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1 Abstract: Due to its spatio-temporal variability, the mismatch between the weather and demand
> patterns challenges the design of highly renewable energy systems. A principal component analysis
s is applied to a simplified networked European electricity system with a high share of wind and solar
+  power generation. It reveals a small number of important mismatch patterns, which explain most of
s the system’s required backup and transmission infrastructure. Whereas the first principal component
s is already able to reproduce most of the temporal mismatch variability for a solar dominated system,
»  afew more principal components are needed for a wind dominated system. Due to its monopole
e structure the first principal component causes most of the system’s backup infrastructure. The next
o few principal components have a dipole structure and dominate the transmission infrastructure of
1o the renewable electricity network.

1 Keywords: renewable energy networks; principal component analysis; large-scale integration of
1= renewables; wind power; solar power; super grid; energy system design

s 1. Introduction

-

14 The weather is the driving force in a highly renewable energy system. The planning for such
15 systems requires an in-depth understanding of the variable mismatch between weather and demand
1e  patterns on multiple time and length scales [1,2]. The spectrum of prominent temporal fluctuations
1z of wind and solar power generation ranges from seconds to years [3-6], and impacts the design and
1= operation of power systems [7-13]. The planning of large-scale energy systems is also affected by the
1o spatial variability of the weather. Wind power generation is correlated up to a length scale of about
20 500km [4,14-16]. Approaches based on spatial correlations, like the optimal portfolio theory [17-19]
z and the copula method [20], are used for systemic resource assessments of renewables and for analysis
22 of national and continental power grids.

2 Weather-driven network modelling represents a more direct approach to obtain estimates on the
2« required backup infrastructure of highly renewable large-scale energy systems [21-29]. Weather data
= covering multiple years are converted into prospective wind and solar power generation with good
26 spatial and temporal resolution [21,22,30-32], and are then used as the driving force in networked
2z electricty system models. This modelling approach has produced estimates on the required amount of
s conventional backup power plants, transmission lines and storage [22-28,33-38]. Also the optimization
20 of levelized system cost of energy has been addressed and has led to new design concepts like the
;0 optimal heterogeneity and the benefit of cooperation [29,39-42].

31 The weather-driven network modelling takes the high-dimensional weather and demand data
;2 'asis", and "computes everything away" by brute force. The resulting infrastructure estimates might
ss not depend on all of the mismatch data. To a large part they might only depend on a few dominant
s« mismatch patterns. This is the central topic of this paper. The central question is: what are the
s dominant spatio-temporal mismatch patterns between the renewable power generation and the load
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s which determine most of the required infrastructure of a highly renewable European electricity system?
sz The central method to apply is a principal component analysis (PCA) [43].

38 Spatio-temporal pattern analyses like the PCA are well known in meteorology. In [44] a PCA
3 has been used to extract the main pattern of variability of wind power generation in Germany, and
20 awind power forecasting model has been implemented with this approach. In [45] a PCA has been
a1 applied to distributed wind power data from Irish wind farms and used as a multivariate dimension
«2 reduction scheme to obtain potential wind power production costing simulation efficiency gains, when
«s compared to exhaustive multi-year time series load flow investigations.

as This paper has the following structure: Sect. 2 describes a simplified weather-driven European
4 electricity system with a high share of wind and solar power generation, including several of its
« infrastructure measures. A short description of the PCA is also given. Sect. 3 presents the results on
a7 the dominating principal mismatch components and their dependence on the share between wind and
s solar power generation. Sect. 4 reveals how the principal components contribute to the backup and
4 transmission infrastructure estimates. A conclusion and outlook is given in Sect. 5.

so 2. Modelling and Methods

s1 2.1. Modelling of a simplified highly renewable European electricity network

We follow the simplified approach introduced by [22,23,26,46] to model a highly renewable
European electricity system. The key variable is the mismatch

An(t) = GR(t) — La(t) )

between the renewable power generation GX(t) and the load L, (t) at time ¢ for country n in Europe.
With a flipped sign the mismatch is often also denoted as the residual load. The renewable power
generation

Gy (H) =Gy’ (1) + Ga(h) @

is composed of wind and solar power generation only; other forms of renewable power generation are
discarded. The average wind and solar power generation amount to

(Gy') = anvu(Ln) , (G) = (1= an)Yu(Ln) , ®)

s= and define two design parameters, the renewable penetration 7, with respect to the average load (L, )
ss and the renewable mix &, between the average wind and solar power generation.

54 Penetration parameters around one describe highly renewable electricity networks. For simplicity,
ss we choose v, = 1 for all countries. With this setting the average renewable power generation
ss  (GR) = (L) is equal to the average load. For more simplicity, the renewable mixing parameter a; =
sz is also chosen to be the same for all countries. These homogeneous layouts have been first discussed
s in [22,23,33]. Recently also heterogeneous layouts with differing renewable penetration and mixing
se parameters between the countries have been investigated [41].

60 The time series G}V (t), G5 (t), Ly(t) for the country-aggregated wind power generation, solar
&1 power generation and load are taken from Refs. [22,23], where wind velocity and solar irradiation data
sz with good spatio-temporal resolution have been converted into wind and solar power generation; see
es also Refs. [30-32] for related approaches. The data cover the years 2000 - 2007 with hourly resolution
es for all European countries. It is assumed that this data is also statistically representative for future
es years. The average loads (L,) have been fixed to the values of the year 2007 and are assumed to remain
es constant for future years. They are illustrated in Figure 1. Note that the average loads set the absolute
v scales for the simplified modelling of a highly renewable European electricity network. If future values
es should increase or decrease, but such that the relative load strengths between the countries remain
e unchanged, then the infrastructure measures (to be discussed in the next subsection) will linearly scale
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Figure 1. Simplified European electricity network, where countries are represented as nodes and linked
by interconnecting transmission lines. The nodal disc areas are proportional to the average loads of the
countries.

7 with changes of the average loads. Figure 1 also shows the interconnecting transmission lines between
= the countries.

With the chosen setting v, = 1 the average mismatch is (A,) = 0. However, most of the times
the actual mismatch A, (t) is non-zero. It is either positive when the wind and the solar radiation
are strong, or negative when they are weak. The overall electricity system needs to respond to these
mismatch fluctuations. In simplified form, the response can be written as

An(t) = Bu(t) + Pa(t) . 4)
The nodal balancing B, (t) determines the backup power generation and the curtailment,
GB(t) = —min (B, (t),0) , Cu(t) = max (By(t),0) . (5)

The nodal injection P,(t) into the networked system describes the exports (P, > 0) and imports
(Py < 0), and has to fulfill ", P, (#) = 0. The nodal injections determine the power flows

Fi(t) =) HjPa(t) (6)

72 on the interconnecting transmission lines / between the countries. The linear relationship between
7s  the flows and the injections is described by the matrix Hj, of the power transfer distribution factors
7a  [47], which are constructed from the Moore-Penrose pseudo inverse of the graph Laplacian of the
zs underlying electricity network topology [48]. In principle, more terms can be added to the right hand
76 side of the nodal response equation (4), like for example storage, but for the present purpose we leave
7z this equation as is.

The response (4) allows for various schemes which divide differently between balancing and
injection. For sure the simplest scheme is P, (t) = 0 for all nodes and all times, but has the disadvantage
that each node has to fully balance its mismatch alone without the benefits of importing and exporting
across the network. Market schemes could be used to settle the dispatch between renewable and
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backup power generation, but due to the simplicity of the current modelling approach this would be
like shooting on pigeons with canons. We adopt the simple scheme of synchronised nodal balancing

Bn( Zm Lm ZAk (7)

7 which has been proposed in [46] to minimise the overall backup capacities. It distributes the actual
7 overall mismatch onto all nodes in proportion to their average load.

so  2.2. Infrastructure measures

81 If the mismatch (1) was zero for all times and all countries, the infrastructure response (4) would
sz simply be zero, and no backup power plants and no transmission lines would be required. Of course,
es this is almost surely never the case. This sets the stage for the mismatch variance to become a first
ss infrastructure measure:

Var(A)

N
Y (80— (8)°) ®)
= Var(B) + Var(P) +2cov(B, P) . 9)

es The components of the mismatch / balancing / injection vectors are given by the nodal mismatches
s Ay / balancings B, / injections P,,. The second step, which uses (4), relates the mismatch variance to
ez the variances of the balancings and the injections as well as to their covariance. This emphasises that a
s small mismatch variance would require a small backup and transmission infrastructure, and a large
s variance would lead to a bigger infrastructure.

% The mismatch variance (8) represents only a rough infrastructure measure. More specific measures
o1 are given by the total backup energy, the total backup capacities and the total transmission capacities:

EB = i<c}j’>, (10)

n=1
N

KB = Zmaxq(GE), (11)
n=1
L

KT = Y maxy(|F|)d; - (12)
=1 t

o2 The backup capacities and the transmission capacities are defined via the 4 = 0.99 quantiles of the
o3 time-sampled distributions p,(GZ) and p;(|F|), respectively. N and L represent the number of nodes
o« and links illustrated in Figure 1. The link length is denoted as d; and is approximated as the distance
os between country capitals.

o6 2.3. Principal Component Analysis

We follow the notation of Ref. [43] and sketch the main steps of the Principal Component Analysis
(PCA). The mismatch vector is rescaled to

(t) = cA(t) = i cAu(t)Ey (13)

n=1

oz where the normalisation ¢ is chosen such that (¥-¥) = 1. This turns ¢ = c(«) into a function of
s the mixing parameter «. Note that the new variable ¥ is usually defined with the centred mismatch
» A — (A), but with our choice ¢ = 1 for the renewable penetration parameter the average mismatch
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10 is zero. The normalised mismatch vector (13) is represented in an N-dimensional coordinate system,
101 Where the axes with unit vectors &, correspond to the countries.
The PCA changes this coordinate system by rotation. The normalised mismatch vector

N
¥(t) = ) ax(t) P - (14)
k=1

is then expressed in terms of the rotated unit vectors . Those are determined from the diagonalisation
R P = AxPi (15)

of the covariance matrix
Rum = (xnxm) . (16)

10z Since the covariance matrix is real and symmetric, the eigenvectors are orthonormal, i.e. py - ; =
13 Oy, and all eigenvalues A, > 0 are real and positive. Furthermore, Z,Z(Vzl A = 1 because of the
14 normalisation introduced in Eq. (13).
The temporal amplitudes ay(t) = X(t) - Py have the properties (a;) = 0 and (axa;) = Ay The
total variance (8) of the mismatch can now be written as

1 1
Var(A =3 Z =32 M- (17)
k=1 k=1

Given the ordering A1 > Ay > ... > A, > 0, the last equation reveals that the first eigenvector p; with
the largest eigenvalue A; contributes most to the total variance. This implies that the mismatch can be
approximated by a truncation to the first K eigenvectors with the largest eigenvalues:

i 1 K
E Z (18)

15 This approximation explains the naming of the PCA: the K eigenvectors are called the principal
10s components and carry most of the overall variance.

107 3. Results: principal mismatch components

108 The dependence of the mismatch variance (8) on the renewable mix & is shown as the thick
100 black curve in Figure 2. The renewable penetration has been set to y = 1 for all European countries.
1o The variance takes a minimum at « = 0.7. It is slightly larger in the wind-only limit « = 1 and
w1 significantly larger in the solar-only limit « = 0. This can be seen as a rough indication that the
u2 response infrastructure becomes smallest at intermediate renewable mixes, and agrees nicely with the
13 results on the other infrastructure measures (10) - (12) obtained in [23,46].

114 The eigenvalues resulting from the Principal Component Analysis reveal the dominant
us contributions explaining most of the mismatch variance. They are shown in Figure 3, again as a
ue function of the renewable mix. In the solar-only limit # = 0 the largest eigenvalue is A1 = 0.90. The
1z three largest eigenvalues add up to 0.96, explaining 96% of the mismatch variance. Not much changes
ue for renewable mixes up to about a = 0.3. After this the largest eigenvalue decreases continuously, until
1o itreaches a value A; = 0.45 at & = 0.8. It roughly remains at this value for even larger renewable mixes.
120 As the first eigenvalue decreases, the next eigenvalues increase. At a = 0.8 the first six eigenvalues
121 add up to 0.94, explaining then 94% of the mismatch variance.

122 A threshold like EII<<:1 A = 0.95 for the first eigenvalues is often used as a criterium to define
123 the number K of principal components. Together they explain 95% of the mismatch variance. For
124 & = 0 this number is equal to K = 3. The corresponding eigenvectors are shown in Figure 4. The first
125 principal component is a kind of monopole. All countries either have a positive mismatch together or
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Figure 2. Mismatch variance Var(A) (thick black curve) as a function of the renewable mix a for the
renewable penetration v = 1. The coloured parts illustrate its decomposition (9) into the variances of
the balancing (blue) and the injection (orange) as well as their covariance (green).

a

Figure 3. PCA eigenvalues as a function of the renewable mix a.
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Figure 5. (a, left) Intraday and (b, right) seasonal amplitude profiles of the three principal components
for « = 0. The intraday profiles a;{ntraday(t) have been obtained by averaging the amplitudes over all
days of the underlying eight years while keeping the intraday hour fixed. For the seasonal profiles
aieasonal(t) the amplitudes have been first averaged over a day, and then over the eight years while

keeping the day of the year fixed.

126 anegative mismatch. Of course, this is easy to understand. Either the sun is shining for all countries
127 during daytime, or it is dark for all countries during nighttime. The second principal component looks
12s  like a dipole in East-West direction. It is a consequence of morning sunrise in the East and of evening
120 sunset in the West. These interpretations are clearly supported by the intraday amplitude profiles
130 a;(ntraday( t), which are shown in Figure 5a.

131 Also the third principal component has a dipole structure, but with a North-South orientation.
12 This is mostly a consequence of its seasonal amplitude profile a5¢2°n2!(¢), which is shown in Figure 5b.
133 Figure 5b also reveals that the first principal component has a very pronounced seasonal amplitude
1:a  profile, whereas no clear seasonal dependence is observed for the amplitude of the second principal
135 component.

136 Figure 6 depicts the K = 6 principal components for the renewable mix « = 0.8. The first principal
137 component again looks like a monopole. Roughly it means the wind power generation is above the
13¢ load for all countries at the same time, or vice versa. Its eigenvalue is smaller than for the « = 0 case,
130 and also its structure appears to be slightly different. The other five principal components represent
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Figure 6. The six principal mismatch components for « = 0.8.

10 different orthogonal spatial mismatch patterns. The second and third one look again like dipoles. The
11 fourth to sixth principle components have a more complicated spatial structure.

142 Again it is interesting to investigate the time dependence of their amplitudes a(t). The intraday
13 and seasonal profiles are shown in Figure 7 for the first three principal components. The intraday
1es amplitude profile of the first principal component has two minima, one during the morning and
145 another one during the evening hours. They are explained by the morning and evening peaks of the
146 load. The maximum at noon traces back to the midday solar power generation, which on average still
1z contributes 20% to the overall renewable power generation due to the setting & = 0.8 for the renewable
1 mix. The k = 2 amplitude shows a similar intraday profile, although much weaker than for the k = 1
1e0 amplitude. The seasonal amplitude profiles of the first three principal components all follow the same
10 trend and are correlated to the seasonal wind power generation, which is larger in winter and smaller
152 in summer. The fluctuations on the synoptic time scale of the order of a few days are also clearly
12 Vvisible.

153 4. Discussion: contribution of principal mismatch patterns to the balancing and transmission
154 infrastructures

155 According to Eq. (9) the mismatch variance splits into the balancing variance, the injection variance
15 and the covariance between balancing and injection. The three contributions are also shown in Figure
157 2. For a small renewable mix a the balancing variance dominates, but for large mixes the injection
1ss  variance becomes bigger. The covariance remains very small for all mixes. It is now interesting to
10 investigate how the different mismatch principal components contribute to the balancing and injection
160 Variances.

161 The PCA eigenvalues can be split into the same three contributions. Making use of the results of
w2 Subsection 2.3 and of the response equation (4), the PCA amplitudes can be written as ay = c A - f =
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Figure 7. (a, left) Intraday and (b, right) seasonal amplitude profiles of the first three principal
components for & = 0.8. The seasonal amplitude profiles for k = 2 and k = 3 have been artificially
shifted by -0.5 and -1.0, respectively.

w65 C(B+P)-Pr = c (B + Py). In the last step the abbreviations By = B - fy and P, = P - i have been
16s  introduced. This allows to write the eigenvalues as

Ae=at) = ¢ ((BY)+ (BE)+2(BePy) )
= AP AP 4 ABP (19)

16s  This decomposition reveals how much a principal component is contributing to the balancing and
16 injection variances.
167 Figure 8 illustrates this decomposition. The balancing eigenvalues )\E are plotted from the bottom,
s and the injection eigenvalues A! are arranged from the top. The narrow white stripe in the middle
180 Tepresents the sum Z,I(\Izl ABP and is not specified further into the different k contributions. The first
170 principal component dominates the balancing variance, independent of the renewable mix. This is
11 because of its monopole-like structure. The other components do not contribute much, and only with
172 a small margin for renewable mixes close to one. On the contrary, the first prinicipal component does
173 not contribute much to the injection variance. Here the largest contributions come from the second and
17a  third principal component. Again this is intuitive due to their dipole character. For large renewable
175 mixes also the next three principal components contribute to the injection variance to a larger extend.
176 These results are also documented in Table 1 for the specific choice « = 0.8 of the renewable mix.
17z The mismatch has been truncated according to (18). The full (K = 30) balancing variance Var(g) is
s fully reproduced with the K = 6 principal components. A severe truncation to K = 1 is still able to
170 reproduce 88% of the full balancing variance, emphasising again the dominant role of the first principal
10 component for the mismatch-induced balancing. For the injection variance Var(P) a different finding
11 is observed. The first principal component alone, reflected by the K = 1 truncation, does play only a
12 small role. The second and third principal component contribute the most, but are not able to explain
1e3  all of the variance. The first K = 6 principal components taken together are able to explain 89% of the
1ee  full (K = 30) injection variance. Apparently, higher-order components with k > 7 still play a small
15 TOle.
Table 1 lists also the other, more realistic infrastructure measures introduced in Subsection 2.2.
The balancing energy EP and the backup capacity KF are related to the balancing variance Var(B).
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Figure 8. Decomposed eigenvalues )\E (from the bottom) and A (from the top) as a function of the

renewable mix «. The white band in the middle represents ):IZ(V:

BP
1/\k '

Table 1. Various infrastructure measures as a function of the truncation parameter K used for the PCA

approximation (18).

y=1a=08 | K=30 | K=6 K=5 K=4 K=3 K=2 K=1
Var(A) | 00301 | 0.0281 00272 0.0258 00238 0.0195 0.0136
Var(B) 0.0101 | 0.0101  0.0098 0.0098  0.0096  0.0095  0.0089
EB 0.1402 | 0.1388 0.1371 0.1368  0.1365 0.1348  0.1318
KB 0.686 0.682  0.659 0656 0650  0.643  0.613
Var(P) 0.0184 | 00164 00154 0.0139 0.0119 0.0077  0.0020
Var(F) 0.0120 | 0.0101  0.0091 0.0074 0.0061  0.0040  0.0007
KT 1.812 1.486 1.372 1.250 1156 0904  0.356
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Again, the first principal component dominates in both cases, and the K = 6 truncation is able to
explain 99% of the full K = 30 results. The flow variance

L
Var(F) = l;<52> (20)

1es  and the transmission capacity T are related to the injection variance Var(P). The findings for (20) are
1z very similar to those for the injection variance. The K = 6 truncation is able to explain 84% of the full
1es K = 30 flow variance. For the transmission capacity (12) the first principal component appears to play
10 a slightly larger role. The K = 6 truncation is able to explain 82% of the full K = 30 result.

100 5. Conclusions and Outlook

101 A Principal Component Analysis has been applied to a simplified highly renewable European
102 electricity system to learn about the most important mismatch patterns between the weather-driven
103 renewable power generation and the load. For a solar dominated system three principal components
10a  are enough to explain most of the mismatch variance across the continent. For a wind dominated
105 system six principal components are needed. The spatial structure of the first principal mismatch
1s component resembles that of a monopole, and the respective temporal amplitude dynamics reveals
17 strong fluctuations on the diurnal and seasonal time scales. It determines most of the required backup
s energy and backup capacity of the overall system. The second and third principal components have a
100 dipole-like spatial structure; their temporal amplitude dynamics is dominated by diurnal, synoptic
200 and seasonal time scales. Together with the fourth to sixth principal components they cause most
201 of the required transmission infrastructure. These results demonstrate that the required backup and
202 transmission infrastructure of a highly renewable European electricity system are to a large degree
203 caused by only a small number of most important mismatch patterns between the weather-driven
204 renewable power generation and the load.

208 The model used for a highly renewable European electricity system had been quite simple.
20 In particular, its spatial resolution has been scaled to country sizes. As a consequence, the
207 covariance matrix underlying the Principal Component Analysis is dominated by the larger countries
208 like Germany, France, United Kingdom, Spain and Italy. It is interesting to observe that in the
200 Most important principal components the smaller countries appear to be grouped into blocks like
20 Scandinavia and East Europe. Nevertheless, the next step to take will be to apply the Principal
au Component Analysis to larger, fine-grained continental electricity networks, with the additional
212 inclusion of hydro power and storage. In view of the higher dimensionality, the resulting number of
23 principal components is certainly going to increase, but per se it is not clear by how much and how the
zs  fine-grained spatial structure of the principal patterns is going to look like. In this respect it will also
x5 make sense to investigate related data-reduction approaches like Independent Component Analysis
zs  and Dynamic Mode Decomposition [49].

217 Another future step to take will be the stochastic modelling of the amplitude times series related
z1s to the principal components. This can be used for the forecasting of power mismatches, and it will also
210 allow to estimate the additional infrastructure due to the operational forcast uncertainties. An example
220 would be line congestion in transmission systems under uncertainty [50]. Another playground for the
=z application of the Principal Component Analysis could be the impact of climate change on the design
222 of future energy systems, in particular smart energy systems including all cross-sector couplings [51].
223 Acknowledgments: The authors thank Smail Kozarcanin, Fabian Hofmann, Jonas Horsch and Tom Brown
224 for helpful discussions. Kun Zhu and Martin Greiner are fully / partially funded by the RE-INVEST project

225 (Renewable Energy Investment Strategies — A two-dimensional interconnectivity approach), which is supported
226 by Innovation Fund Denmark (6154-00022B). The responsibility for the contents lies solely with the authors.

227 Author Contributions: M.R., T.Z. and K.Z. performed the model simulations and analysis, and produced the
228 figures; M.G. wrote the paper.

220 Conflicts of Interest: The authors declare no conflict of interest.


http://dx.doi.org/10.20944/preprints201709.0092.v1
http://dx.doi.org/10.3390/en10121934

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2017 d0i:10.20944/preprints201709.0092.v1

12 of 14
230 Abbreviations
231 The following abbreviations are used in this manuscript:
232
233 PCA  Principal Component Analysis
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