
Article 

IMU-Aided Dual-Frequency RFID Based Localization 
in LOS/NLOS Hybrid Environment 
Jie WU 1,2, MingHua ZHU 1,*, Bo XIAO 1 and Wei HE 2 

1 MOE Research Center for Software/Hardware Co-Design Engineering and Application, East China 
Normal University, Shanghai, China; fw339wj@126.com,mhzhu@sei.ecnu.edu.cn, bxiao@sei.ecnu.edu.cn 

2 The Third Research Institute of Ministry of Public Security, Shanghai, China; fw339hwf@126.com 
* Correspondence: mhzhu@sei.ecnu.edu.cn; Tel.: +86-139-1532-0132 

Abstract: The mitigation of NLOS (non-line-of-sight) propagation conditions is one of main 
challenges in wireless signals based indoor localization. When RFID localization technology is 
applied in applications, RSS fluctuates frequently due to the shade and multipath effect of RF 
signal, which could result in localization inaccuracy. In particularly, when tags carriers are 
walking in LOS (line-of-sight) and NLOS hybrid environment, great attenuation of RSS will 
happen, which would result in great location deviation. The paper proposes an IMU-assisted 
(Inertial Measurement Unit) RFID based indoor localization in LOS/NLOS hybrid environment. 
The proposed method includes three improvements over previous RSS based positioning methods: 
IMU aided RSS filtering, IMU aided LOS/NLOS distinguishing and IMU aided LOS/NLOS 
environment switching. Also, CRLB (Cramér-Rao Low Bound) is calculated to prove theoretically 
that indoor positioning accuracy for proposed method in LOS/NLOS mixed environment is higher 
than position precision of only use RSS information. Simulation and experiments are conducted to 
show that proposed method can reduce the mean positioning error to around 3 meters without 
site survey. 

Keywords: dual-frequency RFID; indoor localization; non line of sight; received signal strength; 
inertial measurement unit 

 

1. Introduction 

The RFID (Radio Frequency Identification) technology has attracted considerable attentions 
over the past decades due to its advantages of non-touch, low-cost, high accuracy and long-distance 
communication. As a key technology of the internet of things, RFID has attracted wide research and 
has been used in many fields. One of most important RFID based applications is indoor localization.  

Current RFID based positioning algorithm can be divided into two categories [1]. The first kind 
of algorithms is based on the transmission model to get the distance between the reader and tags 
using received signal strength [2-4]. With the derived distance, the tri-lateration method is used to 
calculate the location of the tag. The second solution is the fingerprint based indoor localization 
method [5-8]. Before the location measurement, the location of tags and the corresponding RSS are 
recorded as the fingerprint of the environment. In the process, when the system receives the RF 
signal strength, the information is matched to get the position of the unknown tags. The fingerprint 
matching method needs a higher dependence on the stability of the surrounding environment. If 
surrounding environment changes, the fingerprint should be re-established. In this paper, we 
mainly focus on the first solution to use the transmission model to get the distance between tag and 
reader. 

In real applications, there are always obstacles between the readers and unknown tags, which 
would result into measurement deviation. This situation is defined as NLOS (Non-light-of-sight) 
and we call the situation as LOS (light-of-sight) when there are no obstacles between the readers and 
unknown tags. In the real scenario, the environment is so complex which includes both LOS and 
NLOS signal propagation that it is difficult to establish an accurate model to work on this problem 
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[9-12]. A lot of paper proposed different kinds of method. Sarfraz [13] proposed a robust 
multi-lateration algorithm for localizing sensor nodes in cluttered environments to decrease the 
large distance measurement errors introduced by NLOS signal propagation. Yang [14] proposed a 
two-step statistics-based least squares (SLS) method which consists of a NLOS bias elimination and 
linear least squares (LLS) process. Wylie and Holtzman [15] proposed a method to identify the 
NLOS error with the measurement noise standard deviation value. Guven [16] proposed a weighted 
least square algorithm based on the channel characteristics for localization in cluttered 
environments, and tried to mitigate the NLOS influence through a smaller weight for NLOS data.  

This paper put forward an IMU aided indoor positioning method in NLOS and LOS mixed 
environment based on dual-frequency RFID technology. The sliding windows are used to filter RSS 
with the assisting of IMU. The ratio of processed RSS and relative displacement of tag movement 
was adopted to find the singular point of η in the process. Then through the singular point, the 
switch point of NLOS and LOS environment is detected. There, we use different readers for 
trilateral positioning algorithm to find the location of the unknown tags. When the tags carriers 
walk between NLOS/LOS environments, the environment switch would result in positioning error. 
The IMU is used to assist tag positioning. The paper calculated CRLB of proposed method, and 
concluded that the use of IMU into the RSS localization method was superior to the effect of only use 
RSS for positioning. 

The rest of the paper is organized as follows.The next section describes the state-of-art of NLOS 
mitigation methods. The proposed algorithm is detailed in section 3. In section 4, the CRLB of the 
algorithm is calculated. The simulation about the proposed method is performed in section 5 and 
the experiment was conducted in section 6. Conclusion and discussion are made in the last section. 

2. Related Work 

When the wireless signals are used for indoor localization, they are impossible to avoid the 
influence of NLOS environment. Most of wireless signals based indoor positioning methods are 
sensitive to the NLOS environment, such as BLUETOOTH, WIFI, UWB, RFID and so on. Many 
indoor positioning approaches [17-21] have been proposed to distinguish and mitigate the 
positioning error introduced by LOS/NLOS mixed environment.  

Jordi and Pau [22] provide a robust Bayesian inference framework to deal with target 
localization under NLOS conditions. The paper takes advantage of the conditionally Gaussian 
formulation of the skew t-distribution, and then uses computationally light Gaussian filtering and 
smoothing methods as the core of the proposed approach. Gao and Zhang [23] formulate a robust 
least square (RLS) problem to jointly estimate the source location and the transmission time by using 
an asynchronous sensor network under non-line-of-sight conditions. Rather than processing all 
measurements via a single filter, the proposed algorithm distributes the measurements among 
several local filters. The paper uses distributed filtering and data association techniques to identify 
the abnormal measurements due to NLOS. Li [25] improved the NLOS mitigation algorithm to 
reduce the computation complexity and speed the convergence by using only three distance 
measurements instead of all available distance measurements.  

In the RSS based indoor localization, several works have proposed to identify and mitigate the 
NLOS environment in LOS/NLOS situation. To make a distinguish between NLOS and LOS 
environment, the paper [24] derives a comparison method on the basis of belief intervals and 
characterize the signal features on the LOS and NLOS conditions for different field experiments. 
Chen and Feng [26] proposed SIDE (statistical inference distance estimation) algorithm to provide a 
consistent distance estimator when the particle number is larger than an inferential theoretic lower 
bound given a confidence level and an error constraint. However, these techniques are not suitable 
for LOS/NLOS mixed environments and the two situation switches frequently.  

3. Preliminaries 

The characteristics of passive RFID technology were used to confirm the location of the initial 
tag point. The passive reader can be adjusted to read the tag in only 5cm range. When the passive 
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tag is read by reader, its initial location can be confirmed. Because IMU is not sensitive to the 
environment, it is used to get relative position between the current position of the unknown tags and 
the previous position. The RSS data are used in the model of the signal strength and distance 
between the readers and the location of the unknown tags. Then the LOS and NLOS environments 
are distinguished with the aid of IMU. We use different model parameters according to the NLOS 
and LOS to get a more accurate location. In this way, under the condition of LOS and NLOS, the 
algorithm can still keep relatively stable and higher positioning accuracy. For clearly describing the 
proposed solution and conducting the simulation, we designed a simple scenario as shown in figure 
1. 

           
Figure 1. The deployment the simulate system. The four readers are deployed in the simulate system. 
The initial tag position is determined by passive terminal. The tags carriers walk in LOS/NLOS 
hybrid environment. The gray rectangle represents NLOS environment, and the white area 
represents LOS environment. 

The paper used the classic path propagation model (1) to describe the relationship about RSS 
and distance between the readers and unknown tags. In this equation, ξ(t) contains environment 
noise and equipment noise. As we mentioned in the assumption, we ignore the equipment noise. 
Regarding that all readers in this paper receive the same RSS for one tag in the same distance, ξ(t) 
only denotes the environment noise. 

0 10 010 log / ( )ri iP P d d tη ξ= − +  (1)

where Pri refers to the received power by the ith reader in the di distance, η denotes the path loss 
coefficient. ξ(t) denotes the environment noise and obeys the Gauss distribution N(0,σ), P0 denotes 
the received power by the ith reader in the d0 distance. 

4. Materials and Methods  

In this section, we make a detail description about the proposed algorithm. The section is 
divided into four parts. The first part is to calculate the initial position and initial parameters of the 
model. The second part designs an IMU aided RSS filter and the third part distinguishes and 
eliminates the NLOS and LOS. In the fourth part, IMU Aided LOS/NLOS Environment Switch is 
conducted. 

4.1 Initial Position Confirmation and Model Parameters Calculation 

The tag in the paper is dual-frequency RFID, including the passive part and the active part. In 
the initial points of measurement, we designed a passive terminal connected with server.  When the 
tag is near to the passive terminal, the id of tag is read by terminal and the tag is activated and the 
initial position of itself is known by server, and then the active part of tag starts to send the 
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information (such as IMU). The surrounding readers read RSS values and information of tag. In 
order to simplify the calculation, passive terminal is deployed in LOS environment and in this place, 
the initial obey normal distribution N (0, σ), and the path loss is known in advance. Through this 
information and the model of equation (1), we can preliminarily confirm the model of transmission 
loss and the parameters of the Gaussian noise. 

2 2( ) ( )i i id x x y y= − + −  (2)
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 (3)

Where the [P0r1,…,P0rN]T is the received power by readers when the tag is activated by passive 
terminal. N denotes the readers received number of N data. di refers to the distance between 
unknown tag and reader, We rewrite it as matrix form. 

CP DX= +  (4)

Where P denotes [P0r1,…,P0rN]T, D denotes 2 x N matrix. The parameter C denotes 
[10ηloslog(d01),…, 10ηloslog(d0N)], and X denotes [P0,N0]T. We solve the matrix and get the initial 
parameter as follow: 

1( ) ( -C)T TX D D D P−=  (5)

4.2  IMU Aided RSS Filtering 

In a relatively short period of time, the fluctuation of IMU value is far less than fluctuation of 
RSS. In this way, the IMU would measure more accurately the relative position about the tags 
movement than the RSS. So in this paper, the IMU and RSS are fused with kalman filter to get more 
stable data for received signal strength. The IEZ+ method [27,28] is a appropriate choice to get the 
relative displacement, in which accumulated errors of the proposed method is approximately 1% of 
the total traveled distance. So we adopt IEZ+ method to get the relative displacement with IMU in 
this paper.  

 

                           

Figure 2. The sliding windows for the RSS filtering with IMU. 

Compared with NLOS environment in the application, the RSS does not change sharply in the 
LOS environment. In this way, the RSS value can be expressed as a sum of weighted RSS for n 
nearest points. As shown in figure 2, the weight moving average filter is used to filter the RSS, and 
the window size of filter is n. After new RFID data is received, the filter slides to the next group data. 
The weight is defined as relative distance calculated by IMU and it is measured with the distance 
between the two points. We define the weight as Δζ(t)=ζ(t)- ζ(t-1). The RSS data in the sliding 
window data would be expressed for Markova sequences. That is to say, the RSS data is only related 
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to the recent n value. So the relation between the estimated received power and RSS by readers can 
be expressed as equation 6. 

( ) ( ) ( ) ( )
1

ˆ ( ) ( | )
j

mj m j m j m i m i
i

P E P p X P X P P
=

= = = =  (6)

where ˆ
m jP  stands for the jth estimated received power, and Pm(j) stand for the RSS by mth reader in jth 

times.  The p(X=Pm(j)|X=Pm(i)) stands for the transition probability from previous RSS to jth RSS state.  
The transition probability can be obtained by the relative position with IMU. 

( ) ( )
0

( | ) ( )= ( )/ ( ) 
n

m j m i
t

p X P X P i S i S tζ
=

= = =   (7)

where S(i) refers to the relative displacement calculated by IMU, ζ(i) refers to the normalized 
relative displacement. So the RSS filter equation with IMU is denoted by: 
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=

= =
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(8)

where j = 1, 2, 3 … n. 

 
Figure 3. The figure shows the IMU assisted RSS data filtering. The blue line is simulated received 
signal strength. The green line is received signal strength with the Gauss noise. The red is filtered 
data for RSS. It is shown that the IMU is effective for the RSS filtering.  

4.3 IMU Aided NLOS Error Mitigation 

The proposed method uses the ratio of processed RSS and relative displacement of tag 
movement to distinguish the different path loss environment. With the equation 1, for established P0 
and d0, Pr is a function of η and d. That is Pr=F(η, d). The partial derivative of Pr to d is given by: 

1 110
ln(10)

rP

d d
η∂ = − ⋅ ⋅ ⋅

∂
 (9)

According to the equation 1，the distance between the position of unknown tags and the 
position of reader can be denoted by: 

0
10

010
r rP P

d d η
−

=  (10)

Combining the equation 6 and equation 7: 
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With the help of MATLAB tool, the path loss parameter η is derived by equation 12. 
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where the function lambertw() is Lambert W Function. This function is the inverse function of f(w), 
where f(w)=w.exp(w). exp(w) is a function index, and w is plural. We define Δd as di-di-1, and Δτ is 
relative position between the position and previous position, which we can derivate with IMU. In 
this paper, we assume d >> Δd and d >> Δτ. Then the ratio of processed RSS and relative 
displacement of tag movement is expressed as: 

r rP P

d
α

τ
∂ ∂≈ ⋅
∂ ∂

 (13)

where α is constant parameter. Combining the equation 12 and equation 13, the result of η is 
denoted by: 
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In equation 14, when tag carrier walks in LOS/NLOS mixed environment as figure 1, the RSS 
changes sharply, while the relative position changes smoothly. It would cause η changes sharply. 
Under this condition, η would produce singular value. According to the location of the singular 
value, we calculate the η separately in the whole process. Then the procession is separated into two 
parts. We pick some of the data at the junction of LOS/NLOS environment. The data separately 
satisfies the following equations.  

1 0 1 10 1 0 110 log ( / ) ( )rP P d d tη ξ= − +  (15)

2 0 2 10 2 0 210 log / ( )rP P d d tη ξ= − +  (16)

In equation 15 and 16, because points are picked so close, we assume that the distance d1 and d2 
between reader and tag are equal. Two equations are combined and get the ratio between η1 and η2. 
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(17)

Through the above equation, we can distinguish which part is LOS, and which part is NLOS. 

4.4  IMU Aided LOS/NLOS Environment Switch 

When tags carriers walk at the junction of LOS/NLOS environment, it always results into a big 
jitter for the magnitude of positioning error. The path loss parameters at transmission model are 
different in different environment. As shown in figure 4, when tags carriers walk at the junction of 
LOS/NLOS environment, the sharply change of path loss parameters would result in unstable 
localization. According to the equation 1, it would give rise to a big jitter for the magnitude of 
positioning error at the point of 150 at the position of x axis and the point of 450 at the position of x 
axis. In this paper, when the tags come into the singular of environment，the algorithm detect the 
situation, and use the IMU aided navigation to keep the position error stable, as shown the blue line 
in figure 5. 
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Figure 4. The figure shows the change of path loss parameter in the procession. As it is shown, the 
point at the magnitude of 80 is the singular value of path loss parameter. 

 
Figure 5. The Figure shows the position error with the aid of IMU. In the surrounding of singular point, 

we use the IMU aided navigate to keep the position stable. 

4.5 Localization of Unknown Tags 

Trilateral method is used to get the real location of unknown tags. The distance between reader 
and tag is calculated by the RSS according to the algorithm. According to the LOS and NLOS 
propagation path detection, path can be divided into different process section to calculate the 
distance. 
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(18)

where (x, y) is the position of unknown tag, the (x1,y1),(x2,y2),…,(xm, ym) are the position of readers. 
d1, d2,…, dm are the distances we have estimated by section 2. The last equation is used to minus the 
all other equations above. The equation is given by: 
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(19)

The matrix of the equation is given by: 

P XC=  (20)

where X = [x, y]T, P is the expression on the left equation . The matrix of C is expressed as: 
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The location of unknown tag is given by: 
1( )T TX PC CC −=  (21)

 

5. CRLB Calculation 

We consider a short time interval when the jth readers receives number of n RSS information, 
which we denote as (PR1, …, PRn), and each of RSS distribution obeys N(0,σn). With the equation 1, 
we can get the pdf (probability distribution function) of PRi. 
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where i =1, 2 … n. PR1, PR2, ..., PRn is the distribution of the independent, so the joint probability 
distribution can be expressed as equation 23. 
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The logarithm form of pdf is given by: 
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Fisher Information is given by: 
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(25)

With the assistant of IMU, the rest of tag locations would be worked out according to the initial 
tag location. In real application, the data fluctuation introduced by RSS is bigger than the data 
fluctuation introduced by IMU, so we got σimu << σRSSI in the short period of time. In this way, we 
would reduce the variance of RSS to approximately σ1.  
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(26)

As shown in equation 26, the IMU assisted fisher information is not less than independent 
distribution of RSS. With CRLB, we get the conclusion that IMU assisted positioning is more 
accurate than only positioning with RSS information and IMU is effective to be added in this 
solution. 

6. Simulation  

The proposed algorithm was simulated and parameter settings are listed in table 1. According 
to the figure 1, three of the readers were arranged at coordinates ((0, 0), (0, 80), (80, 30)). The 
monitoring area size was 30mx30m, and the unknown tag moved at an average speed of 1 m/s, 
moving from LOS environment into NLOS environment and moving from NLOS into LOS 
environment. The data sending time interval for RFID tags is 200 ms. 

Table 1. Experimental Environment Parameter Settings 

Experimental parameter value 
monitoring area 30m x 30m 
monitoring time 120s 
tags moving speed 1m/s
tags send time interval 200ms
path fading factor 1.3(LOS);1.9(NLOS) 
d0 1m 
Pr0 -43dbm 
RSS measure noise N(-0.5,10) 
The reader coordinates ((0,0),(0,80),(80,30))

 
In the simulation, Gaussian noise was added in the process, and the tag locations are 

calculated in every process with proposed algorithm. As shown in figure 5, with the equation 11, 
the singular points were found for the path loss parameter, and the process was divided into three 
parts, we calculate each part individually with different path loss parameter. The position error is 
shown in the right part of figure 4. 
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Figure 6. The figure shows the comparison of the location estimation about the path loss detection. 
The left figure depicts the estimation trajectory without path loss detection, and the right figure 
depicts the estimation trajectory with path loss detection. 

 

   
Figure 7. The figure shows the comparison of position error between the proposed method and 
without the proposed method. The left figure is the position error depiction without the proposed 
method. The right figure depicts the position error with proposed method. It is shown that the 
proposed method have a good performance in LOS/NLOS hybrid environment. 

7. Experiment 

7.1  Experiment setup 

In order to verify the effectiveness of the proposed localization method, the experiment was 
conducted in the PuDong research center of the third research institute of ministry of public 
security in ShangHai. As shown in figure 8, six readers were deployed in the fourth floor. The 
reader 1, reader 2 and reader 3 are deployed in hall and reader 4, reader 5 and reader 6 are 
deployed in room A. The reader 8 is deployed in room B. The person carrying tag walked from the 
hall to room A and room B. Then tags carriers return back to the hall.  
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Figure 8. PuDong research center floor plan illustrating readers and walking trajectory of tags 
carriers. The red trajectory is where the tag carrier walked through.  

 

Figure 9. Indoor test environment, tag and reader. The tag is installed on the waist of pedestrian and 
the readers are mounted on tripods. 

7.2  Tests and Results 

We conducted three positioning methods in the environment and make a comparison of the 
positioning accuracy about three methods. The first is the trilateral positioning method with the 
reader 1, reader 2 and reader 3. The second is the trilateral positioning method with proposed 
NLOS error mitigation. In this method, we used the proposed method to distinguish when the tag 
was in the hall and when the tag was in the room A. Then trilateral positioning method with LOS 
loss parameter would be used to conduct the localization with the received information by reader 1, 
reader 2 and reader 3 when the tag was in the hall. Trilateral positioning method with LOS loss 
parameter would be used to conduct the localization with the received information by reader 4, 
reader 5 and reader 6 when the tag was in room A. The NLOS loss parameter is used when the tags 
carriers walk into the room B. we used the RSS order for the seven readers to distinguish the 
different room. The last is the method proposed in the [29], which used particle filter to fuse the 
IMU and RSS. The positioning accuracy for three methods was compared in this section. 
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As shown in the figure 10, the accuracy of trilateral positioning method is worst among three 
methods. The precision of the particle filter based positioning method is best among three methods. 
The precision of proposed method was slightly poorer than particle filter based positioning 
method. 

 
Figure 10. The cumulative distribution functions of three different positioning methods. 

8. Conclusion and Discussion 

The paper proposes an IMU-aided NLOS error mitigation method for RFID based indoor 
positioning. The method uses the ratio of processed RSS and relative displacement of tag movement 
to find the singular points of path loss parameter, and identifies the NLOS and LOS through the 
singular points. Then the CRLB of the proposed method is calculated and it is concluded 
theoretically that the use of IMU into the RSS localization method is superior to the effect of only 
use RSS for positioning. 

Then the experiment was carried out and a comparison was made with other two positioning 
methods. In the proposed method, the NLOS error mitigation is used to distinguish the hall and 
room, so different readers are used for localization when tags carriers are in different positions. In 
this way, the positioning accuracy for proposed method is far better than trilateral positioning 
method. Although the positioning accuracy of particle filter based method is slightly better than the 
proposed method, it needs a lot of site survey for map generation and the use of particle filter is 
time-consuming. In conclusion, the proposed method is better than other two methods in practical 
applications. 

The paper has put forward a method to distinguish between LOS and NLOS to mitigate the 
NLOS error. In the future study, we will focus on distinguishing between different NLOS 
environments with the aid of IMU and RSS. 
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