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Abstract: Due to its spatio-temporal variability, the mismatch between the weather and demand1

patterns challenges the design of highly renewable energy systems. A principal component analysis2

is applied to a simplified networked European electricity system with a high share of wind and solar3

power generation. It reveals a small number of important mismatch patterns, which explain most of4

the system’s required backup and transmission infrastructure. Whereas the first principal component5

is already able to reproduce most of the temporal mismatch variability for a solar dominated system,6

a few more principal components are needed for a wind dominated system. Due to its monopole7

structure the first principal component causes most of the system’s backup infrastructure. The next8

few principal components have a dipole structure and dominate the transmission infrastructure of9

the renewable electricity network.10

Keywords: renewable energy networks; principal component analysis; large-scale integration of11

renewables; wind power; solar power; super grid; energy system design12

1. Introduction13

The weather is the driving force in a highly renewable energy system. The planning for such14

systems requires an in-depth understanding of the variable mismatch between weather and demand15

patterns on multiple time and length scales [1,2]. The spectrum of prominent temporal fluctuations16

of wind and solar power generation ranges from seconds to years [3–6], and impacts the design and17

operation of power systems [7–13]. The planning of large-scale energy systems is also affected by the18

spatial variability of the weather. Wind power generation is correlated up to a length scale of about19

500km [4,14–16]. Approaches based on spatial correlations, like the optimal portfolio theory [17–19]20

and the copula method [20], are used for systemic resource assessments of renewables and for analysis21

of national and continental power grids.22

Weather-driven network modelling represents a more direct approach to obtain estimates on the23

required backup infrastructure of highly renewable large-scale energy systems [21–29]. Weather data24

covering multiple years are converted into prospective wind and solar power generation with good25

spatial and temporal resolution [21,22,30–32], and are then used as the driving force in networked26

electricty system models. This modelling approach has produced estimates on the required amount of27

conventional backup power plants, transmission lines and storage [22–28,33–38]. Also the optimization28

of levelized system cost of energy has been addressed and has led to new design concepts like the29

optimal heterogeneity and the benefit of cooperation [29,39–42].30

The weather-driven network modelling takes the high-dimensional weather and demand data31

"as is", and "computes everything away" by brute force. The resulting infrastructure estimates might32

not depend on all of the mismatch data. To a large part they might only depend on a few dominant33

mismatch patterns. This is the central topic of this paper. The central question is: what are the34

dominant spatio-temporal mismatch patterns between the renewable power generation and the load35
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which determine most of the required infrastructure of a highly renewable European electricity system?36

The central method to apply is a principal component analysis (PCA) [43].37

Spatio-temporal pattern analyses like the PCA are well known in meteorology. In [44] a PCA38

has been used to extract the main pattern of variability of wind power generation in Germany, and39

a wind power forecasting model has been implemented with this approach. In [45] a PCA has been40

applied to distributed wind power data from Irish wind farms and used as a multivariate dimension41

reduction scheme to obtain potential wind power production costing simulation efficiency gains, when42

compared to exhaustive multi-year time series load flow investigations.43

This paper has the following structure: Sect. 2 describes a simplified weather-driven European44

electricity system with a high share of wind and solar power generation, including several of its45

infrastructure measures. A short description of the PCA is also given. Sect. 3 presents the results on46

the dominating principal mismatch components and their dependence on the share between wind and47

solar power generation. Sect. 4 reveals how the principal components contribute to the backup and48

transmission infrastructure estimates. A conclusion and outlook is given in Sect. 5.49

2. Modelling and Methods50

2.1. Modelling of a simplified highly renewable European electricity network51

We follow the simplified approach introduced by [22,23,26,46] to model a highly renewable
European electricity system. The key variable is the mismatch

∆n(t) = GR
n (t)− Ln(t) (1)

between the renewable power generation GR
n (t) and the load Ln(t) at time t for country n in Europe.

With a flipped sign the mismatch is often also denoted as the residual load. The renewable power
generation

GR
n (t) = GW

n (t) + GS
n(t) (2)

is composed of wind and solar power generation only; other forms of renewable power generation are
discarded. The average wind and solar power generation amount to

〈GW
n 〉 = αnγn〈Ln〉 , 〈GS

n〉 = (1− αn)γn〈Ln〉 , (3)

and define two design parameters, the renewable penetration γn with respect to the average load 〈Ln〉52

and the renewable mix αn between the average wind and solar power generation.53

Penetration parameters around one describe highly renewable electricity networks. For simplicity,54

we choose γn = 1 for all countries. With this setting the average renewable power generation55

〈GR
n 〉 = 〈Ln〉 is equal to the average load. For more simplicity, the renewable mixing parameter αn = α56

is also chosen to be the same for all countries. These homogeneous layouts have been first discussed57

in [22,23,33]. Recently also heterogeneous layouts with differing renewable penetration and mixing58

parameters between the countries have been investigated [41].59

The time series GW
n (t), GS

n(t), Ln(t) for the country-aggregated wind power generation, solar60

power generation and load are taken from Refs. [22,23], where wind velocity and solar irradiation data61

with good spatio-temporal resolution have been converted into wind and solar power generation; see62

also Refs. [30–32] for related approaches. The data cover the years 2000 - 2007 with hourly resolution63

for all European countries. It is assumed that this data is also statistically representative for future64

years. The average loads 〈Ln〉 have been fixed to the values of the year 2007 and are assumed to remain65

constant for future years. They are illustrated in Figure 1. Note that the average loads set the absolute66

scales for the simplified modelling of a highly renewable European electricity network. If future values67

should increase or decrease, but such that the relative load strengths between the countries remain68

unchanged, then the infrastructure measures (to be discussed in the next subsection) will linearly scale69
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Figure 1. Simplified European electricity network, where countries are represented as nodes and linked
by interconnecting transmission lines. The nodal disc areas are proportional to the average loads of the
countries.

with changes of the average loads. Figure 1 also shows the interconnecting transmission lines between70

the countries.71

With the chosen setting γn = 1 the average mismatch is 〈∆n〉 = 0. However, most of the times
the actual mismatch ∆n(t) is non-zero. It is either positive when the wind and the solar radiation
are strong, or negative when they are weak. The overall electricity system needs to respond to these
mismatch fluctuations. In simplified form, the response can be written as

∆n(t) = Bn(t) + Pn(t) . (4)

The nodal balancing Bn(t) determines the backup power generation and the curtailment,

GB
n (t) = −min (Bn(t), 0) , Cn(t) = max (Bn(t), 0) . (5)

The nodal injection Pn(t) into the networked system describes the exports (Pn > 0) and imports
(Pn < 0), and has to fulfill ∑n Pn(t) = 0. The nodal injections determine the power flows

Fl(t) = ∑
n

HlnPn(t) (6)

on the interconnecting transmission lines l between the countries. The linear relationship between72

the flows and the injections is described by the matrix Hln of the power transfer distribution factors73

[47], which are constructed from the Moore-Penrose pseudo inverse of the graph Laplacian of the74

underlying electricity network topology [48]. In principle, more terms can be added to the right hand75

side of the nodal response equation (4), like for example storage, but for the present purpose we leave76

this equation as is.77

The response (4) allows for various schemes which divide differently between balancing and
injection. For sure the simplest scheme is Pn(t) = 0 for all nodes and all times, but has the disadvantage
that each node has to fully balance its mismatch alone without the benefits of importing and exporting
across the network. Market schemes could be used to settle the dispatch between renewable and
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backup power generation, but due to the simplicity of the current modelling approach this would be
like shooting on pigeons with canons. We adopt the simple scheme of synchronised nodal balancing

Bn(t) =
〈Ln〉

∑m〈Lm〉∑
k

∆k(t) , (7)

which has been proposed in [46] to minimise the overall backup capacities. It distributes the actual78

overall mismatch onto all nodes in proportion to their average load.79

2.2. Infrastructure measures80

If the mismatch (1) was zero for all times and all countries, the infrastructure response (4) would81

simply be zero, and no backup power plants and no transmission lines would be required. Of course,82

this is almost surely never the case. This sets the stage for the mismatch variance to become a first83

infrastructure measure:84

Var(~∆) =
N

∑
n=1

〈
(∆n − 〈∆n〉)2

〉
(8)

= Var(~B) + Var(~P) + 2 cov(~B, ~P) . (9)

The components of the mismatch / balancing / injection vectors are given by the nodal mismatches85

∆n / balancings Bn / injections Pn. The second step, which uses (4), relates the mismatch variance to86

the variances of the balancings and the injections as well as to their covariance. This emphasises that a87

small mismatch variance would require a small backup and transmission infrastructure, and a large88

variance would lead to a bigger infrastructure.89

The mismatch variance (8) represents only a rough infrastructure measure. More specific measures90

are given by the total backup energy, the total backup capacities and the total transmission capacities:91

EB =
N

∑
n=1

〈
GB

n

〉
, (10)

KB =
N

∑
n=1

maxq
t

(GB
n ) , (11)

KT =
L

∑
l=1

maxq
t

(|Fl |)dl . (12)

The backup capacities and the transmission capacities are defined via the q = 0.99 quantiles of the92

time-sampled distributions pn(GB
n ) and pl(|Fl |), respectively. N and L represent the number of nodes93

and links illustrated in Figure 1. The link length is denoted as dl and is approximated as the distance94

between country capitals.95

2.3. Principal Component Analysis96

We follow the notation of Ref. [43] and sketch the main steps of the Principal Component Analysis
(PCA). The mismatch vector is rescaled to

~x(t) = c~∆(t) =
N

∑
n=1

c ∆n(t)~en , (13)

where the normalisation c is chosen such that 〈~x · ~x〉 = 1. This turns c = c(α) into a function of97

the mixing parameter α. Note that the new variable ~x is usually defined with the centred mismatch98

~∆− 〈~∆〉, but with our choice γ = 1 for the renewable penetration parameter the average mismatch99
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is zero. The normalised mismatch vector (13) is represented in an N-dimensional coordinate system,100

where the axes with unit vectors~en correspond to the countries.101

The PCA changes this coordinate system by rotation. The normalised mismatch vector

~x(t) =
N

∑
k=1

ak(t)~pk . (14)

is then expressed in terms of the rotated unit vectors ~pk. Those are determined from the diagonalisation

R̂~pk = λk~pk (15)

of the covariance matrix
Rnm = 〈xnxm〉 . (16)

Since the covariance matrix is real and symmetric, the eigenvectors are orthonormal, i.e. ~pk · ~pl =102

δkl , and all eigenvalues λk ≥ 0 are real and positive. Furthermore, ∑N
k=1 λk = 1 because of the103

normalisation introduced in Eq. (13).104

The temporal amplitudes ak(t) = ~x(t) · ~pk have the properties 〈ak〉 = 0 and 〈akal〉 = λkδkl . The
total variance (8) of the mismatch can now be written as

Var(~∆) =
1
c2

N

∑
k=1
〈a2

k〉 =
1
c2

N

∑
k=1

λk . (17)

Given the ordering λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0, the last equation reveals that the first eigenvector ~p1 with
the largest eigenvalue λ1 contributes most to the total variance. This implies that the mismatch can be
approximated by a truncation to the first K eigenvectors with the largest eigenvalues:

~∆(t) ≈ 1
c

K

∑
k=1

ak(t)~pk . (18)

This approximation explains the naming of the PCA: the K eigenvectors are called the principal105

components and carry most of the overall variance.106

3. Results: principal mismatch components107

The dependence of the mismatch variance (8) on the renewable mix α is shown as the thick108

black curve in Figure 2. The renewable penetration has been set to γ = 1 for all European countries.109

The variance takes a minimum at α = 0.7. It is slightly larger in the wind-only limit α = 1 and110

significantly larger in the solar-only limit α = 0. This can be seen as a rough indication that the111

response infrastructure becomes smallest at intermediate renewable mixes, and agrees nicely with the112

results on the other infrastructure measures (10) - (12) obtained in [23,46].113

The eigenvalues resulting from the Principal Component Analysis reveal the dominant114

contributions explaining most of the mismatch variance. They are shown in Figure 3, again as a115

function of the renewable mix. In the solar-only limit α = 0 the largest eigenvalue is λ1 = 0.90. The116

three largest eigenvalues add up to 0.96, explaining 96% of the mismatch variance. Not much changes117

for renewable mixes up to about α ≈ 0.3. After this the largest eigenvalue decreases continuously, until118

it reaches a value λ1 = 0.45 at α = 0.8. It roughly remains at this value for even larger renewable mixes.119

As the first eigenvalue decreases, the next eigenvalues increase. At α = 0.8 the first six eigenvalues120

add up to 0.94, explaining then 94% of the mismatch variance.121

A threshold like ∑K
k=1 λk ≈ 0.95 for the first eigenvalues is often used as a criterium to define122

the number K of principal components. Together they explain 95% of the mismatch variance. For123

α = 0 this number is equal to K = 3. The corresponding eigenvectors are shown in Figure 4. The first124

principal component is a kind of monopole. All countries either have a positive mismatch together or125
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Figure 2. Mismatch variance Var(~∆) (thick black curve) as a function of the renewable mix α for the
renewable penetration γ = 1. The coloured parts illustrate its decomposition (9) into the variances of
the balancing (blue) and the injection (orange) as well as their covariance (green).
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Figure 3. PCA eigenvalues as a function of the renewable mix α.
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Figure 4. The three principal mismatch components for α = 0.
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Figure 5. (a, left) Intraday and (b, right) seasonal amplitude profiles of the three principal components
for α = 0. The intraday profiles aintraday

k (t) have been obtained by averaging the amplitudes over all
days of the underlying eight years while keeping the intraday hour fixed. For the seasonal profiles
aseasonal

k (t) the amplitudes have been first averaged over a day, and then over the eight years while
keeping the day of the year fixed.

a negative mismatch. Of course, this is easy to understand. Either the sun is shining for all countries126

during daytime, or it is dark for all countries during nighttime. The second principal component looks127

like a dipole in East-West direction. It is a consequence of morning sunrise in the East and of evening128

sunset in the West. These interpretations are clearly supported by the intraday amplitude profiles129

aintraday
k (t), which are shown in Figure 5a.130

Also the third principal component has a dipole structure, but with a North-South orientation.131

This is mostly a consequence of its seasonal amplitude profile aseasonal
3 (t), which is shown in Figure 5b.132

Figure 5b also reveals that the first principal component has a very pronounced seasonal amplitude133

profile, whereas no clear seasonal dependence is observed for the amplitude of the second principal134

component.135

Figure 6 depicts the K = 6 principal components for the renewable mix α = 0.8. The first principal136

component again looks like a monopole. Roughly it means the wind power generation is above the137

load for all countries at the same time, or vice versa. Its eigenvalue is smaller than for the α = 0 case,138

and also its structure appears to be slightly different. The other five principal components represent139

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 September 2017                   doi:10.20944/preprints201709.0092.v1

Peer-reviewed version available at Energies 2017, 10, 1934; doi:10.3390/en10121934

http://dx.doi.org/10.20944/preprints201709.0092.v1
http://dx.doi.org/10.3390/en10121934


8 of 14

Figure 6. The six principal mismatch components for α = 0.8.

different orthogonal spatial mismatch patterns. The second and third one look again like dipoles. The140

fourth to sixth principle components have a more complicated spatial structure.141

Again it is interesting to investigate the time dependence of their amplitudes ak(t). The intraday142

and seasonal profiles are shown in Figure 7 for the first three principal components. The intraday143

amplitude profile of the first principal component has two minima, one during the morning and144

another one during the evening hours. They are explained by the morning and evening peaks of the145

load. The maximum at noon traces back to the midday solar power generation, which on average still146

contributes 20% to the overall renewable power generation due to the setting α = 0.8 for the renewable147

mix. The k = 2 amplitude shows a similar intraday profile, although much weaker than for the k = 1148

amplitude. The seasonal amplitude profiles of the first three principal components all follow the same149

trend and are correlated to the seasonal wind power generation, which is larger in winter and smaller150

in summer. The fluctuations on the synoptic time scale of the order of a few days are also clearly151

visible.152

4. Discussion: contribution of principal mismatch patterns to the balancing and transmission153

infrastructures154

According to Eq. (9) the mismatch variance splits into the balancing variance, the injection variance155

and the covariance between balancing and injection. The three contributions are also shown in Figure156

2. For a small renewable mix α the balancing variance dominates, but for large mixes the injection157

variance becomes bigger. The covariance remains very small for all mixes. It is now interesting to158

investigate how the different mismatch principal components contribute to the balancing and injection159

variances.160

The PCA eigenvalues can be split into the same three contributions. Making use of the results of161

Subsection 2.3 and of the response equation (4), the PCA amplitudes can be written as ak = c~∆ ·~pk =162
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Figure 7. (a, left) Intraday and (b, right) seasonal amplitude profiles of the first three principal
components for α = 0.8. The seasonal amplitude profiles for k = 2 and k = 3 have been artificially
shifted by -0.5 and -1.0, respectively.

c (~B + ~P) · ~pk = c (Bk + Pk). In the last step the abbreviations Bk = ~B · ~pk and Pk = ~P · ~pk have been163

introduced. This allows to write the eigenvalues as164

λk = 〈a2
k〉 = c2

(
〈B2

k〉+ 〈P
2
k 〉+ 2〈BkPk〉

)
= λB

k + λP
k + λBP

k . (19)

This decomposition reveals how much a principal component is contributing to the balancing and165

injection variances.166

Figure 8 illustrates this decomposition. The balancing eigenvalues λB
k are plotted from the bottom,167

and the injection eigenvalues λP
k are arranged from the top. The narrow white stripe in the middle168

represents the sum ∑N
k=1 λBP

k and is not specified further into the different k contributions. The first169

principal component dominates the balancing variance, independent of the renewable mix. This is170

because of its monopole-like structure. The other components do not contribute much, and only with171

a small margin for renewable mixes close to one. On the contrary, the first prinicipal component does172

not contribute much to the injection variance. Here the largest contributions come from the second and173

third principal component. Again this is intuitive due to their dipole character. For large renewable174

mixes also the next three principal components contribute to the injection variance to a larger extend.175

These results are also documented in Table 1 for the specific choice α = 0.8 of the renewable mix.176

The mismatch has been truncated according to (18). The full (K = 30) balancing variance Var(~B) is177

fully reproduced with the K = 6 principal components. A severe truncation to K = 1 is still able to178

reproduce 88% of the full balancing variance, emphasising again the dominant role of the first principal179

component for the mismatch-induced balancing. For the injection variance Var(~P) a different finding180

is observed. The first principal component alone, reflected by the K = 1 truncation, does play only a181

small role. The second and third principal component contribute the most, but are not able to explain182

all of the variance. The first K = 6 principal components taken together are able to explain 89% of the183

full (K = 30) injection variance. Apparently, higher-order components with k ≥ 7 still play a small184

role.185

Table 1 lists also the other, more realistic infrastructure measures introduced in Subsection 2.2.
The balancing energy EB and the backup capacity KB are related to the balancing variance Var(~B).
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Figure 8. Decomposed eigenvalues λB
k (from the bottom) and λP

k (from the top) as a function of the
renewable mix α. The white band in the middle represents ∑N

k=1 λBP
k .

Table 1. Various infrastructure measures as a function of the truncation parameter K used for the PCA
approximation (18).

γ = 1, α = 0.8 K = 30 K = 6 K = 5 K = 4 K = 3 K = 2 K = 1

Var(~∆) 0.0301 0.0281 0.0272 0.0258 0.0238 0.0195 0.0136

Var(~B) 0.0101 0.0101 0.0098 0.0098 0.0096 0.0095 0.0089
EB 0.1402 0.1388 0.1371 0.1368 0.1365 0.1348 0.1318
KB 0.686 0.682 0.659 0.656 0.650 0.643 0.613

Var(~P) 0.0184 0.0164 0.0154 0.0139 0.0119 0.0077 0.0020
Var(F) 0.0120 0.0101 0.0091 0.0074 0.0061 0.0040 0.0007
KT 1.812 1.486 1.372 1.250 1.156 0.904 0.356
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Again, the first principal component dominates in both cases, and the K = 6 truncation is able to
explain 99% of the full K = 30 results. The flow variance

Var(F) =
L

∑
l=1
〈F2

l 〉 (20)

and the transmission capacity KT are related to the injection variance Var(~P). The findings for (20) are186

very similar to those for the injection variance. The K = 6 truncation is able to explain 84% of the full187

K = 30 flow variance. For the transmission capacity (12) the first principal component appears to play188

a slightly larger role. The K = 6 truncation is able to explain 82% of the full K = 30 result.189

5. Conclusions and Outlook190

A Principal Component Analysis has been applied to a simplified highly renewable European191

electricity system to learn about the most important mismatch patterns between the weather-driven192

renewable power generation and the load. For a solar dominated system three principal components193

are enough to explain most of the mismatch variance across the continent. For a wind dominated194

system six principal components are needed. The spatial structure of the first principal mismatch195

component resembles that of a monopole, and the respective temporal amplitude dynamics reveals196

strong fluctuations on the diurnal and seasonal time scales. It determines most of the required backup197

energy and backup capacity of the overall system. The second and third principal components have a198

dipole-like spatial structure; their temporal amplitude dynamics is dominated by diurnal, synoptic199

and seasonal time scales. Together with the fourth to sixth principal components they cause most200

of the required transmission infrastructure. These results demonstrate that the required backup and201

transmission infrastructure of a highly renewable European electricity system are to a large degree202

caused by only a small number of most important mismatch patterns between the weather-driven203

renewable power generation and the load.204

The model used for a highly renewable European electricity system had been quite simple.205

In particular, its spatial resolution has been scaled to country sizes. As a consequence, the206

covariance matrix underlying the Principal Component Analysis is dominated by the larger countries207

like Germany, France, United Kingdom, Spain and Italy. It is interesting to observe that in the208

most important principal components the smaller countries appear to be grouped into blocks like209

Scandinavia and East Europe. Nevertheless, the next step to take will be to apply the Principal210

Component Analysis to larger, fine-grained continental electricity networks, with the additional211

inclusion of hydro power and storage. In view of the higher dimensionality, the resulting number of212

principal components is certainly going to increase, but per se it is not clear by how much and how the213

fine-grained spatial structure of the principal patterns is going to look like. In this respect it will also214

make sense to investigate related data-reduction approaches like Independent Component Analysis215

and Dynamic Mode Decomposition [49].216

Another future step to take will be the stochastic modelling of the amplitude times series related217

to the principal components. This can be used for the forecasting of power mismatches, and it will also218

allow to estimate the additional infrastructure due to the operational forcast uncertainties. An example219

would be line congestion in transmission systems under uncertainty [50]. Another playground for the220

application of the Principal Component Analysis could be the impact of climate change on the design221

of future energy systems, in particular smart energy systems including all cross-sector couplings [51].222
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