [17] observed that the number of
163 activated astrocytes were reduced when treated with 7 β -OHC delivered by the LCM/ND lipid
164 nanoemulsion, while not affected by the same dose of intravenously injected 7 β -OHC in saline. It
165 appears that the mechanism of this enhanced delivery of 7 β -OHC to the brain-injury site, by a
166 LCM/ND lipid nanoemulsion type, shares common features with the above tumor work. (For added
167 discussion, see Chap. 13 and Sect. 24.3 in ref. [9].) The above interpretation of the data receives
168 additional indirect support from published findings, of other investigators, which document the
169 expression of SR-BI on astrocytes and vascular smooth muscle cells in adult mouse and human brains
170 -- as well as in Alzheimer's disease brain [9]. Lastly, this documented ability of LCM/ND lipid
171 nanoemulsion to function as a carrier of selected small molecular compounds would, of course, be
172 potentially applicable to certain drug molecules already being used in research for treating
173 Alzheimer's disease (and brain injury). Several low-molecular-weight, and sufficiently lipophilic,
174 candidates for incorporation into the LCM/ND lipid nanoemulsion are Edaravone [18,19], caffeine
175 [20-23], resveratrol [24,25], and docosahexaenoic acid or DHA [26-34].

176 **Serum Amyloid A (SAA), SR-BI, and Alzheimer's Disease**

177 The immune response after brain injury, and during neurodegenerative disorders, is highly complex
178 -- involving both local and systemic events at the cellular and molecular level [35]. More specifically,
179 inflammation of brain tissue in the absence of infection (sterile inflammation) contributes to acute
180 brain injury and chronic disease. Accordingly, Savage et al. have studied the inflammatory responses
181 of glial cells in the presence of a relevant endogenous priming stimulus; these authors report the
182 acute-phase-protein serum amyloid A (SAA) [see below] acted as a sterile, endogenous, priming
183 stimulus on glial cells [36]. Note that serum amyloid A (SAA) is a liver-derived "high-density
184 lipoprotein (HDL)" -associated apolipoprotein, whose level in the blood increases up to 1,000-fold in
185 response to various injuries including trauma (e.g., CNS injury), inflammation (e.g., human vascular
186 plaques and Alzheimer's lesions), etc. Like other acute-phase reactants, the liver is the major site of
187 SAA expression; however, SAA is also expressed in cells at inflammation sites, e.g., macrophage cell
188 lines and within human atherosclerotic lesions (e.g., [9]). Baranova et al. point out [37] that the
189 importance of SAA in various physiological and pathological processes has generated considerable
190 interest in the identity of the cell-surface receptor(s) that bind, internalize, and mediate SAA-induced
191 proinflammatory effects. Furthermore, these authors assert that the results of their study demonstrate
192 that CLA-1 (the human SR-BI ortholog [38]) functions as an endocytic SAA receptor, and is involved
193 in SAA-mediated cell signaling events associated with the immune-related and inflammatory effects
194 of SAA [37]. In addition, CLA-1 and SR-BI are highly expressed on monocytes/macrophages, cells
195 known to be the primary sites of SAA uptake [37,39].

196 It is also worth noting that such blood-borne human monocytes (with their high expression of CLA-
197 1/SR-BI and ability to differentiate into macrophages to elicit an immune response locally) have
198 recently been reported [40] to reduce Alzheimer's-like pathology and associated cognitive
199 impairments in transgenic mice having Alzheimer's-like symptoms. Specifically, monocytes (derived
200 from human umbilical cord blood cells) were found to play a central role in ameliorating cognitive
201 deficits and reducing amyloid- β neuropathology in an Alzheimer's mouse model [40]. This finding
202 is consistent with an earlier study, by different investigators [41], which reported that very old SR-BI
203 knockout mice show deficient synaptic plasticity (long-term potentiation) in the hippocampus. Also,
204 very old SR-BI knockout mice were found to display impairments in recognition memory and spatial
205 memory [41].

206 Returning to the above observations regarding SAA and inflammation, they are of added interest
207 because inflammation is a known risk factor for Alzheimer's disease and the SAA concentration is
208 much higher, in cerebrospinal fluid (CSF), in subjects with Alzheimer's disease than in controls [42].
209 It was further found that SAA dissociated apolipoprotein E (apoE) from HDL, in the CSF, in a dose-
210 dependent manner. Importantly, amyloid- β fragments (i.e., 1-42) were bound to large CSF-HDL, but
211 not to apoE dissociated by SAA. Miida et al. [42] therefore postulate that inflammation in the CNS
212 may impair amyloid- β clearance due to loss of apoE from CSF-HDL. Moreover, it has recently been
213 independently reported that SAA itself can misfold and potentially lead to systemic amyloidoses [43].

214 Treating Brain Injury, Neuroinflammation, and Alzheimer's Disease via LCM/ND 215 Nanoemulsions

216 The brief histological description of brain-injury sites, in the preceding four paragraphs, points to a
217 larger pathophysiological overlap which exists between brain injury and Alzheimer's disease brain.
218 First as concerns brain injury, Wang et al. [44] have pointed out that non-neuronal brain cells,
219 especially astrocytes (the predominant cell type in the human brain), may exert an active role in the
220 pathogenesis of traumatic brain injury (TBI). Activated astrocytes may contribute to increased
221 oxidative stress and neuroinflammation following neurotrauma. Interestingly, the drug Edaravone
222 (also mentioned above [see 4 paragraphs back]) has been used successfully, in past research, for its
223 neuroprotective and antioxidative effects on the brain after TBI. Wang et al. [44] extended this
224 research and found that, after intravenous administration (in rats), Edaravone treatment significantly
225 decreased hippocampal neuron loss, reduced oxidative stress, and decreased neuronal programmed
226 cell death as compared to control treatment. The protective effects of Edaravone treatment were also
227 related to the pathology of TBI on non-neuronal cells, as Edaravone decreased both astrocyte and
228 microglia activation following TBI. These authors conclude that the likely mechanism of Edaravone's
229 neuroprotective effect, in the rat model of TBI, is via inhibiting oxidative stress leading to a decreased
230 inflammatory response and decreased glial activation, and thereby reducing neuronal death and
231 improving neurological function [44]. Similarly, Itoh et al. [45] have reported that Edaravone
232 administration intravenously (in rats), following TBI, inhibited free radical-induced neuronal
233 degeneration and apoptotic cell death around the damaged area. Hence, Edaravone treatment
234 improved cerebral dysfunction following TBI, suggesting its potential as an effective clinical therapy
235 [45].

236 In view of the above description of TBI, the effects of the drug Edaravone, and the pathophysiological
237 overlap of TBI with many characteristics of Alzheimer's disease brain (cf. above), it is logical and
238 consistent that Jiao et al. [18] have recently reported that Edaravone can also ameliorate Alzheimer's
239 disease-type pathologies and cognitive deficits of a mouse model of Alzheimer's disease. Specifically,
240 besides reducing amyloid- β deposition and tau hyperphosphorylation, Edaravone was found to
241 alleviate *oxidative stress* and, hence, attenuates the *downstream pathologies* including glial activation,
242 neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the memory deficits of the mice
243 [18]. [Note that Edaravone is a small-molecule drug, which is known to function as a free-radical
244 scavenger; it currently is being used clinically in Japan to treat (acute ischemic) stroke patients
245 [18,44].] Jiao et al. [18] further state that their above findings suggest that Edaravone is a promising
246 drug candidate for Alzheimer's disease by targeting multiple key pathways of the disease
247 pathogenesis. This recommendation by Jiao et al. of Edaravone (for treating Alzheimer's disease) fits
248 well with the initial drug candidates suggested, based on low-molecular-weight and sufficient
249 lipophilicity, for incorporation into the LCM/ND lipid nanoemulsion proposed here (cf. above) to
250 treat Alzheimer's disease. Since their recommendation is based in part on knowledge of failed clinical
251 trials indicating that a single target or pathway does not work on this complex disease [18], these
252 investigators are understandably encouraged by a drug like Edaravone which targets multiple
253 pathways of Alzheimer's disease pathogenesis.

254 Another drug candidate suggested above for incorporation into the LCM/ND nanoemulsion is
255 docosahexaenoic acid, or DHA. It has recently been reported extensively, in numerous publications
256 by various groups of investigators worldwide (e.g., [26-34]), that DHA has been used successfully to
257 treat Alzheimer's symptoms in humans as well as animal models (and brain injury in animal models).
258 [See also below.]

259 **Targeted Delivery (of drugs including antibody therapeutics) coordinated with Focused 260 Sonoporation**

261 More generally, this overall nanotherapeutic approach to treating Alzheimer's disease, via
262 lipid(LCM/ND)-nanoemulsion particles, is in harmony with the conclusions of a recent review on
263 drug targeting to the brain [46]. Of particular interest, Mahringer et al. [46] point out that one
264 noninvasive approach to overcome the blood-brain barrier (BBB) has been to increase lipophilicity
265 [even further] of CNS drugs by use of colloidal drug-delivery carriers, e.g., surfactant/lipid-coated
266 (polymeric) nanoparticles. These authors explain that, after intravenous injection, these surfactant-
267 treated nanoparticles apparently bind to apolipoproteins (e.g., apoA-I in blood plasma) and are
268 subsequently recognized by the corresponding lipoprotein receptors, namely, SR-BI type scavenger
269 receptors at the BBB ([46]; cf. Sect. 25.2 in ref. [9]). In addition, Mahringer et al.[46] further point out
270 in their review that focused-ultrasound/microbubble (FUS/M) delivery of a model drug has been
271 achieved in the past with minimal histological damage, while demonstrating markedly increased
272 brain dosage (compared to background BBB "leak"), in transgenic Alzheimer's-disease mouse models
273 [47]. Moreover, in another related study, the FUS/M strategy opened the BBB sufficiently to allow
274 passage of compounds of at least 70 kDa (but not greater than 2,000 kDa) into the brain parenchyma.
275 This noninvasive and localized BBB-opening (i.e., sonoporation) technique could, therefore, provide

276 an applicable mode to deliver nanoparticles of a range over several orders of magnitude of daltons
277 [46,48]. As specifically concerns antibody therapeutics, a very recent review [49] cites a published
278 example where dopamine receptor-targeted antibodies could cross the BBB following FUS/M
279 delivery. Also, i.v. injection of anti-amyloid β antibodies were observed to cross the BBB following
280 FUS/M delivery and, furthermore, significantly reduced amyloid β plaques (4-days) post treatment
281 in a transgenic mouse model of Alzheimer's disease [50,51].

282 Even without employing sonoporation, Mahringer et al. [46] emphasize that brain uptake of large
283 peptides like lipoproteins is mediated by endocytosis and/or transcytosis through peptide-specific
284 receptors (e.g., scavenger receptors (SR)) which are now studied as target moieties for antibody-
285 conjugated nanocarriers. Currently developed CNS drugs include large, hydrophilic molecules like
286 antibodies; while approximately 100% of large molecules ordinarily do not cross the BBB, such large
287 molecules (e.g., antibodies) do in fact pass the membrane barrier when delivered via receptor-
288 mediated endocytosis. As Mahringer et al. [46] point out in their detailed review, the BBB is equipped
289 with several endocytotic receptors at the luminal surface (i.e., capillary endothelial membrane),
290 including the type BI scavenger receptor (SR-BI). These reviewers state that coated nanoparticles
291 represent one of the most innovative noninvasive approaches for drug delivery to the CNS; an
292 important aspect for the commercial development of such nanoparticle systems is the fact that some
293 of the materials employed have already been registered for parenteral use. The authors also cite work
294 published in the past decade (consistent with separate Cav-Con, Inc.-collaborative studies published
295 in the 1990s [see www.netplex.net/~cavcon]), using fluorescent-labeled coated nanoparticles and
296 confocal laser scanning microscopy, which provide direct evidence that the [polymer]-coated
297 nanoparticles crossed the BBB and distributed in the brain tissue after i.v. administration to rats [46].

298 Very recently, the same coated-microbubble approach has been successfully utilized by Mulik et al.
299 [52] for the targeted delivery of a particular therapeutic agent, namely DHA, into the brain.
300 Specifically, lipoprotein nanoparticles reconstituted with docosahexaenoic acid (DHA) were
301 employed due to the likelihood of their significant therapeutic value in the brain, since DHA is known
302 to be neuroprotective [52]. Temporary, noninvasive BBB opening was achieved by Mulik et al. using
303 pulsed ultrasound exposures in a localized brain region in normal rats, after which the (fluorescent-
304 labeled or) DHA containing lipoprotein nanoparticles were administered intravenously. Fluorescent
305 imaging of the rat brain tissue demonstrated that DHA was incorporated into the brain cells (and
306 metabolized) in the ultrasound-exposed hemisphere. In addition, histological evaluation did not
307 indicate any evidence of increased tissue damage in the ultrasound-exposed brain regions compared
308 to normal brain. The authors concluded that their study demonstrates that localized delivery of DHA
309 to the brain is possible using systemically-administered lipoprotein nanoparticles combined with
310 pulsed focused ultrasound exposures in the brain [52]. (Other related nanoemulsion formulations for
311 delivery of DHA have also been described recently [53].)

312 Finally, (microbubble-assisted) sonoporation not only facilitates localized drug delivery (cf. above)
313 but *also the removal* of amyloid- β plaques from brain tissue in a mouse model [1]. The mechanism of
314 this plaque-burden reduction by sonoporation is believed to involve "loosening the tight junctions of
315 the cells forming the BBB" (see Background); at the same time, it is worth noting that this same

316 mechanism might also function to *counteract* characteristic *decreased* "brain clearance" of neurotoxic
317 amyloid- β "monomer" which has been described [54] as a central event in the pathogenesis of
318 Alzheimer's disease. Namely, the recent biomolecular study by Keaney et al. reports that controlled
319 modulation of tight junction components at the BBB can *enhance* the clearance (into the plasma) of
320 soluble human amyloid- β monomers from the brain in a murine model of Alzheimer's disease [54].

321 **Conclusions**

322 By incorporating drug candidates (such as Edaravone, DHA, or antibody therapeutic) into the
323 LCM/ND lipid nanoemulsion type, known to be a successful drug carrier [9], one is likely to obtain a
324 multitasking combination therapeutic for translational medicine. This therapeutic agent would target
325 cell-surface SR-BI making possible for various (above-described) cell types, all potentially implicated
326 in Alzheimer's disease (cf. [55,56]), to be simultaneously searched out and better reached for localized
327 drug treatment of brain tissue *in vivo*. Further, it has been reconfirmed in the current literature that
328 receptor-mediated endocytosis/transcytosis via lipoprotein receptors, particularly scavenger
329 receptors including SR-BI, remains a major route for drug delivery across the blood-brain barrier;
330 namely, recently published work has demonstrated that nanocomplexes can be readily transported
331 into brain capillary *endothelial* cells [bovine and porcine] via SR-BI receptor-mediated endocytosis
332 ([57]; see also [58-60]). Accordingly, *endothelial* modulation and repair become feasible by
333 pharmacological targeting [61-69] via SR-BI receptors (cf. [70]). Moreover, the effects of the various
334 cell types targeted (via SR-BI) may be additive, multiplicative, or otherwise synergistic. This
335 therapeutic approach receives added impetus from continual findings of cerebrovascular pathology
336 [71-77] and brain arterial aging [78-81] accompanying, and an apparent *endothelium*-dysfunction
337 involvement [61-69,77, 82-89] in, Alzheimer's disease (and its major risk factors) [81-99]. Hence the
338 proposed multitasking combination therapeutic may also display greater effectiveness at different
339 stages of Alzheimer's disease (cf. [55,56]); as a result, this multitasking (drug-delivery) therapeutic
340 could represent a promising way to treat, delay, or even prevent the disease in the future. Lastly, a
341 completely separate and additional advantage of such LCM/ND lipid nanoemulsion(s), as a
342 component of this combination therapeutic, stems from the characteristic lipid-coated microbubble
343 subpopulation [9] existing in this nanoemulsion type. Specifically, such preformed (lipid-stabilized)
344 microbubbles are well known to substantially reduce the acoustic power levels needed for
345 accomplishing temporary noninvasive (transcranial) ultrasound treatment [4-8,100-103], or
346 sonoporation [104-111], if additionally desired for the Alzheimer's patient.

347

348 **Acknowledgements**

349 Many thanks are due to numerous past (basic-research and clinical) colleagues for cultivating
350 important collaboration, over the past few decades, on some of the published investigations
351 described in this review and/or their generous help with various experimental measurements.

352 **Funding sources**

353 This research did not receive any specific grant from funding agencies in the public, commercial, or
354 not-for-profit sectors. JSD is an employee of Cav-Con Inc.

355 REFERENCES

356 1. Leinenga, G.; Gotz, J. Scanning ultrasound removes amyloid- β and restores memory in an Alzheimer's disease
357 mouse model. *Sci. Transl. Med.* **2015**, *7*, 278ra33.

358 2. Torrice, M. Alzheimer's therapy goes acoustic. *Chem. Engin. News* **2015**, *93*, (#11) 5.

359 3. Franco, R.; Cedazo-Minguez, A. Successful therapies for Alzheimer's disease: Why so many in animal models
360 and none in humans? *Front. Pharmacol.* **2014**, *5*, (June) 1-13.

361 4. Bing, C.; Ladouceur-Wodzak, M.; Wanner, C.R.; Shelton, J.M.; Richardson, J.A.; Chopra, R. Trans-cranial
362 opening of the blood-brain barrier in targeted regions using a stereotaxic brain axis and focused ultrasound
363 energy. *J. Ther. Ultrasound* **2014**, *2*, (#13) 1-11.

364 5. Lammers, T.; Koczera, P.; Fokong, S.; Gremse, F.; Ehling, J.; Vogt, M.; Pich, A.; Storm, G.; van Zandvoort, M.;
365 Kiessling, F. Theranostic USPIO-loaded microbubbles for mediating and monitoring blood-brain barrier
366 permeation. *Adv. Funct. Mater.* **2015**, *25*, 36-43.

367 6. Marquet, F.; Tung, Y.S.; Teichert, T.; Ferrera, V.P.; Konofagou, E.E. Noninvasive, transient and selective blood-
368 brain barrier opening in non-human primates *in vivo*. *PLoS ONE* **2011**, *6*, e22598.

369 7. Goliae, A.; Adhikari, U.; Berkowitz, M.L. Opening of the blood-brain barrier tight junction due to shock wave
370 induced bubble collapse: a molecular dynamics simulation study. *ACS Chem. Neurosci.* **2015**, *6*, 1296-1301.

371 8. Adhikari, U.; Goliae, A.; Berkowitz, M.L. Mechanism of membrane poration by shock wave induced
372 nanobubble collapse: a molecular dynamics study. *J. Phys. Chem. B* **2015**, *119*, 6225-6234.

373 9. D'Arrigo, J. *Stable Nanoemulsions: Self-Assembly in Nature and Nanomedicine*; Elsevier: Amsterdam, The
374 Netherlands, 2011; 415 pp.; ISBN: 978-0-444-53798-0.

375 10. Kahlil, A.; Berrougi, H.; Pawelec, G.; Fulop, T. Impairment of the ABCA1 and SR-BI-mediated cholesterol
376 efflux pathways and HDL anti-inflammatory activity in Alzheimer's disease. *Mech. Ageing Dev.* **2012**, *133*, 20-
377 29.

378 11. Thanopoulou, K.; Fragkouli, A.; Stylianopoulou, F.; Georgopoulos, S. Scavenger receptor class B typeI(SR-
379 BI) regulates perivascular macrophages and modifies amyloid pathology in an Alzheimer mouse model. *Proc.*
380 *Natl. Acad. Sci. U.S.A.* **2010**, *107*, 20816-20821.

381 12. Song, G.J.; Kim, S.M.; Park, K.H.; Kim, J.; Choi, I.; Cho, K.H. SR-BI mediates high density lipoprotein (HDL)-
382 induced anti-inflammatory effect in macrophages. *Biochem. Biophys. Res. Comm.* **2015**, *457*, 112-118.

383 13. Donev, R.; Kolev, M.; Millet, B.; Thome, J. Neuronal death in Alzheimer's disease and therapeutic
384 opportunities. *J. Cell. Mol. Med.* **2009**, *13*, 4329-4348.

385 14. Bredesen, D.E. Reversal of cognitive decline: a novel therapeutic program. *Aging (Albany, NY)* **2014**, *6*, 707-
386 717.

387 15. Constantinides, P.P.; Chaubal, M.V.; Shorr, R. Advances in lipid nanodispersions for parenteral drug delivery
388 and targeting. *Adv. Drug Deliv. Rev.* **2008**, *60*, 757-767.

389 16. Ho, S.Y.; Barbarese, E.; D'Arrigo, J.S.; Smith, C.; Simon, R.H. Evaluation of lipid-coated microbubbles as a
390 delivery vehicle for Taxol in tumor therapy. *Neurosurgery* **1997**, *40*, 1260-1268.

391 17. Wakefield, A.E.; Ho, S.Y.; Li, X.G.; D'Arrigo, J.S.; Simon, R.H. The use of lipid-coated microbubbles as a
392 delivery agent for 7 β -hydroxycholesterol to a radiofrequency lesion in the rat brain. *Neurosurgery* **1998**, *42*, 592-
393 598.

394 18. Jiao, S.S.; Yao, X.Q.; Liu, Y.H.; Wang, Q.H.; Zeng, F.; Lu, J.J.; Liu, J.; Zhu, C.; Shen, L.L.; Liu, C.H.; Wang, Y.R.;
395 Zeng, G.H.; Parikh, A.; Chen, J.; Liang, C.R.; Xiang, Y.; Bu, X.L.; Deng, J.; Li, J.; Xu, J.; Zeng, Y.Q.; Xu, X.; Xu,
396 H.W.; Zhong, J.H.; Zhou, H.D.; Zhou, X.F.; Wang, Y.J. Edaravone alleviates Alzheimer's disease-type pathologies
397 and cognitive deficits. *Proc. Natl. Acad. Sci. U.S.A.* **2015**, *112*, 5225-5230.

398 19. Yang, R.; Wang, Q.; Li, F.; Li, J.; Liu, X. Edaravone injection ameliorates cognitive deficits in rat model of
399 Alzheimer's disease. *Neurol. Sci.* **2015**, *36*, 2067-2072.

400 20. Marques, S.; Batalha, V.L.; Lopez, L.V.; Outeiro, T.F. Modulating Alzheimer's disease through caffeine: a
401 putative link to epigenetics. *J. Alzheimer's Dis.* **2011**, *24*, 161-171.

402 21. Chieffi, S.; La Marra, M.; Viggiano, A.; Messina, G.; De Luca, V.; Monda, M. Caffeine protection against β -
403 amyloid peptide toxicity in Alzheimer's disease. *Current Topics in Peptide & Protein Res.* **2011**, *12*, 71-75.

404 22. Mohan, A.; Roberto, A.J.; Mohan, A.; Liogier-Weyback, L.; Guha, R.; Ravishankar, N.; Rebello, C.; Kumar, A.;
405 Mohan, R. Caffeine as treatment for Alzheimer's disease: a review. *J. Caffeine Res.* **2015**, doi:
406 10.1089/jcr.2014.0027.

407 23. Chen, X.; Ghribi, O.; Geiger, J.D. Caffeine protects against disruptions of the blood-brain barrier in animal
408 models of Alzheimer's and Parkinson's disease. *J. Alzheimers Dis.* **2010**, *20*(Suppl. 1), S127-S141.

409 24. Zhao, H.F.; Li, N.; Wang, Q.; Cheng, X.J.; Li, X.M.; Liu, T.T. Resveratrol decreases the insoluble A β 1-42 level
410 in hippocampus and protects the integrity of the blood-brain barrier in AD rats. *Neuroscience* **2015**, *310*, 641-
411 649.

412 25. Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.;
413 Raman, R.; Aisen, P.S. A randomized, placebo-controlled trial of resveratrol for Alzheimer disease. *Neurology*
414 **2015**, *85*, 1383-1391.

415 26. Cederholm, T.; Salem Jr., N.; Palmlad, J. v-3 fatty acids in the prevention of cognitive decline in humans.
416 *Adv. Nutr.* **2013**, *4*, 672-676.

417 27. Williams, J.J.; Mayurasakorn, K.; Vannucci, S.J.; Mastropietro, C.; Bazan, N.G.; Ten, V.S.; Deckelbaum, R.J. N-
418 3 fatty acid rich triglyceride emulsions are neuroprotective after cerebral hypoxic-ischemic injury in neonatal
419 mice. *PLoS One* **2013**, *8*, e56233.

420 28. Mayurasakorn, K.; Niatsetskaya, Z.V.; Sosunov, S.A.; Williams, J.J.; Zirpoli, H.; Vlasakov, I.; Deckelbaum,
421 R.J.; Ten, V.S. DHA but not EPA emulsions preserve neurological and mitochondrial function after brain
422 hypoxia-ischemia in neonatal mice. *PLoS One* **2016**, *11*, e0160870.

423 29. Yassine, H.N.; Rawat, V.; Mack, W.J.; Quinn, J.F.; Yurko-Mauro, K.; Bailey-Hall, E.; Aisen, P.S.; Chui, H.C.;
424 Schneider, L.S. The effect of ApoE genotype on the delivery of DHA to cerebrospinal fluid in Alzheimer's
425 disease. *Alzheimer's Res. Ther.* **2016**, *8*, 25-34.

426 30. Pan, Y.; Khalil, H.; Nicolazzo, J.A. The impact of docosahexaenoic acid on Alzheimer's disease: Is there a role
427 of the blood-brain barrier? *Curr. Clin. Pharmacol.* **2015**, *10*, 222-241.

428 31. Hashimoto, M.; Hossain, S.; Al Mamun, A.; Matsuzaki, K.; Arai, H. Docosahexaenoic acid: one molecule
429 diverse functions. *Crit. Rev. Biotechnol.* **2016**, doi: 10.1080/07388551.2016.1207153.

430 32. Vandal, M.; Alata, W.; Tremblay, C.; Rioux-Perreault, C.; Salem Jr., N.; Calon, F.; Plourde, M. Reduction in
431 DHA transport to the brain of mice expressing human ApoE4 compared to ApoE2. *J. Neurochem.* **2014**, 129, 516-
432 526.

433 33. Hjorth, E.; Zhu, M.; Toro, V.C.; Vedin, I.; Palmlad, J.; Cederholm, T.; Freund-Levi, Y.; Faxen-Irving, G.;
434 Wahlund, L.O.; Basun, H.; Eriksdotter, M.; Schultzberg, M. Omega-3 fatty acids enhance phagocytosis of
435 Alzheimer's disease-related amyloid- β 42 human microglia and decrease inflammatory markers. *J. Alzheimers
436 Dis.* **2013**, 35, 697-713.

437 34. Yassine, H.N.; Feng, Q.; Azizkhanian, I.; Rawat, V.; Castor, K.; Fonteh, A.N.; Harrington, M.G.; Zheng, L.;
438 Reed, B.R.; DeCarli, C.; Jagust, W.J.; Chui, H.C. Association of serum docosahexaenoic acid with cerebral
439 amyloidosis. *JAMA Neurology* **2016**, doi: 10.1001/jamaneurol.2016.1924.

440 35. Orsini, F.; De Blasio, D.; Zangari, R.; Zanier, E.R.; De Simoni, M.G. Versatility of the complement system in
441 neuroinflammation, neurodegeneration and brain homeostasis. *Front. Cell. Neurosci.* **2014**, doi:
442 10.3389/fncel.2014.00380.

443 36. Savage, C.D.; Lopez-Castejon, G.; Denes, A.; Brough, D. NLRP3-inflammasome activating DAMPs stimulate
444 an inflammatory response in glia in the absence of priming which contributes to brain inflammation after injury.
445 *Front. Immunol.* **2012**, 3, 288.

446 37. Baranova, I.N.; Vishnyakova, T.G.; Bocharov, A.V.; Kurlander, R.; Chen, Z.; Kimelman, M.L.; Remaley, A.T.;
447 Csako, G.; Thomas, F.; Eggerman, T.L.; Patterson, A.P. Serum amyloid A binding to CLA-1 (CD36 and LIMPII
448 analogous-1) mediates serum amyloid A protein-induced activation of ERK1/2 and p38 mitogen-activated
449 protein kinases. *J. Biol. Chem.* **2005**, 280, 8031-8040.

450 38. Vishnyakova, T.G.; Bocharov, A.V.; Baranova, I.N.; Chen, Z.; Remaley, A.T.; Csako, G.; Eggerman, T.L.;
451 Patterson, A.P. Binding and internalization of lipopolysaccharide by CLA-1, a human orthologue of rodent
452 scavenger receptor B1. *J. Biol. Chem.* **2003**, 278, 22771-22780.

453 39. Pearson, A. Scavenger receptors in innate immunity. *Curr. Opin. Immunol.* **1996**, 8, 20-28.

454 40. Darlington, D.; Li, S.; Hou, H.; Habib, A.; Tian, J.; Gao, Y.; Ehrhart, J.; Sanberg, P.R.; Sawmiller, D.; Giunta,
455 B.; Mori, T.; Tan, J. Human umbilical cord blood-derived monocytes improve cognitive deficits and reduce
456 amyloid- β pathology in PSAPP mice. *Cell Transplant.* **2015**, 24, 2237-2250.

457 41. Chang, E.H.; Rigotti, A.; Huerta, P. Age-related influence of the HDL receptor SR-BI on synaptic plasticity
458 and cognition. *Neurobiol. Aging* **2009**, 30, 407-419.

459 42. Miida, T.; Yamada, T.; Seino, U.; Ito, M.; Fueki, Y.; Takahashi, A.; Kosuge, K.; Soda, S.; Hanyu, O.; Obayashi,
460 K.; Miyazaki, O.; Okada, M. Serum amyloid A (SAA)-induced remodeling of CSF-HDL. *Biochim. Biophys. Acta*
461 **2006**, 1761, 424-433.

462 43. Das, M.; Gursky, O. Amyloid-forming properties of human apolipoproteins: sequence analyses and
463 structural insights. *Adv. Exp. Med. Biol.* **2015**, 855, 175-211.

464 44. Wang, G.H.; Jiang, Z.L.; Li, Y.C.; Li, X.; Shi, H.; Gao, Y.Q.; Vosler, P.S.; Chen, J. Free-radicle scavenger
465 Edaravone treatment confers neuroprotection against traumatic brain injury in rats. *J. Neurotrauma* **2011**, *28*,
466 2123-2134.

467 45. Itoh, T.; Satou, T.; Nishida, S.; Tsubaki, M.; Imano, M.; Hashimoto, S.; Ito, H. Edaravone protects against
468 apoptotic neuronal cell death and improves cerebral function after traumatic brain injury in rats. *Neurochem.
469 Res.* **2010**, *35*, 348-355.

470 46. Mahringer, A.; Reichel, V.; Ott, M.; MacLean, C.; Reimold, I.; Hollnack-Pusch, E.; Fricker, G. Overcoming the
471 blood brain barrier: the challenge of brain drug targeting. *J. Nanoneurosci.* **2012**, *2*, 5-19.

472 47. Raymond, S.B.; Treat, L.H.; Dewey, J.D.; McDannold, N.J.; Hynynen, K.; Bacska, B.J. Ultrasound enhanced
473 delivery of molecular imaging and therapeutic agents in Alzheimer's disease mouse models. *PLoS One* **2008**, *3*,
474 e2175.

475 48. Choi, J.J.; Wang, S.; Tung, Y.S.; Morrison 3rd, B.; Konofagou, E.E. Molecules of various pharmacologically-
476 relevant sizes can cross the ultrasound-induced blood-brain barrier opening in vivo. *Ultrasound Med. Biol.* **2010**,
477 *36*, 58-67.

478 49. Greene, C.; Campbell, M. Tight junction modulation of the blood-brain barrier: CNS delivery of small
479 molecules. *Tissue Barriers* **2016**, *4*, e1138017.

480 50. Sheikov, N.; McDannold, N.; Vykhotseva, N.; Jolesz, F.; Hynynen, K. Cellular mechanisms of the blood-
481 brain barrier opening induced by ultrasound in presence of microbubbles. *Ultrasound Med. Biol.* **2004**, *30*, 979-
482 989.

483 51. Kinoshita, M.; McDannold, N.; Jolesz, F.A.; Hynynen, K. Targeted delivery of antibodies through the blood-
484 brain barrier by MRI-guided focused ultrasound. *Biochem. Biophys. Res. Commun.* **2006**, *340*, 1085-1090.

485 52. Mulik, R.S.; Bing, C.; Ladouceur-Wodzak, M.; Munaweera, I.; Chopra, R.; Corbin, I.R. Localized delivery of
486 low-density lipoprotein docosahexaenoic acid nanoparticles to the rat brain using focused ultrasound.
487 *Biomaterials* **2016**, *83*, 257-268.

488 53. Walker, R.; Decker, E.A.; McClements, D.J. Development of food-grade nanoemulsions and emulsions for
489 delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. *Food Funct.* **2015**, *6*, 42-55.

490 54. Keaney, J.; Walsh, D.M.; O'Malley, T.; Hudson, N.; Crosbie, D.E.; Loftus, T.; Sheehan, F.; McDaid, J.;
491 Humphries, M.M.; Callanan, J.J.; Brett, F.M.; Farrell, M.A.; Humphries, P.; Campbell, M. Autoregulated
492 paracellular clearance of amyloid- β across the blood-brain barrier. *Sci. Adv.* **2015**, *1*, e1500472.

493 55. Wang, Y.J. Lessons from immunotherapy for Alzheimer's disease. *Nat. Rev. Neurol.* **2014**, *10*, 188-189.

494 56. Krstic, D.; Knuesel, I. Deciphering the mechanism underlying late-onset Alzheimer's disease. *Nat. Rev.
495 Neurol.* **2013**, *9*, 25-34.

496 57. Srimanee, A.; Regberg, J.; Hallbrink, M.; Vajragupta, O.; Langel, U. Role of scavenger receptors in peptide-
497 based delivery of plasmid DNA across a blood-brain barrier model. *Int. J. Pharm.* **2016**, *500*, 128-135.

498 58. Lajoie, J.M.; Shusta, E.V. Targeting receptor-mediated transport for delivery of biologics across the blood-
499 brain barrier. *Annu. Rev. Pharmacol. Toxicol.* **2015**, *55*, 613-631.

500 59. Almer, G.; Mangge, H.; Zimmer, A.; Prassl, R. Lipoprotein-related and apolipoprotein-mediated delivery
501 systems for drug targeting and imaging. *Curr. Med. Chem.* **2015**, *22*, 3631-3651.

502 60. Preston, J.E.; Abbott, J.; Begley, D.J. Transcytosis of macromolecules at the blood-brain barrier. *Adv.*
503 *Pharmacol.* **2014**, *71*, 147-163.

504 61. Di Marco, L.Y.; Venneri, A.; Farkas, E.; Evans, P.C.; Marzo, A.; Frangi, A.F. Vascular dysfunction in the
505 pathogenesis of Alzheimer's disease -- a review of endothelium-mediated mechanisms and ensuing vicious
506 circles. *Neurobiol. Dis.* **2015**, *82*, 593-606.

507 62. Salmina, A.B.; Inzhutova, A.I.; Malinovskaya, N.A.; Petrova, M.M. Endothelial dysfunction and repair in
508 Alzheimer-type neurodegeneration: neuronal and glial control. *J. Alzheimers Dis.* **2010**, *22*, 17-36.

509 63. Tong, X.K.; Hamel, E. Simvastatin restored vascular reactivity, endothelial function and reduced string vessel
510 pathology in a mouse model of cerebrovascular disease. *J. Cereb. Blood Flow Metab.* **2015**, *35*, 512-520.

511 64. Carradori, D.; Gaudin, A.; Brambilla, D.; Andrieux, K. Application of nanomedicine to the CNS diseases. *Int.*
512 *Rev. Neurobiol.* **2016**, *130*, 73-113.

513 65. Koster, K.P.; Thomas, R.; Morris, A.W.; Tai, L.M. Epidermal growth factor prevents oligomeric amyloid- β
514 induced angiogenesis deficits in vitro. *J. Cereb. Blood Flow Metab.* **2016**, *36*, 1865-1871.

515 66. Zenaro, E.; Piacentino, G.; Constantin, G. The blood-brain barrier in Alzheimer's disease. *Neurobiol. Dis.*
516 doi: 10.1016/j.nbd.2016.07.007 .

517 67. Qosa, H.; Mohamed, A.; Al Rihani, S.B.; Batarseha, Y.S.; Duong, Q.V.; Keller, J.N.; Kaddoumi, A. High-
518 throughput screening for identification of blood-brain barrier integrity enhancers: a drug repurposing
519 opportunity to rectify vascular amyloid toxicity. *J. Alzheimers Dis.* **2016**, *53*, 1499-1516.

520 68. Hostenbach, S.; D'haeseleer, M.; Kooijman, R.; De Keyser, J. The pathophysiological role of astrocytic
521 endothelin-1. *Prog Neurobiol.* **2016**, *144*, 88-102.

522 69. Koizumi, K.; Wang, G.; Park, L. Endothelial dysfunction and amyloid- β -induced neurovascular alterations.
523 *Cell. Mol. Neurobiol.* **2016**, *36*, 155-165.

524 70. Hottman, D.A.; Chernick, D.; Cheng, S.; Wang, Z.; Li, L. HDL and cognition in neurodegenerative disorders.
525 *Neurobiol. Dis.* **2014**, *72*, 22-36.

526 71. Goldwaser, E.L.; Acharya, N.K.; Sarkar, A.; Godsey, G.; Nagele, R.G. Breakdown of the cerebrovasculature
527 and blood-brain barrier: a mechanistic link between diabetes mellitus and Alzheimer's disease. *J. Alzheimers*
528 *Dis.* **2016**, *54*, 445-456.

529 72. Weekman, E.M.; Sudduth, T.L.; Caverly, C.N.; Kopper, T.J.; Phillips, O.W.; Powell, D.K.; Wilcock, D.M.
530 Reduced efficacy of anti-A β immunotherapy in a mouse model of amyloid deposition and vascular cognitive
531 impairment comorbidity. *J. Neurosci.* **2016**, *36*, 9896-9907.

532 73. Nelson, A.R.; Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Neurovascular dysfunction and neurodegeneration
533 in dementia and Alzheimer's disease. *Biochim. Biophys. Acta* **2016**, *1862*, 887-900.

534 74. Kapasi, A.; Schneider, J.A. Vascular contributions to cognitive impairment, clinical Alzheimer's disease, and
535 dementia in older persons. *Biochim. Biophys. Acta* **2016**, *1862*, 878-886.

536 75. McAleese, K.L.; Alafuzoff, I.; Charidimou, A.; De Reuck, J.; Grinberg, L.T.; Hainsworth, A.H.; Hortobagyi, T.; Ince, P.; Jellinger, K.; Gao, J.; Kalaria, R.N.; Kovacs, G.G.; Kovari, E.; Love, S.; Popovic, M.; Skrobot, O.; Taipa, R.; Thal, D.R.; Werring, D.; Wharton, S.B.; Attems, J. Post-mortem assessment in vascular dementia: advances and aspirations. *BMC Medicine* **2016**, *14*, 129.

540 76. Noh, Y.; Seo, S.W.; Jeon, S.; Lee, J.M.; Kim, J.S.; Lee, J.H.; Kim, J.H.; Kim, G.H.; Ye, B.S.; Cho, H.; Kim, H.J.; Yoon, C.W.; Choe, Y.S.; Lee, K.H.; Weiner, M.W.; Na, D.L. The role of cerebrovascular disease in amyloid deposition. *J. Alzheimers Dis.* **2016**, *54*, 1015-1026.

543 77. Hishikawa, N.; Fukui, Y.; K. Sato, K.; Kono, S.; Yamashita, T.; Ohta, T.; Deguchi, K.; Abe, K. Cognitive and affective functions in Alzheimer's disease patients with metabolic syndrome. *Eur. J. Neurol.* **2016**, *23*, 339-345.

545 78. Gutierrez, J.; Honig, L.; Elkind, M.S.; Mohr, J.P.; Goldman, J.; Dwork, A.J.; Morgello, S.; Marshall, R.S. Brain arterial aging and its relationship to Alzheimer dementia. *Neurology* **2016**, *86*, 1507-1515.

547 79. Nagata, K.; Yamazaki, T.; Takano, D.; Maeda, T.; Fujimaki, Y.; Nakase, T.; Sato, Y. Cerebral circulation in aging. *Ageing Res. Rev.* **2016**, *30*, 49-60.

549 80. Calabrese, V.; Giordano, J.; Signorile, A.; Ontario, M.L.; Castorina, S.; De Pasquale, C.; Eckert, G.; Calabrese, E.J. Major pathogenic mechanisms in vascular dementia: roles of cellular stress response and hormesis in neuroprotection. *J. Neurosci. Res.* **2016**, *94*, 1588-1603.

552 81. Toth, P.; Tarantini, S.; Csiszar, A.; Ungvari, Z.I. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. *Am. J. Physiol. Heart Circ. Physiol.* **2017**, *312*, H1-H20.

555 82. Devraj, K.; Poznanovic, S.; Spahn, C.; Schwall, G.; Harter, P.N.; Mittelbronn, M.; Antoniello, K.; Paganetti, P.; Muhs, A.; Heilemann, M.; Hawkins, R.A.; Schrattenholz, A.; Liebner, S. BACE-1 is expressed in the blood-brain barrier endothelium and is upregulated in a murine model of Alzheimer's disease. *J. Cereb. Blood Flow Metab.* **2016**, *36*, 1281-1294.

559 83. Chao, A.C.; Lee, T.C.; Juo, S.H.; Yang, D.I. Hyperglycemia increases the production of amyloid beta-peptide leading to decreased endothelial tight junction. *CNS Neurosci. Ther.* **2016**, *22*, 291-297.

561 84. Khalil, R.B.; Khoury, E.; Koussa, S. Linking multiple pathogenic pathways in Alzheimer's disease. *World J. Psychiatry* **2016**, *6*, 208-214.

563 85. Festoff, B.W.; Sajja, R.K.; van Dreden, P.; Cucullo, L. HGMB1 and thrombin mediate the blood-brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer's disease. *J. Neuroinflammation* **2016**, *13*, 194.

566 86. Gangoda, S.V.; Butlin, M.; Gupta, V.; Chung, R.; Avolio, A. Pulsatile stretch alters expression and processing of amyloid precursor protein in human cerebral endothelial cells. *J. Hypertens.* **2016**, *34*, e24.

568 87. Roberts, A.M.; Jagadapillai, R.; Vaishnav, R.A.; Friedland, Drinovac, R.; Lin, X.; Gozal, E. Increased pulmonary arteriolar tone associated with lung oxidative stress and nitric oxide in a mouse model of Alzheimer's disease. *Physiol. Rep.* **2016**, *4*, e12953.

571 88. Shang, S.; Yang, Y.M.; Zhang, H.; Tian, L.; Jiang, J.S.; Dong, Y.B.; Zhang, K.; Li, B.; Zhao, W.D.; Fang, W.G.;
572 Chen, Y.H. Intracerebral GM-CSF contributes to transendothelial monocyte migration in APP/PS1 Alzheimer's
573 disease mice. *J. Cereb. Blood Flow Metab.* **2016**, *36*, 1987-1991.

574 89. Austin, S.A.; Katusic, Z.S. Loss of endothelial nitric oxide synthase promotes p25 generation and tau
575 phosphorylation in a murine model of Alzheimer's disease. *Circ. Res.* **2016**, *119*, 1128-1134.

576 90. Katusic, Z.S.; Austin, S.A. Neurovascular protective function of endothelial nitric oxide. *Circ. J.* **2016**, *80*, 1499-
577 1503.

578 91. Wang, L.; Du, Y.; Wang, K.; Xu, G.; Luo, S.; He, G. Chronic cerebral hypoperfusion induces memory deficits
579 and facilitates A β generation in C57BL/6J mice. *Exp. Neurol.* **2016**, *283*(Pt. A), 353-364.

580 92. Kyrtos, C.R.; Baras, J.S. Modeling the role of the glymphatic pathway and cerebral blood vessel properties
581 in Alzheimer's disease pathogenesis. *PLoS One* **2015**, *10*, e0139574 .

582 93. Kalaria, R.N.; Akinyemi, R.; Ihara, M. Stroke injury, cognitive impairment and vascular dementia. *Biochim.*
583 *Biophys. Acta* **2016**, *1862*, 915-925.

584 94. Khan, A.; Kalaria, R.N.; Corbett, A.; Ballard, C. Update on vascular dementia. *J. Geriatr. Psychiatry Neurol.*
585 **2016**, *29*, 281-301.

586 95. Austin, S.A.; Santhanam, A.V.; d'Uscio, L.V.; Katusic, Z.S. Regional heterogeneity of cerebral microvessels
587 and brain susceptibility to oxidative stress. *PLoS One* **2015**, *10*, e0144062.

588 96. Toda, N.; Okamura, T. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase:
589 implications for Alzheimer's disease. *J. Pharmacol. Sci.* **2016**, *131*, 223-232.

590 97. Uiterwijk, R.; Huijts, M.; Staals, J.; Rouhl, R.P.; De Leeuw, P.W.; Kroon, A.A.; Van Oostenbrugge, R.J.
591 Endothelial activation is associated with cognitive performance in patients with hypertension. *Am. J. Hypertens.*
592 **2016**, *29*, 464-469.

593 98. Kamat, P.K.; Kyles, P.; Kalani, A.; Tyagi, N. Hydrogen sulfide ameliorates homocysteine-induced
594 Alzheimer's disease-like pathology, blood-brain barrier disruption, and synaptic disorder. *Mol. Neurobiol.* **2016**,
595 *53*, 2451-2467.

596 99. Iadecola, C. Untangling neurons with endothelial nitric oxide. *Circ. Res.* **2016**, *119*, 1052-1054.

597 100. Delalande, A.; Kotopoulis, S.; Postema, M.; Midoux, P.; Pichon, C. Sonoporation: mechanistic insights and
598 ongoing challenges for gene transfer. *Gene* **2013**, *525*, 191-199.

599 101. Kotopoulis, S.; Dimcevski, G.; Gilja, O.H.; Hoem, D.; Postema, M. Treatment of human pancreatic cancer
600 using combined ultrasound, microbubbles, and gemcitabine: a clinical case study. *Med. Phys.* **2013**, *40*, 072902.

601 102. Kotopoulis, S.; Delalande, A.; Popa, M.; Mamaeva, V.; Dimcevski, G.; Gilja, O.H.; Postema, M.; Gjertsen,
602 B.T.; McCormack, E. Sonoporation-enhanced chemotherapy significantly reduces primary tumour burden in an
603 orthotopic pancreatic cancer xenograft. *Mol. Imaging Biol.* **2014**, *16*, 53-62.

604 103. D'Arrigo, J.S. Nanotherapy for Alzheimer's. *Chem. Engin. News* **2015**, *93*, (#41) 2.

605 104. Paefgen, V.; Doleschel, D.; Kiessling, F. Evolution of contrast agents for ultrasound imaging and ultrasound-
606 mediated drug delivery. *Front. Pharm.* **2015**, *6*, 197.

607 105. Delalande, A.; Leduc, C.; Midoux, P.; Postema, M.; Pichon, C. Efficient gene delivery by sonoporation is
608 associated with microbubble entry into cells and the clathrin-dependent endocytosis pathway. *Ultrasound Med.*
609 *Biol.* **2015**, *41*, 1913-1926.

610 106. Qin, J.; Wang, T.Y.; Willmann, J.K. Sonoporation: applications for cancer therapy. *Adv. Exp. Med. Biol.*
611 (*Therapeutic Ultrasound*) **2016**, *880*, 263-291.

612 107. Aubry, J.F.; Tanter, M. MR-guided transcranial focused ultrasound. *Adv. Exp. Med. Biol.* **2016**, *880*, 97-111.

613 108. Castle, J.; Feinstein, S.B. Drug and gene delivery using sonoporation for cardiovascular disease. *Adv. Exp.*
614 *Med. Biol.* **2016**, *880*, 331-338.

615 109. Burgess, A.; Hynynen, K. Microbubble-assisted ultrasound for drug delivery in the brain and central
616 nervous system. *Adv. Exp. Med. Biol.* **2016**, *880*, 293-308.

617 110. Bouakaz, A.; Zeghimi, A.; Doinikov, A.A. Sonoporation: concept and mechanisms. *Adv. Exp. Med. Biol.*
618 **2016**, *880*, 175-189.

619 111. D'Arrigo, J.S. Nanotherapy for Alzheimer's disease and vascular dementia: targeting senile endothelium.
620 *Adv. Colloid Interface Sci.* (under review).

© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).