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ABSTRACT. Monitoring complex electro-mechanical processes is not straightforward 

despite the arsenal of techniques nowadays availanle. This paper presents a method 

based on Adaptive-Network-based Fuzzy Inference System (ANFIS) to estimate 

eccentricity of its spinning axis. The method is experimentally tested on an 

ultra-precision rotating device commonly used for micro-scale turning. The developed 

model has three inputs, two obtained from a frequency domain analysis of a vibration 

signal and the third, which is the device rotation frequency. A comparative study 

demonstrates that an adaptive neural-fuzzy inference system model provides better 

error-based performance indices for detecting imbalance than a non-linear regression 

model. This simple, fast, and non-intrusive imbalance detection strategy is proposed to 

counteract eventual deterioration in the performance of ultra-high precision rotating 

machines due to vibrations. 

 

Keywords: neuro-fuzzy modelling, intelligent monitoring, manufacturing processes   

 
1. Introduction. Recently new paradigms have been developed in the field of Artificial 
Intelligence (AI). The widespread use of AI techniques in process monitoring and control 
basically improves upon the inferior performance of more conventional techniques that are 
only effective under theoretical design conditions [1, 2]. However, this argument is not 
enough to develop and apply AI-based methods. Synergy between signal processing 
strategies and AI-based techniques should also be exploited to create effective 
computational methods for improved real-time applications [3, 4]. With this in mind, the 
design of qualitatively superior control and monitoring systems may be possible to enable 
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the improvement of industrial processes such as precision manufacturing. 
The most representative physical variables of electro-mechanical devices in precision 

manufacturing processes are typically nonlinear: low signal-to-noise ratio, strong influence 
of environmental factors, uncertainty, and a huge volume of data generated at high 
frequencies. There are therefore some situations where conventional methods cannot be 
applied for the characterisation of physical phenomena in these devices [5]. On the other 
hand, the use of experimental modelling techniques, AI techniques, and advanced signal 
processing techniques, are useful and feasible strategies which can be combined in a study 
of these physical processes [6, 7]. 

Recent research on precision manufacturing in the field of nanotechnology has applied 
hybrid AI techniques and conventional control algorithms to reduce uncertainty in process 
models and to increase the accuracy of devices in ultra-precision positioning systems [8]. 
Moreover, these same techniques have been used to enhance the performance of actuators 
and systems in ultra-precision machining processes [9]. 

The aim of this work and its main contributions are in the development of a procedure 
and a model based on frequency domain analysis combined with the use of hybrid artificial 
intelligence techniques. The model estimates information from a high-range of signal 
frequencies with high levels of uncertainty in complex electro-mechanical processes. It is 
applied to estimate the micro-scale eccentricity of the spinning axis of a rotating device 
with ultra-precision performance requirements. This method can be effectively applied to 
reduce systemic error and decrease production time in manufacturing processes. 

The paper is organized as follows: Section 2 introduces the use of ultra-precision rotating 
devices in manufacturing operations and presents a mathematical model of vibration in 
rotating devices; Section 3 describes an experimental analysis to study the relationship 
between vibrations and shaft eccentricity in an ultra-precision rotating device; Section 4 
introduces a neuro-fuzzy model that uses frequency domain information to estimate 
eccentricity in a rotating device. Finally, some conclusions are drawn on the results in 
Section 5. 
 
2. Ultra-precision Rotation Devices in Manufacturing Processes. In high-precision 
manufacturing processes, the use of rotational and linear actuators with ultra-precision 
requirements is necessary. A device is considered "ultra-precise" when it reaches the highest 
possible dimensional accuracy of state-of-the-art technology [10]. Operations such as 
milling, turning, drilling, etc., to produce components with micro or nano-scale features, are 
performed by machine tools with micro-metric resolution of their positioning axes. This 
precision is achieved by employing linear motors and rotational actuators with hydrostatic 
or magnetic bearings, and by incorporating an advanced control system with laser 
interferometer metrology. These advanced devices and drivers avoid stiction and reduce the 
influence of vibrations, friction and thermal deviation. 

Despite state-of-the-art computational and mechanical technology in rotational devices, 
non-controlled dynamics of the positioning system continue to affect the surface quality 
and the dimensional accuracy of manufactured parts. Vibrations that result from these 
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dynamic forces affect the desired precision. In rotational actuators, such as the air bearing 
spindle of ultra-precision machine tools, the dynamic forces produced during rotary 
movement [11] reflect these uncontrolled dynamics. The increase in dynamic forces, due to 
the dynamic mass imbalance of the spindle, generates an eccentricity on its rotational axis 
with its corresponding vibration. This vibration has a direct influence on the precision of 
the manufactured part. 
 
2.1 Eccentricity and Vibrations Due to Mass Imbalance. Eccentricity in the shaft of a 
rotating device occurs when its centre of mass differs from its geometric centre [12]. One of 
the most common causes is device mass imbalance, which is produced, mainly, by the 
unequal distribution of mass within its components. Eccentricity in the shaft can generate 
dynamic forces that cause vibrations that are synchronous to the rotation frequency of the 
device. 

Figure 1 depicts a physical representation of a rotor, rotating at speed ω  and a point 
with mass m  causing an imbalance. The imbalance mass is also characterized by an 
eccentricity vector 


e  with its origin in the rotor axial axis and angle tω . The amplitude of 

the generated force F


 and its components, Fx


 and Fy


, due to the imbalance mass, 

[13] are calculated as: 
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These forces constitute a harmonic excitation to the rotating device, causing vibrations in 

the same direction and frequency of the excitation force [14]. The rotating device may be 
considered a spring-mass-damper system, with yc  and yk  as its respective coefficients of 

viscosity and elasticity (see Figure 1), in order to construct a mathematical estimate of its 
vibrations. For the sake of clarity, excitation is only considered in one direction. The 
elasticity and viscosity of other rotor components (e.g., the bearings) are not directly 
considered in this analysis. 

 
 

 
FIGURE 1. Physical model of a rotary device with imbalance mass [14]. 
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If y  is the displacement of the non-rotational mass ( )M m−  from the equilibrium 

position, the general equation of motion due to the amplitude of the imbalance force 

component Fy


, can be expressed as follows: 
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d y dy
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dt dt
ω ω+ + =  (2) 

 
The solution to Equation (2) has two parts: the homogeneous and the particular solution. 

The homogeneous solution describes the transient behaviour of the system, which is a free 
vibration that can be under damped, over damped, or critically damped [15]. At steady state, 
the response of the system is characterized by the particular solution of the equation, which 
is an oscillatory vibration of the same frequency as the excitation Fy  with amplitude Y  
and phase φ : 
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The acceleration of motion could be expressed as: 

 

 2 sin( )y Y tω ω φ= − −  (4) 
 

Equations (3) and (4) represent an approximated relationship between the eccentricity, 
caused by the imbalance mass, and vibrations that take place in a rotating device. The 
amplitude of both vibration displacement and its acceleration are proportional to the 
imbalance mass and its eccentricity, dependent upon its rotation at speed. 

 

 

FIGURE 2. One way of compensating imbalance in high precision rotational devices. 
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Modern-day methods to balance ultra-precision rotation devices are usually based on 
determining the position and magnitude of the imbalance masses, and then adding 
compensatory masses to the rotor (of the same magnitude, and diametrically opposite), as 
shown in Fig. 2. Some machines include manual procedures or special modules with which 
to carry out the compensation, in this case usually based on measuring the eccentricity of 
the axis at different points by means of capacitive or inductive sensors, and determining the 
position of greatest eccentricity. The compensation involves manually adding masses to this 
position until the eccentricity is within the bounds required for the corresponding process. 

 
 
3. Experimental Analysis. An experimental platform was installed on a Precitech Inc. 
SP-150 spindle, mounted on an ultra-precision lathe, in order to conduct an experimental 
study of the relationship between vibration and shaft eccentricity. These types of machines 
are employed for finishing operations on curved and flat surfaces of both brittle and ductile 
materials, with very low error tolerances. Components (e.g., an optical lens) can be 
manufactured with arithmetic average surface roughness of below 10 nanometers and a few 
hundred nanometers of form accuracy. 

Vibrational signals were measured with two accelerometer sensors rigidly attached to the 
spindle housing (see Figure 3). The sensor was a 352C15 model from PCB Piezotronics, 
with a sensitivity of 10 mV/g and a bandwidth of 12 kHz. The vibration signals of the X 
and Y spindle axes were acquired and processed with a high-performance National 
Instruments PXI-8187 processor, at a sample frequency of 50 kHz. 
 

 
 

FIGURE 3. Experimental platform for imbalance detection in a high-precision device. 
 

The ultra-precision lathe is part of a functioning production line in an industrial 
environment. The experimental platform does not, therefore, interfere with the 
manufacturing process. 

The eccentricity reference value is obtained from a measurement system embedded in the 
Computer Numerical Control (CNC) of the lathe. The amplitude and phase of this value, 
displayed on the CNC graphical user interface, correspond to the maximum eccentricity 
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position of the spindle shaft. These values may only be obtained prior to each 
manufacturing operation. Only the amplitude of eccentricity is used as a reference value for 
the experimental analysis. 

Different operational conditions of the spindle have been considered, in order to analyse 
the relationship between vibrational level and shaft eccentricity, as shown in Table 1. 
Eccentricity is manually induced by adding imbalanced masses on the spindle. 

 
TABLE 1. Operational conditions of the experiments. 

Spindle speed 
[RPM] 

Eccentricity 
[nm] 

Samples 
for FFT 

1000 13; 440 60000 
3000 18; 304 20000 
4000 17; 155 15000 

 
Only the X-axis spindle vibration signal is analyzed in this study. Fast Fourier Transform 

(FFT) is applied to this signal, generating a frequency spectrum. A sample size proportional 
to the ratio between the signal sample frequency (50 kHz) and the rotation frequency is 
used for each transform (see last column of Table 1), thus the frequency step in the 
spectrum is a fraction (1/20) of the spindle speed.  
 

a) 

b) 
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c) 

 
FIGURE 4. Magnitude spectra of the X-axis vibrational signal for different rotational speeds. 
(a) 1000 RPM, eccentricity of 13 nm (dash-dot line) and 44 nm (solid line). (b) 3000 RPM, 
eccentricity of 18 nm (dash-dot line) and 304 nm (solid line). (c) 4000 RPM, eccentricity of 

17 nm (dash-dot line) and 155 nm (solid line). 
 

Figure 4 shows the magnitude spectrum on a logarithmic scale for each operational 
condition in a frequency range close to 10 kHz, where the experiments with the same 
rotational frequency are depicted in the same graph. For cases with the largest eccentricity 
values, the sequences of the sideband harmonic frequencies appear close to those of the 
main harmonics of the spectrum. The harmonics within each sequence are separated by the 
spindle rotational frequency. It is therefore possible to estimate the eccentricity of the 
spindle shaft from the amplitude of the harmonic sequences. 

 
4. Model for eccentricity estimation. One way of estimating eccentricity is to develop a 
model-based strategy that uses frequency-domain and time-domain information (Figure 5). 
The proposed model has three inputs, two obtained from a frequency domain analysis of a 
vibration signal (AT1 and AT2) and the third, which is the device rotation frequency (RF). 
The model output (ULE) is the maximum eccentricity in the spindle rotational axis due to 
the mass imbalance. 
 

 
FIGURE 5. Outline of the eccentricity estimation procedure. 

 
Figure 5 depicts an outline of the estimation procedure of eccentricity, where HSD 

corresponds to a spectral analysis procedure [15]. In this step, an algorithm should seek 
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harmonic sidebands that form sequences around the main harmonics within a desired 
frequency range of the signal spectrum. The values of sample frequency (SF) and signal 
bandwidth (BW) correspond to those used in the experimental platform. 
 

 
FIGURE 6. Spectral regions used for the model. 

 
Model inputs AT1 and AT2 are calculated as the total sum of the amplitudes of the 

sideband harmonics identified around the two principal harmonics. Thus, the value of each 
ATi input is only related to the harmonics that are generated due to eccentricity. 
 

 ,
1

n

i j i
j

AT A
=

=  (5) 

 
Aj,i represents the amplitude of each j sideband harmonic around the i–th principal 

harmonic, where n is the total of new harmonics within a sequence. 
Figure 6 illustrates the spectral regions from which inputs AT1 and AT2 would be taken. 

These regions are not fixed and are determined by the principal harmonic frequencies, and 
their width depends on the frequencies of the sideband harmonics. 

 
4.1 Regression Model for Eccentricity Estimation 
 

A direct model represented by a hyperbolic tangent function with a correlation 
coefficient (R2) equal to 0.98 was obtained by fitting an experimental data set through 
regression techniques and the harmonic detection algorithm. The single-input single-output 
model relates the eccentricity (ULE) of the spindle shaft with the power ratio (PRA) of the 
detected sequence around the spectrum's principal harmonic. The model for estimating the 
eccentricity is obtained by inversion.  

 

                

1
tanh( ) 1
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[ ]1
tanh( ) 1

2min EminPRA m UL n= ⋅ + +
                   (8) 

 
In the above equations, the linear fit coefficients m and n are initially set at 2.220126 and 

−1.59696, respectively. The parameters ULEmin and PRAmin are defined as minimum 
specifications of the eccentricity and the power ratio, respectively. The minimum value 
ULEmin was set to 0.010 µm, in accordance with the range of the experimental dataset. 
These parameters are introduced to take into account the sensitivity of the piezoelectric 
sensor and the vibration attenuation due to the spindle's mechanical properties.  
 
4.2 Takagi-Sugeno Type Neuro-fuzzy Inference System for Eccentricity Estimation. The 
Takagi-Sugeno type fuzzy inference system represents an excellent alternative technique 
for designing a model that ensures accurate eccentricity estimation, due to its capabilities 
such as interpolation and function approximation. The use of AI hybridization techniques 
such as artificial neural networks and fuzzy inference systems can facilitate the model 
design procedure. 

Among the new hybrid systems, the Adaptive Network based Fuzzy Inference System 
(ANFIS), as well as pioneering work, is also the simplest approach in terms of 
computational time, which makes it feasible for real-time applications [16, 17]. Its principle 
is based on the extraction of fuzzy rules at each level of a neural network. Once the rules 
have been obtained, they provide the necessary information on the overall behaviour of the 
modelled system. 

 

FIGURE 7. ANFIS model structure. 
 
ANFIS implements the Takagi-Sugeno model for the structure of the fuzzy system’s 

if-then rules. The ANFIS architecture has five layers: the premise parameters layer (1), 
calculation of the firing strength of each rule (2), a layer to normalize the firing strength of 

Inputs
Membership functions

(Layer 1) 
Rules 

(Layers 2 and 3)
Output functions

(Layer 4) Output
(Layer 5)

AT1 

AT2 

RF 
(Hz) 

ULE 
(µm)
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each rule (3), the consequent parameters computation layer (4), and a final layer (5) to 
calculate the overall output as the summation of the outputs from the previous layer. Figure 
6 shows the proposed model with its corresponding ANFIS layers. 

 

 
FIGURE 8. The generalized bell distribution function and a graphic example. 

 
Each model input is divided into three partitions, using an extension of the 

Cauchy-Lorentz distribution, also called a generalized bell function, as the membership 
function. A typical example of this function is shown in Figure 8. The output of each rule is 
a linear combination of the inputs, and the model output is the sum of all the rules. The 
inputs AT1 and AT2 have magnitudes of vibration (acceleration) from the English system of 
units, in this case milli-g (1g ≈ 9.8m/s2). The values that take the rotation frequency input 
(RF) are expressed in Hertz (Hz) and the model output is estimated in micrometers (µm). 

The model is trained using a hybrid mode, where the antecedent of the rules 
(membership functions) is determined employing error back propagation as the learning 
strategy and the consequent of each rule is estimated using the least squares method (output 
functions). In the first step or ‘forward pass’, the input models are propagated, and the 
optimum consequent fuzzy sets are estimated with an iterative least squares procedure, 
while the premises remain fixed. In the second step or ‘backward pass’, the back 
propagation procedure is used to modify the premise parameters, and the consequents 
remain constant. The training process stops whenever the designated epoch number 
(iteration count) is reached or the training error goal is achieved. The results of the training 
are shown in Figure 9. 

 

 
FIGURE 9. Training results and training data. 
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The universes of discourse of the variables were taken to 
be [ ]1 0,50AT ∈ , [ ]2 0,142 ( )AT mg∈ , [ ]16.67,83.33 ( )RF rev s∈ , 
and [ ]0.013,0.478 ( )EUL mμ∈ . 

The output of each rule is a linear combination of the three inputs, and the model output 
is the sum of all the rules: 

 

1 2
Ri
E i i i iUL a AT b AT c RF d= ⋅ + ⋅ + ⋅ +    (9) 

 
where, , , ,i i i ia b c d are the coefficients obtained by the training corresponding to the i-th rule, 

and Ri
EUL  is the output of the i-th rule. 

The input membership functions are shown in Fig. 10. The rules of the knowledge base 
are automatically created from the possible combinations of the logistic variables of each 
model input. The antecedent of each rule is related through the connective "AND", and its 
consequent is calculated from a linear affine function. 
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FIGURE 10. Membership functions of the inputs of the ANFIS model. 
 
The rules have been defined as follows: 
 

R1: IF (AT1 is Low) AND (AT2 is Low) AND (RF is Low) THEN (ULM is ULR1) (1)  
R2: IF (AT1 is Low) AND (AT2 is Low) AND (RF is Medium) THEN (ULM is ULR2) (1)  
R3: IF (AT1 is Low) AND (AT2 is Low) AND (RF is High) THEN (ULM is ULR3) (1)  

. 

. 

. 

. 

. 

.
R27: IF (AT1 is High) AND (AT2 is High) AND (RF is High) THEN (ULM is ULR27) (1)  

 
4.3 Model Validation. This section explains how the model is validated with another data 
set obtained experimentally. Experiments were performed with spindle speeds of 1000, 
2000, 3000, 4000 and 5000 r/min (16.667 - 83.333 Hz) and shaft eccentricity values from 
13 to 478 nm were introduced by manually adding imbalanced masses to the spindle. 
 

TABLE 2. Data for validation and error analysis of the ANFIS model. 
AT1 
(mg) 

AT2 
(mg) 

ULM 
(µm) 

ULE 
(µm) 

APE 
(%) 

AT1 
(mg) 

AT2 
(mg) 

ULM 
(1) 

(µm) 
ULE 

(2) 
(µm) 

APE 
(%) 

RF = 16.667 Hz RF = 66.667 Hz 
0 0 0.013 0.0145 11.538 3.62 0 0.017 0.012444 26.798
0 0 0.013 0.0145 11.538 7.94 12.9 0.057 0.066241 16.213
0 0 0.013 0.0145 11.538 5.84 36.114 0.155 0.1915 23.547
0 0 0.016 0.0145 9.375 49.464 142.68 0.478 0.49993 4.5868
0 0 0.016 0.0145 9.375 RF = 83.333 Hz 
0 0 0.021 0.0145 30.952 0 3.4 0.019 0.022425 18.025
0 9.52 0.021 0.019187 8.6321 11.8 24.536 0.114 0.12829 12.538

3.76 16.48 0.044 0.024345 44.671 9.82 20.506 0.114 0.095312 16.393
RF = 33.333 Hz 6.62 42.106 0.215 0.215 7.24E-08

0 0 0.015 0.015 5.99E-09 8.1 38.774 0.215 0.19307 10.202
0 0 0.015 0.015 5.99E-09 8.1 38.774 0.215 0.19307 10.202
0 20.348 0.049 0.038531 21.364 18.24 40.544 0.215 0.20863 2.9635

7.16 49.356 0.149 0.1407 5.5697
Mean Error = 14.153 % 

RF = 50 Hz 
0 9.7 0.018 0.01435 20.278 (1) Measured eccentricity. 

(2) Estimated eccentricity. 
0 27.532 0.077 0.090872 18.016

2.78 18.72 0.077 0.053485 30.539
24.792 62.876 0.304 0.31127 2.3923
30.956 68.416 0.304 0.2541 16.416
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Table 2 shows the experimental data used for each input-output model. The columns 

headed ULM and ULE correspond to the output reference value (measured eccentricity) and 
the model eccentricity estimation, respectively. The model's inputs (AT1 and AT2) were 
calculated from the spectral analysis, within a range of around 10 kHz ±15%, of the 
vibration signal of the spindle X-axis.  
 

 
FIGURE 11. ANFIS model validation. Estimated eccentricity and reference value. 

 
 
A comparative study was conducted with a regression model, in order to evaluate the 

behaviour of the ANFIS model. Five performance indices were considered in the 
experimental study – the sum of squared errors SSE, the sum of average errors SAE, the 
mean square error MSE, the mean absolute error MAE, and the maximum error. The results 
are shown in Table 3. 

 
TABLE 3. Comparison of the two modeling techniques considered in this study. 

 

Algorithm/Error 
Criterion (%) 

SSE 
(104) 

SAE MSE MAE 
Max 
Error 

ANFIS 0.83 371.92 17.89 14.15 44.67 

Regression 64.3 2013.6 157.25 77.44 93.28 
 

 
Figure 11 shows the behaviour of the two models considered in this study in relation to the 

eccentricity measured on the experimental platform described in Section 2. It is evident that 
ANFIS outperformed the regression model. Figure 11 depicts the validation data, where the 
average error between the model output and the desired output is 14.15%, which shows good 
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performance of the model within the full range of analysis. 
The absolute percentage error for validation data is illustrated in Figure 12a, from which 

it is clear that the model has quite high uncertainty at the lowest eccentricity estimation 
interval. This decreases as the eccentricity estimation value increases, but in general, the 
model error is below 20% throughout the range under analysis. Furthermore, this range is 
divided into three intervals, selected and classified according to the degree of accuracy that 
they each represent and the estimation uncertainty. The eccentricity values of between 
0.012 - 0.030 µm represent the highest accuracy and the highest uncertainty prediction. The 
second region between 0.030 - 0.150 µm represents high accuracy and high uncertainty. 
The third region between 0.150 - 0.500 µm represents medium accuracy and low 
uncertainty. The average error is calculated for each region (see Figure 12b). 

 

a) 

 

b) 

 
FIGURE 12. Model estimation errors: a) absolute percentage error vs. the eccentricity 

reference value, b) average error by intervals of estimation. 
 

The model error is less than 15% but increases in the middle interval as shown in Figure 
10b. This performance is more evident in the regions of highest and medium accuracy. 
Indeed, the model's performance is adequate according to the required scale of the 
estimated variable and from the standpoint of industrial precision in manufacturing. The 
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presence of high uncertainty in some regions of estimation is due to low vibration 
magnitudes. The stiffness of the rotation device and the sensitivity of the measurement 
system (e.g.: accelerometer sensor sensitivity) are the main causes of low-level vibrations. 
These areas of lower mathematical certainty correspond to lower regions of training input 
in the mechanical and measuring devices. 
 
5. Conclusions. A procedure to estimate eccentricity in ultra-precision rotating devices has 
been discussed in this work. It is based on a model that implements an 
Adaptive-Network-based Fuzzy Inference System (ANFIS). The three model inputs are 
information from the frequency and time domains. The technique has been applied to an 
ultra-precision rotating device to estimate eccentricity at its spinning axis, caused by its 
inertial mass imbalance. Its eccentricity is estimated during the rotary movement of the 
device from its steady state vibrations, and the developed models are adjusted and validated 
with experimental data. Furthermore, a comparison with a regression model demonstrated 
the potential of an adaptive neural-fuzzy inference system which provided better accuracy 
than a regression model. In brief, the proposed strategy for imbalance detection in 
ultra-high precision rotating machines is simple, fast, and non-intrusive in a production 
environment. 

Finally, the proposed model has performed to an acceptable level which demonstrates 
that experimental modelling techniques combined with neurofuzzy and signal processing 
techniques can be satisfactorily applied to real-time intelligent monitoring of devices with 
micro-scale precision requirements. 
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