
Article

Scheduling Non-preemptible Jobs to Minimize Peak
Demand
Sean Yaw 1 and Brendan Mumey 2

1 Los Alamos National Laboratoy, Los Alamos, NM USA; yaw@lanl.gov
2 Gianforte School of Computing, Montana State University, Bozeman, MT USA; mumey@montana.edu

Abstract: This paper examines an important problem in smart grid energy scheduling; peaks in
power demand are proportionally more expensive to generate and provision for. The issue is
exacerbated in local microgrids that do not benefit from the aggregate smoothing experienced
by large grids. Demand-side scheduling can reduce these peaks by taking advantage of the fact
that there is often flexibility in job start times. We focus attention on the case where the jobs
are non-preemptible, meaning once started, they run to completion. The associated optimization
problem is called the Peak Demand Minimization problem and has been previously shown to be
NP-hard. Our results include an optimal fixed-parameter tractable algorithm, a polynomial-time
approximation algorithm, as well as an effective heuristic that can also be used in an online setting
of the problem. Simulation results show these methods can reduce peak demand by up to 50%
versus on-demand scheduling for household power jobs.

Keywords: peak demand minimization; job scheduling; approximation algorithms; smart grid

1. Introduction

The problem of scheduling non-preemptible jobs occurs naturally in smart power grid systems,
in which communication can occur between energy consumers and the energy provider. Some
household appliances require instant functionality (e.g. light bulbs), but many others have more
flexibility in exactly when they operate (e.g. dishwasher or water heater). Peaks in power demand are
proportionally more expensive to generate and provision for (since more infrastructure is required),
so it is advantageous to schedule power consuming jobs in such as way as to minimize peak demand.
This problem has been previously formalized as the Peak Demand Minimization (PDM) problem and
has been studied extensively [1–8]. The basic formulation of the problem is as follows: Each job
j is non-preemptible, meaning once it begins execution, it must run to completion without any
interruptions. Each job j is characterized by four parameters: an arrival time (aj), deadline (dj), and
length (lj) that are real-valued for continuous timescales and integer-valued for discrete timescales,
and a real-valued instantaneous demand (hj) which is conceptually the height of the job. The arrival
time and deadline are within the fixed time interval [0, T] and form the execution window of the job.
Job j is scheduled by assigning it a start time, sj, which allows it to run in the closed interval [sj, sj + lj]

such that [sj, sj + lj] ⊆ [aj, dj]. The demand at time t is the sum of the job heights that are scheduled to
run during t:

H(t) = ∑
j:t∈[sj ,sj+lj)

hj

Then, the peak demand, Hmax, of the schedule is the maximum demand for any time t in [0, T],

Hmax = max
t∈[0,T]

H(t)

The PDM problem is to determine a job schedule, S = 〈sj〉 that minimizes Hmax. In this work, we
propose three algorithms to solve PDM:

1. An optimal dynamic programming algorithm utilizing branch-and-bound techniques that is
fixed-parameter tractable.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 September 2017 doi:10.20944/preprints201709.0108.v1

© 2017 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Algorithms 2017, 10, 122; doi:10.3390/a10040122

http://dx.doi.org/10.20944/preprints201709.0108.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/a10040122

2 of 11

2. A polynomial-time algorithm based on linear programming that provides a
O
(log n

log log n
)
-approximation and is the first known approximation for PDM.

3. An effective and simple heuristic algorithm that can be used in either an online or offline
fashion.

2. Related Work

Many variations on modifying demand to improve the efficiency of power grids (generically
called demand response) have been explored. These approaches can generically be categorized as
utility function optimization (commonly cost function minimization) and peak demand minimization
(PDM). Utility function optimization techniques use price incentives to encourage consumers to
modify their behavior and are outside the scope of this work.

PDM aims to directly schedule jobs to reduce peaks in power schedules instead of passively
influencing changes with price incentives. PDM has been studied in the context of preemptible
jobs (i.e. jobs that can be interrupted partway through execution) [1,2]. In this paper, we consider
the scenario where jobs are non-preemptible, and thus must run to completion once started. The
PDM problem has been found to be NP-hard to approximate within a ratio of 2 in this scenario [3].
Heuristics have been developed that show promise in practice, but which provide no theoretical
guarantee [4,5]. Approximation algorithms have been developed for the special case where all
jobs have the same start time and deadline [6,7]. Our work introduces the first general purpose
approximation algorithm where no assumptions are placed on the job parameters. Finally, optimal
algorithms have been introduced that work on a limited number of jobs [3,8]. Our work also
introduces an optimal, fixed-parameter tractable, algorithm that is able to schedule approximately
15 times more jobs in practice than previous approaches.

Non-preemptible power job scheduling is also similar to the machine minimization problem and
rectangular strip packing [9–13]. In the machine minimization problem, jobs are assumed to have unit
height, as opposed to power jobs that can have variable height. The main differences with rectangular
strip packing are that, in the general PDM case, jobs are limited in where they can be placed in the
strip and once jobs are scheduled, they do not need to remain as intact rectangles. Since job height
represents the power required, each segment of a scheduled job will drop to lie on top of the job below
it, instead of remaining as an intact rectangle in the strip.

3. Algorithms

We first present an optimal, fixed-parameter tractable algorithm, that improves on the
efficiency of the method described in [3] due to an effective branch-and-bound idea. The second
algorithm described is based on linear programming relaxation and randomized rounding that is a
O
(log n

log log n
)
-approximation algorithm for the general PDM problem. Finally, we describe a heuristic

approach that can also be adapted to the online setting of the problem.

3.1. An Optimal Dynamic Programming Algorithm

In this section, we detail a dynamic programming algorithm for PDM, inspired by the algorithm
presented in [3]. Our algorithm takes a similar approach of identifying groups of overlapping jobs,
but uses a tree-based schedule representation and a branch-and-bound strategy to reduce the search
space; resulting in substantially better performance (able to run instances with 15 times as many jobs).
We term this algorithm OptimalDP in the results section.

At a high level, jobs are first ordered by increasing deadlines. For each job, we consider every
possible configuration of start times of that job and as well as other earlier jobs that could overlap any
job in the future. Job configurations are represented using trees where each level in the tree represents
the scheduling choices of one job. We keep track of which configurations of the current job are
compatible with those of the previous job using pointers. Valid schedules can be built by traversing

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 September 2017 doi:10.20944/preprints201709.0108.v1

Peer-reviewed version available at Algorithms 2017, 10, 122; doi:10.3390/a10040122

http://dx.doi.org/10.20944/preprints201709.0108.v1
http://dx.doi.org/10.3390/a10040122

3 of 11

4

1
3

2

0 1 2 3 4 5 6 7 8 9

Job a
j
d
j

l
j

1 0 3 2

2 2 5 2

3 6 8 1

4 4 9 3

Figure 1. Sample jobs with arrival times, deadlines, lengths, and job configuration lists: L1 = {1},
L2 = {1, 2}, L3 = {2, 3}, L4 = {2, 3, 4}.

these trees backwards, beginning with the final job in the list. A branch-and-bound approach is
employed to limit unnecessary schedule exploration.

Configuration Lists

We sort the jobs by increasing deadline first and then by increasing arrival time. For each job j,
a list of preceding jobs Lj, called the configuration list, is defined as the set of jobs whose execution
windows either overlap j’s execution window, or overlap the execution window of a job following j.
Figure 1 illustrates a sample set of jobs along with their configuration lists. We observe that each job
configuration list consists of a consecutive interval in the sorted list of jobs, i.e. Lj = [s(j), j], where
the head s(j) of each list has the earliest deadline (and arrival in case of ties).

Lemma 1. The list heads are non-decreasing. (i.e. s(1) ≤ s(2) ≤ . . . ≤ s(n)).

Proof. Suppose job j ≤ k. Since s(k) ∈ Lk, ∃l ≥ k s.t. al < ds(k). If j ∈ Lk, then s(k) ∈ Lj since
al < ds(k) ≤ dj and l ≥ k > j. Thus s(j) ≤ s(k). If j /∈ Lk, then ds(j) ≤ dj < ds(k) and so s(j) < s(k).

Configuration Trees

For each job j, we can represent each possible configuration of start times of all the jobs in its
configuration list Lj = [s(j), j] using a configuration tree, T(j). We consider the jobs in reverse order
starting from j and create a branching tree where nodes at level k in the tree correspond to the possible
starting times for job j− (k− 1). (We assume the root of the tree is at level 0). Thus, each leaf in T(j)
specifies start times for all jobs in Lj. Let height(l) be the peak demand of this particular schedule of
Lj job start times.

We need to keep track of compatible job configurations in order to build a consistent schedule
for all jobs. We do this by maintaining a compatibility pointer, c(l), from each leaf node l in T(j) to a
compatible node in T(j− 1) (j > 1). By Lemma 1, Lj ∩ Lj−1 = [s(j), j− 1]. Thus we can follow the

s
3
 = 6 s

3
 = 7

s
2
 = 3s

2
 = 2 s

2
 = 3s

2
 = 2

s
2
 = 2 s

2
 = 3

s
1
 = 1s

1
 = 0 s

1
 = 1s

1
 = 0

c(l)
b(m)

T(3):

T(2):

Figure 2. Sample configuration trees for two jobs with c(l) and b(m) pointers (Note: b(m) pointers
from leaves to themselves are omitted). Starting times reflect the sample jobs from Figure 1. By
following alternating b and c pointers, we see an optimal solution is 〈s3 = 6, s2 = 3, s1 = 0〉.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 September 2017 doi:10.20944/preprints201709.0108.v1

Peer-reviewed version available at Algorithms 2017, 10, 122; doi:10.3390/a10040122

http://dx.doi.org/10.20944/preprints201709.0108.v1
http://dx.doi.org/10.3390/a10040122

4 of 11

same path in T(j− 1) that we took beginning with a node at level 2 in T(j) to reach the compatible
node in T(j − 1). If [s(j), j − 1] = ∅, then we simply make each leaf in T(j) point to the root of
T(j− 1).

Dynamic Programming

Once we have configuration trees T(j) constructed and compatibility pointers c(l) found, then
we can compute the minimum overall schedule efficiently using dynamic programming as follows:

For each leaf node l ∈ T(j) we store h(l) which is the peak height of an optimal schedule that
is compatible with l. For each node m ∈ T(j) we will store a pointer, b(m), to a leaf l in the subtree
rooted at m with best (i.e. lowest) peak height h(l). The b(m) pointer for a leaf node is to itself. The h
values satisfy the following recurrence,

h(l) =

{
height(l) if l ∈ T(1)

max[h(b(c(l))), height(l)] if l ∈ T(j), j > 1
(1)

We note that once the h(l) values are found for a given tree T(j), it is easy to compute the b(m) pointers
for the internal nodes m ∈ T(j) in a bottom-up fashion. Thus we can apply dynamic programming
to find the h and b values for each job configuration tree in order, beginning with T(0). An optimal
schedule can be found by following alternating b and c pointers, starting with b(root[T(m)]). The
peak height of this schedule will be given by h(b(root[T(m)])). Figure 2 shows an example with two
configuration trees, c(l), and b(m) pointers.

Branch-and-Bound Approach

To avoid unnecessary tree expansion, a branch-and-bound technique can be employed to avoid
explicitly building and storing configuration trees. Configuration lists are created for each job as
described above. The algorithm keeps track of the peak demand for the best schedule found so far
(initialized to +∞).

The algorithm begins a recursive process of building and exploring paths through the
configuration trees by starting with the last job in the list. It proceeds in a depth first fashion, creating
subtrees of the previous job as compatibility pointers are followed. Once a viable path has been
established from the last job through the first, the peak demand value is updated, and the method
recurses to explore alternate paths. If at any point an alternate path realizes an h(l) value above the
current best peak demand value, that subtree can be pruned and all compatibility nodes referencing
it ignored.

Fixed-Parameter Tractability

An algorithm is said to be fixed-parameter tractable if there exists some parameters, p1, p2, ..., of
the input or output such that the running time of the algorithm is a polynomial function of the input
size times some function of the parameters: f (p1, p2, ...) · poly(n). The complexity of the algorithm is
driven by the size of the configuration trees T(j), that can be bounded by their branching factor and
maximum depth. The maximum branching factor is q = maxj(dj − aj − lj + 1) and the maximum
depth is r = maxj(|Lj|). Thus the maximum number of nodes in each configuration tree is O(qr).
Since the dynamic programming time is easily seen to be linear in the size of the trees, the total
running time is O(qr · n).

3.2. An Approximation Algorithm

In this section we detail a novel algorithm for the PDM problem that provides the first known
approximation guarantee for the general PDM problem. The algorithm is based on relaxing an Integer
Linear Program (ILP) to allow real-valued solutions and then rounding the real-valued solution back
to an integer solution.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 September 2017 doi:10.20944/preprints201709.0108.v1

Peer-reviewed version available at Algorithms 2017, 10, 122; doi:10.3390/a10040122

http://dx.doi.org/10.20944/preprints201709.0108.v1
http://dx.doi.org/10.3390/a10040122

5 of 11

Integer Linear Programming Formulation

The PDM problem can be formulated as an ILP using the following notation and variables:

J - Set of jobs.
Ij - A finite set of valid execution intervals for job j ∈ J1

hj - Height of job j.
L - Set of all left hand time points of intervals in

⋃
j Ij.

Hmax ∈ R - Peak demand.
xi,j ∈ {0, 1} - Indicates if interval i ∈ Ij is scheduled.

The ILP is:
min Hmax

subject to:

∑
i∈Ij

xi,j = 1 ∀j (2)

∑
i∈⋃j Ij :t∈i

hjxi,j ≤ Hmax ∀t ∈ L (3)

Constraint (2) ensures that exactly one interval will be selected for each job, and (3) ensures that Hmax

will denote the peak height of the schedule. Only elements of L need to be considered in (3) as a
consequence of Lemma 2.

Lemma 2. The maximum height of any schedule must occur for some t ∈ L.

Proof. Schedule height only increases at the moment a new job begins processing, thus the peak
height of a schedule must be initiated at the start time of some job. Since L is the collection of all
possible start times for all jobs, some point in L must correspond to the arrival time of the peak height
of the schedule.

A Randomized Rounding Algorithm

The ILP presented above cannot be efficiently solved due to the restriction of xi,j to integer values.
To address this, we construct a relaxed LP in the exact same fashion as the ILP, except the xi,j variables
may take on any values in the range [0, 1]. After the relaxed LP is solved, a specific interval is selected
for each job j by randomly selecting interval i with probability xi,j. This linear programming rounding
scheme is presented in Algorithm 1. We note the running time is polynomial, since linear programs
can be solved in polynomial time.

Algorithm 1 RoundLP

Step 1 Solve the LP as described in Section 3.2, but with real-valued xi,j ∈ [0, 1].

Step 2 Determine a start time for each job as follows:
forall jobs j

Pick a random i ∈ Ij with probability xi,j
Set sj to be the start time of interval i

endforall

1 An interval [sj, sj + lj) is valid for job j iff aj ≤ sj and sj + lj ≤ dj.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 September 2017 doi:10.20944/preprints201709.0108.v1

Peer-reviewed version available at Algorithms 2017, 10, 122; doi:10.3390/a10040122

http://dx.doi.org/10.20944/preprints201709.0108.v1
http://dx.doi.org/10.3390/a10040122

6 of 11

Continuous timescales

The ILP detailed above is polynomial in size for the case of discrete timescales, where each
Ij is finite, but not for continuous timescales in which jobs can be scheduled anywhere in the
arrival-deadline window (so Ij is infinite). Using a technique similar to the one introduced in [9]
for the unit-height machine minimization problem, we show that any continuous instance can be
transformed into a corresponding discrete instance such that an optimal solution to the discrete
instance provides a solution to the continuous instance that is within a factor of two from optimal.

First, schedule a subset of the jobs, J′ while concurrently identifying a set of time points, P, such
that each interval of every remaining job contains at least one element of P. This is accomplished
by scheduling as many jobs as possible horizontally, without any overlaps. We start at the first time
point and proceed in this fashion: As soon as no job is being serviced, schedule the job that will
complete the earliest from all remaining jobs. P can be constructed from this initial scheduling by
adding the start and end times from all the scheduled intervals in J′ and by adding the release times
and deadlines for each remaining job in J \ J′. Thus, |P| ≤ 2n. Then, each interval of every job in
J \ J′ must contain at least one point of P. If some interval of job j ∈ J \ J′ did not contain a point
of P, then either it is nested inside a scheduled interval and thus would have been scheduled since
it ends sooner, or it is totally separated from any scheduled intervals and thus would also have been
scheduled as well.

Next, expand each interval of each remaining job j by moving its left and right endpoints to the
nearest points in P to the left and right of the original endpoints, respectively. This results in a finite
number (at most |P|) of possible intervals for job j.

Consider an optimal solution to the continuous instance. When this solution is transformed to a
discrete instance by expanding the intervals as above, the overall height of the solution may increase,
as two intervals that did not overlap now overlap. It is easy to see that these intervals must have
originally overlapped two consecutive points from P. Thus, the height of the schedule can at most
double after interval expansion. This implies that the height of an optimal schedule for the discrete
instance is at most twice the optimal height of the continuous instance.

Finally, observe that in the discrete instance we only need to look at the height at times t ∈ L
to determine the overall height of the schedule; this is because we can slide any time t a little bit to
the left until it touches the left endpoint of some interval without changing the overall height of the
schedule above t. By our construction,

|L| ≤ |P| ≤ 2n (4)

The following theorem shows that Algorithm 1 provides a polynomial-time approximation
algorithm for PDM (with a continuous timescale).

Theorem 3. The schedule generated by the relaxed LP has a height of at most O
(log n

log log n
)

times the height of
the optimal ILP’s schedule, with probability at least 1−O(1/n).

Proof. For each t ∈ L, define the random variables Zt and Yt as,

Zt = ∑
i∈⋃j Ij :t∈i

hjxi,j

Yt = ∑
i∈⋃j Ij :t∈i

hj

h
xi,j, where h = max

j
{hj}

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 September 2017 doi:10.20944/preprints201709.0108.v1

Peer-reviewed version available at Algorithms 2017, 10, 122; doi:10.3390/a10040122

http://dx.doi.org/10.20944/preprints201709.0108.v1
http://dx.doi.org/10.3390/a10040122

7 of 11

Bounding the probability that Yt exceeds some factor α times the optimal height (Hopt) divided by h
results in the same bound for the probability that Zt exceeds α times the optimal schedule height:

Pr[Zt > αHopt] =Pr[hYt > αHopt] (since Zt = hYt, ∀t)

=Pr[Yt > α
Hopt

h
] (5)

We use a Chernoff-type bound [14] to bound the deviation of Yt above Hopt

h . Note that E[Yt] ≤ Hopt

h

by (3). Since xi,j are independent Bernoulli trials, for any given t, with E[xi,j] = pi,j and 0 <
hj
h ≤ 1 for

all jobs, the following bound exists for all δ > 0:2

Pr[Yt > (1 + δ)
Hopt

h
] <

[
eδ

(1 + δ)(1+δ)

] Hopt
h

Substituting α = 1 + δ and gathering terms on the right hand of the expression into one exponential
results in,

Pr[Yt > α
Hopt

h
] < exp [−(Hopt

h
)(α ln α− α + 1)]

≤ exp [−α ln α + α− 1] (since
Hopt

h
≥ 1)

< exp [−α(ln α− 1)], (6)

for all α > 1. Next, choose α =
4 log n

log log n and consider the value of ln α− 1:

ln α− 1 = ln
(4 log n

log log n

)
− 1 ≥ ln log n− ln log log n

=
log log n

log e
− log log log n

log e
(change of base)

≥ 1
log e

(log log n− 1
2

log log n) =
log log n

2 log e
. (7)

Plugging (7) and α =
4 log n

log log n into (6) yields,

Pr
[

Yt >
4 log n

log log n
Hopt

h

]
< exp

[
−4 log n
log log n

log log n
2 log e

]
= exp

[
−4 ln n log e

log log n
log log n

2 log e

]
= exp [−2 ln n] = 1/n2. (8)

2 Theorem 1 in [15] proves that Pr[X > (1 + δ)µ] <
[eδ

(1+δ)(1+δ)

]µ
for µ = E[X], but it is easy to see that this holds for all

µ ≥ E[X].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 September 2017 doi:10.20944/preprints201709.0108.v1

Peer-reviewed version available at Algorithms 2017, 10, 122; doi:10.3390/a10040122

http://dx.doi.org/10.20944/preprints201709.0108.v1
http://dx.doi.org/10.3390/a10040122

8 of 11

Finally, we use (5), (8), (4) and Lemma 2 to give a probabilistic bound on the height of rounded
schedule, Hrnd:

Pr
[

Hrnd >
4 log n

log log n
Hopt

]
≤∑

t∈L
Pr
[

Zt >
4 log n

log log n
Hopt

]
= ∑

t∈L
Pr
[

Yt >
4 log n

log log n
Hopt

h

]
< ∑

t∈L
1/n2

≤|L|/n2

≤2n/n2 = 2/n ∈ O(1/n).

So, with probability 1−O(1/n), Hrnd ≤ 4 log n
log log n Hopt.

3.3. A Greedy Heuristic

Lastly, we also consider a greedy approach for PDM that schedules each job to have a start time
with the smallest contribution to the peak energy required by the schedule. We consider both an
offline and online version of the algorithm. In the online version, each job must be scheduled as soon
as it arrives. The online algorithm schedules each job sequentially by finding the first starting time
that minimizes the resulting peak demand. The complete algorithm is presented as Algorithm 2.

Algorithm 2 MinFit-Online

Step 1 Define height(S , j, sj) as the height of schedule S with new job j scheduled to start at sj.
Step 2 Build schedule, S , by determining start times as follows:

forall jobs, j (in the order that jobs arrive)
s = aj
for time t = aj + 1, . . . , dj − lj + 1

if height(S , j, t) < height(S , j, s)
s = t

endif
endfor
startj = s

endforall

The offline heuristic algorithm schedules individual jobs in the same fashion as the online one,
but the jobs that have tight execution windows are scheduled first while jobs with more space in
their execution windows are scheduled later. The complete algorithm is presented as Algorithm 3

(note that wj =
lj

dj−aj
∈ (0, 1] measures the execution window tightness of job j; values closer to 1

indicate tighter jobs).

Algorithm 3 MinFit-Offline

Step 1 Sort jobs by decreasing wj =
lj

dj−aj
values.

Step 2 Execute Algorithm 2 on this ordered list of jobs.

4. Results

Simulations were conducted using the OptimalDP, RoundLP, MinFit-Online, and MinFit-Offline
algorithms. For a baseline comparison, we also compare to an on-demand algorithm, OnDemand,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 September 2017 doi:10.20944/preprints201709.0108.v1

Peer-reviewed version available at Algorithms 2017, 10, 122; doi:10.3390/a10040122

http://dx.doi.org/10.20944/preprints201709.0108.v1
http://dx.doi.org/10.3390/a10040122

9 of 11

that schedules jobs to start on their arrival times. Realistic household power consuming jobs were
created using appliance specific data from six residences [16]. We identified appliances (e.g. washing
machine) likely to have flexible timelines and determined their height, length, and arrival time
distributions within a 24 hour period. Deadlines were set to be uniformly distributed between the
minimum possible deadline (aj + lj − 1) and the arrival time plus four times the average job length of
that appliance.

4.1. Performance vs. Optimal

The first scenario we considered was a simple scenario meant to compare our algorithms against
an optimal solution. Instead of generating jobs as described above, we randomly generated jobs
with an arrival time of 0 to simulate a single peak. Figure 3 shows the average results of running
OptimalDP, RoundLP, MinFit-Online, MinFit-Offline, and OnDemand on 20 iterations of a variable
number of jobs, each from this simplified data generation method. RoundLP, MinFit-Online, and
MinFit-Offline all produced near-optimal solutions at each job set size, in stark contrast to the solutions
provided by OnDemand.

0

5

10

15

20

25

10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 P

e
a
k
 P

o
w

e
r

D
e
m

a
n
d
 (

k
W

h
)

Number of Jobs

OnDemand

RoundLP

MinFit-Offline

MinFit-Online

OptimalDP

Figure 3. Performance of PDM scheduling algorithms in a smaller scenario where the optimal solution
can be computed.

4.2. Scheduling with Renewable Energy

The second scenario we considered was the performance of the RoundLP, MinFit-Online, and
MinFit-Offline algorithms with a large number of realistically generated jobs as well as the inclusion
of available renewable energy. Integrating with renewable energy sources is becoming increasingly
important for microgrids and provides an additional mechanism for controlling the non-renewable
consumption. It is straightforward to modify all of the algorithms considered so that instead of
minimizing overall peak demand, scheduled jobs at time t are first provisioned using the available
renewable energy at that time, R(t), and the goal is to minimize the peak non-renewable energy
demand of the schedule.

Figure 4 shows the average power demand versus time of day for the OnDemand, RoundLP,
MinFit-Online, and MinFit-Offline algorithms when scheduling 100 instances of 500 jobs over a
24 hour period, as well as the renewable generation curve, which was found using the National
Renewable Energy Laboratory’s Wind Integration National Dataset [17]. We sampled locations in the
dataset nearest Bozeman, Montana and selected several days with representative wind generation
curves. The inclusion of a renewable energy source changes the resulting schedules as it enables the
algorithms to shift demand and fill up the “free” energy that the renewable source provides. The peak
non-renewable demands in kWh were 28.6 for OnDemand, 14.7 for RoundLP, 12.9 for MinFit-Offline,
and 19.1 for MinFit-Online.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 September 2017 doi:10.20944/preprints201709.0108.v1

Peer-reviewed version available at Algorithms 2017, 10, 122; doi:10.3390/a10040122

http://dx.doi.org/10.20944/preprints201709.0108.v1
http://dx.doi.org/10.3390/a10040122

10 of 11

0

5

10

15

20

25

30

35

40

00:00 05:00 11:00 16:00 22:00

P
o
w

e
r

D
e
m

a
n
d
 (

k
W

h
)

Time

OnDemand

RoundLP

MinFit-Offline

MinFit-Online

Renewable

Figure 4. Performance of PDM scheduling algorithms in a larger scenario with available renewable
energy. The available renewable energy curve, R(t), is shown in green. Total demand over time is
plotted for each algorithm.

5. Conclusions

In this work we presented the first approximation algorithm for the PDM problem for scheduling
non-preemptible jobs, as well as an optimal dynamic programming algorithm that is fixed-parameter
tractable and a heuristic approach that can be adapted to the online version of the problem. The
problem occurs naturally in scheduling household power consuming jobs in a smart grid power
system. Simulation results indicate that there is substantial opportunity to reduce the peak demand
through deferred scheduling vs. on-demand. Our final simulation scenario also considered available
renewable energy and used slightly modified versions of the presented algorithms to reduce the
peak non-renewable energy demand. There are several further research directions to scheduling
with renewable energy sources. First, the available renewable energy curve may not be known with
certainty and so forecasts must be used. This introduces a random aspect to the performance of any
schedule and so one might seek the schedule with the lowest expected non-renewable peak demand,
etc. A second consideration is that it also important to fully utilize all of the available renewable
energy and not just minimize the non-renewable peak demand. Solutions of interest would be on
the Pareto front of minimizing peak non-renewable demand and maximizing renewable energy use.
Finally, the online version of PDM for non-preemptible jobs has not been explored in great depth.

Author Contributions: S.Y. and B.M. jointly conceived and designed the algorithms; S.Y. performed the
experiments.

Conflicts of Interest: The authors declare no conflict of interest.

Bibliography

1. Koutsopoulos, I.; Tassiulas, L. Optimal control policies for power demand scheduling in the smart grid.
IEEE Journal on Selected Areas in Communications 2012, 30, 1049–1060.

2. Fathi, M.; Bevrani, H. Adaptive Energy Consumption Scheduling for Connected Microgrids Under
Demand Uncertainty. IEEE Transactions on Power Delivery 2013, 28, 1576–1583.

3. Yaw, S.; Mumey, B. An Exact Algorithm for Non-preemptive Peak Demand Job Scheduling. In
Combinatorial Optimization and Applications; Springer International Publishing, 2014; Vol. 8881, Lecture
Notes in Computer Science, pp. 3–12.

4. Logenthiran, T.; Srinivasan, D.; Shun, T.Z. Demand Side Management in Smart Grid Using Heuristic
Optimization. IEEE Transactions on Smart Grid 2012, 3, 1244–1252.

5. Huang, Q.; Li, X.; Zhao, J.; Wu, D.; Li, X.Y. Social Networking Reduces Peak Power Consumption in
Smart Grid. IEEE Transactions on Smart Grid 2015, 6, 1403–1413.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 September 2017 doi:10.20944/preprints201709.0108.v1

Peer-reviewed version available at Algorithms 2017, 10, 122; doi:10.3390/a10040122

http://dx.doi.org/10.20944/preprints201709.0108.v1
http://dx.doi.org/10.3390/a10040122

11 of 11

6. Tang, S.; Huang, Q.; Li, X.Y.; Wu, D. Smoothing the energy consumption: Peak demand reduction in
smart grid. INFOCOM, 2013 Proceedings IEEE, 2013, pp. 1133–1141.

7. Yaw, S.; Mumey, B.; Mcdonald, E.; Lemke, J. Peak demand scheduling in the Smart Grid. Smart Grid
Communications (SmartGridComm), 2014 IEEE International Conference on, 2014, pp. 770–775.

8. Roh, H.T.; Lee, J.W. Residential Demand Response Scheduling With Multiclass Appliances in the Smart
Grid. IEEE Transactions on Smart Grid 2016, 7, 94–104.

9. Chuzhoy, J.; Guha, S.; Khanna, S.; Naor, J. Machine minimization for scheduling jobs with interval
constraints. Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium on,
2004, pp. 81–90.

10. Cieliebak, M.; Erlebach, T.; Hennecke, F.; Weber, B.; Widmayer, P. Scheduling With Release Times and
Deadlines on A Minimum Number of Machines. In Exploring New Frontiers of Theoretical Informatics; Levy,
J.J.; Mayr, E.; Mitchell, J., Eds.; Springer US, 2004; Vol. 155, IFIP International Federation for Information
Processing, pp. 209–222.

11. Ortmann, F.G.; Ntene, N.; van Vuuren, J.H. New and improved level heuristics for the rectangular
strip packing and variable-sized bin packing problems. European Journal of Operational Research 2010,
203, 306–315.

12. Gu, X.; Chen, G.; Xu, Y. Average-Case Performance Analysis of a 2D Strip Packing Algorithm - NFDH.
Journal of Combinatorial Optimization 2005, 9, 19–34.

13. Baker, B.S.; Schwarz, J.S. Shelf algorithms for two-dimensional packing problems. SIAM Journal on
Computing 1983, 12, 508–525.

14. Raghavan, P.; Tompson, C.D. Randomized Rounding: A Technique for Provably Good Algorithms and
Algorithmic Proofs. Combinatorica 1987, 7, 365–374.

15. Raghavan, P. Probabilistic construction of deterministic algorithms: approximating packing integer
programs. Foundations of Computer Science, 1986., 27th Annual Symposium on. IEEE, 1986, pp. 10–18.

16. Kolter, J.Z.; Johnson, M.J. Redd: A public data set for energy disaggregation research. SustKDD workshop
on Data Mining Applications in Sustainability, 2011.

17. Draxl, C.; Clifton, A.; Hodge, B.M.; McCaa, J. The Wind Integration National Dataset (WIND) Toolkit.
Applied Energy 2015, 151, 355 – 366.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 September 2017 doi:10.20944/preprints201709.0108.v1

Peer-reviewed version available at Algorithms 2017, 10, 122; doi:10.3390/a10040122

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.
http://dx.doi.org/10.20944/preprints201709.0108.v1
http://dx.doi.org/10.3390/a10040122

	Introduction
	Related Work
	Algorithms
	An Optimal Dynamic Programming Algorithm
	An Approximation Algorithm
	A Greedy Heuristic

	Results
	Performance vs. Optimal
	Scheduling with Renewable Energy

	Conclusions

