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Abstract: Variational mode decomposition (VMD) is a recently introduced adaptive signal 
decomposition algorithm with a solid theoretical foundation and good noise robustness compared 
with empirical mode decomposition (EMD). There is a lot of background noise in the vibration signal 
of diesel engine. To solve the problem, a denoising algorithm based on VMD and Euclidean Distance is 
proposed. Firstly, a multi-component, non-Gauss, and noisy simulation signal is established, and 
decomposed into a given number K of band-limited intrinsic mode functions by VMD. Then the 
Euclidean distance between the probability density function of each mode and that of the simulation 
signal are calculated. The signal is reconstructed using the relevant modes, which are selected on the 
basis of noticeable similarities between the probability density function of the simulation signal and 
that of each mode. Finally, the vibration signals of diesel engine connecting rod bearing faults are 
analyzed by the proposed method. The results show that compared with other denoising algorithms, 
the proposed method has better denoising effect, and the fault characteristics of vibration signals of 
diesel engine connecting rod bearings can be effectively enhanced. 
 
Keywords: variational mode decomposition; Euclidean Distance; diesel engine; vibration signal; 
denoising algorithm 
 

 

1. Introduction 

Vibration signal processing has been an effective way of monitoring mechanical equipment for 
many years. However, mechanical vibration signal are usually masked by significant background noise, 
which have motivated many studies into developing denoising methods [1]. The vibration signals 
should be processed to reduce noise and improve the quality before further analyzing [2]. Many 
researchers in this field have made thorough explorations. Wavelet denoising is a very effective 
denoising method in recent years, among which wavelet threshold denoising is the most commonly 
used method [3-6]. However, the denoising effect of this method is affected by the selection of basis 
functions and depends on the subjective experience of the designer, which has uncertainty. 

In order to solve the above problems, Huang et al. introduced an adaptive signal processing 
technique called empirical mode decomposition (EMD)[7,8], which has demonstrated outstanding 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 September 2017                   doi:10.20944/preprints201709.0158.v1

©  2017 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201709.0158.v1
http://creativecommons.org/licenses/by/4.0/


performance in dealing with nonlinear and nonstationary signals. This technique has been applied in 
many fields, such as biomedical image analysis [9], fault diagnosis of rolling element bearings [10], 
signal de-noising [11-13], and voice signal analysis [14]. According to the principle of wavelet 
threshold denoising, EMD threshold denoising is put forward [15,16]. In addition, EMD denoising 
combined with the Euclidean distance(ED) is proposed in document [17]. All these methods have 
achieved good denoising effect. However, EMD still has some disadvantages, such as mode mixing and 
the lack of an exact mathematical model of the process.  

In recent years, Konstantin, Dragomiretskiy et al. proposed variational modal decomposition [18], 
which is essentially composed of several adaptive Wiener filters and has good noise robustness. 
Compared with EMD, VMD has strong mathematical theory basis. So it can effectively alleviate or 
avoid a series of problems that exist in EMD, and has higher operation efficiency. VMD is widely used 
in various engineering fields [19-22]. An X.L. et al. applied VMD to the bearing fault diagnosis of the 
wind turbine, and realized the effective discrimination of the bearing fault [23]. By combining VMD 
with detrended fluctuation analysis (DFA), Liu et al. successfully extracted gear fault characteristics 
[24]. By combining VMD with independent component analysis (ICA), Yao et al. successfully separated 
the piston knock and combustion noise of the engine [25]. Zhang M. et al proposed a denoising 
method based on VMD and correlation coefficient (VMD-CORR)[26]. However, because of the large 
amount of noise in the signal, it is easy to remove the useful components in the signal, which leads to 
the distortion of the signal. 

In this paper, a denoising algorithm, called the VMD-Euclidean distance (VMD-ED), is presented 
for vibration signal of diesel engine. Firstly, a multi-component, non-stationary and non-Gauss 
simulation signal is established, and the Gauss white noise is added. Secondly, the simulation signal is 
decomposed by VMD to obtain the band limited intrinsic mode functions (BLIMFs). Then the 
probability density functions (PDF) of the simulation signal and each BLIMF are calculated respectively, 
and the ED between the PDF of the simulation signal and that of each BLIMF is calculated. A smaller 
ED value means that more features are contained in the signal under comparison; the relevant modes 
are thus selected to reconstruct the signal. To validate the denosing effect of the proposed scheme, 
several denosing methods are compared with VMD-ED under different evaluation criteria, including 
the root mean square error (RMSE), mean absolute error (MAE), and the output signal-to-noise ratio 
(SNR out). Compared with the denoising methods of document [17,26], the method proposed in this 
paper has better denoising effect. Finally, the noise of the fault signals of diesel engine connecting rod 
bearings is effectively eliminated by using VMD-ED, and the fault characteristic is highlighted. 

2. Variational Mode Decomposition 

The VMD algorithm defines the intrinsic mode function as a non-stationary AM-FM signal. The 
intrinsic mode is considered as follows: 

))(cos()()( tφtAtu kkk =                            (1) 

Where the phase )(φk t  shall satisfy the following condition: 0)( ≥′tφk ; the envelope line 

)(tAk  should satisfy the following condition: 0)( ≥tAk ; the instantaneous frequency )(tωk  

should satisfy the following condition: )()( ′= tφtω kk . )(tAk  and )(tωk  change slowly, and 
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)(tφk  changes more rapidly. 

The Hilbert transform is performed for each modal function )(tuk , and exponential correction is 

applied to obtain K modal functions. Then the frequency spectrum of the modal function is corrected 
to the estimated central frequency, and the bandwidth of the modal component is calculated by using 
Gauss smoothing. The variational constraint problem can be defined as follows: 
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Where ku  is the modal component, kω  is the central frequency for the modal component, 

)(tδ is the unit pulse function, and * is the convolution symbol. 
In the VMD algorithm, the secondary penalty factor and the Lagrangian multiplication operator 

are used. Then, the alternating direction method is introduced. 1+n
ku , 1+n

kω , and 1+nλ are constantly 

updated, so that the optimal solution of the variational constraint problem can be solved. The 

expression for the modal component 1+n
ku  is 
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where α  is the penalty factor, and λ  is the Lagrange multiplier. 

The expression for the modal component 1+n
ku  in frequency domain is 
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Where kω  is the center of the modal component power spectrum. The Wiener filter is introduced, 

which makes the VMD algorithm have better noise robustness. 

Similarly, the expression for the central frequency 1+n
kω  is 
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The stopping condition of the iteration is 
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According to the previous derivation, we get the complete algorithm for VMD, summarized in 
algorithm 1. 
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algorithm 1: Complete optimization of VMD 

Initialize }ˆ{ 1
ku , }ˆ{ 1

kω , }ˆ{ 1λ , 0←n  

repeat 
1+nn←  

for k = 1:K do 

Update 1ˆ +n
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Update wk: 
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end for 
Dual ascent for all w>=0: 
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until convergence: 

euuu n
k

K

k

n
k

n
k <

=

+ 2

2

2

21

1 ˆ/ˆˆ∑                                     (10) 

The VMD algorithm is a linear transformation, so the signal can be reconstructed. The 
reconstructed signal can be represented as: 
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Where kû  is the final modal component, after the iteration is stopped. 

3. Euclidean distance 

The vibration signals of vehicle structures are mostly symmetrical non Gauss signals. The PDF is 
calculated according to the Gauss curve stitching method based on empirical information, which is 
proposed by Steinwolf [27]. The PDF can fully reflect the statistical characteristics, the distribution law, 
the cumulant and the statistical moments of each order for non-Gauss signals. By comparing the ED 
between the PDF of the simulation signal and that of each BLIMF, the real BLIMFs can be selected to 
reconstruct the signal. 

The PDF of the signal can be regarded as a point in the N dimensional space, and the ED between 
the point A and the point B can be represented as 
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Where the coordinates of the point A are ），，，（ naaa 21 , and the coordinates of the point B are  

），，，（ nbbb 21 . The ED reflects the similarity of the two signals as the basis for signal 

reconstruction. 

4. Proposed Method 

Vibration signal analysis is usually used for condition monitoring and fault diagnosis. However, 
due to the complex structure of diesel engines, the vibration signals of diesel engines are usually 
multi-component, non-stationary and non-Gauss. In addition, there is a large amount of background 
noise in the vibration signals of diesel engines. Therefore, it is very difficult to extract fault 
characteristics from the vibration signals of diesel engines. 

VMD is a recently proposed signal decomposition method, which is essentially composed of a 
number of adaptive Wiener filters, and has good noise robustness. Compared with the EMD method, 
the VMD method has a solid mathematical theoretical foundation, and can effectively alleviate or 
avoid a series of shortcomings in the EMD method. To verify the efficiency of the proposed method, 
several experiments on diesel engine connecting rod bearings faults are performed. The detailed 
experimental scheme is shown in Figure 1. Firstly, a signal channel vibration x(t), which is a wearing 
fault of the diesel engine connecting rod, is collected by the acceleration sensor vertically fixed on the 
diesel engine block. Secondly, the collected vibration signal x(t) is decomposed into six BLIMFs by VMD 
method. Thirdly, the PDFs of the collected vibration signal and each BLIMF are calculated respectively, 
and the ED between the PDF of the collected vibration signal and that of each BLIMF is calculated. 
Lastly, the relevant modes, which have smaller ED values, are thus selected to reconstruct the signal. 

 
Figure 1. Detailed experimental scheme. BLIMF, band limited intrinsic mode functions; PDFs, 
probability density functions; ED, Euclidean distance. 
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5. Experimental Results 

5.1. Simulation 

Because of the complex structure of diesel engine, the number of vibration excitation source is 
large, and the vibration source signal is modulated by several components. Therefore, the established 
simulation signal must be multi-component and non-Gauss. According to document [28], the 
simulation signals are performed to verify the effectiveness of the proposed method, expressed in 
Equation (13-18). The mixed signal Soriginal consists of three components, and the fault characteristic 
frequencies of the mixed signal are 50, 150 and 250 Hz. In addition, the mixed signal Snoise consists 
of four components, and the fourth component is the Gauss white noise.  

)30*2sin()50*2cos(6.11 tπtπs *=                        (13) 

)150*2cos(2 tπs =                                        (14) 

)250*2cos(8.03 tπs =                                    (15) 

))(( 14 ssizerandns =                                      (16) 

321 ssss ++=original                                           (17) 

4321 sssss +++=noise                                       (18) 

Where Soriginal the original simulation signal before adding noise, and Snoise is the noisy simulation 
signal after adding noise. The waveforms of the four components are shown in Figure 2. 

 
Figure 2. Source simulation signals. 

The sampling frequency is 2048Hz, and the number of sampling points is 2048. The two mixed 
signals in the time domains are shown in Figure 3. As we can see from Figure 3, the shock component 
in the signal Snoise is weakened and the simulation signal becomes very cluttered, which is not 
convenient for fault feature extraction. 
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Figure 3. Simulation signals: (a) Waveform of the mixed signal Soriginal; (b) Waveform of the 
mixed signal Snoise. 
Then, according to the detailed experimental scheme shown in Figure 1, the mixed signal Snoise is 

first decomposed into nine BLIMFs by the VMD method. The nine BLIMFs are shown in Figure 4. 

 
Figure 4. BLIMFs decomposed by the VMD method. 
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As we can see from Figure 4, pseudo component appears in the nine BLIMFs. Then the PDFs of 
the mixed signal Snoise and each BLIMF are calculated respectively. The PDFs are shown in Figure 5. 

 
Figure 5. Superposition of the PDF of Snoise and those of its BLIMFs 

As we can see from Figure 5, the PDFs of different BLIMF are not the same. In order to compare 
the differences among the BLIMFs more accurately, the Euclidean distance between the PDF of each 
BLIMF and that of the mixed signal Snoise is calculated respectively. Similarly, the Euclidean distance 
between the PDF of each IMF and that of the mixed signal Snoise is calculated by the EMD-ED method, 
and the correlation coefficient between each BLIMF and the mixed signal Snoise is calculated by the 
VMD-CORR method, as shown in Figure 6 and Table 1. 

 
Table 1. Comparison of different methods. 

VMD  
Euclidean 
distance 

EMD Euclidean 
distance 

VMD  
correlation 
coefficient 

BLIMF1 11.63 IMF1 24.65 BLIMF1 0.60 
BLIMF2 8.62 IMF2 12.19 BLIMF2 0.63 
BLIMF3 13.68 IMF3 10.47 BLIMF3 0.45 
BLIMF4 92.37 IMF4 16.15 BLIMF4 0.41 
BLIMF5 108.7 IMF5 22.12 BLIMF5 0.15 
BLIMF6 111.4 IMF6 25.87 BLIMF6 0.14 
BLIMF7 102.6 IMF7 86.37 BLIMF7 0.15 
BLIMF8 97.58 IMF8 173.2 BLIMF8 0.15 
BLIMF9 97.81 IMF9 313.4 BLIMF9 0.14 
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Figure 6. Comparison of different methods. 

As can be seen from Figure 6 and Table 1, for the proposed method, the Euclidean distance of the 
first 3 BLIMFs is obviously smaller than that of other BLIMFs, which is consistent with the composition 
of the mixed signals. According to the experimental analysis, the Euclidean distance threshold is set to 
20, and the BLIMFs with Euclidean distance less than 20 are used as the component of the 
reconstructed signal. Therefore, the first 3 BLIMFs are selected to reconstruct the signal to obtain the 
denoised signal. Similarly, using the EMD-ED and VMD-CORR methods mentioned above, the denoised 
signal is obtained. A part of the reconstructed signal is selected, and the reconstructed signals 
obtained by different methods are shown in figure 7. 
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Figure 7. The reconstructed signals obtained by different methods. 
As we can see from Figure 7, the reconstructed signal obtained by the proposed method is more 

similar to the mixed signal Soriginal. The noise in the signal is effectively removed, and the shock 
component is highlighted. Therefore, the method proposed in this paper is more effective in 
denoising. In the reconstructed signals obtained by EMD-ED and VMD-CORR, there are many 
spikes ,which are very different from the mixed signal Soriginal. Thus, the denoising effect of the two 
methods is not as good as the proposed method. 

In order to evaluate the performance of different methods more comprehensively, different 
intensities of noise signals (-10 ~ 30dB) are added to the simulation signals. The signal to noise ratio 
(SNR), the root mean square error (RMSE) and the mean absolute error (MAE) of the reconstructed 
signals obtained by different methods are calculated respectively, as shown in Figure 8. 
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Figure 8. Comparison of denoising effects of different methods.. 

As we can see from Figure 8, the SNR of the proposed method is significantly higher than that of 
the other two methods, and RMSE and MAE are significantly lower than those of the other two 
methods. Therefore, the method proposed in this paper is better than other two methods in 
denoising. 
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5.2. Experiment Condition 

The structure of diesel engine is complex and the working environment is abominable. As a result, 
it is prone to malfunction. The connecting rod bearing is located inside the engine, so it is difficult to 
diagnose the fault. In this paper, vibration signals are collected from the vibration sensors on the 
experimental stand, as shown in Figure 9. The basic parameters of the vibration sensor are shown in 
table 2. The engine on the experimental stand is Cummins 6BT diesel engine, and its parameters are 
shown in table 3. 

 
Figure 9. Measuring position of vibration sensor. 

 
Table 3. Vibration sensor parameters 

Model Sensitivity 
Frequency range 

（±3dB） 
Range Resolution 

Temperature 

range 
Weight 

Output 

connector 
603C01 100mV/g 0.5Hz–10KHz ±50g 350μg -54-121℃ 51 g Top 

 
Table 4. Basic parameters of the engine 

Engine type 6BT5.9-G2 Fuel type Diesel oil Type Inline 6 cylinders 

Rated power (KW) 118 Compression ratio 17.5：1 Ignition sequence 153624 

Rated speed 
(RPM) 

2600 
Continuous power 

(KW) 
86 

Maximum torque 
(N·m) 

558 

Radius (mm) 
×Distance (mm) 

102×120 
Maximum torque speed 

(r/min) 
1600 

 
 

The fourth connecting rod bearings of Cummins EQ6BT diesel engine are set with different 
clearance (0.10mm, 0.14mm, 0.20mm, 0.34mm) to simulate the normal, minor, moderate and severe 
wear of the connecting rod bearing. Vibration signals are collected on the left side of the fourth main 
bearings on the surface of the engine block. The sampling frequency is 20000Hz and the sampling 
points are 4096 points. 
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Testing temperature is important when acquiring vibration signals. In the experiment, the 
temperature of cooling water is measured to reflect the internal temperature of diesel engine. The 
temperature is controlled at 60-70 degrees C. 

5.3. Data Acquired 

The acquisition system is composed of collector, computer, sensor and connecting circuit, as 
shown in figure 10. The acquisition system set the speed of the engine to 1800r/min. 

 
Figure 10. Vibration signal acquisition system. 

 
The vibration signals of the engine under different wear conditions are collected, as shown in 

figure 11. In Figure 11, there is a large amount of background noise in the vibration signals of different 
wear conditions of the connecting rod, which is unfavorable to the extraction of fault features. 

 
Figure 11. Vibration signals of connecting rod bearing under different wearing conditions. 
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5.4. Experimental Data Processing 

The vibration signal of connecting rod bearing is analyzed according to the method proposed in 
this paper. The Euclidean distance between the PDF of each BLIMF and that of the vibration signals 
under different wear conditions is shown in Figure 12 and Table 5. 

 
Figure 12. The Euclidean distance between the PDF of each BLIMF and that of the vibration 
signals under different wear conditions. 

 
Table 5. The Euclidean distance between the PDF of each BLIMF and that of the vibration signals 
under different wear conditions. 

BLIMFs Normal wear Minor wear Moderate wear Severe wear 
BLIMF1 69.39 67.08 64.78 66.31 
BLIMF2 49.16 48.08 47.00 47.72 
BLIMF3 75.64 71.18 66.73 69.70 
BLIMF4 50.12 51.21 52.30 51.58 
BLIMF5 42.62 45.51 48.40 46.47 
BLIMF6 62.06 63.13 64.20 63.48 
BLIMF7 75.74 71.40 67.05 69.95 
BLIMF8 70.82 72.17 73.52 72.62 
BLIMF9 78.23 77.42 76.60 77.15 
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As we can see from Figure 12 and Table 5, the Euclidean distance of the BLIMF2, BLIMF4 and 
BLIMF5 is obviously smaller than that of other BLIMFs for the vibration signals under different wear 
conditions. According to the experimental analysis, the Euclidean distance threshold is set to 60, and 
the BLIMFs with Euclidean distance less than 60 are used as the component of the reconstructed 
signal. Therefore, the BLIMF1, BLIMF4 and BLIMF5 are selected to reconstruct the signal. A part of the 
reconstructed signal is selected, and the reconstructed signals under different wear conditions are 
shown in Figure 13. 

 
Figure 13. The reconstructed signals under different wear conditions. 

As we can see from Figure 13, in the reconstructed signals under different wear conditions, the 
noise is reduced effectively. As compared with Figure 11, the signals become smoother and the shock 
components are more obvious. In order to further investigate the denoising effect of the proposed 
method, the vibration signals and reconstructed signals of different wear conditions are transformed 
by Morlet wavelet, as shown in Figure 14. 

As we can see from Figure 14, compared with the vibration signals, the noise is effectively 
suppressed in the reconstructed signals, and the fault characteristics are obviously enhanced. Thus, 
the denoising method proposed in this paper is effective. 
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Figure 14. Time frequency analysis of vibration signals and reconstructed signals under different 
wear conditions 

6. Conclusions 

A new method based on VMD and Euclidean distance is proposed for diesel engine vibration 
signals, which usually contain a large amount of background noise. Firstly, the vibration signals are 
decomposed into several BLIMFs. Secondly, the PDFs of the vibration signals and each BLIMF are 
calculated respectively, and the Euclidean distance between the PDF of each BLIMF and that of the 
vibration signals is calculated. Finally, the BLIMFs with smaller Euclidean distance value are selected to 
reconstruct the signal. Compared with EMD-ED and VMD-CORR, the denoising method proposed in 
this paper is more effective. The proposed method is applied to the vibration signals of diesel engine 
connecting rod bearing wear faults. The noise is effectively suppressed, and the fault characteristics 
are obviously enhanced. However, the proposed method needs a given number of BLIMFs when 
vibration signal is decomposed by VMD, which is a drawback currently. Future work will focus on 
further optimization of the proposed method. 
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