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Abstract: A continuous spatio-temporal database of accurate soil moisture (SM) measurements is 
an important asset for agricultural activities, hydrologic studies, and environmental monitoring. 
The Advanced Microwave Scanning Radiometer 2 (AMSR2), launched in May 2012, has been 
providing SM data globally with a revisit period of two days. It is imperative to assess the quality 
of this data before performing any application. Since resources of accurate SM measurements are 
very limited in Puerto Rico, this research will assess the quality of the AMSR2 data by comparing 
with ground-based measurements and perform a downscaling technique to provide a better 
description of how the sensor perceives the surface soil moisture as it passes over the island. The 
comparison consisted of the evaluation of the mean error, root mean squared error, and the 
correlation coefficient. Two downscaling techniques were used and their performances were 
studied. The results revealed that AMSR2 products tend to underestimate. This is due to the extreme 
heterogeneous distributions of elevations, vegetation densities, soil types, and weather events on 
the island. This research provides a comprehensive study on the accuracy and potential of the 
AMSR2 products over Puerto Rico. Further studies are recommended to improve the AMSR2 
products. 
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1. Introduction 

Soil moisture (SM) content is the quantity of water accumulated in soil pores, usually recorded 
as percent or volumetric ratio (e.g. cm3/cm3) for different depths (e.g. 5cm, 10cm, and 25cm). SM plays 
an important role in the water cycle, hydrologic studies, agricultural activities, and environmental 
monitoring [1–6]. Hydrologic-modeling systems are very sensitive to changes in SM values for 
applications involving flood control and drought assessment [1]. In agricultural activities, best 
management practices and irrigation control can be optimized with continuous spatio-temporal SM 
measurements [7]. Predictions and results for environmental monitoring applications like climate 
change and weather forecasting have a high dependency on the accuracy of the SM data [5, 6, 8]. The 
spatio-temporal availability of accurate SM measurements rely on the quality of the instruments, 
frequency of retrieval, and management of the data [2]. There are three options for acquiring SM 
content; ground-based measurements, modeling predictions, and remotely sensed estimates [1, 3]. 
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The SM measurements collected in the field, usually referred to as in-situ measurements, are 
commonly retrieved in high or low density networks of point measurements. The density of a 
network is determined by the quantity and assembling of instruments, the area of study, and the 
budget of the project. There are various instruments and techniques used to obtain ground-based 
measurements. Time Domain Reflectometry (TDR) instruments measure the soil dielectric 
permittivity, commonly used to quantify SM since its value increases with higher presence of water 
[3, 9]. The TDR instruments provide accurate SM for a specific location that can be represented as a 
point measure in a map. Another type of instrument used to collect in-situ SM measurements are 
based on cosmic-ray detection. The Cosmic-ray Soil Moisture Observing System (COSMOS) 
measures the quantity of fast neutrons above the land surface, which have an inversely correlated 
relationship with SM due to kinetic energy loss, providing an estimate of SM over a horizontal 
footprint with a diameter of about 600 meters [9]. This kinetic loss happens when fast neutrons collide 
with hydrogen atoms found in wet land surfaces [9]. While in-situ measuring provides accurate 
products, the instruments can be difficult to calibrate and maintain without high technical 
knowledge, and the availability of an adequate network that meets the requirements for each 
individual project is very limited [1]. 

Soil moisture can be simulated at different spatio-temporal resolutions using modeling systems 
[3]. The quality of the simulation is tied to the accuracy of the in-situ data used as the training dataset 
and the right implementation of a validation and optimization process [3, 10, 11]. There are a variety 
of modelling systems used to simulated soil moisture such as the SM Accounting, the SM Water 
Balance Model, and the Variable Infiltration Capacity (VIC) model [3, 12–15]. As an example of how 
these models work, the VIC model simulates SM based in correlations between land cover, SM 
storage capacity, topography, and precipitation [12, 15]. A simulation can be performed for various 
spatio-temporal resolutions depending on the objective of the project [3]. Though, the poor 
availability of ground-based SM data networks, the uncertainty of forcing data, and the model 
structure will affect directly the process of simulation, validation, and optimization of the modelled 
SM products [13, 16].  

Satellite-based microwave observations can retrieve SM estimates at different spatio-temporal 
resolutions [1, 3]. Passive microwave depends on the physical temperatuSre and surface emissivity 
of the earth’s surface. In principle, passive sensors, like radiometers, measure the thermal emission 
of the surface at the microwave wavelength, and translate that energy to brightness temperature [16, 
17]. The response of the soil to an electromagnetic wave depends on its texture, surface roughness, 
organic matter content, iron-oxide content, and moisture content [19]. In general, radiative transfer 
models like the tau-omega (τ-ω) use the dielectric constant alongside other characteristics of the soil, 
such as an incident angle and brightness temperature, to estimate SM with remote sensing 
technologies [18, 19, 21]. Satellite-based SM products are provided at a global scale by satellite sensors 
such as the Soil Moisture Active Passive (SMAP) Mission from NASA (https://smap.jpl.nasa.gov/), 
the Soil Moisture and Ocean Salinity (SMOS) from the European Space Agency 
(http://www.esa.int/Our_Activities/Observing_the_Earth/SMOS), the Advanced Microwave 
Scanning Radiometer - Earth Observing System (AMSR-E) (https://nsidc.org/data/amsre) from the 
Japan Aerospace Exploration Agency (JAXA), and the AMSR-2 also from JAXA 
(http://suzaku.eorc.jaxa.jp/GCOM_W/). An advantage of the current satellite based remotely sensed 
SM products if the availability of global scale measurements at a continuous spatio temporal 
resolution [1, 7]. However, at the current state,  the satellite-based  products are available at coarse 
spatial resolutions (ranging from 3km to 40km which are not useful for small scale hydrologic 
modeling and agricultural applications) and due to the availability of ground-based networks the 
validation process for satellite-based products is very limited  [1, 7, 22]. Recent studies have been 
working on the improvement of soil moisture estimation of satellite-based products using different 
algorithms that relates soil moisture with variables such as vegetation, brightness temperature, 
precipitation, and others [22–24]. 
  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 September 2017                   doi:10.20944/preprints201709.0142.v1

http://dx.doi.org/10.20944/preprints201709.0142.v1


 

 

1.1. Soil Moisture in Puerto Rico 

The spatio-temporal availability and accuracy of SM measurements are key elements to 
acquiring the best possible outcomes in applications involving hydrologic modeling, agricultural 
management, and weather monitoring. Unfortunately, in Puerto Rico the resources available to 
retrieve accurate SM measurements are very limited. Currently, the Soil Climate Analysis Network 
(SCAN) of the Natural Resources Conservation Service (NRCS) has eight stations around the center 
and western regions of the island retrieving in-situ SM content. The data collection is available online 
(www.wcc.nrcs.usda.gov) and provides over five years of hourly and daily SM data. Simulated SM 
is available from the GOES-PRWEB model (https://pragwater.com/goes-puerto-rico-water-and-
energy-balance-goes-web-algorithm/) at 1km resolution, which uses a water and energy balance 
approach to simulate different hydrologic parameters such as surface runoff, stream flow, and SM, 
but has not been officially validated. Remotely sensed SM data can be retrieved from the various 
missions such as SMAP, SMOS, or the Global Change Observation Mission – Water 1 (GCOM-W1) 
satellite system. This research is based on data from the AMSR2, a sensor carried by the GCOM-W1 
satellite system. The AMSR2, launched in May 2012, is a microwave radiometer that estimates SM 
worldwide every two days at a 25km resolution [6, 25]. The SM product can be downloaded from the 
Earth Observation Research Center (EORC) of Japan Aerospace Exploration Agency (JAXA) website 
(https://gcom-w1.jaxa.jp) and is available in daily or monthly basis at 10km and 25km resolutions.  

 

 
Figure 1. Basic statistics for ascending and descending overpasses AMSR2 25km SM (cm3/cm3) products 

from September 2012 to January 2017: a) maximum, b) minimum, c) mean, and d) standard deviation. 

1.2. Scope and objectives 

Since resources of accurate SM measurements are very limited in Puerto Rico, the scope of this 
research is to assess the quality of the AMSR2 data and perform a downscaling technique to provide 
a better description of how the sensor perceives the surface SM as it passes over the island. The 
comparison consists on the evaluation of the difference between the satellite-based and the ground-
based measurements by means of the mean error (ME), the root mean squared error (RMSE), and the 
correlation coefficient (R). Two downscaling techniques are used and their performances are studied. 
The first technique used to downscale the AMSR2 SM products to a finer downscaled product 
consists of a simple linear equation that relates the coarse resolution AMSR2 SM with three 
parameters retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS). These 
three MODIS parameters are the Normalized Difference of Vegetation Index (NDVI), the Land 
Surface Temperature (LST), and the albedo. The second technique is an algorithm that relates 
weighted values of sand fraction, elevation, and NDVI with the AMSR2 SM product. The 
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performance of each method was analyzed with the hopes of providing a better method for the 
retrieval of SM in Puerto Rico. 

2. Datasets 

2.1. AMSR2 satellite-based soil moisture data 

The GCOM-W1 satellite system was launched in May 17th, 2012 to collect geophysical 
parameters (i.e., precipitation, sea surface temperature, and soil moisture content) and observe 
changes in water circulation [6, 22]. The GCOM-W1 system carries the AMSR2 sensor, which retrieves 
the radiometric waves emitted from Earth, data used to estimate SM at coarse spatial resolution 
globally with an average temporal resolution of two days [6, 27]. The SM estimates are calculated 
using the Land Parameter Retrieval Model (LPRM), which is based on a forward radiative transfer 
model that retrieves soil moisture and vegetation optical depth. The SM product provided by the 
AMSR2 can be retrieved from the Earth Observation Research Center (EORC) on the Japan Aerospace 
Exploration Agency (JAXA) website. The data can be downloaded in Hierarchical Data Format 5 
(HDF5) for day and night readings, scene (referring to all the measurements taken half orbit between 
the North Pole and the South Pole with respect to the observation point [28]) or global map (10km 
and 25 km resolution), on a daily or monthly basis. For this research, all available data from 
September 2012 to January 2017 of the daily global AMSR2 25km resolution SM estimates values for 
both ascending and descending overpasses were retrieved and analyzed. To retrieve the values SM 
for Puerto Rico the geographical coordinates included in the original satellite data were processed 
using Euclidean Distance Method. The maximum, minimum, mean, and standard deviation for the 
ascending and descending overpasses of the AMSR2 25km resolution SM product over Puerto Rico 
are presented in Figure 1. 

2.2. SCAN-NRCS ground-based soil moisture data 

The Soil Climate Analysis Network (SCAN) project of the Natural Resources Conservation 
Service (NRCS) has been collecting soil moisture and soil temperature since 1991 all over the United 
States. At present, the project has employed over 200 stations around the United States, mainly in 
agricultural areas. The stations are continuously providing ground-based measurements of SM, 
precipitation, relative humidity, land surface temperature, solar radiation, wind velocity, wind 
direction, and barometric pressure. Eight SCAN-NRCS stations (Figure 2) are located over the central 
and western regions of Puerto Rico providing data from 2001 to the present day. The SM data 
provided by the SCAN network is measured hourly with TDR instruments at four different depths 
(5, 10, 20, and 50 centimeters). The data is offered as daily, or hourly. All available surface layer (at a 
depth of 5 cm) SM data for each station was retrieved for the analysis from the NRCS-NWCC 
(National Water Climate Center) website in comma-separated values (.csv) format. 

 
   Figure 2. Location of all SCAN-NRCS stations over Puerto Rico. 
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2.3. MODIS remotely sensed parameters 

The MODIS sensor is a spectroradiometer that collects data for 36 different spectral bands and 
offers its products at a spatial resolution that varies from 500 to 5,600 meters. The products of MODIS 
are leaf area index, fractional photosynthetically active radiation, bidirectional reflectance 
distribution function, thermal anomalies and fire, temperature, emissivity, vegetation indices, gross 
and net primary productivity, and albedo. Two units of MODIS are currently collecting data, one is 
aboard the Terra satellite and the other in Aqua satellite system. These satellite systems are part of 
the NASA-centered international Earth Observing System (EOS). Both systems travel in a circular 
sun-synchronous polar orbit, a setting that allows the systems to go from north to south of Earth 
every 99 minutes (16 orbits per day), collecting data for the entire planet every one or two days. 
MODIS products of Albedo, LST, and NDVI at a 1km resolution were retrieved in HDF4 from the 
EOS Data and Information System (EOSDIS) website (https://search.earthdata.nasa.gov/) for Puerto 
Rico in order to perform the downscaling of a 25km resolution SM from AMRS2 to a 1km resolution 
SM product. A sample of the Albedo, LST, and NDVI parameters over Puerto Rico is presented in 
Figure 3.  

     

 

Figure 3. MODIS product at 1km resolution over Puerto Rico: a) Albedo, b) LST (K), and c) NDVI. 

3. Methods 

Puerto Rico consists of an archipelago with a land surface area of 9,104km2. The island is mostly 
mountainous and the elevation at the highest point is 1,338 meters (4,390 feet) above sea level. In 
Puerto Rico, the soil type, land use, soil temperature, daily precipitation, impervious areas, and 
density of vegetation varies noticeably by the kilometer, therefore, it is expected that any average of 
a 25km resolution SM estimate cannot be representative of the area of coverage. The methodology of 
this project is meant to assess the quality of the AMSR2 products over Puerto Rico and enhance the 
satellite-based SM product by downscaling the coarse resolution AMSR2 SM product to a finer 
resolution SM product.  

3.1. Comparison of AMSR2 with SCAN-NRCS soil moisture products 

The comparison between the coarse resolution AMSR2 SM products and the SCAN-NRCS SM 
data was performed for all data available during September 2012 to January 2017 for both the 
ascending (1,148 days of data) and the descending (1,080 days of data) overpasses, which takes place 
around 1:30pm and 1:30am, respectively. Since the ground-based SM is offered hourly, average 

 a)  b) 

 c) 
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values of the SCAN SM measurements between 1:00-2:00 pm and 1:00-2:00 am were computed and 
used compare with the AMSR2 SM products. To assess the quality of the AMSR2 SM products in 
terms of each SCAN-NRCS station, the location of each ground-based station was matched with the 
closest AMSR2 pixel centroid (Figure 4). To evaluate only the AMSR2 SM values that would better 
describe the area where the respective SCAN-NRCS station is located, the SM data was filtered by 
selecting the days when the soil moisture difference would not exceed ±0.15. The average distance 
between each SCAN-NRCS station and the AMSR2 25km pixel centroid, and the percent of pixels 
inside the ±0.15 difference range were reported to analyze how these parameters affected the 
correlation between the remotely sensed and in-situ SM observations.  

 
Figure 4. A sample for the matching of the SCAN-NRCS station with the closest AMSR2 SM pixel. 

 
The AMSR2 SM values were analyzed by calculating the ME, the RMSE and the R for each 

station. The ME (Equation 1) is the summation of the difference between the ground based and 
satellite based SM divided by the total of days analyzed. The mean error is calculated as follows: 

 ME = 
∑ ei

N
i = 1

N  =  
∑ θi,G - θi,S

N
i = 1

N  (1) 

Where is the error (ei), difference between the ground-based θi,G and the satellite-based θi,S SM 
and the N represents the number of days analyzed. It is important to note that the number of days 
analyzed changes with each station depending on the availability of the data. The RMSE is given by 
Equation 2: 

 RMSE = 
∑ ei

N
i = 1N  =  

∑ θi,G - θi,S
N
i = 1

N  (2) 

The RMSE represents the absolute accuracy of the AMSR2 SM compared to the SCAN-NRCS in-
situ SM. The R (Equation 3) measures the relationship in variability between the observed 
measurements and the estimated values [29] and is calculated by: 

 R = 
N ∑ θi,G × θi,S

N
i = 1 ∑ θi,G

N
i = 1 × ∑ θi,S

N
i = 1N ∑ θ ,N

i = 1 ∑ θi,G
N
i = 1 × N ∑ θ ,N

i = 1 ∑ θi,S
N
i = 1

 (3) 

The correlation coefficient calculated as shown in the previous equation ranges from 0 to 1, 
where 0 is a poor estimate and 1 is the best estimate. A value of R ≥ 0.70 is considered as a satisfactory 
estimation. 
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3.2. Downscaling the AMSR2 with Albedo, LST, and NDVI 

Since the AMSR2 product does not provide representative data for SM measurements over 
Puerto Rico, two downscaling techniques were tested to refine the 25km resolution product to a 1km 
resolution product. The following approaches were performed with hopes of enhancing the satellite-
based continuous spatio-temporal SM measurements over Puerto Rico. The downscaling technique 
selected has been previously executed by [12] and first published by [30]. The technique suggests that 
remotely sensed SM retrieved from the AMSRE system at a 25km resolution can be downscaled to 
1km resolution using a simple linear equation based on parameters calculated with a regression 
model that is based on three physical properties of 1km resolution retrieved from MODIS. The three 
physical properties are the albedo, the LST, and the NDVI. Equation 4 presents the downscaling 
approach with these three MODIS parameters: 

 θs= aijkViTjAk
k = n

k = 0

j = n

j = 0

i = n

i = 0

. (4) 

By establishing the number of explanatory variables n equal to 1, the equation yields to: 

 θs = a000 + a100A + a010T + a001V + a110TA + a101VA + a011VT (5) 

Where aijk parameters are the connection between the fine resolution downscaled SM and the 
coarse resolution satellite-based SM products, A is the albedo, T is the LST, and V is the NDVI. These 
parameters are calculated with a multiple linear regression model that compares the aggregated 
values of the physical properties with the coarse resolution SM estimate. Each parameter was 
upscaled to match the 25km resolution of AMSR2. The upscale was performed as follows, 

 V25km = ∑ ∑ Vij
m
j = 1n

i = 1

mn
, T25km =

∑ ∑ Tij
m
j = 1

n
i = 1

mn
, A25km =

∑ ∑ Aij
m
j = 1n

i = 1
mn

. (6) 

Where 25km is the resolution at which the physical parameters will be upscaled, m is the value 
for the ith column of the 1km resolution grid inside the 25-kilometer resolution and n is the value for 
the jth row of the 1km resolution grid inside the 25-kilometer resolution. 

3.3. Downscaling the AMSR2 with sand fraction, elevation, and NDVI 

As another approach for the downscaling, an algorithm was implemented to refine the AMSR2 
product by distributing the coarse resolution SM product into a finer resolution product using 
weighted control parameters. These control parameters are sand fraction (SAND), elevation (ELEV), 
and NDVI and were retrieved at a resolution of 1km. The process to calculate a weighted value of 
each parameter in location ij inside each AMSR2 pixel consists simply in dividing each ij value by its 
average, as shown in the following equations: 

 SANDwij =
SANDij

SAND
, ELEVwij =

ELEVij

ELEV
, NDVIwij = NDVIij

NDVI
. (7) 

These weighted values are then used to calculate the SM at each ij location by: 

 θij = θ × 13 1 + 1 +  (8) 

Where θ is the 25km AMSR2 SM and θij is the downscaled AMSR2 at a 1km resolution for 
location ij. After performing both downscales, the results were compared with the SCAN-NRCS 
ground-based SM following the same evaluation methodology previously mentioned. 
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4. Results and Discussion 

4.1. Comparison of AMSR2 with SCAN-NRCS soil moisture products 

All the available data from September 2012 to January 2017 of AMSR2 SM products at a 
resolution of 25km for both ascending and descending overpasses were compared with each SCAN-
NRCS station over Puerto Rico. For the analysis, the maximum, minimum, mean, and standard 
deviation were calculated for each station and all AMSR2 pixels that were matched by distance as 
previously explained. The ascending and descending statistics results are shown in Tables 1 and 2, 
respectively. 

Table 1. Basic statistics for each SCAN-NRCS station and the ascending AMSR2 SM products. 
Ascending Maximum Minimum Mean Std. Deviation 
Station NRCS AMSR2 NRCS AMSR2 NRCS AMSR2 NRCS AMSR2 
Adjuntas 0.615 0.600 0.123 0.009 0.382 0.169 0.142 0.137 
Cabo Rojo 0.357 0.599 0.108 0.009 0.173 0.137 0.051 0.138 
Corozal 0.571 0.542 0.120 0.008 0.365 0.119 0.122 0.078 
Guánica 0.357 0.600 0.007 0.009 0.071 0.181 0.060 0.140 
Isabela 0.499 0.587 0.120 0.009 0.313 0.122 0.083 0.103 
Juana Díaz 0.512 0.599 0.116 0.010 0.216 0.161 0.071 0.136 
Maricao 0.415 0.599 0.081 0.009 0.199 0.137 0.080 0.138 
Mayagüez 0.585 0.587 0.454 0.009 0.552 0.134 0.024 0.111 

Table 2. Basic statistics for each SCAN-NRCS station and the descending AMSR2 SM products. 
Descending Maximum Minimum Mean Std. Deviation 
Station NRCS AMSR2 NRCS AMSR2 NRCS AMSR2 NRCS AMSR2 
Adjuntas 0.633 0.577 0.119 0.021 0.379 0.164 0.139 0.109 
Cabo Rojo 0.348 0.598 0.109 0.010 0.168 0.140 0.051 0.097 
Corozal 0.564 0.581 0.126 0.016 0.372 0.135 0.119 0.091 
Guánica 0.322 0.576 0.003 0.022 0.069 0.169 0.058 0.110 
Isabela 0.478 0.584 0.116 0.012 0.313 0.154 0.085 0.103 
Juana Díaz 0.512 0.586 0.110 0.016 0.213 0.163 0.075 0.111 
Maricao 0.398 0.598 0.082 0.010 0.202 0.144 0.081 0.105 
Mayagüez 0.584 0.577 0.454 0.025 0.551 0.157 0.024 0.104 

The maximum values of both overpasses AMSR2 SM are very congruent to the NRCS stations 
located in mountainous areas (Adjuntas, Corozal, and Isabela) where high humidity and frequent 
precipitation events are common. The minimum values of both overpasses AMSR2 SM 
underestimates SM with respect of the NRCS readings for all stations except for Guánica. This 
exception takes effect because the NRCS station in Guánica is located in an area known as the “Bosque 
Seco”, which directly translates to “Dry Forest”, which is known to be one of the most arid regions 
with low humidity and low frequency of precipitation events in PR. The mean values and standard 
deviations for AMSR2 readings with respect to the NRCS stations during both overpasses are low 
and very similar, revealing a consistent tendency of all the AMSR2 readings over PR to underestimate 
SM. 

The percent of instances where the error was inside the range of ±0.15 (%), ME, RMSR, R and the 
mean distance from station to centroid (Distance) are shown in Tables 3 and 4. Overall, AMSR2 SM 
products for both overpasses tended to underestimate for all SCAN-NRCS stations except for the 
station in Guánica, which is one of the most arid regions of the island.  

The percent of error inside the ±0.15 range (%) and the mean distance of the nearest available 
AMSR2 pixel centroid with respect to each NRCS station (Distance) readings both are influencing the 
values of ME, RMSE, and R. Lower % values decreases ME and RMSE, while increasing R. 
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Table 3. Basic statistics for each SCAN-NRCS station and the ascending AMSR2 SM products. 
Station  (%) Distance (km) ME RMSE R 
Adjuntas 32 9.0 0.074 0.081 0.823 
Cabo Rojo 74 24.9 0.079 0.087 0.273 
Corozal 27 9.6 0.075 0.086 0.777 
Guánica 67 18.8 0.063 0.075 0.470 
Isabela 30 12.6 0.085 0.095 0.776 
Juana Díaz 68 10.6 0.077 0.087 0.490 
Maricao 71 11.9 0.081 0.090 0.590 
Mayagüez 4 18.3 0.089 0.103 0.559 

Table 4. Basic statistics for each SCAN-NRCS station and the descending AMSR2 SM products. 
Station  (%) Distance (km) ME RMSE R 
Adjuntas 33 6.1 0.076 0.087 0.765 
Cabo Rojo 87 21.4 0.064 0.076 0.356 
Corozal 27 10.3 0.069 0.080 0.829 
Guánica 70 16.1 0.065 0.077 0.421 
Isabela 40 8.8 0.083 0.093 0.758 
Juana Díaz 73 10.7 0.072 0.083 0.552 
Maricao 80 8.0 0.067 0.078 0.630 
Mayagüez 3 14.6 0.056 0.075 0.735 

 If Distance is over 12 kilometers ME and RMSE increases, and R decreases. High R values 
were found in areas where the mean values of the NRCS SM readings in humid areas were equal or 
higher than 0.30, the % was equal or less than 40%, and the Distance was less than 12 kilometers. This 
high correlation reveals that when the AMSR2 is not underestimating SM it provides a moderately 
good estimate within the range of the pixel, if the mean SM in the area is equal or higher than 0.30. 
Low R values were found in arid areas, where the mean SM was lower than 0.30, lower Distance 
increased the R up to 0.630. 

4.2. Downscale of AMSR2 with Albedo, LST, and NDVI 

The AMSR2 25km resolution SM product was downscaled to 1km resolution with a simple linear 
equation involving MODIS products for Albedo, NDVI, and LST. The average resultant downscaling 
equation for all AMSR2 data is shown in the following equation. 

θs = 0.1503 + 1.33×10-4 A + 4.70×10-5 T - 1.06×10-6 V - 4.28×10-7 TA + 7.31×10-10 VA - 2.31×10-9 VT 

Where θs is the downscaled SM, A is the albedo, T is the land surface temperature, V is the 
normalized difference of vegetation index, and the rest are the interactions between A, T, and V (TA, 
VA, and VT). The regression model achieved a moderate correlation of 0.6102 and an overall RMSE 
of 0.0050, indicating that the model did a good fit with the AMSR2 estimates. To reinforce this 
statement R-squared was calculated and the F-statistic test was performed. The R-squared was 0.037 
and the p-value of the F-statistic test was less than 10-4, these results reinforce the statement that the 
model is providing a good fit. Table 5 shows that all p-values are below the significant level (5%), 
meaning that the null hypothesis is rejected for each coefficient, and all terms in the linear equation 
are significant.  
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Table 5. Calculated Values and T-Statistics of the Regression Coefficients. 

Coefficient Value Squared Error t-statistic P (%) 

a000 0.15 0.0053 49.12 0.0014 

a100 1.33×10-4 3.66×10-5 2.98 0.1432 

a010 4.70×10-5 1.84×10-5 1.97 0.1276 

a001 -1.06×10-6 6.67×10-7 -1.66 0.1113 

a110 -4.28×10-7 1.01×10-7 -3.24 0.1354 

a101 7.31×10-10 1.89×10-9 -0.12 0.2927 

a011 -3.20×10-9 2.31×10-9 0.11 0.1160 

Figure 5 shows a sample for the downscaled AMSR2 SM values over PR using MODIS 
parameters Albedo, LST, and NDVI.  

 

 
Figure 5. Sample of downscaled AMSR2 SM (cm3/cm3) values over PR using MODIS parameters. 

The following table (Table 6) presents the basic statistics for the comparison between 
the downscaled product using the MODIS parameters and the SCAN-NRCS SM 
measurements. In contrast with the comparison of the SCAN-NRCS measurements with 
the raw AMSR2 SM products, the downscaled product achieved a higher percent of SM 
estimates that behaves similar to the SCAN-NRCS data. In terms of R, the correlation 
slightly decreased. A potential solution to the decrease of correlation could be the 
optimization of the downscaling technique. 

Table 6. Basic statistics for the comparison of each SCAN-NRCS station and the 
downscaled AMSR2 SM products using Albedo, NDVI, and LST. 

 Ascending Descending 
Station  (%) ME RMSE R (%) ME RMSE R 
Adjuntas 34 0.076 0.088 0.607 33 0.074 0.085 0.725 
Cabo Rojo 84 0.063 0.075 0.243 88 0.054 0.066 0.253 
Corozal 35 0.071 0.082 0.731 31 0.069 0.081 0.755 
Guánica 76 0.070 0.081 0.455 81 0.076 0.085 0.604 
Isabela 42 0.079 0.091 0.643 42 0.079 0.090 0.661 
Juana Díaz 77 0.070 0.081 0.390 80 0.062 0.074 0.424 
Maricao 86 0.066 0.077 0.529 88 0.055 0.066 0.634 
Mayagüez 2 0.106 0.112 0.665 2 0.074 0.085 0.807 
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4.3. Downscale of AMSR2 with Sand Fraction, Elevation, and NDVI 

This approach for the downscaling of AMSR2 was performed with an algorithm that used the 
weighted control parameters sand fraction, elevation, and Normalized Difference of Vegetation 
Index. Figure 6 shows a sample 25km pixel of the AMSR2 SM (left), the downscaled SM using MODIS 
parameters (center), and the downscaled SM using physical parameters (right) during a) high 
humidity (SM ≥ 0.60), b) moderate humidity (60 > SM > 0.25), and c) low humidity (SM ≤ 0.20). 
 

 

 

 
Figure 6. AMSR2 25km SM (cm3/cm3) value (left), AMSR2 SM downscaled using MODIS (middle), 

and AMSR2 SM downscaled using physical parameters for a) high humidity, b) moderate humidity, 

and c) low humidity. 

When the sand fraction is low, the value of the void fraction is higher, thus providing more space 
for water to infiltrate which decreases the SM. With changes in elevations, the lowest values 
accumulate moisture, providing higher SM values. The NDVI provides an estimation of the 
vegetation density in an area. When the NDVI value is high, more precipitation is intercepted and 
more moisture is absorbed by the vegetation, decreasing the SM in the area. 

Table 7. Basic statistics for the comparison of each SCAN-NRCS station and the 
downscaled AMSR2 SM products using Sand Fraction, Elevation, and NDVI. 

 Ascending Descending 
Station  (%) ME RMSE R (%) ME RMSE R 
Adjuntas 32 0.080 0.091 0.820 22 0.079 0.091 0.786 
Cabo Rojo 73 0.072 0.083 0.423 74 0.074 0.083 0.348 
Corozal 37 0.082 0.092 0.777 40 0.081 0.090 0.699 
Guánica 72 0.075 0.085 0.378 79 0.079 0.086 0.341 
Isabela 42 0.084 0.093 0.672 41 0.081 0.090 0.688 
Juana Díaz 71 0.074 0.085 0.389 71 0.071 0.081 0.410 
Maricao 77 0.064 0.075 0.516 88 0.072 0.083 0.205 
Mayagüez 29 0.088 0.095 0.965 55 0.087 0.091 0.945 

a. 

b. 

c. 
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The previous table (Table 7) presents the basic statistics for the comparison between 
the downscaled SM product using physical parameters and the SCAN-NRCS SM 
measurements. The outcome of the downscale in terms of correlation and percent of SM 
values that behaved similar to the SCAN-NRCS measurements was analogous to the results 
from the first downscaling. The most significant outcome from this downscale technique is 
the improvement of SM estimation of the Mayagüez SCAN-NRCS station. This 
improvement happens due to the consideration of the changes in topography, sand 
fraction, and NDVI in the algorithm, since this particular station is located at the bottom of 
a hill in an area where precipitation events are frequent. 

5. Conclusion 

The comparison of AMSR2 SM product at 25km resolution with the SCAN-NRCS stations 
revealed that the AMSR2 spatial coverage of 25km does not provide a good estimate of SM in Puerto 
Rico. The overall results of the validation show that about 49% of the AMSR2 SM estimates behaves 
similar to the SCAN-NRCS SM measurements with an overall correlation of 0.613. The low 
correlation between the coarse resolution estimate and the ground-based measurements is due to 
changes in vegetation density, land use, topography, precipitation, and soil properties in Puerto Rico. 
As well, in order to have a more robust validation additional field data is needed inside the 25km 
pixels. 

The downscaling method using MODIS parameters provided a better fit with the AMSR2 data. 
The resulting SM from the linear equation that relates Albedo, LST, and NDVI from MODIS with the 
SM from AMSR2 showed a tendency to increase SM where a precipitation event occurred. This 
enhancement increased the percent of AMSR2 estimates that behaves similar to the ground-based 
measurements to 55%. To expand the coverage of the AMSR2, a daily average SM value was assumed 
for the area that was left out of the 25km grids. This assumption led to the decrease in correlation and 
can be modified in future research to assess this issue. The second approach, in which a weighted 
value of physical parameters was used, provided a better projection of how the SM is distributed 
throughout the pixel area, increasing in percent of AMSR2 estimates that behaves similar to the 
ground-based measurements to 56%. By considering sand fraction, elevation, and NDVI as variables 
to enhance SM estimations of the AMSR2, a significant change was observed where the R in the 
Mayagüez station increased from 0.647 to 0.955 and the percent of AMSR2 estimates that behaves 
similar to the ground-based measurements 4% to 42%. 

Future research is needed to improve the downscaled products for both methodologies, such as: 
exploring how the addition of other variables like precipitation would affect the downscaled product, 
a comparison of how different vegetation indexes such as the Simple Ratio Infrared Index, or the Soil 
Adjusted Vegetation Index influences the quality of the downscaled products. Other future research 
includes the optimization of the downscaling techniques through a sensitivity analysis and the 
incorporation of a dense network of sensors placed inside the area of coverage of one AMSR2 pixel 
to provide a better validation of the AMSR2 and the downscaled SM products in Puerto Rico.  
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Appendix 

The following section contains Puerto Rico maps for Land Use, MODIS NDVI, Elevation, Soil 
Types, and Precipitation with their respective references.  

 
Figure 7. Land Use map for Puerto Rico (data retrieved from http://www2.pr.gov). 

 
Figure 8. MODIS NDVI map for Puerto Rico (data from https://search.earthdata.nasa.gov/search). 

  
Figure 9. Elevation Data map for Puerto Rico (DEM data from https://gdg.sc.egov.usda.gov/). 

 

) 
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Figure 10. Soil Orders map for Puerto Rico (map retrieved the Developing legume shade trees for 

sustainable coffee production in PR website http://academic.uprm.edu/eschroder/Soil_Orders.jpg). 

 
Figure 11. Precipitation data for Puerto Rico (data retrieved from https://pragwater.com/tag/goes-prweb/). 
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