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Abstract: The key to simulating soil erosion is to calculate the vegetation cover (C) factor. Methods 23 
that apply remote sensing to calculate C factor at regional scale cannot directly use the C factor 24 
formula. That is because the C factor formula is obtained by experiment, and needs the coverage 25 
ratio data of croplands, woodlands and grasslands at standard plot scale. In this paper, we present 26 
a C factor conversion method from a standard plot to a km-sized grid based on large sample theory 27 
and multi-scale remote sensing. Results show that: 1) Compared with the existing C factor formula, 28 
our method is based on the coverage ratio of croplands, woodlands and grasslands on a km-sized 29 
grid, takes the C factor formula obtained from the standard plot experiment and applies it to 30 
regional scale. This method improves the applicability of the C factor formula, and can satisfy the 31 
need to simulate soil erosion in large areas. 2) The vegetation coverage obtained by remote sensing 32 
interpretation is significantly consistent (paired samples t-test, t = −0.03, df = 0.12, 2-tail significance 33 
p < 0.05) and significantly correlated with the measured vegetation coverage. 3) The C factor of the 34 
study area is smaller in the middle, southern and northern regions, and larger in the eastern and 35 
western regions. The main reason for that is the distribution of woodlands, the Hunshandake and 36 
Horqin sandy lands and the valleys affected by human activities. 4) The method presented in this 37 
paper is more meticulous than the C factor method based on the vegetation index, improves the 38 
applicability of the C factor formula, and can be used to simulate soil erosion on large scale and 39 
provide strong support for regional soil and water conservation planning.  40 

Keywords: farming-pasture ecotone; TM image, remote sensing, vegetation cover factor; scale 41 
conversion; land use; high resolution image 42 
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The soil erosion models have provided strong support for regional soil and water conservation 45 
planning. With the development of Geographic Information System (GIS) and Remote sensing (RS), 46 
the water erosion equation has been widely used in regional soil erosion simulations [1-6]. Current 47 
water erosion models include the universal soil loss equation (USLE)[7], the revised universal soil 48 
loss equation (RUSLE)[8,9], the China soil loss equation [10] and so on. These models are being widely 49 
used to estimate soil loss in agriculture and environmental management. In the models, soil loss 50 
A=R×K×L×S×C×P, where R, K, L, S, C and P, respectively, are rainfall erosivity (R), soil erodibility (K), 51 
slope length (L), slope steepness (S), vegetation cover and management (C), and support practice 52 
factor (P). The R, K, L and S factors are controlled by the natural environment, therefore will not be 53 
changed by short-term soil and water conservation measures and activities. However, the C factor 54 
has the greatest change range among the factors of water erosion models, and the changes can differ 55 
by 2–3 orders of magnitude[11]. According to Benkobi, et al. [12] and Biesemans, et al. [13], the 56 
vegetation cover factor together with slope steepness and length factors are most sensitive for soil 57 
loss, and have the most significant effect on the overall effectiveness of the USLE / RUSLE models 58 
[14]. Therefore, calculating and improving the accuracy of regional C factors has become the key to 59 
improving regional soil erosion simulations.  60 

Most of the regional C factors have been determined with remote sensing data through the 61 
following methods: 1) The direct assignment of land use/coverage [15]. This method is simple, but 62 
the accuracy of the computed C factor is poor [11]; 2) The vegetation index estimated C factor method 63 
[16-18]. This method can express the regional vegetation coverage more finely, but it is less 64 
comprehensive, and multiple layers and shallow roots are usually ignored; 3) The spectral mixing 65 
analysis (SMA) estimated C factor method [19,20]. The SMA method considers the contributions of 66 
litter, gravel, etc.; it can fully reflect the C factor information independent of the measurements, and 67 
the soil background does not affect it. However, the SMA method cannot be used when vegetation 68 
and/or litter completely covers the surface, or when the data is affected by multiple scattering [11]; 4) 69 
Experimental approaches combined with geostatistical methods [18,21]. With this method, the C 70 
factor can be interpolated using GIS and remote sensing images as auxiliary variables. Wang, et al. 71 
[18] improved mapping the C factor for the USLE by geostatistical methods with TM images. Based 72 
on multiple primary variables (canopy cover, ground cover and vegetation height), Gertner, et al. [21] 73 
mapped the C factor in regions from joint co-simulation. 74 

All of these methods that apply remote sensing have the following problems: Firstly, 75 
the methods above used the C factor formula obtained from standard plot experiments, while such 76 
formula cannot be directly applied to an entire region. The C factor formula of croplands, woodlands 77 
and grasslands, is calculated by experiments on the erosion rate of croplands, woodlands and 78 
grasslands plots with bare land in the standard plots. However, the vegetation cover of a region is a 79 
complex combination of croplands, woodlands and grasslands, differing from the vegetation cover 80 
modelled in the standard plot. Secondly, the RSI method requires a large number of field samples, 81 
and could not be used in the fragmented landscape areas, such as farming-pasture ecotones of 82 
northern China. Not only is it difficult to ensure the accuracy of the spatial interpolation, but it is also 83 
time-consuming, laborious and difficult to promote. Thirdly, there are very few ways to properly 84 
consider the effects of surface coverage and canopy coverage on soil erosion in the modelled region. 85 

Based on the results of previous regional C factor estimations, we analyzed the key factors of soil 86 
erosion and highlighted the key factors affecting the scale conversion [22]. In order to improve the 87 
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accuracy of regional C factor estimation, and obtain large-scale C factor map for macro-scale soil 88 
erosion simulation, we built a C factor estimation method based on large sample theory and Landsat 89 
Thematic Mapper (TM) images, and we show that our method solves the key problem of transitioning 90 
from a standard plot to km-sized grids, and hence accurately estimates regional C factors.  91 

2.  Study Area 92 

    The eastern section of the farming-pasture ecotone (hereinafter referred to as the study area (see 93 
Figure 1) includes 84 counties (banners) in the Inner Mongolia Autonomous Region, Liaoning 94 
Province, Heilongjiang Province, Jilin Province and Hebei Province, and has an area of 4.402 × 105 95 
km2. In 2015–2016, our research group carried out two field trips to determine the land use and soil 96 
erosion in the study area, and the length of survey route was nearly 7000 km. According to the typical 97 
geographic unit and landform type, we set up 21 survey sample areas. From July 19 to July 25, 2015, 98 
the western part of the study area was inspected, where 10 inspection points were created over a 99 
route of 2930 km. From August 7 to August 14, 2016, the eastern part of the study area was inspected, 100 
where 11 inspection points were created over a route of more than 4,000 km. 101 

 102 

Figure 1 Study area and two field trips routes 103 

3. Materials and Methods  104 

3.1  Basic Idea and Research Framework 105 

More than 1000 coverage data-points were obtained from Landsat TM images of Global Land 106 
Survey in 2010 (GLS2010) and ground measurements, and according to large sample theory and 107 
information entropy theory, their distributions and proportions are similar. Large sample theory, also 108 
called asymptotic theory, is used to approximate the distribution of an estimator when the sample 109 
size n is large. This theory is extremely useful if the exact sampling distribution of the estimator is 110 
complicated or unknown[23]. In addition, based on information-entropy theory [24], when the 111 
sample size is sufficiently large, the samples can be assumed approximate to a normal distribution. 112 
According to the above two theories, the subsets of remote sensing data-points and field 113 
measurements data-points have a similar distribution. That is, the same km-sized grid, 2,000 land 114 
cover data-points obtained from field measurements have a similar distribution and similar 115 
proportion of croplands, woodlands, and grasslands as 1,000 land cover data-points determined from 116 
the Landsat TM images. The accuracy of the field measured vegetation cover method is better than 117 
that of the remote sensing method, therefore the field measurements can be used as the reference for 118 
verifying the remote sensing measurements. The research framework is shown in Figure 2. 119 
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Figure 2 The C factor conversion method from a "standard plot (single vegetation type)" to a "km-121 
sized grid" (multiple vegetation types) 122 

The C factor conversion from a "standard plot (single vegetation type)" to a "kilometer grid" 123 
(multiple vegetation types) contains six steps: 1) The vegetation cover of the sampling method was 124 
evaluated based on the high-resolution images of the survey sample area. 2) We interpreted the 125 
Landsat TM images of the study area and derived the land use data based on the CART decision tree 126 
classification method. 3) Then set up 21 survey sample areas, each with an area of 1 km2, and 2,000 127 
canopy cover and surface cover data established. 4) Based on the resolution of land use data, 1,125 128 
canopy coverage data were obtained in each km-sized grid of the study area, and the canopy coverage 129 
(Cc) of the croplands, woodlands, and grasslands were calculated. 5) The surface cover (Sc) factor 130 
was calculated based on the surface coverage surveyed in survey sample area, and was applied to 131 
the entire study area according to the landform type. 6) According to the Cc and Sc factors, we 132 
calculated in the C factors of study area. Finally, we verified the regional C factor by the survey 133 
sample areas. 134 

3.2  Materials  135 

 The study mainly used three types of data: measured data (survey sample data), remote sensing 136 
data (Landsat TM image data, MODIS data and high-resolution images) and basic geographical data. 137 
We used the Landsat TM image data of the Global Land Survey in 2010 (GLS2010, 138 
https://glovis.usgs.gov/, 30m×30m). The dates of MODIS data (https://urs.earthdata.nasa.gov/profile, 139 
1km×1km) are July 12, 2015 and July 27, 2016, near the survey dates. A total of about 42,000 coverage 140 
data-points were surveyed throughout the study area. Basic information of the survey sample areas 141 
is shown in Table 1. 142 

Table 1 The basic information of the survey sample area 143 
Sample ID longitude latitude County Measuring point Geomorphic unit *

1 E115°6'55'' N41°40'57'' Taibus Banner 1983 Wavy High Plains 
2 E115°14'3'' N42°0'40'' Taibus Banner 2012 Wavy High Plains 
3 E115°54'25'' N42°16'53'' Zhenglan Banner 2002 Rising hills 
4 E114°39'9'' N42°11'33'' Hua De County 1936 Layered high plain 
5 E113°54'48'' N41°55'2'' Hua De County 1953 Wavy High Plains 
6 E113°30'56'' N41°32'14'' Shangdu County 1996 Wavy High Plains 
7 E113°16'26'' N41°13'44'' Qahar Right Wing Rear Banner 1989 Layered high plain 
8 E111°16'16'' N39°55'19'' Jungar Banner 1985 Rising hills 
9 E113°7'22'' N40°51'6'' Qahar Right Wing Front Banner 2008 Layered high plain 
10 E113°55'3'' N40°53'12'' Xinghe County 1995 Rising hills 
11 E118°50'4'' N42°11'30'' Hongshan District 2006 Rising hills 
12 E118°48'29'' N42°19'21'' Hongshan District 2000 Rising hills 
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13 E119°39'56'' N42°27'48'' Aohan Banner 1990 Rising hills 
14 E120°49'5'' N42°47'45'' Naiman banner 1999 Sandy land 
15 E122°13'59'' N43°19'28'' Horqin Left Wing Rear Banner 1985 Sandy land 
16 E122°2'13'' N44°9'47'' Horqin Left Wing Middle Banner 2000 Sandy land 
17 E121°45'36'' N44°56'28'' Horqin Right Wing Middle Banner 1988 Sandy land 
18 E122°9'22'' N46°9'38'' Horqin Right Wing Front Banner 2015 Sandy land 
19 E120°9'48'' N49°9'29'' Evenki Autonomous Banner 2000 Valley plain 
20 E119°30'58'' N49°19'55'' Chen Barag Banner 2008 Layered high plain 
21 E118°25'21'' N49°28'49'' Chen Barag Banner 2008 Wavy High Plains 

Note: * According to the Inner Mongolia landform type map to determine the landform type. 144 

We used some Gaofen-2 satellite images (GF-2) that covered the investigation area to discuss the 145 

relationship between survey estimated vegetation coverage and intercept vegetation coverage in the 146 

km-sized grid. GF-2 satellite was designed and developed by China Academy of Space Technology 147 

(CAST). It employs the CAST-CS-L3000A bus and two Panchromatic image/Multi spectral image 148 

(PAN/MS) cameras: one is the MS image with four bands in the visible and near-infrared (VNIR) 149 

range with a spatial resolution of 3.2 m; and the other is PAN image in the visible range with a spatial 150 

resolution of 0.8 m[25]. We chose four GF-2 images that were obtained within one month either side 151 

of the survey date in 2015. The GF-2 date of sample NO. 4 is August 4, 2015 and the sample NO. 5 is 152 

August 9, 2015, and the sample NO. 9 is in August 19, 2015, and the sample NO. 10 is in August 9, 153 

2015. With the eCognition software, we adopted the object-oriented high-precision remote sensing 154 

interpretation method to obtain high-resolution land use/cover data of the survey sample area. 155 

3.3  Methods  156 

3.3.1  Canopy coverage factor upscaling 157 

The canopy coverage factor can be calculated from vegetation cover, which can be estimated 158 
using point intercept, line-point intercept, grid-point intercept, and ocular estimates [26,27]. Scholars 159 
have compared the above-mentioned methods to calculate the vegetation cover, and found that when 160 
the samples are less than 20, the point-based methods are more precise than ocular estimates 161 
[26,28,29] and line-point intercepts [26]. When the sample size is large enough, the estimate of line-162 
point intercept is the same as that of the point intercept and grid-point intercept, and can correctly 163 
reflect vegetation cover [26,27]. In this paper, 21 survey sample areas were set up in the study area. 164 
In each survey sample area we collected a total of 2,000 samples, which is far greater than the 165 
requirement of 20 samples [27].  166 

The size of the sampling unit is also important for ground measurements. Duncan, et al. [30] 167 
analyzed the influence of sampling unit size on the remote sensing regression model based on the 168 
vegetation index and vegetation cover, and discussed the most suitable sampling unit size. In this 169 
paper, we chose the km-sized grid as the statistical unit. Then, via TM image interpretation, we 170 
produced more than 1,000 land use/land cover data-points in each km-sized grid. Next, the MODIS 171 
vegetation cover was directly measured from the vegetation index in the km-sized grid. The different 172 
methods used to estimate vegetation cover are shown in Figure 3. 173 
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Figure 3 The different methods used to estimate vegetation cover in the survey sample area: a: The 175 
line-point intercept method; b: from high-resolution satellite images; c: from TM images; d: from the 176 
MODIS vegetation index. 177 

The key to estimating the C factor is to calculate the vegetation cover. There is no standard 178 
method to monitor vegetation cover, and current methods can be divided into surface measurement 179 
methods and remote sensing methods. The surface measurement method is limited by the workload 180 
and the measurement area size, and is unsuitable as an independent measurement method at large 181 
scale. The methods based on remote sensing to calculate the vegetation cover relies on a surface test 182 
for the regression calibration. It has a certain accuracy, but it is subject to the restrictions of promotion 183 
and application, especially in fragmented landscapes like farming-pasture ecotones. In terms of 184 
current technology, the accuracy of the surface measurement method is higher than that of the remote 185 
sensing method, and thus can be used as the basis for remote sensing measurement and data 186 
verification [31]. 187 
3.3.2  TM Image Land Use Interpretation 188 

• Land use classification system 189 
The coverage and proportion of various land types on a km-sized grid can be calculated 190 

according to the high-resolution land use data of the study area, such as the global 30 m land use data 191 
produced by Chen, et al. [32] or Gong, et al. [33]. However, both the above-mentioned classification 192 
data confuse grassland and bare land in the study area, and contains no secondary classification of 193 
grassland. Therefore, we adopted a secondary land use classification system for the study area based 194 
on the land use/cover classification system of Liu, et al. [34] to classify the TM images. The 195 
interpretation effects of some classification methods (such as neural network classification, object-196 
oriented classification) can be very good for single scene image, but when it comes to a large area, the 197 
workload and classification efficiency must be considered. The CART algorithm is based on the 198 
decision tree classification method[35], and combines the advantages of the DEM, NDVI, as well as 199 
supervised and unsupervised classification, resulting in a much higher interpretation efficiency than 200 
other interpretation methods[35] for large area. So, we adopted the decision tree classification method 201 
of the CART algorithm to carry out land use classification (we interpreted more than 40 scene Landsat 202 
TM images from GLS2010). 203 
• Decision tree classification based on the CART algorithm 204 

Prior to classification, the Landsat TM and Landsat Enhanced Thematic Mapper (ETM) data in 205 
Global Land Survey 2010 (GLS2010) underwent cloud interpretation and geometric correction and 206 
were combined into multi-band images composed of blue, green, red, near infrared, short-wave 207 
infrared, medium-wave infrared, long-wave radiation, together with NDVI, ISODATA, DEM and 208 
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other bands. The NDVI data was generated from TM images and the DEM data from global ASTGTM 209 
data. The ISODATA data is from unsupervised classification of the TM images, and the minimum 210 
class number of unsupervised classification is 10 and the maximum is 25.  211 

The main steps of decision tree classification based on the CART algorithm are: 1) Select the 212 
training areas. According to the secondary classification system, a certain number of training samples 213 
were selected in the multi-band image and used to obtain expert knowledge rules. The training area 214 
selection order was: i) water (river canals), ii) Built-up lands, industrial and mining lands, residential 215 
lands (urban land, rural residential areas, other construction land), and iii) croplands (irrigated land, 216 
dry land); 2) Establish a decision tree based on the training area. We used the extension tool RuleGen 217 
[35] to automatically generate decision tree rules, and used the ENVI Execute Existing Decision Tree 218 
tool to establish a decision tree for land use interpretation. 219 
• Classification accuracy evaluation 220 

In this paper, the study area is relatively large, it is difficult to carry out scientific random field 221 
verification, so this paper uses a large number of random distribution of single pixel verification point 222 
method based on Google image[36,37]. We generated a total of 2,000 points randomly throughout the 223 
study area (50 points in each image). In order to get the real surface cover data of the randomly points, 224 
and considering the high accuracy of Google images, we first used Google Earth to distinguish the 225 
real surface cover data[36,37], and second, we moved the random verification point which is in edge 226 
of land cover type, to the center of land cover type, and avoid mixing pixels and ensure the accuracy 227 
of the true surface data. Finally, we used the true surface data of points randomly to verify the 228 
accuracy of the land use in interpretation. 229 
3.3.3  Surface coverage factor upscaling 230 

At regional scales, it is difficult to obtain surface cover information such as surface litter, crop 231 
stubble and gravel required by soil erosion models. To overcome this limitation, we first set up 21 232 
survey sample areas in the typical landform unit, measured the ratio of surface litter, crop stubble 233 
and gravel in the sample area, and finally interpolated according to land surface types to obtain the 234 
surface coverage factor in the study area. Secondly, the surface of the study area was classified 235 
according to the geomorphic map (1:4 million) of China and its adjacent areas. Thirdly, according to 236 
the natural geographic features of the study area, we found the surface of the study area can be 237 
classified by the geomorphic unit that can get the surface cover information to calculate the vegetation 238 
cover. Lastly, the surface coverage (Sc) of the study area was calculated based on the field coverage 239 
of the survey sample area and the structure geomorphic unit of the study area, as shown in Figure 4. 240 

 241 
Figure 4 The coverage of surface matter in the study area 242 
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3.3.4  Regional Vegetation Cover Factor 243 

• Standard plot C factor algorithm 244 
Many scholars have experimentally determined the standard plot C factor for different regions 245 

[4,11,38,39]. Different formulas are given based on different vegetation covers, for example: Jin, et al. 246 

[40] built the C factor formula of grassland that had a 1.9% coverage in the standard plot of the 247 

Huangfu River Basin. Jiang, et al. [41] built the C factor formula of grasslands and woodlands in a 248 

standard plot with coverages of more than 5% in Ansai County of Shaanxi Province. Liu [42] built 249 

the C factor formula of croplands, woodlands and grasslands in a standard plot in Beijing.  250 

The surface cover is mainly composed of litter, crop stubble and gravel, which are more effective 251 
in reducing soil erosion than plant canopy cover. Based on this, the C-factor algorithm of Liu [42] 252 
considers both the surface cover and canopy cover of croplands, woodlands and grasslands, which 253 
makes the C factor result more objective. Therefore, we chose Liu’s [42] standard plot vegetation cover 254 
factor algorithm to calculate the C factor, as shown in eqn. 1. 255 

S CC C C= ⋅                                      (1) 256 

The canopy cover factor of cropland and grassland is calculated by eqn. 2, and the canopy cover 257 
factor of woodland is calculated by eqn. 3. Liu [42] found that the Sc factors of croplands and 258 
grasslands can be combined into a single formula by eqn. 4. The Sc factor of woodlands is calculated 259 
by eqn. 5. 260 

1 (0.01 0.0859) exp( 0.0033 )c cC V h= − + −                        

 

  (2) 261 

0.988exp( 0.11 )c cC V= −                           

  

   (3) 262 

1.029*exp( 0.0235 )s RC V= −                             

 

  (4) 263 

exp( 0.0206 )S RC V= −                               

  

  (5) 264 

Where Cc and Cs are the canopy cover factor and the surface cover factor, respectively, Vc and VR 265 

are the canopy cover (%) and surface cover (%), respectively, and h is the canopy height (cm). As it is 266 

difficult to obtain surface information such as litter, crop stubble and gravel on the regional scale, in 267 

this paper the Sc factor was calculated by using the surface coverage factor upscale method. 268 

• Regional C factor algorithm 269 
The regional vegetation cover factor needs to be calculated based on the fractional cropland, 270 

woodland and grassland coverage. Based on the C factor algorithm of the standard plot, the regional 271 
C factor algorithm is proposed, as shown in eqn. 6. 272 

( ) / ( )crop crop grass grass forest forest crop grass forestC V C V C V C V V V= + + + +         

   

(6) 273 

Where C is the C factor of the km-sized grid, Vcrop is the cropland coverage (%), Vgrass is the grassland 274 
coverage (%), and Vforest is the forest coverage (%). Ccrop is the cropland vegetation cover factor, Cgrass is 275 
the grassland vegetation cover factor, and Cforest is the woodland vegetation cover factor. 276 

4. Results 277 

4.1  C factor of the survey sample area 278 
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Based on land use data and surface cover data, the C factor of each survey sample area was 279 
calculated according to the C factor algorithm (Table 2). 280 

Table 2 The C factor of the survey sample area 281 

Sample 

 ID 

Cropla

nd (%) 

Grassla

nd(%) 

Litter 

cover (%) 

Fecal 

cover

(%) 

Gravel 

cover 

(%) 

Wood 

land(%) 

Barela

nd 

(%) 

Road 

(%) 

Built-up 

land(%) 

Water 

(%) 

Sc 

ratio 

(%) 

C  

1A 0.00  49.55  4.41  2.71  4.51  0.10  42.53  0.70  0.00  0.00  11.63 0.34 

1B 32.76  24.14  2.13  4.46  0.81  0.00  35.50  1.01  0.00  0.00  7.40 0.55 

2A 1.30  16.62  0.50  1.00  4.70  1.80  28.23  9.71  37.54  0.00  6.21 0.69 

2B 27.44  34.16  4.94  1.28  6.02  0.39  30.11  6.42  0.00  0.00  12.24 0.48 

3A 0.00  55.60  4.60  1.00  3.80  0.00  35.20  3.20  0.40  0.00  9.40 0.31 

3B 0.00  59.38  6.39  3.89  9.88  0.00  27.74  0.00  2.59  0.00  20.16 0.22 

4A 56.57  8.79  0.10  0.00  7.47  0.00  30.30  4.24  0.00  0.00  7.58 0.37 

4B 20.51  28.96  1.16  0.00  20.08  1.27  42.39  5.71  0.00  0.00  21.25 0.42 

5A 8.95  20.95  19.05  0.11  8.53  0.84  48.42  1.68  0.00  0.00  27.68 0.40 

5B 0.00  5.48  17.05  0.80  5.68  2.09  71.19  3.39  0.00  0.00  23.53 0.50 

6A 0.50  26.03  14.47  0.00  4.92  0.70  35.78  10.45  12.06  0.00  19.40 0.44 

6B 0.00  36.66  12.59  0.20  7.99  4.90  43.06  2.60  0.00  0.00  20.78 0.36 

7A 0.00  33.64  5.56  0.71  21.31  1.01  54.75  4.34  0.00  0.00  27.58 0.32 

7B 0.00  30.03  0.00  1.00  25.13  0.00  54.75  0.90  13.31  0.00  26.13 0.35 

8A 6.29  18.58  27.01  0.00  0.00  7.82  30.05  9.64  0.61  0.00  27.01 0.37 

8B 7.30  25.20  14.20  0.00  1.50  3.80  18.70  2.50  28.30  0.00  15.70 0.50 

9A 2.78  33.53  9.42  0.10  0.89  2.48  46.23  1.79  1.39  2.28  10.42 0.50 

9B 2.80  48.60  8.80  0.30  1.50  5.00  32.80  1.70  0.00  0.00  10.60 0.38 

10A 16.38  38.69  7.34  0.50  4.32  9.05  24.02  4.02  0.00  0.00  12.16 0.44 

10B 12.80  35.60  1.40  0.00  8.50  8.50  22.90  2.30  7.50  9.00  9.90 0.48 

11A 0.00  43.60  7.00  0.10  0.10  5.00  34.70  4.20  5.40  0.00  7.20 0.44 

11B 1.19  29.03  11.93  0.10  0.20  26.64  21.77  9.34  0.00  0.00  12.23 0.28 

12A 0.00  25.20  7.30  0.20  0.00  28.60  24.50  2.80  11.50  0.00  7.50 0.29 

12B 15.40  24.30  6.60  0.00  2.10  35.70  11.40  3.00  3.60  0.00  8.70 0.32 

13A 77.34  8.26  0.20  0.00  0.91  1.31  7.15  2.82  2.92  0.00  1.11 0.24 

13B 75.83  13.24  0.00  0.00  0.00  3.91  4.81  1.91  0.30  0.00  0.00 0.30 

14A 0.00  7.34  3.22  0.00  0.00  54.33  35.11  0.00  0.00  0.00  3.22 0.10 

14B 0.00  42.99  6.87  0.00  0.00  31.44  18.71  0.00  0.00  0.00  6.87 0.26 

15A 0.00  35.36  14.08  0.20  0.00  19.05  31.31  0.00  0.00  0.00  14.29 0.31 

15B 0.00  39.78  13.03  0.20  0.00  24.85  22.14  0.00  0.00  0.00  13.23 0.27 

16A 0.00  19.10  24.40  0.00  0.00  31.90  23.30  1.30  0.00  0.00  24.40 0.17 

16B 0.00  38.30  3.10  0.60  0.30  0.40  52.40  0.00  0.00  5.20  4.00 0.52 

17A 0.00  5.38  29.51  0.00  0.10  35.60  28.90  0.61  0.00  0.00  29.61 0.07 

17B 12.57  27.05  2.79  0.00  0.10  33.23  21.96  2.40  0.00  0.00  2.89 0.38 

18A 0.00  38.08  16.13  0.00  9.52  22.14  20.94  2.71  0.00  0.00  25.65 0.21 

18B 19.08  18.58  3.93  0.00  0.39  22.62  31.27  4.52  0.00  0.00  4.33 0.46 

19A 0.00  47.50  45.60  0.10  0.00  0.00  6.80  0.00  0.00  0.00  45.70 0.16 
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19B 0.00  39.10  29.60  2.30  0.80  1.70  23.00  0.80  0.00  0.00  32.70 0.26 

20A 0.00  49.30  50.70  0.00  0.00  0.00  0.00  0.00  0.00  0.00  50.70 0.14 

20B 0.00  47.22  43.06  0.30  0.00  4.76  1.59  0.00  0.00  2.88  43.35 0.18 

21A 0.00  13.66  38.19  1.89  0.10  1.60  37.89  1.89  4.89  0.00  40.18 0.32 

21B 0.00  28.16  41.79  0.70  0.10  2.29  25.37  1.69  0.00  0.00  42.59 0.25 

Note: The surface coverage ratio is the sum of the litter, gravel and fecal cover.  282 

It can be seen that the C factor of the sample area that has a higher proportion of woodland was 283 
smallest. The C factor of the survey sample areas that has a higher proportion of grassland and 284 
cropland cover was medium, and the C factor of the survey sample areas that has a higher proportion 285 
of unused land (sand and bare land) was highest. 286 
4.2  Fractional Vegetation Cover (FVC) in the study area 287 

Based on the 30 m resolution land use map in 2010 from GLS2010, we calculated the coverage 288 

proportion of cropland, woodland and grassland as well as the vegetation cover of the study area, as 289 

shown in Figure 5. According to the vegetation cover of the study area in 2010 based on GLS2010, the 290 

vegetation cover (including the ratio of cropland, woodland and grassland) was extracted in each 291 

survey sample area and verified by the measured vegetation coverage, as shown in Figure 6. The 292 

correlation vegetation coverage between the remote sensing and measured is shown in Table 3. The 293 

paired-samples Student’s t test was used to detect the statistical significance level of the remote 294 

sensing interpretation vegetation cover. The results are shown in Table 4. 295 

Table 3 The correlation between the remote sensing interpretation and measured vegetation coverage 296 

 N Correlation Significance 

Interpretation & measured Vegetation coverage 63 .760 .000 

Table 4 The paired-samples Student t Test 297 

 

Paired Differences

t df 
Significance

(2-tail) Mean 
Std. 

Deviation

Std. 
Error

 Mean

95% Confidence Interval 
of the Difference 

Lower Upper 

Interpretation & measured coverage  −0.03 0.12 0.02 −0.06 −.002 −.03 .12 0.038 

  

Figure 5 Vegetation coverage in the 
study area (2010)  

Figure 6 The verification of vegetation 
coverage in survey sample area 

It can be seen from Figure 6, Table 3 and Table 4 that the vegetation coverage obtained by remote 298 
sensing interpretation is significantly consistent and significantly correlated with the measured 299 
vegetation coverage. The vegetation coverage obtained by remote sensing interpretation is 300 
significantly consistent with the measured vegetation coverage (paired samples t-test, t = −0.03, df = 301 
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0.12, 2-tail significance p < 0.05), where R2 is 0.58. Simultaneously, there is a statistically significant 302 
linear relationship present between the two groups of data. The two groups of data are significantly 303 
correlated (significance p <0.05), and the correlation is 0.76. Furthermore, the two groups of data are 304 
generally distributed near the 1:1 line, and the regression coefficient is 0.93. To sum up, the results 305 
show that the method in this study can help accurately obtain the coverage ratio of croplands, 306 
woodlands and grasslands in the km-sized grid.  307 
4.3  C factor in the Study Area 308 

Based on the C factor conversion method, and using the proportional coverage of croplands, 309 
woodlands and grasslands in the km-sized grid, the C factor in the study area (2010) was calculated, 310 
as shown in Figure 7. 311 

 312 

Figure 7 The C factor in study area (2010). 313 

It can be seen from Figure 7 that the C factor is smaller in the middle, southern and northern 314 
regions, and larger in the eastern and western sections of the study area. In the central and northern 315 
parts of the study area there are a large number of woodlands, making the C factor lower. The 316 
Hunshandake sandy lands and Horqin sandy lands result in larger C factors in the eastern and 317 
western regions. In the south-central part of study area, the C factor of woodlands is obviously 318 
smaller than that of valleys. The main reason is that valleys are affected by human cultivation, so the 319 
C factor is improved. Using the C factor based on measured coverage, the C factor of the survey 320 
sample area based on remote sensing interpretation is verified (Figure 8). 321 

 322 

Figure 8 Verifying the C factor based on remote sensing interpretation 323 
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It can be observed in Figure 8 that the C factor of the survey sample area calculated via remote sensing 324 

is consistent with the one based on measured coverage. The two data are distributed near the 1:1 line, 325 

with R2 = 0.36 and correlation coefficient = 0.7. It can be low R2 if we do not predict and 1:1 line is able 326 

to judge the result of measured and interpretation. Because the resolution or interval is different 327 

among the TM image and the field measured, so we get a low R2. This shows that the C factor 328 

measured in this study can reflect the vegetation cover in the study area and can be used to calculate 329 

the C factor in the soil erosion equation. 330 

5  Discussion 331 

5.1  Relationship between line-point estimated vegetation coverage and intercept vegetation coverage in the 332 
km-sized grid 333 

With the eCognition software package, we used the object-oriented classification method to 334 
interpret the high-precision images (Gaofen-2 satellite images (GF-2)) of the sample area, and obtain 335 
the coverage of various land cover types. The cropland, grassland and woodland coverage obtained 336 
from high-precision images was compared with the line-point intercept estimated data, as shown in 337 
Figure 9. 338 

 339 
Figure 9 The correlation between the measured Fractional Vegetation Cover (FVC) from the line-point 340 
intercept method and the high-resolution image interpretation.  341 

It can be seen from Figure 9 that the correlation between the FVC from the line-point intercept 342 
method and the high-resolution image interpretation is very high. The two groups of data are mainly 343 
distributed in the vicinity of the 1:1 line. The nonparametric test of the relevant sample Wilcoxon, 344 
shows that the two groups of data are significantly consistent at a significance level of p<0.05. The 345 
value of R2 is 0.72 and the slope is 1.40, indicating that the cropland, grassland and woodland 346 
coverage obtained from the line-point intercept method is larger than that from image interpretation, 347 
but can still be used to reflect the proportion of cropland, grassland and woodland in the study area, 348 
with an interpretation rate of 72.29%. This result is basically consistent with the findings of previous 349 
studies [26,27], indicating that the line-point intercept method can effectively reflect the coverage of 350 
cropland, grassland and woodland in the survey sample area. 351 

5.2  Comparison of our Method and the C factor Algorithm Based on Remote Sensing Vegetation Index 352 

We compared the C factor derived from the vegetation index (see Appendix A), with the C factor 353 
determined by our method, and the difference of two C factors is shown in Figure 10.  354 
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 355 
Figure 10 The difference of C factors based on the vegetation index and remote sensing data.  356 

It can be seen from Figure 7 and Figure 10 that the two C factors are basically consistent (Due to 357 
the system errors of two sets data, we define that the difference between −0.1 and 0.1, which is 10% 358 
of the difference, is basically consistent.) in 22% of the study area. Compared with C factor derived 359 
from image interpretation, the C factor based on the vegetation index is higher (up to 0.3) for western 360 
sandy lands, while lower (up to 0.3) for eastern croplands in our study area. The main reason for the 361 
differences is that the C factor formula of the standard plot is different. The C factor algorithm based 362 
on the vegetation index assumes only one vegetation type in the km-sized grid, and calculates the 363 
coverage of the vegetation to obtain the C factor. Therefore, in the sandy area where the complete 364 
distribution of sand is assumed, the C factor is overestimated, while in cropland areas where the 365 
complete distribution of cropland is assumed, the C factor is underestimated. As such, the C factor 366 
based on the remote sensing data is more precise than that based on the vegetation index. 367 

5.3  Uncertainties of the Calculated C Factors 368 

5.3.1  The empirical parameters of the C factor need to be further confirmed 369 

The water erosion equation used in this paper is a small-scale method, and although many 370 
previous studies have applied it on regional scales, many of its parameters are empirical, and their 371 
rationality has not been confirmed: 1) The measured parameters of C factor are for selected field 372 
survey time and area. The C factor in this paper was obtained from remote sensing and field survey 373 
data. The summer months (mainly July and August) in the study area have the strongest water 374 
erosion throughout the year, and there was almost no water erosion in other months. Besides, the 375 
vegetation coverage is higher in summer. The summer C factor determined the accuracy of water 376 
erosion simulation. Therefore, the field investigation time and TM image acquisition time of this 377 
study were from July to August. 2) Empirical parameters of the C factor obtained from remote sensing 378 
data. The coverage of cropland, woodland and grassland was obtained by interpreting the remote 379 
sensing images and then calculating the proportion of land use/cover. The grasslands can be divided 380 
into high coverage, medium coverage and low coverage grassland[34]. Among them, the high 381 
coverage grassland has a coverage of over 50%, assumed as 80%; the medium coverage grassland has 382 
a coverage of 20%–50%, assumed as 50%; while the low coverage grassland has a coverage of 5%–20% 383 
of the grass, assumed as 20%. The croplands are classified as irrigated and dry lands. The woodlands 384 
are divided into woodlands and shrubs and the coverages of cropland and woodland vegetation are 385 
assumed to be 100%. Swamps are low-lying wetlands, which are different from other unused lands 386 
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(bare land, quicksand, saline and alkaline land), while similar to high coverage grassland, with an 387 
assumed coverage of 80%. These vegetation coverage parameters are empirical to some degree and 388 
should be further confirmed in the further study. 389 
5.3.2  Differences between the remote sensing image coverage and the measured coverage  390 

Based on high-precision field survey and remote sensing image interpretation, this study 391 
constructed a km-sized grid C factor algorithm. Although the land cover data obtained from TM 392 
image interpretation had already the highest resolution on a regional scale, the coverage was still 393 
different from the measured coverage because TM images contained mixed pixels. In addition, based 394 
on TM images we can only measure the canopy coverage, rather than surface coverage that has 395 
impacts on soil erosion [42]. Furthermore, currently the regional surface coverage can only be 396 
determined based on the surface coverage of representative sites through upscaling. 397 
5.3.3  The accuracy of the TM image interpretation 398 

In this study, we randomly generated points in the TM images to verify the accuracy of our land 399 
use interpretation. A total of 2,000 verification points (50 in each image) were generated in the study 400 
area, where each verification point was a single pixel. Based on the high-precision Google Earth 401 
images, we determined the land use type of each verification point to obtain the verification data. In 402 
order to ensure the accuracy of the verification data and to reduce the mixed pixel problem caused 403 
by resolution difference and time inconsistence of the verification data, we moved the random points 404 
at the edge of the land use units to the center of land use type. Using the randomly generated 2,000 405 
verification points, we tested the interpreted 2010 land use data. The results are shown in Table 5. 406 

Table 5 Accuracy of land use interpretation in the study area 407 

 

True surface 

Water 

body 

Built-

up land 
Grassland Cropland Woodland 

Unused 

land 

User's 

Accuracy(%) 

Land use 

classificati

on results 

Water body 40 0 1 4 1 1 85.1 

Built-up land 0 61 7 17 8 5 62.24 

Grassland 1 9 551 120 41 61 70.37 

Cropland 0 10 53 443 60 18 75.86 

Woodland 0 3 39 49 234 10 69.85 

Unused land 0 3 14 14 4 111 76.03 

It can be seen from Table 5 that the interpretation accuracy is 72.25% and the Kappa coefficient 408 
is 0.62. Landis and Koch [43] point out that a Kappa coefficient larger than 0.6 indicates good 409 
accuracy, thus the interpretation accuracy of this paper is good. Many papers has proved that the 410 
remote sensing interpretation of large region of low accuracy[36,37]. For example, the accuracy of 411 
many automatic classification methods, is basic less than 65%[37], and this paper is study the 412 
fragmented landscape areas for the ecological transition zone, so 72.25% accuracy has been enough 413 
high.  414 

There are several problems in the interpretation of land use in the study area: 1) The problem of 415 
mixed pixel, and different spatial resolutions among Landsat TM and Google earth decreases the 416 
interpretation accuracy. 2) Problems arising from different types of lands having the same type of 417 
spectrum. The spectra of unused lands and construction lands are relatively close, and on large 418 
regional scale the proportion of construction lands is relatively low, so erosion is rarely influenced. 419 
Unused lands such as bareland will cause erosion. However, this paper studied the vegetation 420 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 September 2017                   doi:10.20944/preprints201709.0098.v1

http://dx.doi.org/10.20944/preprints201709.0098.v1


 15 of 22 

 

cover(C) factor which is related to vegetation (cropland, grassland and woodland), so the 421 
misclassification of construction land and bareland, though resulted in low accuracy, did not affect 422 
the vegetation coverage calculation. So the error can be ignored since this paper focuses on the 423 
proportion of vegetation (i.e. croplands, woodlands and grasslands). 3) The mosaic problem. Due to 424 
the phase differences of different TM images, there exist edge snap problems between different TM 425 
images. These problems reduced the accuracy of the TM image interpretation, so that the results had 426 
some uncertainty in the edge areas. However, the overall interpretation accuracy of cropland, 427 
woodland and grassland can meet the requirement of vegetation coverage and C factor calculation. 428 

6  Conclusions 429 

The vegetation cover (C) factor is one of the most influential factors in the soil erosion model. 430 
The C factor derived from a standard plot cannot be directly used on regional scale. Based on remote 431 
sensing data and field investigations, we designed a C factor conversion method from the standard 432 
plot to a km-sized grid based on large sample theory. It can be concluded that: 1) Compared with 433 
existing C factor algorithms, our algorithm improves the applicable range of the C factor formula of 434 
the standard plot, and can be used to simulate soil erosion in large areas. 2) The vegetation coverage 435 
obtained by remote sensing interpretation is significantly consistent (paired samples t-test, t = −0.03, 436 
df = 0.12, 2-tail significance p < 0.05) and significantly correlated with the measured vegetation 437 
coverage. Meanwhile, the line-point intercept method can be used to effectively obtain the vegetation 438 
coverage of cropland, woodland and grassland in the survey sample area (p < 0.05). 3) The C factor 439 
of the study area is smaller in the middle, southern and northern regions, and larger in the eastern 440 
and western sections. The main reason for this is the distribution of woodlands, the Hunshandake 441 
and Horqin sandy lands and human cultivation that affects the valleys; 4) The C factor conversion 442 
method based on large sample theory is better than the one based on vegetation indices.  443 

In this paper, a method for estimating the regional C factor was proposed by combining the 444 
interpretation of remote sensing data and data obtained from field investigations. Our method is 445 
limited by the resolution of the remote sensing data, and the accuracy of the TM image interpretation. 446 
Thus, in the future, we aim to develop our method by: 1) further confirming the empirical parameters 447 
of the C factor; 2) establishing a database of C factors in different seasons; 3) studying the differences 448 
between remote sensing and high precision measured vegetation coverage. 449 
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Appendix A: The C Factor Algorithm Based on the Remote Sensing Vegetation Index 468 

1.   Calculate vegetation coverage based on the Vegetation index 469 
In order to express the vegetation coverage of the study area, the MODIS EVI vegetation index 470 

needs to be partitioned according to the measured vegetation coverage to carry out the regression 471 
modeling. These regression models are generally applicable to the area where the relational 472 
expression is constructed. Therefore, the difference between the EVI vegetation index of MODIS and 473 
the measured vegetation coverage (hereinafter referred to as FVCD) was used to divide the vegetation 474 
index and the measured coverage model. Based on the natural geographical conditions and factors, 475 
we analyzed the relationship between the dryness grade, landform type, vegetation type and sand 476 
land, and used the Pearson correlation of FVCD, as shown in Table A1. 477 

Table A1 The Pearson Relationship between Different Geographical Elements and FVCD 478 
Different Geographical Elements dryness degree Sand land or not landform type Vegetation type 

 
Pearson correlation .386* -.206 .114 -.283 

Significance (2-tail) .012 .190 .473 .069 

It can be seen from Table A1 that the degree of dryness has the highest correlation, where the 479 
Pearson’s correlation coefficient of FVCD is 0.386, which is significant at the p<0.05 level. Therefore, 480 
we have established a regression relationship between the vegetation index and the measured 481 
vegetation coverage under different dryness. The study area is an arid and semi-arid region. The 482 
dryness can be subdivided into dryness 1 (0.2–0.4), dryness 2 (0.4–0.44) and dryness 3 (0.44–0.5). 483 
According to the degree of dryness, the relationship between vegetation index and measured 484 
vegetation coverage was established, as shown in Table A2 and Figure A1. 485 

Table A2 The EVI coefficient and measured vegetation coverage under different dryness grades. 486 

Dryness grade 
Unstandardized coefficient Normalization coefficient 

t Significance 
B Standard error Beta 

Dryness 1 
(constant) .263 .075  3.516 .003 

EVI coefficient .938 .201 .780 4.667 .000 

Dryness 2 
(constant) .548 .046  11.903 .000 

EVI coefficient .347 .122 .633 2.836 .015 

Dryness 3 
(constant) .406 .122  3.336 .009 

EVI coefficient 1.009 .356 .687 2.839 .019 

Note: The dependent variable is the measured vegetation coverage 487 

Table A2 expresses the regression equation of the EVI and measured vegetation coverage relative 488 
to the dryness classification and its significance. When the dryness is grade 1, the significance level is 489 
0.003 (p<0.05); when the dryness is grade 2, the significance level is 0.015 (p<0.05); when the dryness 490 
is grade 3, the significance level is 0.019 (p<0.05).  491 
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492 

 493 
Figure A1 Relationship between the EVI and measured vegetation coverage under different dryness 494 

2.   C factor Based on the Vegetation Index 495 
According to the fitting equation for different dryness classifications, the FVC in the study area 496 

was calculated (Figure A2a). Based on the MODIS land cover data, the C factor (Figure A2b) of the 497 
study area was calculated according to the C factor formula of the standard plot. 498 

 499 
Figure A2 Vegetation coverage and C cover factor based on the vegetation index (a: FVC map; b: C 500 
factor map). 501 
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