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Abstract: Wind turbine plants are complex dynamic and uncertain processes driven by stochastic
inputs and disturbances, as well as different loads represented by gyroscopic, centrifugal, and
gravitational forces. Moreover, as their aerodynamic models are nonlinear, both modelling and
control become challenging problems. On one hand, high–fidelity simulators should contain
different parameters and variables in order to accurately describe the main dynamic system
behaviour. Therefore, the development of modelling and control for wind turbine systems should
consider these complexity aspects. On the other hand, these control solutions have to include the
main wind turbine dynamic characteristics without becoming too complicated. The main point of
this paper is thus to provide two practical examples of development of robust control strategies
when applied to a simulated wind turbine plant. Experiments with the wind turbine simulator and
the Monte–Carlo tools represent the instruments for assessing the robustness and reliability aspects
of the developed control methodologies when the model–reality mismatch and measurement errors
are also considered. Advantages and drawbacks of these regulation methods are also highlighted
with respect to different control strategies via proper performance metrics.

Keywords: Wind turbine simulator; data–driven and model–based approaches; fuzzy identification;
on–line estimation; robustness and reliability

1. Introduction

Wind turbine plants represent complex and nonlinear dynamic systems usually driven by
stochastic inputs and different disturbances describing gravitational, centrifugal, and gyroscopic
loads. Moreover, their aerodynamic models are uncertain and nonlinear, whilst wind turbine rotors
are subject to complex turbulent wind fields, especially in large systems, thus yielding to extreme
fatigue loading conditions. In this way, the development of viable, robust and reliable control
solutions for wind turbines can become a challenging issue [1].

Usually, a model–based control design requires an accurate description of the system under
investigation, which has to include different parameters and variables in order to model the most
important nonlinear and dynamic aspects. Moreover, the wind turbine working conditions can
produce further problems to the design of the control method. In general, commercial codes are not
able to adequately describe the wind turbine overall dynamic behaviour; usually, special simulation
software solutions are used. On the other hand, control schemes have to manage the most important
turbine dynamics, without being too complex and unwieldy. Control methods for wind turbines
usually rely on the signals from sensors and actuators, with a system that connects these elements
together. Hardware or software modules elaborate these signals to generate the output signals for
actuators. The main feature of the control law consists of maintaining safe and reliable working
conditions of the wind turbine, while achieving prescribed control performances, and allowing for
optimal energy conversion, as shown e.g. in recent works applied to the same wind turbine model
considered in this work [2].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2017                   doi:10.20944/preprints201709.0089.v1

©  2017 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201709.0089.v1
http://creativecommons.org/licenses/by/4.0/


2 of 17

Today’s wind turbines can implement several control strategies to allow for the required
performances. Some turbines use passive control methods, such as in fixed–pitch, stall control
machines. In this case, the system is designed so that the power is limited above rated wind speed
through the blade stall. Therefore, the control of the blades is not required [1]. In this case, the
rotational speed control is proposed thus avoiding the inaccuracy of measuring the wind speed.
Rotors with pitch regulation are usually used for constant–speed plants, in order to provide a power
control that works better than the blade stall solution. In these machines, the blade pitching is
controlled in order to provide optimal power conversion with respect to modelling errors, wind gusts
and disturbance. However, when the system works at constant speed and below rated wind speed,
the optimal conversion rate cannot be obtained. Therefore, in order to maximise the power conversion
rate, the rotational speed of the turbine must vary with wind speed. Blade pitch control is thus used
also above the rated wind speed [1]. A different control method can introduce the yaw regulation to
orient the machine into the wind field. A yaw error reference from a nacelle–mounted wind direction
sensor system must be included in order to calculate this reference signal [3].

Regarding the regulation strategies proposed in this paper, two control design examples are
described and applied to a wind turbine system. The wind turbine model exploited in this work is
freely available for the Matlab R© and Simulink R© environments, and already proposed as benchmark
for an international competition regarding the validation of fault diagnosis and fault tolerant control
approaches [2].

In particular, a first data–driven method relying on a fuzzy identification approach to the control
design is considered. In fact, since the wind turbine mathematical model is nonlinear with uncertain
inputs, fuzzy modelling represents an alternative tool for obtaining the mathematical description
of the controlled process. In contrast to purely nonlinear identification schemes, see e.g. [4],
fuzzy modelling and identification methods are able to directly provide nonlinear models from
the measured input–output signals. Therefore, this paper suggests to model the wind turbine
plant via Takagi–Sugeno (TS) fuzzy prototypes [5], whose parameters are obtained by identification
procedures. This approach is also motivated by previous works by the same authors [6]. On the
other hand, concerning the control design, the paper proposes also a fuzzy control method for the
regulation of the blade pitch angle, and the generator torque of the wind turbine system.

With respect to similar works, see e.g. [7], this paper suggests an off–line identification approach,
without any on–line optimisation schemes, thus enhancing real–time implementations. Note also
that the works by the same authors, see e.g. [8], addressed a different design procedure of the fuzzy
regulator, that consists of fuzzy PI controllers. On the other hand, this paper proposes the direct
estimation of the fuzzy regulator by means of an identification scheme.

Regarding the second model–based strategy presented in this paper, it relies on an adaptive
control scheme [9]. Again, with respect to pure nonlinear control methods [10], it does not require a
detailed knowledge about the model structure. Therefore, this work suggests the implementation of
controllers based on adaptive schemes, used for the recursive derivation of the controller model.

In particular, a recursive Frisch scheme extended to the adaptive case for control design is
considered in this study, as proposed e.g. in [8] by the same authors, which makes use of exponential
forgetting laws. This allows the on–line application of the Frisch scheme to derive the parameters of
a time–varying controller.

Since it is necessary to evaluate the robustness and the reliability of the designed control methods
with respect to modelling uncertainties, disturbance, and measurement errors, the verification and
validation tools use extensive Monte–Carlo simulations. In fact, the wind turbine system contains
elements that cannot be described by analytical models. Thus, the Monte–Carlo analysis represents a
solution for testing the robustness and reliability features of the control schemes when applied to the
wind turbine model. This paper compares the proposed methodologies also with respect to different
control methods based on sliding mode techniques, neural controllers, or gain scheduling methods.
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However, with respect again to [8] by the same authors, different comparisons are proposed in this
work that exploit proper performance metrics.

Finally, this work is organised as follows. Section 2 recalls the wind turbine model considered
for control design purposes. Section 3 addresses the data–driven scheme exploited for the derivation
of the fuzzy controller, proposed in Section 3.1. On the other hand, the model–based control design
is considered in Section 3.2, based on its mathematical derivation also described in Section 3. The
achieved results and comparisons with different control strategies are outlined in Section 4. The
robustness and reliability features of the developed control strategies are also investigated. Finally,
Section 5 ends the paper by summarising the main achievements of the work.

2. Wind Turbine Simulated Model

This section outlines the wind turbine model, whose sampled inputs and outputs will be used
for the proposed control designs, as shown in Section 3.

The wind turbine system exploited in this work uses a nonlinear dynamic model representing
the wind acting on the wind turbine blades, thus producing the movement of the low–speed rotor
shaft. The higher speed required by the electric converter is produced by means of a gear box. The
simulator is described in more detail e.g. in [11]. A block scheme of the wind turbine simulator
considered in this paper represented in Figure 1.
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Figure 1. Scheme of the wind turbine process.

Both the generator speed and the generator power are controller by means of the 2 control
inputs representing the generator torque τg(t) and the blade pitch angle β(t). Several signals can
be acquired from the wind turbine simulator. In particular, the signal ωr(t) represents the rotor
speed measurement, whilst ωg(t) the converter velocity. Concerning the electric generator, τg(t)
refers to its required torque, which is controlled by the converter. Therefore, this signal represents the
measurement of the torque set–point, τr(t). The aerodynamic model defining the aerodynamic torque
provides the τaero(t) signal, which is a nonlinear function of the wind speed v(t). This measurement
is very difficult to be acquired correctly, as described in [11].

The aerodynamic model reported in Figure 1 is described as follows:

τaero(t) = Cp (β(t), λ(t))
ρ A v3(t)
2 ωr(t)

(1)

where the variable ρ represents the air density, whilst A is the effective rotor area. Another important
variable is represented by the so–called tip–speed ratio, which is defined as:

λ(t) =
ωr(t) R

v(t)
(2)

with R the rotor radius. Cp(·) represents the power coefficient, that is normally represented via a
two–dimensional map [11]. The expression of Eq. (1) allows the computation of the signal τaero(t),
by means of the estimated wind speed v(t), and the measured β(t) and ωr(t). Due to the uncertainty
of the wind speed, the estimate of τaero(t) is considered affected by an unknown measurement error,
which justifies the robust approaches described in Section 3. Moreover, the nonlinearity represented
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by the expressions of Eqs. (1) and (2) motivates the required reliable and robust control approaches
suggested in this work.

A two–mass model is exploited to describe the drive–train system, whilst the hydraulic pitch
system is modelled as second–order transfer function [11]. Moreover, the generator dynamics are
described as a first–order transfer function. More details regarding the considered simulator are in
[11]. Under these assumptions, the complete state–space description of the wind turbine model has
the form of Eq. (3): {

ẋc(t) = fc (xc(t), u(t))
y(t) = xc(t)

(3)

where u(t) =
[
β(t), τg(t)

]T and y(t) = xc(t) =
[
Pg(t), ωg(t)

]T are the control inputs and
the monitored output measurements, respectively, as shown in Figure 1. Pg(t) is the generator
power measurement, whilst fc (·) represents the continuous–time nonlinear function that will be
approximated via discrete–time models from N sampled data uk and yk, with the sample index
k = 1, 2, . . . N, as presented in Section 3. Finally, the model parameters, and the map Cp (β, λ)

are chosen in order to represent a realistic turbine [11].
As described in [11], the baseline controller developed for this wind turbine system works in two

normal operating conditions, namely the region 1 corresponding to the power optimisation (partial
load), and the region 2 of constant power production (full load). A schematic diagram of the baseline
wind turbine controller system is depicted in Figure 2.

Partial load
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Full load
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Figure 2. The baseline wind turbine control scheme.

The partial load working condition (also known as working region 1), the optimal wind–power
conversion is achieved without any pitching of the blades, which are fixed to 0o. In this case, λ is
constant at its optimal value λopt, that is defined by the maximal value of the power coefficient map
Cp when β = 0. Therefore, this working condition is completely defined by setting τg = τr (i.e. the
generator torque is equal to the reference one) with pitch angle β = 0.

The reference torque τr shown in Figure 1 can be written as:

τr = Kopt ω2
r (4)

where:

Kopt =
1
2

ρ A R3 Cpmax

λ3
opt

(5)

with Cpmax the maximal value of Cp, related the to λopt, i.e. the optimal tip–speed ratio.
When the power reference is achieved and the wind speed increases, the controller can be

switched to the control region 2 (full load condition) In this zone the control objective consists of
tracking the power reference Pr, obtained by regulating β, such that the Cp is decreased. In a
traditional industrial control scheme, usually a PI controller is used to keep ωr at the prescribed
value by changing β; the second input of the controlled is τg.
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The baseline controller considered in this work was implemented with a sample frequency at
100 Hz, i.e. Ts = 0.01 s. In full load conditions, i.e. in region 2, the actuated input β is controlled via
the relations of Eq. 6 [11]: {

βk = βk−1 + kp ek +
(
ki Ts − kp

)
ek−1

ek = ωgk −ωnom
(6)

with the sample index k = 1, 2, . . . , N. The parameters for this PI speed controller are ki = 0.5 and
kp = 3, with sampling time Ts = 0.01 s., as reported in [11].

The control of the further input τg shown in Fig. 1, a second PI regulator is used, in the form of
Eq. (7): {

τrk = τrk−1 + kp ek +
(
ki Ts − kp

)
ek−1

ek = Pgk − Pr
(7)

The parameters for this second PI power controller are ki = 0.014 and kp = 447× 10−6 [11].
Finally, note that in region 1 (partial load, below the rated wind speed) the wind turbine is

regulated only by means of the torque input τg(t). In this situation, the blade pitching system is
not exploited to achieve the optimal power conversion. On the other hand, in region 2 (full load,
above the rated wind speed) the wind turbine control regulates both the blade pitch angle β(t) and
the control torque τg(t). The wind turbine Simulink R© model considered in this work includes also
saturation blocks limiting the values of these control signals and their rates.

3. Data–Driven and Model–Based Control Designs

This section describes the 2 approaches considered in this paper for obtaining the control laws by
using data–driven and model–based methodologies. Once a suitable mathematical description of the
monitored process is provided, the derivation of the controller structure is sketched in Section 3.1 for
the fuzzy approach, whilst Section 3.2 proposes a different method relying on an adaptive technique.

The first method proposed in this paper for the derivation of the wind turbine controller is based
on a fuzzy clustering technique to partition the available data into subsets characterised by linear
behaviours. The integration between clusters and linear regression is exploited, thus allowing for
the combination of fuzzy logic techniques with system identification methodologies. These tools
are already available and implemented in the Matlab R© Fuzzy Modelling and IDentification (FMID)
Toolbox recalled below [5]. This study proposes the use of TS fuzzy prototypes since they are able to
model nonlinear dynamic systems with arbitrary accuracy [5]. The switching between the local affine
submodels is achieved through a smooth function of the system state defined exploiting the fuzzy set
theory and its tools.

In more detail, the fuzzy estimation scheme relies on a two–step algorithm, in which,
the working regions are first defined by exploiting the data fuzzy clustering tool, i.e. the
Gustafson–Kessel (GK) method [5]. On the other hand, the second step performs the identification of
the controller structure and its parameters using the estimation method proposed by the same authors
in [6]. This estimation approach can be considered as a generalisation of the general least–squares
method for hybrid models.

Under these assumptions, the TS fuzzy prototypes have the form of the model of Eq. (8):

yk+1 =
∑M

i=1 µi (xk) yi

∑M
i=1 µi (xk)

(8)

where yi = aT
i x + bi, with ai the parameter vector (regressand), and bi is the scalar offset. x = xk

represents the regressor vector, which contain delayed samples of the signals uk and yk.
The antecedent fuzzy sets µi that determine the switching among the different submodels i are

estimated from the data clusters [5]. The consequent parameters ai and bi are identified from the data
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by means of the methodology proposed in [6]. This identification scheme exploited for the estimation
of the TS model parameters has been integrated into the FMID toolbox for Matlab R© by the authors.
This approach is preferable when the TS model of Eq. (8) is used as predictor, since it derives the
consequent parameters via the so–called Frisch scheme, developed for the Errors–In–Variables (EIV)
structures [6].

Once the description of the monitored process is obtained in the form of Eq. (8), the data–driven
approach for the design of the fuzzy controller proposed in this work is presented in Section 3.1.

The second approach exploited for obtaining the mathematical description of the wind turbine
system under investigation is based on a recursive methodology, which will be used for the design of
the second control strategy presented in Section 3.2. An on–line version of the batch Frisch scheme
estimation methodology summarised above is recalled in the remainder of this section for estimating
the parameters of dynamic EIV models. For the derivation of the adaptation law, an on–line
bias–compensating algorithm is also implemented. Thus, the on–line Frisch scheme estimation is
generalised to enhance its applicability to real–time implementations. Moreover, by means of an
exponential forgetting factor included in the adaptation law, the algorithm is able to deal with Linear
Parameter–Varying (LPV) structures, that are exploited in connection with the model–based design
of the adaptive control scheme, presented in Section 3.2.

Thus, the considered scheme is proposed for the on–line identification of the process modelled
by the following transfer function G(z):

G(z) =
A(z−1)

B(z−1)
=

b1 z−1 + . . . + bnb z−nb

1 + a1 z−1 + . . . + ana z−na
(9)

where ai, bi, na, and nb represent the unknown parameters and the structure of the model, defining
the polynomials A(z−1) and B(z−1), whilst z is the discrete–time complex variable.

The parameter vector describing the linear relationship is given by:

θ =
[
a1 . . . ana b1 . . . bnb

]T (10)

whose extended version is defined as in Eq. (11):

θ̄ =
[
1 θT

]T
(11)

An equivalent expression of the considered relations is obtained by using vector and matrix
notations, in the form of Eq. (12):

ψT
k θ̄ = 0 (12)

where the regressor vector ψk is defined as:

ψk =
[
−yk − yk−1 . . . − yk−na uk−1 . . . uk−nb

]T (13)

where the subscript k denotes the sample index.
The Frisch scheme provides the estimates of the measurement errors affecting the input and

output signals uk and yk, i.e. σu and σy, and θ for a linear time–invariant dynamic system. Note that
the polynomial orders na and nb in the relation of Eq. 9 are assumed to be fixed in advance.

From the Frisch scheme method, the following expression is considered:(
Σψ − Σψ̃

)
θ̄ = 0 (14)
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where the noise covariance matrix is given by:

Σψ̃ =

[
σy Ina+1 0

0 σu Inb

]
(15)

which are approximated by the sample covariance matrix over N samples:

Σψ̃ ≈
1
N

N

∑
k=1

ψk ψT
k (16)

Thus, the Frisch scheme aims at providing suitable noise variances σu and σy such that
(

Σψ − Σψ̃

)
results to be a matrix singular positive semidefinite as it is rank–one deficient. On the other hand, the
system represented by the expression of Eq. (14) can be solved, and θ̄ represents its solution.

The expression of Eq. (17) is determined:

εk
(
θ̄
)
= A(z−1) yk − B(z−1) uk (17)

whilst the so–called sample auto–covariance is defined in the form of Eq. (18):

rεh, N =
1
N

N

∑
l=1

εl
(
θ̄
)

εl+h
(
θ̄
)

(18)

where the subscript h in Eq. (18) indicates a time–shift.
The on–line control development requires a recursive estimate of the model parameters

represented by the vector θk of Eq. (9), while the input and output data uk and yk acquired on–line
by the dynamic process of the wind turbine system. In fact, the adaptive control law computed at
time step k is based on the recursive estimate of a model of the process, which is derived exploiting
the dynamic data up to the sample k. In this way, the algorithm of the Frisch scheme defined by the
expressions of Eqs. (14), (16), and (18) is expressed by means of an on–line scheme.

Note that the expressions of Eqs. (16) and (18) are required in their recursive form. Therefore,
whilst the derivation of the on–line form of the covariance matrix update is easily obtained as in the
form of Eq. (19):

Σψ̃k
=

k− 1
k

Σψ̃k
+

1
k

ψk ψT
k (19)

the formulation of the auto–covariance expression rεh, k can be obtained recursively for 1 ≤ l ≤ k only
if the approximated expression of Eq. (20) is considered:

εl
(
θ̄k
)
≈ εl

(
θ̄l
)

(20)

for l < k. In this way, only the residual εk
(
θ̄k
)

has to be computed at time step k using the lagged
data in the vector ψk and the updated estimate θ̄k of the model parameters. The on–line computation
of the expression of the auto–covariance matrix of Eq. (21):

rεh, k =
k− 1

k
rεk, k−1 +

1
k

εk
(
θ̄k
)

εk+h
(
θ̄k
)

(21)

can be achieved using only the vector εk+h
(
θ̄k
)

at each time step. The initial values θ0, Σψ̃0
, and rε0, h

for the recursive algorithm are equal to the variables of the classic Frisch scheme batch procedure.
Since variations of system properties have to be tracked on–line, in order to cope with

time–varying systems, this paper considers a further modification of the recursive estimation scheme.
This point can be achieved by placing more emphasis on the more recent data, while forgetting the
older ones. Therefore, the methodology represented by the expressions of Eqs. (19) and (21) with

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2017                   doi:10.20944/preprints201709.0089.v1

http://dx.doi.org/10.20944/preprints201709.0089.v1


8 of 17

the approximation of Eq. (20) is implemented by including the so–called exponential forgetting
factor. This is achieved in practice by defining the new expressions of the sample covariance and
auto–covariance matrices in the form of Eqs. (22):{

HΣψ̃ k
= ω(δ)Σψ̃k

hεh, k = ω(δ) rεh, k
(22)

where ω(δ) is a scaling factor that coincides with k when no adaptation is introduced. In this way, the
updated expressions have the form:{

HΣψ̃ k
= (1− δ) HΣψ̃ k−1

+ δ ψk ψT
k

hεh, k = (1− δ) hεh, k−1 + δ εk
(
θ̄k
)

εk+h
(
θ̄k
) (23)

with 0 < δ < 1 representing the forgetting factor. Thus, the adaptive Frisch scheme algorithm is
implemented via Eqs. (23) in three steps. First, θ0, Σψ̃0

, and rε0, h with h ≤ na are initialised. Moreover,
at each recursion step, by means of rεh, k, the noise variances σu and σy are computed. Finally, at each
recursion step, θ̄k is determined by solving Eq. (14) via the expression of Eq. (23). In this way, the
vector θk contains the estimates of the model parameter derived at the step k.

The results achieved by the on–line identification method recalled in this section were obtained
in the Matlab R© and Simulink R© environments as summarised in Section 4.

Finally, once the parameters θk of the discrete–time linear time–varying model of the nonlinear
dynamic process of Eq. (3) have been computed at each time step k, the adaptive controller is derived
as summarised in Section 3.2.

3.1. Data–Driven Fuzzy Control Strategy

This section describes the derivation of the fuzzy controller model. Once a reasonably accurate
fuzzy description of the considered benchmark has been available, as described above, it is used
off–line to directly estimate the nonlinear fuzzy controllers. As already remarked, this design
procedure differs from the approach proposed in [12]. In fact, the control design proposed in
this paper relies on the so–called model inverse control principle, which is solved suing the fuzzy
identification approach recalled above.

With reference to stable fuzzy systems, whose inverted dynamics are also stable, a nonlinear
controller can be simply designed by inverting the fuzzy model itself. Moreover, when modelling
errors and disturbances are not present, this controller is able to allow for exact tracking with
zero steady–state errors. However, modelling errors and disturbance effects are always present in
real conditions, which can be tackled by directly identifying the controller model (i.e. the inverse
controlled model) using the FMID approach. Differently from [12], a robust control strategy is
thus achieved by minimising a cost function which includes the difference between the desired
and controller outputs, and a penalty on the system stability. In general, a nonconvex optimisation
problem has to be solved, which hampers the direct application of the proposed approach. However,
the optimisation scheme described in [6] can be exploited, which is based on a parametrised search
technique applied at a higher level to formulate the control objectives and constraints.

In this way, the estimated controller based on the inverse process model and approximated via
a fuzzy prototype is able to describe the complete behaviour of the monitored plant in its different
working conditions (i.e. partial and full load situations). In fact, the rule–based fuzzy inference system
of Eq. (8) has been derived for modelling the wind turbine dynamic process of Eq. (3) in its equivalent
discrete–time form of Eq. (24):

yk+1 = f (xk, uk) (24)
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and, in particular, the TS fuzzy representation has the form of Eq. 25:

yk+1 =
∑M

i=1 µ
(m)
i

(
x(m)

k

) (
a(m)

i x(m)
k + b(m)

i

)
∑M

i=1 µ
(m)
i

(
x(m)

k

) (25)

The current state xk = [yk, . . . , yk−n+1, uk−1, . . . , uk−n+1]
T and the input uk represent the inputs that

drive the model of Eq. (25). Its output represents the prediction of the system output at the next
sample yk+1. The model of Eq. (25) requires the estimated membership functions µ

(m)
i , the state x(m)

and the parameters a(m)
i , b(m)

i of the controlled system, which are denoted by the superscript (m).
Therefore, the input uk generated by the control law feeds the monitored process such that its

output yk+1 asymptotically follows the desired (reference) output rk+1. This behaviour is obtained by
using the inverse model principle, represented by the expression of Eq. (26):

uk+1 = f−1 (xc
k, rk) (26)

that is a nonlinear function of the vector xc
k and the reference rk.

However, in general, with reference to Eq. (26), it is difficult to determine the analytical
expression of the inverse function f−1(·). Therefore, the methodology proposed in this work
suggested to exploit the identified fuzzy TS prototype of Eq. (25) to provide the particular state
x(m)

k at each time step k. In this way, from this mapping, the inverse mapping uk+1 = f−1
(

x(c)k , rk

)
is

directly identified the form of Eq. (8), if the controlled system is stable, and in particular in the form
of Eq. (27):

uk+1 =
∑M

i=1 µ
(c)
i

(
x(c)k

) (
a(c)i x(c)k + b(c)i

)
∑M

i=1 µ
(c)
i

(
x(c)k

) (27)

where the state x(c)k = [x(m)
k , rk−1, . . . , rk−n+1]

T and the reference rk signal represent the inputs of the

identified controller model. The model of Eq. (27) contains the estimated membership functions µ
(c)
i

and the parameters a(c)i , b(c)i of the identified controller model, that are denoted by the superscript
(c). The complete scheme is outlined in Figure 3.

Identified inverted
fuzzy model

Process fuzzy
model

Controller
model

Wind turbine
model

z -1 z -1

r(k)

y(k)u(k)

x   (k)x   (k)
(c) (m)

Figure 3. The fuzzy controller based on the inverse process model principle.

Figure 3 highlights the series connection between the controller model (i.e. the identified inverse
process model) and the process model itself, which should lead to an identity mapping as in Eq. (28):

yk+1 = f
(

x(m)
k , uk

)
= f

(
x(m)

k , f−1
(

x(c)k , rk

))
= rk+1 (28)

where rk+1 = f
(

x(m)
k , uk

)
for a proper value of uk. However, the expression of Eq. (28) holds

in ideal conditions. However, the model–reality mismatch and measurement errors are properly
managed by means of the fuzzy modelling scheme recalled in Section 3. In this way, the difference
|rk+1 − f

(
x(m)

k , uk

)
| can be made arbitrarily small by a suitable selection of the model parameters,

i.e. the fuzzy membership functions µ
(c)
i , the number of clusters M, and the regressand a(c)i , b(c)i .
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Moreover, as highlighted in Figure 3, the fuzzy model of the process is used for providing the
state vector x(m)

k . Therefore, the state of the fuzzy controller x(c)k is updated using the process model

state x(m)
k and the reference input rk. These computations are performed using standard matrix

operations, thus making the algorithm suitable for real–time implementations [13].
As already remarked, the effects of the model uncertainty and disturbance lead to a different

behaviour of the model with respect to controlled process, thus resulting in a mismatch between
the process outputs yk and their references rk. This mismatch can be compensated by means of the
on–line mechanism described by the expressions of Eqs. (25) and (27). These issues motivate the
model–based strategy relying on the adaptive algorithm proposed in Section 3.2.

Note finally that the fuzzy controller proposed in this section and depicted in Figure 3 will
replace the baseline wind turbine regulator of Section 2 and reported in Figure 2.

3.2. Model–Based Adaptive Control Scheme

This section describes the model–based adaptive control strategy used in connection with the
on–line estimation scheme presented above. In more detail, with reference to the wind turbine system
recalled in Section 2, adaptive controllers for processes of second order (na = n = 2) are designed.
Moreover, the considered adaptive controllers are based on the trapezoidal method of discretisation.

With reference to Eq. (9), the transfer function of the time–varying controlled system with na =

nb = n = 2 is considered, whose parameters estimated using the on–line identification approach
recalled above:

θk =
[

â1, â2, b̂1, b̂2

]T
(29)

Note that the subscript k for model and controller parameters will be dropped in order to simplify
equations and formulas.

The control law corresponding to the discrete–time adaptive controller in its difference form of
Eq. (30): {

∆ek = ek − ek−1

uk = Kp

[
∆ek +

Ts
TI

∆ek
2

]
+ uk−1

(30)

with ek representing the tracking error, with ek = rk − yk, and rk the reference (set–point) signal. Ts

is sampling time. The controller parameters Kp and TI are here time–varying and derived from the
on–line model parameters in the vector θk. The control law can be represented also in its feedback
formulation as described by Eq. (31):

uk = q0 ek + q1 ek−1 + uk−1 (31)

Where the new controller variables q0 and q1 (or Kp and TI) are derived from the relations of Eq. (32): q0 = Kp

(
1 + Ts

2 TI

)
q1 = −Kp

(
1− Ts

2 TI

) (32)

where the parameters Kp and TI are functions of the (time–varying) critical gain and the critical period
of oscillations, respectively, KPu and Tu:

Kp = 0.6 KPu , TI = 0.5 Tu (33)

that depend on the time–varying model parameters in the vector θk. In particular, when considering
a second order model described by its (time–varying) parameters â2, â1, b̂2, and b̂1, the variables
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KPu and Tu required by the Ziegler–Nichols method can be computed at each time step k from the
following relations:  KPu = â1−â2−1

b̂2−b̂1

Tu = 2πTs
arccos γ , with γ = â2 b̂1−â1 b̂2

2 b̂2

(34)

In this way, the adaptive discrete–time linear controllers of Eq. (30) or (31) are designed on the basis
of the time–varying linear model of Eq. (9) estimated via the on–line identification scheme from the
data of the nonlinear wind turbine process of Eq. (3).

Note that the adaptive regulators considered in this section were implemented in the Simulink R©

environment, integrating also the on–line estimation scheme recalled above.
The experimental set–up employs 3 adaptive regulators used for the control of the blade pitch

angles, and the generator control torque, in the partial and full load working conditions. The complete
block scheme is shown in Figure 4.

Partial-load
controller

Full-load
controller

Switch

y(t) y(t)

Adaptation
laws

Figure 4. Layout of the model–based adaptive control strategy.

Note that, the adaptive control scheme represented in Figure 4 will replace the baseline wind
turbine controller recalled in Section 2 and depicted in Figure 2. In this way, the adaptive controller
should be able to manage possible uncertainty affecting the wind turbine system, thus allowing to
improve the performance of the baseline wind turbine control described in Section 2.

Finally, Section 4 will show the achieved results regarding the design and the application of the
adaptive controller to the data from the wind turbine benchmark.

4. Simulations and Comparisons

This section presents the simulation results achieved with the proposed data–driven and model
methods relying on both the fuzzy modelling technique oriented to the identification of the fuzzy
controller model, and the adaptive control strategy using the on–line estimated models. The
simulations achieved with these regulators are summarised in Section 4.1. Moreover, a reliability and
robustness analysis, followed by extended comparisons with respect to different control solutions are
reported in Sections 4.2 and 4.3, respectively.

4.1. Controller Performance Tests

Regarding the fuzzy modelling and identification method, the GK clustering algorithm recalled
in Section 3 with a number M = 3 of clusters and delays n = 2. These variables were applied for
clustering the first data set consisting of

{
Pgk, ωgk, βrk

}
. A number of samples k = 1, 2, . . . , N were

considered with N = 440× 103. The same number of clusters and shifts were exploited for clustering
the second data set

{
Pgk, ωgk, τgk

}
. After this procedure, the structures of the TS prototypes were

derived for each output yk equal to Pgk and ωgk. In this way, the 2 continuous–time outputs y(t) =[
ωg(t), τg(t)

]
of the wind turbine continuous–time model of Eq. (3) are approximated by 2 TS fuzzy

prototypes of Eq. (8).
The performances of the fuzzy models that are derived using the procedure described above can

be evaluated using the so–called Variance Accounted For (VAF) parameter [5]. In particular, the TS
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fuzzy model reconstructing the first output has a VAF index bigger than 90%, whilst for the second
one it was higher than 99%. This means that the fuzzy prototypes are able to describe the behaviour
of the controlled process with very good precision. These estimated TS fuzzy models have been used
for the derivation of the fuzzy controllers and applied to the considered wind turbine benchmark.

Two (Multiple–Input Single–Output) MISO fuzzy controller models with 2 inputs and 1 output
have been used for the compensation of the blade pitch angle β(t) and the generator torque τg(t).
By using the inverse model principle, they were estimated exploiting the methodology recalled in
Section 3.1. Again, the GK fuzzy clustering method has lead to 2 fuzzy regulators applied to the data
sets

{
βrk, Pgk, ωgk

}
and

{
τgk, Pgk, ωgk

}
, respectively, with M = 3 clusters and n = 3 lagged signals.

The controller performances were verified and validated via extensive simulations by
considering different data sequences generated via the wind turbine simulator. Table 2 reports the
values of the per–cent Normalised Sum of Squared tracking Error (NSSE%) index defined in Eq. (35):

NSSE% = 100

√√√√√∑N
k=1

(
rk − yk

)2

∑N
k=1 r2

k

(35)

Noting that in partial load operation (region 1), the performance is represented by the comparison
between the power produced by the generator, yk = Pgk, with respect to the theoretical maximum
power output, rk = Pr. On the other hand, in full load operation (region 2), the tracking error is
given by the difference between the generator speed, yk = ωgk and its nominal value, rk = ωnom. The
achieved results show that the good properties of the designed fuzzy controllers, as represented also
in Figure 5.

2500 3000 3500 4000
156

158

160

162

164

166

168

Time (s)

Generator speed tracking with fuzzy controller

w (t)g

[rad/s]

Baseline controller Data-driven fuzzy regulator

4400

Set-point

Controlled output

Figure 5. Generator speed (bold gray line) ωg(t) and its reference (dashed black line) ωnom.

Figure 5 depicts the signal representing generator speed ωg(t) in bold gray line with respect
to its desired value ωnom in dashed black line. It can be noted that in full load conditions, the fuzzy
controllers derived via the data–driven approach lead to tracking errors smaller than the wind turbine
baseline governor recalled in Section 2. In fact, as shown in Figure 5, the baseline regulator is working
in the interval 2200s. < t < 3300s. On the other hand, the fuzzy controllers are exploited during the
interval 3300s. < t < 4400s., when the tracking error is much lower.

With reference to the second model–based design approach using adaptive solutions, the 2
outputs Pg(t) and ωg(t) of the wind turbine continuous–time nonlinear model of Eq. (3) were
approximated by 2 second–order time–varying MISO discrete–time models of Eq. (9) with 2 inputs
and 1 output. Using these 2 LPV prototypes, the model–based approach for determining the adaptive
controllers recalled in Section 3.2 was exploited and applied to the wind turbine benchmark of Section
2. Thus, according to Section 3.2, the parameters of the adaptive controllers were computed on–line.
In particular, for each output, 2 second–order (na = nb = 2) time–varying MISO prototypes were
identified, and the adaptive regulator parameters in Eqs. (30) or (31) were computed analytically at
each time step k.
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Also in this case, with reference to the adaptive controller structure of Eqs. (30) or (31),
the parameters of the on–line controllers were tuned via the Ziegler–Nichols rules, applied to the
LPV models. In this way, if both the model on–line parametric identification and the regulator
tuning procedure are exploited, the parameter adaptation mechanisms should lead to good control
performances.

The experiments with the adaptive regulators were simulated in the same situation of the fuzzy
controllers. In this case, 3 on–line regulators were exploited for the compensation of both the blade
pitch angle β(t) and the generator torque τg(t), in region 1 and region 2. The adaptive algorithm
described above run with initial values for its parameters reported in Table 1.

Table 1. Initialisation parameters of the adaptive algorithm.

Recursive algorithm parameter Value
θ̄(0) [0.1, 0.15, 0.20, 0.25 0.30, 0.35]T

Σψ̃(0) 10−1 I7
δ 0.995

With reference to the model–based adaptive approach, Figure 6 depicts the set–point ωg(t) in
bold gray line with respect to its desired value ωnom in dashed black line. By considering the full
load working conditions, the adaptive regulators have replaced the wind turbine baseline governor
at t ≥ 3300s.

2500 3000 3500 4000
161

161.5

162

162.5

163

163.5

164

4400

Time (s)

w (t)g

[rad/s]

Tracking of the generator speed with adaptive controllers

Baseline regulator

Model-based

adaptive controller

Set-point

Controlled output

Figure 6. ωg(t) tracking capabilities in full load conditions with adaptive controllers.

Also for the case of the adaptive regulators, Figure 6 highlights that the model–based approach
leads to interesting performances.

In order to analyse the performance of the proposed adaptive strategy, Table 2 reports also the
NSSE values computed for these controllers.

Table 2. Controllers in partial and load operations: NSSE% values.

Controller Type Partial load Full load
Fuzzy controller 37.17% 17.85%

Adaptive controller 28.73% 13.67%

According to the simulation results summarised in Table 2, good tracking capabilities of the
suggested adaptive controllers seem to be reached, and they are better than the fuzzy regulators.
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4.2. Robustness Analysis

This section summarises further simulation results that concern the evaluation of the achieved
characteristics of the developed control strategies when the effects of uncertainty and disturbance are
taken into account.

In particular, the wind turbine benchmark in the Matlab R© and Simulink R© environments can
vary the variables and the parameters of the simulated process in a statistical way. In this way,
it is possible to analyse the effects of the model–reality mismatch and the measurement errors on
the designed controllers. Moreover, a Monte–Carlo analysis is also considered since it represents a
practical approach for validating and verifying the features of the developed control schemes when
applied to the considered wind turbine process. The same approach was for suggested for the first
time by the same authors in [14] and applied to a different simulated system.

The Monte–Carlo tool is very useful in this case since the behaviour of control strategies designed
assuming the nominal plant depends on both the model–reality mismatch and the measurement
errors.

Under these considerations, realistic uncertainty values of the parameters and variables of
the wind turbine simulator considered in this work are summarised in Table 3. Therefore, the
Monte–Carlo analysis was achieved by modelling these parameters and variables as Gaussian
stochastic processes, with mean values equal to the nominal ones, and standard deviations
corresponding to realistic error values, typical of wind turbine models [2].

Table 3. Wind turbine uncertain variables.

Model Variable/Parameter Standard Deviation
β(t) 11%

ωg(t) 18%
τg(t) 21%
Pg(t) 20%

Pitch 2nd order model
natural frequency & damping ratio 49%

Drive train model efficiency 5%
Converter 1st order model time constant 50%

Therefore, for the evaluation of the reliability and robustness characteristics of the designed
control schemes, the average values of the NSSE% index were computed and evaluated in simulation
via 1000 Monte–Carlo runs.

In particular, Table 4 reports the average NSSE% values by considering the effects on the input
and output measurements given by the alteration of the model variables and parameters reported in
Table 3. Moreover, Table 4 shows how the considered control strategies, and especially the adaptive
approach, is able to achieve excellent performances even in the presence of considerable error and
uncertainty effects.

Table 4. Monte–Carlo analysis for the considered control schemes.

Controller Partial load Full load
strategy NSSE% NSSE%

Baseline governor 48.23% 21.75%
Fuzzy controller 37.19% 17.94%

Adaptive controller 24.52% 13.72%

The achieved results highlight also that Monte–Carlo tool represents an effective and practical
instrument for validating and verifying in simulation the design reliability and robustness of the
considered control methodologies with respect to modelling uncertainty and measurement errors.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2017                   doi:10.20944/preprints201709.0089.v1

http://dx.doi.org/10.20944/preprints201709.0089.v1


15 of 17

4.3. Performance Verification and Comparisons

The evaluation of the performances of the data–driven and model–based control strategies
considered in this paper has been evaluated also on the basis of the following performance metrics,
borrowed and modified from the fault diagnosis framework [14]:

• False Tracking Rate (FTR): the ratio between the total number of wrongly reference tracking
and the number of simulations;

• Missed Tracking Rate (MTR): the ratio between the total number of missed reference tracking
and the number of simulations;

• Correct Tracking Rate (CTR): the ratio between the number of correct reference tracking and
the number of simulations;

• Mean Tracking Delay (MTD): the delay time between the reference tracking and the reference
timing.

With reference to the indices above, note that the CTR index is complementary to MTR, since they
refer to the tracking capabilities in the presence of uncertainty and disturbance. In contrast, the FTR
index describes the tracking performance achieved only by the control designs, without considering
any errors or anomalities occurring in the system. On the other hand, the MTD index considers the
average delay occurring during the tracking of the reference signals.

Also in this case a proper Monte Carlo analysis has been performed in order to compute these
performance metrics and to test the robustness of the considered control schemes. A set of 1000
Monte Carlo runs has been performed, during which realistic wind turbine uncertainties have been
considered as described in Table 3. Moreover, in addition to the considered fuzzy and adaptive
strategies, the performance metrics of other control schemes are analysed.

The first alternative approach considered here uses a Support Vector machine based on a
Gaussian Kernel (GKSV) originally developed in [15] and it was exploited here for control purpose.
The scheme defines a vector of features for each working condition of the wind turbine, which
contains relevant signals obtained directly from measurements, filtered measurements or their
combinations. These vectors are subsequently projected onto the kernel of the Support Vector
Machine (SVM), which provides suitable control sequences for all of the defined working conditions.

The second scheme consists in an Estimation–Based (EB) solution shown in [16]. In particular, a
bank of observers is designed to estimate the control signals that have to feed the controlled process.
These observers were designed on the basis of a system linear model.

The third method relying on Up–Down Counters (UDC) was addressed in [17]. These tools, are
commonly used in the aerospace framework, and they provide a different approach to the decision
logic usually applied to the control. Indeed, the design of the control signals involves discrete–time
dynamics and is not simply a function of the plant working conditions.

The fourth approach refers to Combined Observer and Kalman (COK) filter methods [18]. It
relies on an observer used as a control signal residual generator, when the wind speed is considered
a disturbance. This observer was designed to decouple the disturbance and simultaneously achieve
optimal reference tracking in a statistical sense.

Finally, the fifth method is a General Fault Model (GFM) scheme, which is a method of automatic
design [19]. The design strategy consists of three main steps. In the first step, a large set of potential
controllers is designed. In the second step, the most suitable control signals to be included in the
final system are selected. The third step tests the selected set of control laws, on the basis of extended
comparisons of the estimated probability distributions of the tracking errors, evaluated with and
without uncertainty or disturbance effects.

The results of the comparative analysis are summarised in Table 5, tacking into account the
uncertainty effects reported in Table 3. The different model–based and data–driven approaches are
analysed and compared.
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Table 5. .

Working Index GKSV EB UDC COK GFM Fuzzy Adaptive
Condition

FTR 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Partial MTR 0.002 0.003 0.002 0.003 0.002 0.001 0.001
Load CTR 0.978 0.977 0.987 0.977 0.982 0.999 0.999

MTD (s.) 0.03 0.03 0.04 10.32 0.05 0.02 0.01
FTR 0.234 0.224 0.123 0.003 0.235 0.001 0.018

Full MTR 0.343 0.333 0.232 0.029 0.532 0.003 0.001
Load CTR 0.657 0.667 0.768 0.971 0.468 0.997 0.999

MTD (s.) 47.24 44.65 69.03 19.32 13.74 0.08 0.08

The results summarised in Table 5 serve to highlight the efficacy of the considered control
solutions also with respect to different schemes. In details, both the data–driven and model–based
approaches seem to work better than other approaches, and they have a noteworthy performance
level considering the mean delay time, which is significantly low. Also the FTR and the MTR
indices are lower than those of other approaches. However, for both model–based and data–driven
designs, optimisation stages are required, for example for the selection of the GK clustering algorithm.
Furthermore, the GKSV approach presents quite high delays, with big FTR and MTR. EB has
comparable performance with respect to GKSV in terms of FTR, CTR and MTR, but with lower
MTD. UDC can show quite high FTR in both the working conditions. COK and GFM have similar
performances, with important MTD, FTR and MTR. However, in general, the proposed data–driven
and model–based approaches are able to achieve good tracking capabilities, with minimum MTD,
and higher CTR with respect to the other control methodologies.

5. Conclusion

The work addressed two control examples for a wind turbine dynamic simulator, since it was
proposed as benchmark representing a complex dynamic system driven by stochastic disturbances
and uncertain load conditions. Moreover, the aerodynamic models of these processes is nonlinear,
thus making their modelling a challenging problem. Therefore, the design of control strategies for
these complex processes has to consider these aspects. In this way, the paper analysed the design of
two data–driven and model–based control methodologies, which represented viable, reliable, and
robust control schemes for the proposed wind turbine benchmark. Experiments with the wind
turbine simulator and the Monte–Carlo tool were the practical instruments for assessing the most
important characteristics of the developed control methodologies, when the model–reality mismatch
and measurement errors were also considered. The analysed control methods were finally compared
with respect to different control solutions proposed in the related literature, in order to highlight
advantages and drawbacks of the developed strategies. The obtained results showed that the
considered solutions represent viable, robust and reliable control applications to real wind turbine
systems.
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